
Benign overfitting of non-smooth neural networks beyond lazy training

Xingyu Xu Yuantao Gu
Tsinghua University Tsinghua University

Abstract

Benign overfitting refers to a recently discovered
intriguing phenomenon that over-parameterized
neural networks, in many cases, can fit the train-
ing data perfectly but still generalize well, sur-
prisingly contrary to the traditional belief that
overfitting is harmful for generalization. In spite
of its surging popularity in recent years, little has
been known in the theoretical aspect of benign
overfitting of neural networks. In this work, we
provide a theoretical analysis of benign overfit-
ting for two-layer neural networks with possibly
non-smooth activation function. Without resort-
ing to the popular Neural Tangent Kernel (NTK)
approximation, we prove that neural networks
can be trained with gradient descent to classify
binary-labeled training data perfectly (achieving
zero training loss) even in presence of polluted
labels, but still generalize well. Our result re-
moves the smoothness assumption in previous
literatures and goes beyond the NTK regime; this
enables a better theoretical understanding of be-
nign overfitting within a practically more mean-
ingful setting, e.g. with (leaky-)ReLU activation
function, small random initialization, and finite
network width.

1 INTRODUCTION

In modern data science, neural networks have demonstrated
its practical capacity to tackle many complicated tasks that
were beyond the reach of classical machine learning meth-
ods. However, it remains mysterious why they can work so
well (and, in opposition, why they fail in some cases) from
a theoretical perspective. Classical theory like universal ap-
proximation theorem states that sufficiently large networks
can fit any continuous function. One may translate it into a
language that is more in spirit of this paper:
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• With sufficient overparameterization, with an infinite
number of noiseless training samples and with infinite
computation power, we can train a neural network that
generalizes well.

Unfortunately, this does not fully explain the success of
neural networks: it is obvious that a linear interpolator will
do the same job under the above idealized setting.

Thus the power of neural networks can be better exhibited
only in a more practical setting: noisy and finite samples,
with practical optimization algorithms. For example, the
counterexample of linear interpolator given above does not
generalize well if the training data is noisy. Similar issues
occur for many classical learning methods. In fact, tradi-
tionally one often needs to cut down the number of parame-
ters to alleviate performance deterioration caused by fitting
noises. These had accumulated in the common beliefs that:

• Overparameterized model overfits on noisy data.
• Overfitting is harmful for generalization.

It seems contradictory to the above beliefs that neural net-
works, as an enormously overparameterized model, simul-
taneously show impressive generalization performance and
strong fitting ability in many scenarios. This is the key
observation in the important recent discovery: the benign
overfitting phenomenon (Belkin et al., 2019). A brief sum-
mary of benign overfitting is:

• In many cases, overparameterized neural networks can
be trained to zero training loss with simple algorithms
like gradient descent, even in presence of noisy samples.

• But they still generalize well (in fact, often achieving
state-of-the-art performance).

This indicates a new, unexplored statistical phenomenon
contrary to classical beliefs, which can be helpful for un-
derstanding the success (and the failure) of neural net-
works. For this reason, benign overfitting has received
surging attention in recent years, to name just a few, Bartlett
et al. (2020), Wang et al. (2021), Mei and Montanari
(2022), Hastie et al. (2022).

However, theoretical understanding of benign overfitting
of neural networks is still limited. Previous literatures
have restricted their scopes to the lazy training regime,
also known as Neural Tangent Kernel (NTK) regime (Ja-
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cot et al., 2018; Arora et al., 2019b), which demands the
weight never moves far from its initial value and often re-
quires incredibly large network width, which does not align
very well with the common usage of neural networks in
practice. In addition, for technical reasons these results are
often based on smooth activation functions, while in prac-
tice the non-smooth Rectified Linear Unit (ReLU) family
has overwhelming popularity. It is thus important to go
beyond these limitations and understand benign overfitting
for non-smooth networks beyond lazy training regime.

In this paper we investigate the benign overfitting phe-
nomenon for two-layer neural networks with possibly non-
smooth activation functions. For well-separated binary
classification problem, we prove that such networks can be
trained to zero training loss with gradient descent, hence
fitting all labels of the training data perfectly even in pres-
ence of adversary label pollution. Meanwhile, we prove
they still attain minimax optimal generalization error:

• Non-smooth two-layer neural networks overfit benignly
in binary classification for mixture model.

A notable feature of our results is that they are devoid of
many restrictions commonly assumed in related literature.
We allow non-smooth activations, including the popular
ones in practice such as ReLU and leaky-ReLU. We allow
constant network width and allow the weights to travel arbi-
trarily far from its initial values, transcending the lazy train-
ing paradigm commonly adopted in literature. As such, our
results provide a better understanding of benign overfitting
for two-layer networks under a more practical setting.

1.1 Related Works

A significant part of previous theoretical results on benign
overfitting focused on the simplified setting of linear re-
gression (Bartlett et al., 2020; Tsigler and Bartlett, 2020;
Negrea et al., 2020; Chatterji et al., 2021; Hastie et al.,
2022; Chinot et al., 2022). Recent works have moved on
to more complicated settings like logistic regression (Mon-
tanari et al., 2019; Chatterji and Long, 2021; Wang et al.,
2021), kernel-based estimators (Liang et al., 2020; Mei and
Montanari, 2022). Considering the large and rapidly ex-
panding volume of literatures in this area, the references
we provide here are by no means comprehensive.

Though benign overfitting is initially motivated by attempts
to understand neural networks, the theoretical aspect of be-
nign overfitting for neural networks is much less cultivated.
A few results were obtained in the lazy training regime
(Allen-Zhu et al., 2019; Arora et al., 2019a), which roughly
speaking is a linear (or quadratic) approximation of neu-
ral networks and, in spite of its simplicity, fails to account
for several important aspects of practical usage of neural
networks (Yang and Hu, 2021). Moving beyond the NTK
regime, little is known. In the noiseless setting, Brutzkus

et al. (2018) showed that two-layer neural networks with
leaky ReLU activations can be trained to zero training loss
by SGD and generalize well in low-dimensional regime. It
is however not clear how their technique extends to noisy
labels and high-dimensions.

Our result is most closely related to and inspired by Frei
et al. (2022). In that paper, it was shown that two-layer neu-
ral networks with smooth, leaky activation functions overfit
benignly for well-separated binary classification. Another
related paper (Cao et al., 2022) considers a very different
data model but also assumes a smoothified ReLU activa-
tion. Our result completely removes the smoothness and
the leakiness assumptions. As we will see, removing these
assumptions require novel ideas and substantial efforts:

• Non-smooth activation excludes the possibility to use
Taylor approximations which are pervasive in Frei et al.
(2022) and in other previous works, so a finer-grained
analysis technique is necessary;

• Non-leaky activation may lead to severe problems known
as dying ReLU in practice, making the discussion of
abundance of active neurons crucial in the proof, both in
training (Lemma 4.3) and in generalization (Lemma 4.7).
Such results are novel and cannot be discovered under the
setting of Frei et al. (2022). In establishing such results
we also need to employ new tools such as random matrix
theory and anti-concentration inequalities, and develop
new arguments;

• The control of the empirical loss in Frei et al. (2022) re-
lies on a proxy PL inequality which depends crucially on
the smoothness of the activation function. We provide a
finer analysis of the dynamics of the empirical loss that
bypasses this problem. Our refined analysis also leads
to a faster convergence rate compared with Frei et al.
(2022);

• Moreover, in our general setting we will see that the lo-
cal approach to control the generalization margin in Frei
et al. (2022) fails to work (see Lemma 4.7) due to com-
plicated statistical dependence stemming from lack of
smoothness and leakiness. We will see that an almost
entirely different “global” approach is required. Our new
approach allows to utilize random matrix theory to com-
pletely avoid statistical dependence without resorting to
any smoothness or leakiness assumption.

1.2 Basic Notations

We will use c, c′, C, C ′, etc. to denote constants that may
vary upon each occurrence. For a natural number n, we
use [n] to denote the set {1, . . . , n}. The cardinality of a
set A is denoted by |A|. The gradient ∂σ of a possibly
non-differentiable function σ is defined later by (3).
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For a matrix W = (w1, w2, . . . , wm) ∈ Rp×m where wj ∈
Rp, denote its (2, 1)-mixed norm by ∥W∥2,1, defined as
∥W∥2,1 :=

∑m
j=1 ∥wj∥.

2 PROBLEM FORMULATION

We consider a two-layer network fW (x) of width m, with
activation function σ, defined by

fW (x) :=
1√
m

m∑
j=1

ajσ(⟨wj , x⟩) (1)

where x ∈ Rp is the input data and W = (w1, . . . , wm)
with wj ∈ Rp, j = 1, . . . ,m being the weight vectors of
the neurons. The weights of the second layer aj’s are ini-
tialized as i.i.d. Rademacher random variables1 and fixed
thereafter, following common conventions in related litera-
ture (Arora et al., 2019a; Frei et al., 2022; Cao et al., 2022).

Activation. The only restrictions we put on the activation
function σ are σ(0) = 0 and the following:

0 ≤ σ(u)− σ(v) ≤ u− v, ∀u ≥ v, (2a)
σ(u)− σ(v) ≥ γ(u− v), ∀u ≥ v ≥ 0. (2b)

where γ ∈ (0, 1] is some constant. We will regard γ as
being far away from 0, thus 1/γ = O(1). In plain words,
we assume the activation is increasing, Lipschitz continu-
ous, and has non-vanishing gradients in the activated region
u > 0. The prototype we have in mind is the (arguably
most popular) ReLU family, including ReLU, leaky ReLU,
Exponential Linear Unit (ELU), etc. With finer assump-
tions one may also include more complicated activations
like Gaussian Error Linear Unit (GELU), but for simplicity
we will content ourselves with the model above.

For purpose of gradient descent we need to compute the
gradient of σ. In most cases σ will be differentiable almost
everywhere, but actually we do not need to assume any dif-
ferentiability here. Instead, we simply define the gradient
∂σ(u) at u to be any number satisfying

∂σ(u) ∈
[
lim
v→u

σ(v)− σ(u)

v − u
, lim
v→u

σ(v)− σ(u)

v − u

]
. (3)

By assumption we have ∂σ(x) ∈ [γ, 1] for x > 0 and
∂σ(x) ∈ [0, 1] for x ≤ 0.

Initialization. As mentioned above, we initialize the sec-
ond layer aj’s of the neural network with Rademacher dis-
tribution. The hidden layer, on the other hand, is initial-
ized by random Gaussians following standard practice, i.e.,
we draw the initial weights W (0) = (w

(0)
1 , . . . , w

(0)
m ) from

1A Rademacher random variable takes value −1 or 1 with
equal probability 1/2.

m i.i.d. samples from the rescaled Gaussian distribution
N (0, ω2

initIp). The parameter ωinit controls the magnitude
of initialization and is usually set as a small number in
practice. In accordance with this practice, we assume ωinit

is sufficiently small throughout this paper, the quantitative
meaning of which will be made clear later.

Data Model. Assume the unpolluted dataset consists of n
labeled samples (xi, y⋆i )

n
i=1 which are i.i.d. samples drawn

from some distribution P⋆ on Rp × {−1, 1}. We can ob-
serve xi’s, but do not know what their true labels y⋆i ’s are.
Instead, we can only access a polluted version yi of y⋆i .
We assume that the pollution amounts to flip the labels of
(at most) η-fraction of all the n data points but is other-
wise arbitrary, allowing for adversary pollution. Formally
speaking, we assume

1

n
|{i ∈ [n] : yi ̸= y⋆i }| ≤ η.

We further assume the distribution P⋆ can be described by
the following mixture model:

(i) Fix some µ ∈ Rp.

(ii) Generate z ∼ Pz where Pz is a centered isotropic dis-
tribution2 on Rp whose logarithmic Sobolev constant
is bounded by some constant β (see Remark 1).

(iii) Generate y⋆ from a Rademacher distribution.

(iv) Set x = y⋆µ+ z. The final output is (x, y⋆).

A few remarks on the generality of the model are in order.
Remark 1 (Log-Sobolev assumption). The assumption on
the logarithmic Sobolev constant (Ledoux, 2001) of Pz is a
purely technical one; it is used to derive Lipschitz concen-
tration properties (cf. Ledoux (2001); please refer to the
supplement material of this paper for details) for a sim-
ple proof of the generalization bound. It can be viewed
as subgaussian assumption plus some geometric regular-
ity assumption on the distribution. It is satisfied by a
wide range of distributions adopted in previous literatures,
e.g. Gaussian distribution, or strongly log-concave dis-
tributions. These subsume the models in Chatterji and
Long (2021); Frei et al. (2022); Wang and Thrampoulidis
(2022). Finally, we note that β ≳ 1 due to the centered and
isotropic assumption (Ledoux, 2001).
Remark 2 (Centered and isotropic assumption). The cen-
tered and isotropic assumption is not restrictive since any
distribution can be transformed to a centered and isotropic
one by a simple affine transform.
Remark 3. Similar models appeared in Chatterji and Long
(2021); Frei et al. (2022); Wang and Thrampoulidis (2022).
Our model is a bit more general: we do not assume inde-
pendence of the p features (i.e. dimensions) of z. Finding a

2This means Ez∼Pz [z] = 0 and Ez∼Pz [zz
⊤] = I .
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representation with independent features is usually nontriv-
ial and requires considerable effort of feature engineering
in practice, thus this generalization is meaningful.

Training. We train the neural network fW by optimizing
logistic loss with full-batch gradient descent. Denote by
ℓ(u) the logistic loss function

ℓ(u) := log(1 + exp(−u)).

The empirical loss is defined by

L̂(W ) =
1

n

n∑
i=1

ℓ(yifW (xi)). (4)

From an iteration W (t) = (w
(t)
1 , . . . , w

(t)
m ), the next itera-

tion is computed by

W (t+1) =W (t) − α∇W L̂(W (t)),

where α > 0 is the (constant) stepsize. The gradient should
be understood in the sense of (3) for non-smooth σ.

Generalization. We characterize the generalization per-
formance of a neural network fW in terms of the expected
classification error rate:

perr(W ) := P(x,y)∼P⋆
(yfW (x) ≤ 0). (5)

Assumption on Parameters. The key parameters in the
above models include the input dimension p, the width m
of the hidden layer, the initialization magnitude ωinit, the
number of samples n, the separation µ of different classes,
the stepsize α, and the fraction η of labels polluted. The
lower bound γ of activated gradient and the upper bound β
of logarithmic Sobolev constant are less crucial and can be
regarded as absolute constants in this paper. We will fix a
“failure probability” δ ∈ (0, 1/2), and make the following
assumptions on parameters, with C > 0 some sufficiently
large constant depending only on β, γ:

n ≥ C log(m/δ), (6a)
m ≥ C log(n/δ), (6b)

p ≥ C(n∥µ∥2 + n2 log(n/δ)), (6c)
η ≤ 1/C, (6d)

α ≤ 1/(Cp2), (6e)
ωinit ≤ α/

√
mp. (6f)

We need yet another assumption that may seem less obvi-
ous but is actually validated by information-theoretic limit:

∥µ∥ ≥ C(p/n)1/4 log1/4(mp/nδ). (7)

The rationale for this assumption is that, by a result of Gi-
raud and Verzelen (2019), the minimax generalization error

is at least c exp(−cmin(∥µ∥2, n∥µ∥4/p)). In our setting,
according to (6c), we have n∥µ∥4/p ≤ ∥µ∥2, thus the min-
imax generalization error is at least c exp(−cn∥µ∥4/p).
This indicates that the assumption (7), up to logarithmic
factors, is inevitable if we wish a trained classifier to gen-
eralize well (regardless of which classifier and which learn-
ing method we are using).
Remark 4 (Assumption on the corruption parameter η).
We assumed η ≤ 1/C for a sufficiently large constant
C, i.e., the proportion of the corrupted labels is less than
some small constant, which is unspecified in our paper
yet assumed to be sufficiently small (say, (1000β2γ2)−1).
This is nearly the most general constraint from a theoret-
ical perspective: η in general cannot exceed some small
constant≪ 1 since with η = 1/2 one can clearly construct
a dataset on which no algorithm is generalizable. Our as-
sumption excludes these extreme cases but does not ask for
much more.

3 MAIN RESULTS

Theorem 3.1. Under the assumptions in Section 2, the fol-
lowing holds with probability at least 1−δ. For any number
of iterations t ≥ CL̂(W (0))/(α∥µ∥2ϵ) where ϵ ∈ (0, 1/2)
is arbitrary, the neural network overfits benignly, in the
sense that

1. (Perfect fitting) The empirical loss is driven to arbi-
trarily small:

L̂(W (t)) ≤ ϵ, (8)

and if ϵ < 1/(2n), all training labels (including pol-
luted ones) are fitted perfectly:

yifW (t)(xi) > 0, ∀1 ≤ i ≤ n. (9)

2. (Generalization) The network fW (t) generalizes well
to new data: for (x, y) ∼ P⋆ we have (recall that perr
denotes the generalization error rate defined by (5))

perr(W
(t)) ≤ exp

(
−n∥µ∥

4

Cp

)
. (10)

Since ℓ(u) → 0 only when u → ∞, it is clear that (8) can
hold only if the weights of the network can grow infinitely
large as ϵ → 0 (hence t → ∞). This indicates that our re-
sult allows (and requires) the weight to move arbitrarily far
from its initial value, hence goes beyond the lazy training
regime.

3.1 Comparison with Previous Works

It has been shown in Giraud and Verzelen (2019) that the
minimax lower bound of generalization error in the noise-
less version of our setting is c exp(−cn∥µ∥4/p), thus our
result is minimax optimal in terms of sample efficiency.



Xingyu Xu, Yuantao Gu

Compared with Frei et al. (2022), we not only considered
a more general setting but also obtained a better O(1/t)
convergence rate of L̂(W (t)) instead of the O(1/

√
t) rate

there, due to some finer-grained analysis in our proof.

Note that in Frei et al. (2022) the activation function is as-
sumed to be both leaky and smooth, i.e. σ is twice dif-
ferentiable with σ′ ≥ γ > 0 and |σ′′| ≤ H everywhere.
Our work removes both assumptions: we make no assump-
tion on second-order differentiability of σ and allow σ to
be “deactivated” in the region (−∞, 0]. In that region the
gradient of σ can vanish or even not exist. Thus at least
two new questions not involved in Frei et al. (2022) arise:
the dying ReLU problem (the gradient can be vanishing so
the training of NN gets stuck), and the failure of Taylor
approximation.

From a big picture, the NTK approach can be regarded as
a linearized regime, while the assumptions in Frei et al.
(2022) can be regarded as some “semi-linear” regime.
Though the activation function was not assumed to be ac-
tually linear there, it shared several crucial properties with
a linear function, e.g. we have σ(u)−σ(v) ≍ u−v for any
u, v, the right hand side being a linear function. We even
have σ(u)−σ(v) ∼ σ′(u)(u−v) uniformly for sufficiently
close u, v since |σ′′| ≤ H . In contrast, our setting corre-
sponds to a more “non-linear” regime, where the above ap-
proximation all fails and one has to confront some singular
behaviors of NN due to non-linearity such as discontinuous
gradients and dying ReLU.

4 ANALYSIS

In analyzing the evolution of the network during the train-
ing process we need to monitor several important aspects,
which interweave with each other in a subtle way. This sec-
tion provides a brief overview of these aspects. First we set
up the basic technical background: we condition on some
good events E throughout the whole proof to streamline the
arguments. Then we analyze the dynamics of the state of
neurons and provide a guarantee that sufficiently many neu-
rons stay active. With this guarantee we are able to track the
changes of empirical margins and losses, which are crucial
to the proof of perfect fitting (8) and (9). The techniques
established in these steps will be useful for the final part of
our analysis: bounding the generalization error.

4.1 Good Event

It is convenient to condition on some good event E , defined
by the intersection of the following events:

(i) The sets J+ := {j ∈ [m] : aj = 1} and J− := {j ∈
[m] : aj = −1} have cardinality at least m/3:

min(|J+|, |J−|) ≥ m/3. (11)

(ii) For all i ∈ [n], j ∈ [m] we have∣∣∣{i ∈ [n] : yi = aj , ⟨w(0)
j , xi⟩ > 0}

∣∣∣ ≥ n

60β2
, (12)∣∣∣{j ∈ [m] : yi = aj , ⟨w(0)

j , xi⟩ > 0}
∣∣∣ ≥ m

60β2
. (13)

(iii) For any ζ = (ζ1, . . . , ζn) ∈ Rn we have

3p

4
∥ζ∥2 ≤

∥∥∥∥∥
n∑

i=1

ζi(xi − y⋆i µ)

∥∥∥∥∥
2

≤ 5p

4
∥ζ∥2. (14)

(iv) For all i ∈ [n] we have

|⟨µ, xi − y⋆i µ⟩| ≤ 16β∥µ∥
√
log(n/δ). (15)

(v) For all i, i′ ∈ [n], i ̸= i′ we have

|⟨xi − y⋆i µ, xi′ − y⋆i′µ⟩| ≤ 16β
√
p log(n/δ). (16)

(vi) For all j ∈ [m] we have

∥w(0)
j ∥ ≤ 2ωinit

√
p. (17)

(vii) For all i ∈ [n] we have

|yifW (0)(xi)| ≤ 1. (18)

The meaning of these events are technical; we will see later
how some of them fit into our proof. For now it is useful to
know that it is of no loss in utility by conditioning on E .

Lemma 4.1. The event E happens with probability at least
1− δ.

Except for (12) and (13), the proof is a routine applica-
tion of concentration inequalities and random matrix the-
ory. The two exceptional equations are a bit more com-
plicated and involve the anticoncentration property of the
inner product ⟨w(0)

j , xi − y⋆i µ⟩. Details can be found in an
extended version of this paper.

4.2 Undying ReLU

Now we encounter the first major technical challenge,
known as dying ReLU problem when σ is the ReLU func-
tion, caused by the generality of our assumption on activa-
tion function: it is allowed to have zero gradient on negative
input, hence the weight of neuron may not be updated any-
more if all its inputs become negative. In such case the neu-
ron is called inactive. The neural network can get trapped
in the training process when too many neurons have turned
inactive. We must show that this is unlikely to happen so
that the neural network can be trained well.

Denote by A(t) the set of pairs (i, j) such that the neuron
j is active for the sample xi at the t-th iteration, i.e.

A(t) := {(i, j) ∈ [n]× [m] : ⟨w(t)
j , xi⟩ > 0}.
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Denote its coordinate sections by Ai(t) and Aj(t) respec-
tively, which are defined by

Ai(t) := {j ∈ [m] : (i, j) ∈ A(t)},
Aj(t) := {i ∈ [n] : (i, j) ∈ A(t)}.

In plain words, Ai(t) means the set of neurons that are ac-
tive for input xi at the t-th iteration, while Aj(t) means the
set of training samples that activate the j-th neuron at the
t-th iteration.

The importance of A(t) is apparent: we need to ensure the
gradients are non-vanishing.

Proposition 4.1. For any pair (i, j) ∈ A(t), we have
∂σ(⟨w(t)

j , xi⟩) ≥ γ.

Proof. This follows from the definition of A(t) and our as-
sumption (2b).

Among the active pairs (i, j) it is important to distinguish
the ones that have correct signs, i.e. aj = yi. Such a pair is
not only active but also contributes positively to the margin
yifW (t)(xi) =

∑
j∈[m] yiajσ(⟨w

(t)
j , xi⟩)/

√
m. For this

reason we denote

T := {(i, j) ∈ [n]× [m] : yi = aj}.

and similar to the above we define

T i:= {j ∈ [m] : (i, j) ∈ T },
Tj := {i ∈ [n] : (i, j) ∈ T }.

First we show there are many correctly labeled active neu-
rons upon initialization.

Lemma 4.2 (Initially active neurons). On the event E we
have:

|Ai(0) ∩ T i| ≥ m/(60β2), ∀i ∈ [n],

|Aj(0) ∩ Tj | ≥ n/(60β2), ∀j ∈ [m].

Proof. This follows from (12) and (13).

The following lemma, crucial to our analysis, asserts that
correctly labeled active neurons are always active: they will
never be deactivated in any iteration.

Lemma 4.3 (Active neurons stay active). On the event E ,
the set A(t) ∩ T is monotonically increasing in t, i.e. for
any t ≥ 0,

A(t) ∩ T ⊂ A(t+ 1) ∩ T .

In spite of its innocent looking, this lemma requires an
rather indirect and involved proof. Due to space limits we
will not discuss the detail here; it can be found in an ex-
tended version of this paper.

The above two lemmas together imply that we always have
sufficiently many active neurons. In particular, for each
neuron there are Ω(n) samples that activate it, and each
sample activates Ω(m) neurons. These provide a quantita-
tive guarantee that the network is sufficiently active, which
will be important for later arguments.

4.3 Margins and Loss Decay

Next we evaluate the decay of training loss during train-
ing. Recalling (4), this is closely related to the margin
yifW (t)(xi), which we inspect first. For convenience we
denote

g(u) = −ℓ′(u) = 1/(1 + exp(u)).

Lemma 4.4 (Growth of margin). On the event E the fol-
lowing holds. For all i ∈ [n], we have, assuming |Ai(t) ∩
Ai(t+ 1)| ≥ m/(60β2), that

γ2αp

240β2n
≤ yifW (t+1)(xi)− yifW (t)(xi)

g(yifW (t)(xi))
≤ 3αp

n
. (19)

In particular, yifW (t)(xi) ≥ yifW (0)(xi) ≥ −1.

The assumption in the above lemma is automatically satis-
fied according to Lemma 4.3, which implies

Ai(t) ∩ Ai(t+ 1) ⊃ (Ai(t) ∩ T i) ∩ (Ai(t+ 1) ∩ T i)

⊃ Ai(0) ∩ T i,

which has at least m/(60β2) elements in light of
Lemma 4.2.

We return to discuss the implication of Lemma 4.4.
It shows that yifW (t)(xi) is increasing in t and the
growth of yifW (t)(xi) is proportional to the growth
of g(yifW (t)(xi)). Consequently, the decay of loss
ℓ(yifW (t)(xi)) is roughly

ℓ(yifW (t)(xi))− ℓ(yifW (t+1)(xi))

≃ −ℓ′(yifW (t)(xi))(yifW (t+1)(xi)− yifW (t)(xi))

≃ αpg(yifW (t)(xi))
2/n

given that the stepsize α is sufficiently small. With some
efforts it is possible to make this computation rigorous:

Lemma 4.5 (Decay of empirical loss, preliminary form).
On the event E the following holds. For all i ∈ [n], assum-
ing |Ai(t) ∩Ai(t+ 1)| ≥ m/(30β2), the loss yifW (t)(xi)
is decreasing in t. Moreover, with the same assumption we
have

ℓ(yifW (t)(xi))− ℓ(yifW (t+1)(xi))

≍β,γ
αp

n
g(yifW (t)(xi))

2. (20)

Up to this point it is not clear why the above computations
would lead to a deceasing training loss. There is in fact a
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dilemma that entails a careful control of g(yifW (t)(xi)).
For the training loss to be small we need a large mar-
gin, which by (19) requires the sum of g(yifW (t)(xi)) to
be large; but the loss ℓ(yifW (t)(xi)) cannot be small if
g(yifW (t)(xi)) is too large:

Proposition 4.2. For u ≥ −1 we have

g(u) ≤ ℓ(u) ≤ 4g(u).

The solution to this dilemma is to look at the decay of
ℓ(yifW (t)(xi)) directly with the help of (20). Combined
with the above Proposition 4.2 (and with the fact that
yifW (t)(xi) ≥ −1 by Lemma 4.4) we have

ℓ(yifW (t)(xi))− ℓ(yifW (t+1)(xi))

≍β,γ
αp

n
ℓ(yifW (t)(xi))

2.

This allows to control the behavior of ℓ(yifW (t)(xi)) by
elementary methods.

Proposition 4.3. Let (at)t≥0 be a sequence of non-
negative numbers satisfying at+1 ≤ at − ψa2t for some
constant ψ > 0 and for all t ≥ 0. If ψa0 ≤ 1, then

at ≤ 1/(ψt), ∀t ≥ 0.

Since yifW (0)(xi) ≥ −1 by (18), when α is sufficiently
small one may confirm that αpℓ(yifW (0)(xi))/n ≪ 1.
Thus the above proposition can be applied to the sequence
ℓ(yifW (t)(xi)) with ψ = C ′αp/n, where C ′ denotes the
constant factor for the upper bound in (20). Together
with the monotonicity of ℓ(yifW (t)(xi)) as described by
Lemma 4.5 we obtain:

Lemma 4.6 (Decay of empirical loss, final form). On the
event E the following holds. For all i ∈ [n] we have

ℓ(yifW (t)(xi)) ≲β,γ min

(
1,

n

αpt

)
.

In particular, averaging over i ∈ [n] and using the assump-
tion p ≥ n∥µ∥2, we have

L̂(W (t)) ≲β,γ min

(
1,

1

α∥µ∥2t

)
.

4.4 Generalization

Finally we analyze the generalization error of the trained
neural network. First we show how to reduce the
upper bound of generalization error to a lower bound
of generalization margin by Lipschitz concentration of
logarithmically-Sobolev bounded distributions.

Proposition 4.4. If y ∈ {−1, 1}, the function z 7→
yfW (yµ+ z) is 1√

m
∥W∥2,1-Lipschitz.

Proof. This follows from the assumption (2a) by

|fW (yµ+ z)− fW (yµ+ z′)|

≤ 1√
m

m∑
j=1

|σ(⟨wj , yµ+ z⟩)− σ(⟨wj , yµ+ z′⟩)|

≤ 1√
m

m∑
j=1

|⟨wj , z − z′⟩| ≤ 1√
m

m∑
j=1

∥wj∥∥z − z′∥,

and the definition that ∥W∥2,1 =
∑m

j=1 ∥wj∥.

Recall that if Pz is a probability distribution on Rp whose
logarithmic Sobolev constant is bounded by β and ϕ :
Rp → R is L-Lipschitz, then for z ∼ Pz we have, for
any t > 0 that P(ϕ(z) − Eϕ(z) ≤ −t) ≤ exp(−t2/βL2);
please refer to Ledoux (2001) for a systematic account.

Proposition 4.5 (Reduction to generalization margin).
Conditioning on E , for (x, y) ∼ P⋆ we have

P(yfW (t)(x) ≤ 0) ≤ exp

(
−m(EyfW (t)(x))2

β∥W (t)∥22,1

)
,

where the probability and the expectation are taken with
respect to (x, y) ∼ P⋆.

Proof. This follows from applying the Lipschitz concentra-
tion property mentioned above to ϕ(z) = yfW (t)(yµ + z)
and t = EyfW (t)(x).

Now we know that to show the generalization error rate is
small, it would suffice to show the generalization margin is
large compared with ∥W (t)∥2,1. The latter is another major
technical challenge which we discuss next.

4.4.1 Generalization Margin

For (x, y) ∼ P⋆, We would like to show that
E(yfW (t))(x) is sufficiently large. Recall that yfW (t)(x) =∑

j∈[m] yajσ(⟨w
(t)
j , x⟩)/

√
m. One may envision at least

three difficulties:

• We need enough active neurons with ⟨w(t)
j , x⟩ > 0; oth-

erwise the network may have almost zero output.

• We need to show that if yaj = 1, then ⟨w(t)
j , x⟩ is not

only positive but also large for many neurons.

• On the other hand, for neurons with yaj = −1 we need to
show that ⟨w(t)

j , x⟩ cannot be too large, since otherwise

the summand yajσ(⟨w(t)
j , x⟩) will have a significant neg-

ative impact on the sum.

Obviously, to tackle these difficulties it is crucial to un-
derstand the behavior of ⟨w(t)

j , x⟩. A feature of our ap-
proach is that, instead of controlling the local difference
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⟨w(t+1)
j , x⟩ − ⟨w(t)

j , x⟩ which seems more intuitive, we di-

rectly analyze the global difference ⟨w(t)
j , x⟩ − ⟨w(0)

j , x⟩.
Compared with the local approach, the global approach
will save a

√
n factor which is crucial to attain the near-

optimal dependence on ∥µ∥ given by (7). The following
computation contrast these two approaches. Denote

Ĝ(W ) :=
1

n

n∑
i=1

g(yifW (xi)).

Lemma 4.7. Assume x = yµ + z where y ∈ {−1, 1} and
z ∼ Pz as in Section 2. Fix some t > 0. On the event E ,
there exist constants c, C ′ > 0 depending only on β, γ such
that the following holds for all j ∈ [m] and all τ < t with
probability at least 1− (p/n)−10 with respect to z:

ajy(⟨w(τ+1)
j , x⟩ − ⟨w(τ)

j , x⟩)

≥ cα√
m

(
∥µ∥2 − C ′ max

i∈[n]
|⟨xi − y⋆i µ, z⟩|

)
Ĝ(W (τ)),

(21)

meanwhile

ajy(⟨w(t)
j , x⟩ − ⟨w(0)

j , x⟩)

≥ cα√
m

(
∥µ∥2 − C ′

√
p log(pm/n)

n

)
t−1∑
τ=0

Ĝ(W (τ)).

(22)

Remark 5. The above bounds are tight: one may con-
struct examples where the reverse inequalities, after replac-
ing c, C ′ with another pair of constants, hold with a non-
diminishing probability.

Conditioning on the event E , it is possible to show that
maxi∈[n] |⟨xi − y⋆i µ, z⟩| ≍

√
p log(n) with overwhelm-

ing probability with respect to z. Thus one may see that
to control the behavior of ⟨w(t)

j , x⟩, the local bound (21)
requires ∥µ∥4 = Ω̃(p), while the global bound (22) only
requires ∥µ∥4 = Ω̃(p/n). The latter is not only polyno-
mially better but also matching the minimax lower bound
∥µ∥4 = Ω(p/n) up to logarithmic factors.

Applying (22) and a few simple arguments to bound
⟨w(0)

j , x⟩, we may prove under assumption (7) that

Corollary 4.1. Assume x = yµ + z where y ∈ {−1, 1}
and z ∼ Pz as in Section 2. Fix some t > 0. On the event
E , there exists constant c > 0 depending only on β, γ such
that the following holds for all j ∈ [m] with probability at
least 1− (p/n)−10:

ajy⟨w(t)
j , x⟩ ≥ cα∥µ∥2

2
√
m

t−1∑
τ=0

Ĝ(W (τ)).

It can be seen that all the difficulties listed in the beginning
have been resolved. From Corollary 4.1 we know that all

neurons with ajy = 1 are active for x, while all neurons
with ajy = −1 is deactivated. We may proceed as fol-
lows: for neurons with ajy = 1 we have yajσ(⟨w(t)

j x, )⟩ ≥
γ⟨w(t)

j , x⟩, while for neurons with ajy = −1 we have

yajσ(⟨w(t)
j x, )⟩ ≥ 0 since ⟨w(t)

j , x⟩ < 0. Thus

yfW (t)(x) =
1√
m

m∑
j=1

yajσ(⟨w(t)
j , x⟩)

≥ cγα∥µ∥2

2m
|{j∈ [m] : aj = y}|

t−1∑
τ=0

Ĝ(W (τ))

≥ cγα∥µ∥2

6

t−1∑
τ=0

Ĝ(W (t)),

where the last inequality follows from (11). We have fin-
ished a major part of the proof the following lemma:

Lemma 4.8 (Large generalization margin). On the event E ,
for some constant c′ > 0 depending only on β, γ we have

E(x,y)∼P⋆
(yfW (t)(x)) ≥ c′γα∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)).

Sketch of proof. The above computation shows that
yfW (t)(x) is larger than a constant multiple of the right
hand side with probability at least 1 − (p/n)−10. It
remains to handle the “exceptional” case. In that case
we use |⟨w(t)

j , x⟩| ≤ |⟨w(t)
j , µ⟩| + ∥w(t)

j ∥∥z∥. It is

relatively easy to control |⟨w(t)
j , µ⟩| and ∥w(t)

j ∥ using the
technique established in the proof of Lemma 4.7 (see also
Lemma 4.9 below), while ∥z∥ can be controlled using
standard concentration inequality which implies that ∥z∥
is “essentially” O(

√
p).

4.4.2 Growth of Weights

Recalling Proposition 4.5, we still need to show that
∥W (t)∥2,1 is relatively small. Fortunately, this is a much
easier task so we simply state the corresponding result:

Lemma 4.9. On the event E , there exists some constant C ′

depending only on β, γ such that

∥w(t+1)
j − w

(t)
j ∥ ≤ C ′α

√
p

nm
Ĝ(W (t)).

Consequently, we have

∥W (t)∥2,1 ≤ ∥W (0)∥2,1 + C ′α

√
mp

n

t−1∑
τ=0

Ĝ(W (t)).

Note that ∥W (0)∥2,1 =
∑

j ∥w
(0)
j ∥ can be well-controlled

using (17).

We have by now collected all the necessary ingredients to
prove our main result, which we will do immediately.
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5 PROOF OF MAIN RESULTS

In this section we sketch the proof of Theorem 3.1.

Proof of (8). From Lemma 4.6 we have L̂(W (t)) ≤
C ′/(α∥µ∥2t) for t ≥ C ′/(α∥µ∥2), where C ′ > 0 is
some constant depending only on β, γ. From (18) we
may infer that L̂(W (0)) ≥ ℓ(1) ≥ 1/4, thus by taking
t ≥ CL̂(W (0))/(α∥µ∥2ϵ) for sufficiently large C we read-
ily obtain L̂(W (t)) ≤ ϵ, as desired.

Proof of (9). Since L̂(W (t)) ≥ 1
n maxi ℓ(yifW (t)(xi)), if

there is some i ∈ [n] such that yifW (t) > 0, we would
have L̂(W (t)) ≥ 1

nℓ(0) >
1
2n , contradicting (8) which says

L̂(W (t)) ≤ ϵ < 1/(2n).

Proof of (10). Again by (18) we may infer Ĝ(W (0)) ≥
g(1) ≥ 1/4, thus from (17), (6f) and (6c) we know

∥W (0)∥2,1 ≤ 8ωinitm
√
pĜ(W (0)) ≤ α

√
mp

n
Ĝ(W (0)).

Invoking Lemma 4.9, we may see that ∥W (t)∥2,1 ≤
2C ′α

√
mp/n

∑
τ<t Ĝ(W

(τ)). This combined with
Lemma 4.8 and Proposition 4.5 implies

P(yfW (t)(x) ≤ 0) ≤ exp

(
− mα2∥µ∥4

Cα2(mp/n)

)
= exp

(
−n∥µ∥

4

Cp

)
,

as desired.

6 CONCLUSION

In this paper we proved with a fine-grained analysis of the
network dynamics that non-smooth two-layer neural net-
work overfits benignly in the binary classification problem,
assuming the data comes from a well-separated mixture
model. Our result allows the weight to travel infinitely far
from the initial value, hence goes beyond the lazy train-
ing regime. This provides a better understanding of benign
overfitting in a more practical setting.

Benign overfitting is an emerging area and many important
problems remain open. Directly related to this paper are the
following problems: (i) can we relax the overparameteriza-
tion assumption (6c) to a more illuminating one, possibly of
the form mp≫ n (as mp is the total number of parameters
in the network)? (ii) can we prove similar results beyond
the mixture data model? (iii) how does the technique here
helps to understand deeper networks? can we characterize
the limits of benign overfitting capabilities of a two-layer
network? We leave these directions for future research.
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A NOTATIONS AND BASIC COMPUTATIONS

As in the main text, we denote

g(u) := −ℓ′(u) = 1/(1 + exp(u)), gi(W ) := g(yifW (xi)), Ĝ(W ) :=

n∑
i=1

gi(W ).

The gradient ∇W L̂(W ) can be computed explicitly:

∇wj
L̂(W ) = − 1

n
√
m

n∑
i=1

yiajg(yifW (xi))∂σ(⟨wj , xi⟩)xi. (23)

Define for an arbitrary weight matrix W that

ξj(x;W ) :=
σ(⟨wj − α∇wj

L̂(W ), x⟩)− σ(⟨wj , x⟩)
⟨−α∇wj L̂(W ), x⟩

,

λi(x;W ) :=
1

m

m∑
j=1

ξj(x;W )∂σ(⟨wj , xi⟩).

With W (t+1) =W (t) − α∇W L̂(W (t)), the update of yfW (t)(x) for an arbitrary pair (x, y) is then:

yfW (t+1)(x)− yfW (t)(x) =
1√
m

m∑
j=1

ajξj(x;W
(t))⟨−α∇wj

L̂(W (t)), yx⟩

=
α

nm

n∑
i=1

m∑
j=1

a2jgi(W
(t))ξj(x;W

(t))∂σ(⟨wj , xi⟩)⟨yixi, yx⟩

=
α

n

n∑
i=1

gi(W
(t))λi(x;W )⟨yixi, yx⟩ (24)

where in the last line we used a2j = 1.

B PROOF OF LEMMA 4.1

We prove Lemma 4.1 in the main text stating that the good event E happens with probability at least 1−ϵ. More concretely,
we will show that each of Eqns. (11)–(18) in the main text hold with probability at least 1− δ/10; the lemma then follows
easily from a union bound. As we said, this is mostly a routine application of standard concentration inequalities, which
we now introduce.

Lemma B.1 (Chernoff bound). If X1, . . . , Xn are i.i.d. random variables such that |Xi| ≤ 1 almost surely, with µ = EXi

we have, for any t > 0, that

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > t

)
≤ 2 exp(−nt2/2). (25)

The following results are concerned with the behavior of distributions with bounded logarithmic Sobolev constants. The
most important one for us is the following Lipschitz concentration property, which is a standard corollary of Herbst’s
argument (Ledoux, 2001).

Lemma B.2 (Lipschitz concentration). If ϕ : Rp → R is a Lipschitz function and Pz is a probability distribution on Rp

with logarithmic Sobolev constant β, then for any t > 0 we have

Pz({z : ϕ(z)− Ez∼Pz
ϕ(z) > t}) ≤ exp(−t2/β).

The same bound holds for the left tail Pz({z : ϕ(z)− Ez∼Pz
ϕ(z) < −t}).
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As we have a collection of i.i.d. samples from Pz , it will be useful to investigate their joint distribution. A fundamental
result in this vein is that the joint distribution also has bounded logarithmic Sobolev constant (Ledoux, 2001).

Lemma B.3 (Tensorization). If Pz is a probability distribution on Rp with logarithmic Sobolev constant bounded by β,
then its n-fold product Pn

z is a probability distribution on Rp×n with logarithmic Sobolev constant bounded by β.

The following corollaries, proved later in Section B.6, will be particularly helpful in this paper.

Proposition B.1. Let Pz be a centered, isotropic distribution on Rp with logarithmic Sobolev constant bounded by β.
Assume z ∼ Pz . Then ⟨v, z⟩ is centered ∥v∥√

2
β-subgaussian of variance ∥v∥2 for any v ∈ Rp. Moreover, the following

holds with probability at least 1− exp(−u2) for any u > 4:

|⟨v, z⟩| ≤ 4u
√
β∥v∥.

Proposition B.2. Under the same assumption as in Proposition B.1, the following holds with probability at least 1 −
exp(−pu2) for any u > 4:

∥z∥ ≤ 4u
√
βp.

In particular, setting E∗ = {∥z∥ ≤ 8u
√
βp} with u > 4, we have

E(∥z∥1E∗) ≤
√
β exp(−pu2).

Proposition B.3. Let Pz be as in Proposition B.1 and let z1, z2, . . . , zn be i.i.d. samples from Pz . Then for any u ∈[
4,
√
p/16βn

]
, the following holds with probability at least 1− exp(−nu2). For any ζ1, ζ2, . . . , ζn ∈ R, we have

(p− 16u
√
βnp)

n∑
i=1

ζ2i ≤

∥∥∥∥∥
n∑

i=1

ζizi

∥∥∥∥∥
2

≤ (p+ 16u
√
βnp)

n∑
i=1

ζ2i

In particular, the following holds with probability at least 1 − exp(−cp/β), where c > 0 is some universal constant (say,
c = 1/1024):

p/2 ≤ min
i∈[n]

∥zi∥2 ≤ max
i∈[n]

∥zi∥2 ≤ 2p.

B.1 Proof of Eqn. (11)

This follows from the Chernoff bound applied to Xj := 1aj=1 (hence |J+| =
∑

j∈[m]Xj), which implies

P

(∣∣∣∣ |J+|
n

− 1

2

∣∣∣∣ > 1/6

)
≤ 2 exp(−m/72) ≤ δ/10,

by the assumption m ≥ C log(1/δ) (Eqn. (6b) in the main text). Note that when
∣∣∣ |J+|

n − 1/2
∣∣∣ ≤ 1/6 we have m/3 ≤

|J+| ≤ 2m/3, thus |J−| ≥ m− |J+| ≥ m/3, as desired.

B.2 Proof of Eqns. (12) and (13)

The proof relies crucially on the following anticoncentration property, which will be proved later in Section B.6.

Proposition B.4 (Anticoncentration of subgaussian random variables). AssumeX is some 1√
2
β-subgaussian random vari-

able with EX = 0 and EX2 = 1. Then

P

(
X >

1

200β2

)
≥ 1

20β2
. (26)

Return to the proof of Eqns. (12) and (13). By our data model we may write xi = y⋆i µ + zi where zi ∼ Pz . Note that
⟨w(0)

j , xi⟩ = y⋆i ⟨w
(0)
j , µ⟩+ ⟨w(0)

j , zi⟩. Recall that w(0)
j ’s are drawn i.i.d. from N (0, ω2

initIp), we see that ⟨w(0)
j , µ⟩, j ∈ [m]

are i.i.d. centered Gaussian variables with variance ω2
init∥µ∥2. By a well-known bound on the maximum of Gaussian

variables (Vershynin, 2018) we have

max
j∈[m]

|⟨w(0)
j , µ⟩| ≤ 4ωinit∥µ∥

√
log(n/δ) (27)
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with probability at least 1− δ/20. Now we turn to inspect the term ⟨w(0)
j , zi⟩. Conditioning on zi, this term becomes i.i.d.

centered Gaussian variable with variance ω2
init∥zi∥2 for j ∈ [m]. Each of such Gaussian random variables has a probability

at least 1/5 to exceed ωinit∥zi∥/10. Moreover, since aj is uniformly distributed on {−1, 1} and is independent of w(0)
j , we

have
P
(
⟨w(0)

j , zi⟩ ≥ ωinit∥zi∥/10, aj = yi

∣∣∣ zi, yi) =
1

2
P
(
⟨w(0)

j , zi⟩ ≥ ωinit∥zi∥/10
∣∣∣ zi) ≥ 1/10.

Applying the Chernoff bound in a similar way as in Section B.1, we know that with probability at least 1−exp(−cm), there
exist a subset Ji ⊂ [m] with |Ji| ≥ m/15 such that ⟨w(0)

j , zi⟩ ≥ ωinit∥zi∥/10 and aj = y⋆i for all j ∈ Ji. Furthermore,
conditioning on ∥zi∥2 ≥ p/2, we have for all j ∈ Ji that

⟨w(0)
j , xi⟩ ≥ −4ωinit∥µ∥

√
log(n/δ) + ωinit∥zi∥/10 ≥ ωinit(

√
p/20− ∥µ∥

√
log(n/δ)) > 0,

where the last inequality follows from the assumption (6c) in the main text.

By Proposition B.3 we know that ∥zi∥2 ≥ p/2 for all i ∈ [n] with probability at least 1− δ/60. Combined with the above
argument, we obtain that

∀i ∈ [n],
∣∣∣{j ∈ [m] : yi = aj , ⟨w(0)

j , xi⟩ > 0}
∣∣∣ ≥ m

15
,

with probability at least 1− δ/20− δ/60− n exp(−cm). When m ≥ C log(n/δ) as assumed in (6b), the probability is at
least 1− δ/10. We have thereby proved that (13) holds with probability at least 1− δ/10.

The equation (12) follows from a similar argument. Conditioning on w(0)
j , we infer from Proposition B.4 that ⟨w(0)

j , zi⟩ ≥
β−2∥w(0)

j ∥/200 with probability at least β−2/20 for each i ∈ [n]. Moreover, since y⋆i is uniformly distributed on {−1, 1}
and is independent of zi, we have

P
(
⟨w(0)

j , zi⟩ ≥ β−2∥w(0)
j ∥/200, aj = y⋆i

∣∣∣ w(0)
j , aj

)
=

1

2
P
(
⟨w(0)

j , zi⟩ ≥ β−2∥w(0)
j ∥/200

∣∣∣ w(0)
j

)
≥ β−2/40.

The rest of the arguments is completely the same: conditioning on ∥w(0)
j ∥2 ≥ ω2

initp/2 which happens with probability at
least 1− δ/60 we have

∀j ∈ [m],
∣∣∣{i ∈ [n] : y⋆i = aj , ⟨w(0)

j , xi⟩ > 0}
∣∣∣ ≥ n

50β2
,

which holds with probability at least 1 − δ/20 − δ/60 −m exp(−cn). When n ≥ C log(m/δ) as assumed in (6a), the
probability is at least 1 − δ/10. The desired equation (12) follows from the above result and the assumption that (recall
that C > 0 is a sufficiently large constant depending only on β, γ, thus we may choose C > 300β2)

|{i ∈ [n] : yi ̸= y⋆i }| ≤ ηn ≤ n/C ≤ n

300β2
.

B.3 Proof of Eqns. (14), (15), (16)

The equation (14) follows directly from Proposition B.3 and the assumption on p (Eqn. (6c)), which implies

3p

4
∥ζ∥2 ≤

∥∥∥∥∥
n∑

i=1

ζi(xi − y⋆i µ)

∥∥∥∥∥
2

≤ 5p

4
∥ζ∥2

with probability at least 1− exp(−16n) ≥ 1− δ/20, given n ≥ C log(1/δ) (Eqn. (6a)).

The equation (15) follows from Proposition B.1 in the following way. By that proposition we know |⟨µ, xi − y⋆i µ⟩| ≤
4u

√
β∥µ∥ with probability at least 1− exp(−u2) for each i ∈ [n]. Taking union bound, this inequality holds for all i ∈ [n]

with probability at least 1− n exp(−u2). Taking u = 4
√
log(n/δ), we obtain the desired result.

The equation (16) follows from a combination of the above arguments. For convenience we denote zi = xi − y⋆i µ, hence
z1, . . . , zn are i.i.d. samples from Pz . First we fix some i and condition on zi. By the argument used to prove (15) we
know that |⟨zi, zi′⟩| ≤ 4u

√
β∥zi∥ with probability at least 1 − exp(−u2) for any i′ ̸= i. We may then condition on (14)

which implies ∥zi∥2 ≤ 5p/4 for all i ∈ [n] with probability at least 1 − δ/20. Then we have |⟨zi, zi′⟩| ≤ 8u
√
βp with

probability at least 1 − exp(−u2) conditioned on (14). Taking union bound over all i, i′ ∈ [n], i ̸= i′, we deduce that
maxi̸=i′ |⟨zi, zi′⟩| ≤ 8u

√
βp with probability at least 1 − n2 exp(−u2) conditioned on (14). Setting u = 8 log(n/δ), we

have shown (16) holds with probability at least 1− exp(−4 log(n/δ))− δ/20 ≥ 1− δ/10, as desired.
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B.4 Proof of Eqn. (17)

It is well-known (or follows from Proposition B.2 with a slightly worse constant) that ∥w(0)
j ∥ ≤ 2ωinit

√
p with probability

at least 1−2 exp(−cp) if w(0)
j ∼ N (0, ω2

initIp), cf. Vershynin (2018). Taking union bound, we obtain (17) with probability
at least 1 − 2m exp(−cp). By assumption (6c) and (6a) we know that p ≥ Cn ≥ C log(m/δ), thus this probability is at
least 1− exp(−c′p) ≥ 1− δ/10, as desired.

B.5 Proof of Eqn. (18)

Since yi ∈ {−1, 1} it is clear that |yifW (0)(xi)| = |fW (0)(xi)|. Recall that

fW (0)(xi) =
1√
m

m∑
j=1

ajσ(⟨w(0)
j , xi⟩).

Since aj’s are i.i.d. Rademacher, they are 1-subgaussian; thus subgaussian concentration (which can be found in Vershynin
(2018) or can be obtained as a corollary of Proposition B.1) implies with probability at least 1− δ/30 that

|fW (0)(xi)| ≤ 2

√
log(1/δ)

m

 m∑
j=1

σ2(⟨w(0)
j , xi⟩)

1/2

.

Since σ(0) = 0 and σ is Lipschitz, we know σ2(⟨w(0)
j , xi⟩) ≤ |⟨w(0)

j , xi⟩|2. Conditioning on xi, ⟨w(0)
j , xi⟩ is a Gaussian

random variable with variance ω2
init∥xi∥2, hence is less than 2

√
log(mn/δ)ωinit∥xi∥ with probability at least 1− δ/(30n)

for all j ∈ [m]. Furthermore, condition on ∥xi−y⋆i µ∥ ≤ 2
√
p which holds for all i ∈ [n] with probability at least 1− δ/30

as proved in Section B.3, we have ∥xi∥ ≤ ∥µ∥+ ∥xi − y⋆i µ∥ ≤ 3
√
p by assumption (6c), hence

|fW (0)(xi)| ≤ 2

√
log(1/δ)

m
(36m log(mn/δ)ω2

initp)
1/2 = 12

√
p log(1/δ) log(mn/δ)ωinit. (28)

By assumption (6f) we have ωinit ≤ α/
√
mp, and by assumption (6e) we may further deduce ωinit ≤ 1/(C

√
mp3). By

our assumption (6b) on m and on p (Eqn. (6c)), it is clear that the right hand side of (28) is less than 1, as desired.

B.6 Proof of Auxiliary Propositions

Proof of Proposition B.1. Without loss of generality we may assume ∥v∥ = 1. Then by centered isotropic assumption we
have E|⟨v, z⟩|2 = ∥v∥2 = 1. Note further that ϕ : z 7→ ⟨v, z⟩ is a Lipschitz function, the first part of the proposition the
desired conclusion clearly follows from Lemma B.2. The second part then follows from the well-known subgaussian tail
bound (cf. Vershynin (2018)).

Proof of Proposition B.2. By the centered isotropic assumption we have E∥z∥2 = p. Note that z 7→ ∥z∥ is Lipschitz, the
first part of the proposition follows from the same argument as in Proposition B.1. The second part of the proposition
follows from the first part by integrating by parts:

E(∥z∥1E∗) =

∫ ∞

8u
√
βp

tP(t < ∥z∥ ≤ t+ dt) =

∫ ∞

8u
√
βp

P(∥z∥ > t)dt = 4
√
βp

∫ ∞

2u

P(∥z∥ > 4v
√
βp)dv,

where by the first part we know that the integral is no more than
∫∞
2u

exp(−pv2)dv ≤ exp(−2pu2)/
√
p for u > 4 by a

well known Gaussian tail bound. The conclusion is immediate if we observe 4 exp(−pu2) ≤ 4 exp(−16) < 1.

Proof of Proposition B.3. Let A = [z1, . . . , zn] ∈ Rp×n be the matrix with columns zi. Alternatively, one may view A as
an (random) operator Rn → Rp defined by

(ζ1, . . . , ζn) 7→
n∑

i=1

ζizi.

The proposition is equivalent to saying that the singular values of A are bounded by

p− 16uβ
√
np ≤ s2min(A) ≤ s2max(A) ≤ p+ 16uβ

√
np (29)
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with high probability.

By Lemma B.3, the matrix A follows a probability distribution in Rp×n with logarithmic Sobolev constant bounded by β.
Now fix some v ∈ Sn. It is easy to verify E∥Av∥2 = p. It follows immediately that E∥Av∥ ≤ √

p. Furthermore, since the
map A 7→ ∥Av∥ is Lipschitz, by Lemma B.2 we have

E(∥Av∥ − E∥Av∥)2 =

∫ ∞

t=0

t2P
(
t <

∣∣∥Av∥ − E∥Av∥
∣∣ ≤ t+ dt

)
=

∫ ∞

0

2tP
(∣∣∥Av∥ − E∥Av∥

∣∣ > t
)
dt

≤
∫ ∞

0

4t exp(−t2/β)dt

≤ 2β,

where the second line follows from integration by parts. Using E(∥Av∥ − E∥Av∥)2 = E∥Av∥2 − (E∥Av∥)2 this yields
E∥Av∥ ≥

√
p− 2β ≥ √

p− 1 given p ≥ Cβ. Again by Lemma B.2 we obtain

P
(∣∣∥Av∥ − √

p
∣∣ > t+ 1

)
≤ 2 exp(−t2/β).

which implies
P
(∣∣∥Av∥2 − p

∣∣ > 2
√
p(t+ 1) + (t+ 1)2

)
≤ 2 exp(−t2/β). (30)

Now, by a standard ϵ-net argument (taking t = 1.9
√
βnu, cf. Vershynin (2018)), this implies

p− 12u
√
βnp− 12βnu2 ≤ s2min(A) ≤ s2max(A) ≤ p+ 12u

√
βnp+ 12βnu2 (31)

with probability at least 1− exp(−nu2), provided u ≥ 4, p ≥ Cn and n ≥ C. The desired conclusion (29) follows from
the above inequality and the fact that 12βnu2 ≤ 4u

√
βnp for u ≤

√
p/16βn.

Proof of Proposition B.4. Consider a truncated version of X defined by X̃ = X1β−2/200<|X|≤3β . We have

EX̃ = EX̃ − EX = EX1|X|≤β−2/200 + EX1|X|>3β .

It is trivial that |EX1|X|≤β−2/200| ≤ β−2/200, while by subgaussian tail bound one may compute |EX1|X|>3β | ≤
E|X|1|X|>3β ≤ 4β exp(−9β). Since β/

√
2 ≥ EX2 = 1 we know β ≥

√
2 and hence 4β exp(−9β) is much smaller than

β−2, say, 4β exp(−9β) ≤ β−2/500. These imply

|EX̃| ≤ 1

200β2
+

1

500β2
≤ 1

100β2
.

By a similar argument one may prove

|EX̃2 − 1| ≤ 1

200β2
.

Let X̃+ = max(X̃, 0) and X̃− = max(−X̃, 0), then X̃+, X̃− are nonnegative and X̃ = X̃+ − X̃−, X̃2 = X̃2
+ + X̃2

−. We
thus have

|EX̃+ − EX̃−| ≤
1

100β2
, (32)

EX̃2
+ + EX̃2

− ≥ 1− 1

200β2
. (33)

Assume to the contrary that P(X > β−2/200) < β−2/20, the following chain of reasoning would yield a contradiction,
thereby proving P(X > β−2/200) ≥ β−2/20 as desired: since |X̃| ≤ 3β and X̃ > 0 only if X > β−2/200, we have

EX̃+ ≤ 3βP(X > β−2/200) < 3β−1/20,

and
EX̃2

+ ≤ 3βEX̃+ < 9/20.
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However, from (32) we know

EX̃− ≤ EX̃+ +
1

100β2
<

3

20β
+

1

100β
=

4

25β
,

where we used β ≥
√
2 and hence β2 ≥ β. Therefore

EX̃2
− ≤ 3βEX̃− < 12/25.

These together imply EX̃2
+ + EX̃2

− < 9/20 + 12/25 = 93/100 < 1 − β−2/200, contradicting (33). This completes the
proof.

C PROOF OF LEMMA 4.3 AND LEMMA 4.4

It turns out that Lemma 4.3 and Lemma 4.4 had better be proved in conjunction with each other and with another useful
lemma (Lemma C.1 below). Before discussing the details, we prove a strengthened version of Proposition 4.1 in the main
text which will be used later.

Proposition C.1. If (i, j) ∈ A(t), then ∂σ(⟨w(t)
j , xi⟩) ≥ γ. Moreover, if (i, j) ∈ A(t)∩A(t+ 1), then ξj(xi;W (t)) ≥ γ.

In particular, we have
λi(xi;W

(t)) ≥ γ2|Ai(t) ∩ Ai(t+ 1)|/m.

Proof. The first assertion follows from the definition of A(t) which implies ⟨w(t)
j , xi⟩ > 0, and the fact that ∂σ(u) ≥ γ

when u > 0. The second assertion follows again from the definition, which implies ⟨w(t)
j , xi⟩ > 0, ⟨w(t+1)

j , xi⟩ > 0, thus
by the assumption on σ we have

ξj(xi;W
(t)) =

σ(⟨w(t+1)
j , xi⟩)− σ(⟨w(t)

j , xi⟩)

⟨w(t+1)
j , xi⟩ − ⟨w(t)

j , xi⟩
≥ γ.

The last assertion follows from

λi(xi;W
(t)) =

1

m

m∑
j=1

ξj(xi;W
(t))∂σ(⟨w(t+1)

j , xi⟩)

≥ 1

m

∑
j∈Ai(t)∩Ai(t+1)

ξj(xi;W
(t+1))∂σ(⟨w(t)

j , xi⟩)

≥ γ2

m
|Ai(t) ∩ Ai(t+ 1)|,

as desired.

Return to the proof of Lemma 4.3 and Lemma 4.4. We will prove the in conjunction with the following lemma concerning
the boundedness of the ratio gi(W (t))/gi′(W

(t)) for i, i′ ∈ [n].

Lemma C.1. On the event E , for any t ≥ 0 we have, with Cr > 0 some constant depending only on β, γ:

maxi gi(W
(t))

mini gi(W (t))
≤ Cr. (34)

Proof of Lemma 4.3, Lemma 4.4, and Lemma C.1. The proof is by a multiple induction on t. Denote by

P (t) : A(τ) ∩ T ⊂ A(τ + 1) ∩ T , ∀τ ≤ t,

Q(t) :
γ2αp

240β2n
gi(W

(τ)) ≤ yifW (τ+1)(xi)− yifW (τ)(xi) ≤
3αp

n
gi(W

(τ)), ∀τ ≤ t, ∀i ∈ [n],

R(t) : exp(yi′fW (t)(xi′)− yifW (t)(xi)) ≤ C ′
r, ∀i, i′ ∈ [n].

the propositions that the conclusions of the three lemmas respectively hold at the t-th iteration (we will see soon how R(t)
implies Lemma C.1). We will show that R(0) is true, and that for any t ≥ 0 we have

R(t) =⇒ P (t), P (t) ∧R(t) =⇒ Q(t), Q(t) ∧R(t) =⇒ R(t+ 1).
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It is evident that these together imply P (t), Q(t), R(t) are true for all t ≥ 0.

Before delving into the induction argument we first show how R(t) implies Lemma C.1. In fact, observe that

1 + exp(z1)

1 + exp(z2)
≤ 2(1 + exp(z1 − z2)), ∀z1, z2 ∈ R. (35)

This is because the ratio is no more than 2/(1 + exp(z2)) ≤ 2 when z1 ≤ 0, and is no more than 2 exp(z1)/ exp(z2) ≤
2 exp(z1 − z2) when z1 > 0. On the other hand, by similar arguments we have

1 + exp(z1)

1 + exp(z2)
≥ 1

4
exp(z1 − z2), ∀z1 ∈ R, z2 ≥ −1, (36)

which indicates R(t) not only implies Lemma C.1, but is also equivalent to Lemma C.1 in some sense.

More precisely, since g(z) = 1/(1 + exp(z)), we have

gi(W
(t))

gi′(W (t))
≤ 2 + 2 exp(yi′fW (t)(xi′)− yifW (t)(xi)), (37)

which shows that wereR(t) true, we would have gi(W (t))/gi′(W
(t)) ≤ 2+2C ′

r ≤ Cr as long as Cr is chosen to be larger
than 2 + 2Cr.

We now begin the induction argument.

Base case: R(0). This follows from Eqn. (18) in the main text.

Induction Step I: R(t) =⇒ P (t). For any (i, j) ∈ A(t) ∩ T , we have yiaj = 1 and ⟨w(t)
j , xi⟩ > 0 by definition. Thus

⟨w(t+1)
j , xi⟩ − ⟨w(t)

j , xi⟩

=
α

n
√
m

n∑
k=1

ykajgk(W
(t))∂σ(⟨w(t)

j , xk⟩)⟨xk, xi⟩

=
α

n
√
m
gi(W

(t))∂σ(⟨w(t)
j , xi⟩)∥xi∥2 +

α

n
√
m

∑
k ̸=i

ykajgk(W
(t))∂σ(⟨w(t)

j , xk⟩)⟨xk, xi⟩

≥ α

2n
√
m
gi(W

(t))γp− 16α√
m
Ĝ(W (t))

(
∥µ2∥+

√
p log(n/δ)

)
≥ αγp

4Crn
√
m
Ĝ(W (t)). (38)

where in the second equality we used by definition that yiaj = 1, and in the penultimate inequality we used the following
bounds: ∂σ(⟨w(t)

j , xi⟩) ≥ γ since ⟨w(t)
j , xi⟩ > 0; ∥xi∥2 ≥ 5p/4 − ∥µ∥2 ≥ p/2 by Eqns. (6c) and (14) in the main

text; |⟨xi, xi0⟩| ≤ 16(∥µ∥2 +
√
p log(n/δ)) by Eqns. (15) and (16) in the main text. The last inequality follows from

R(t), which implies gi(W (t)) ≥ CrĜ(W
(t)), and the assumption (6c) that p ≥ Cn∥µ∥2 + Cn2 log(n/δ). An immediate

consequence is that ⟨w(t+1)
j , xi⟩ > ⟨w(t)

j , xi⟩ > 0. This proves (i, j) ∈ A(t + 1). Note that (i, j) ∈ T by definition, we
have proved (i, j) ∈ A(t+ 1) ∩ Tj . Since (i, j) ∈ A(t) ∩ T is arbitrary, this implies A(t) ∩ T ⊂ A(t+ 1) ∩ T , thereby
proving P (t) as desired.

Induction Step II: P (t) ∧R(t) =⇒ Q(t). It follows from (24) that

yifW (t+1)(xi)− yifW (t)(xi) =
α

n

n∑
k=1

gk(W
(t))λk(xi;W

(t))⟨ykxk, yixi⟩

=
α

n
λi(xi;W

(t))∥xi∥2gi(W (t)) +
α

n

∑
k ̸=i

gk(W
(t+1))λk(xi;W

(t))⟨ykxk, yixi⟩ (39)

Recall that ∥xi∥2 ≥ p/2 as proved in Induction Step I, we have

α

n
gi(W

(t))λi(xi;W
(t))∥xi∥2 ≥ αp

2n
λi(xi;W

(t))gi(W
(t)).
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But from the induction hypothesis P (t) one may show λi(xi;W
(t)) ≥ γ2/(60β2) since by Proposition C.1

λi(xi;W
(t)) ≥ γ2

m
|Ai(t) ∩ Ai(t+ 1)|

≥ γ2

m
|Ai(0) ∩ T i| ≥ γ2

60β2
,

where the penultimate inequality follows from the induction hypothesis P (t) since

Ai(t) ∩ Ai(t+ 1) ⊃ (Ai(t) ∩ T i) ∩ (Ai(t+ 1) ∩ T i) ⊃ Ai(0) ∩ T i,

and the last inequality follows from Lemma 4.2 in the main text. Consequently, we have

α

n
gi(W

(t))λi(xi;W
(t))∥xi∥2 ≥ γ2αp

120β2n
gi(W

(t)). (40)

On the other hand, since λk ≤ 1 and ∥xi∥2 ≤ 2∥µ∥2 + 2∥xi − y⋆i µ∥2 ≤ 2∥µ∥2 + 5p/4 ≤ 2p we have

α

n
gi(W

(t))λi(xi;W )∥xi∥2 ≤ 2αp

n
gi(W

(t)). (41)

Next we deal with the remainder term. From Eqns. (15) and (16) in the main text that we may show that |⟨xi, xi′⟩| ≤
16(∥µ∥2 +

√
p log(n/δ)) for i ̸= i′, thus

α

n

∣∣∣∣∣∣
n∑

k ̸=i

gk(W
(t))λk(xi;W )⟨ykxk, yixi⟩

∣∣∣∣∣∣ ≤ 16α
(
∥µ∥2 +

√
p log(n/δ)

)
Ĝ(W (t)). (42)

By induction hypothesisR(t) and (37) we have Ĝ(W (t)) ≤ Crgi(W
(t)). Invoking the assumption (6c) that p ≥ Cn∥µ∥2+

Cn2 log(n/δ) for sufficiently large C, we obtain

α

n

∣∣∣∣∣∣
n∑

k ̸=i

gk(W
(0))λk(xi;W )⟨ykxk, yixi⟩

∣∣∣∣∣∣ ≤ γ2αp

240β2n
gi(W

(0)).

The desired conclusion Q(t) readily follows from summing up the above inequalities.

Induction step III: Q(t)∧R(t) =⇒ R(t+ 1). We first show that bounding bounding exp(yi′fW (xi′)− yifW (xi)) is
in a sense equivalent to bounding gi(W )/gi′(W ).

We return to bound exp(yi′fW (t+1)(xi′)− yifW (t+1)(xi)). By the induction hypothesis Q(t) we have

exp(yi′fW (t+1)(xi′)− yifW (t+1)(xi))

≤ exp(yi′fW (t)(xi′)− yifW (t)(xi)) exp

(
αp

240β2n

(
720β2gi′(W

(t))− γ2gi(W
(t))
))

.

We now see that the last factor is very small if gi(W
(t))/gi′(W

(t)) is large, hence shrinking the size of
gi(W

(t+1))/gi′(W
(t+1)). This provides a negative feedback mechanism that ensures the ratio never grows too large.

More precisely, we may distinguish two cases:

• If gi(W (t))/gi′(W
(t)) > 800β2/γ2, then 720β2gi′(W

(t))− γ2gi(W
(t)) < 0 and hence

exp(yi′fW (t+1)(xi′)− yifW (t+1)(xi)) ≤ exp(yi′fW (t)(xi′)− yifW (t)(xi)) ≤ C ′
r,

where the last inequality follows from induction hypothesis R(t− 1).

• If gi(W (t))/gi′(W
(t)) ≤ 800β2/γ2, then by using Q(t) again we have yifW (t)(xi) ≥ −1 and yi′fW (t)(xi′) ≥ −1,

thus (36) yields

exp(yi′fW (t)(xi′)− yifW (t)(xi)) ≤
4gi(W

(t))

gi′(W (t))
≤ 3200β2/γ2.
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On the other hand, since g(z) ≤ 1 we have gi′(W (t)) ≤ 1, thus

exp

(
αp

240β2n

(
720β2gi′(W

(t))− γ2gi(W
(t))
))

≤ exp

(
3αp

n

)
≤ 2,

where the last inequality follows from the assumption α ≤ 1/(Cp2). To summarize, in this case we have

exp(yi′fW (t+1)(xi′)− yifW (t+1)(xi)) ≤ (3200β2/γ2) · 2 = 6400β2/γ2 ≤ C ′
r, (43)

as long as C ′
r ≥ 6400β2/γ2.

This completes the proof of R(t+ 1). As a byproduct, from (37) we obtain

gi(W
(t))

gi′(W (t))
≤ 2 + 2C ′

r ≤ Cr, (44)

by setting Cr = 2 + 2C ′
r, which is what is desired by Lemma C.1.

D PROOF OF LEMMA 4.5

By Lemma 4.4 and the monotonicity of g it is clear that gi(W (t)) is decreasing in t. This implies gi(W (t)) ≤ gi(W
(0)) ≤

2/3. Invoking Lemma 4.4 again, this in turn implies

yifW (t+1)(xi)− yifW (t)(xi) ≤
3αp

n
gi(W

(t)) ≤ 4αp

3n
≤ 1,

since α ≤ 1/(Cp2).

By Lemma 4.4 and mean-value theorem we have

γ2αp

240β2n
g(θ1)gi(W

(t)) ≤ ℓ(yifW (t)(xi))− ℓ(yifW (t+1)(xi)) ≤
3αp

n
g(θ2)gi(W

(t)),

where yifW (t)(xi) ≤ θ1, θ2 ≤ yifW (t+1)(xi) ≤ yifW (t)(xi) + 1. Since g is decreasing we have g(θ1), g(θ2) ≤ gi(W
(t)).

On the other hand, it is easy to verify that for u ≥ −1 we have 1 ≥ g(u + 1)/g(u) ≥ 1/10, thus g(θ1), g(θ2) ≥
gi(W

(t))/10. Together these imply g(θ1), g(θ2) ≍ gi(W
(t)) and hence

ℓ(yifW (t)(xi))− ℓ(yifW (t+1)(xi)) ≍β,γ
αp

n
gi(W

(t))2,

as desired.

E PROOF OF PROPOSITION 4.3

Let bt = ψ(t+ 1)at. Then b0 ≤ 1 by the assumption ψa0 ≤ 1. Moreover, at+1 ≤ at − ψa2t is equivalent to

bt+1 ≤ t+ 2

t+ 1
bt −

(t+ 2)

(t+ 1)2
b2t = bt +

1

t+ 1
bt(1− bt)−

1

(t+ 1)2
b2t ≤ bt +

1

t+ 1
bt(1− bt).

Consequently, we have

1− bt+1 ≥
(
1− 1

t+ 1

)
(1− bt),

hence 1− bt ≥ 0 implies 1− bt+1 ≥ 0 for all t ≥ 0. Since 1− b0 ≥ 0, by induction we know that 1− bt ≥ 0 for all t ≥ 0,
i.e. bt ≤ 1, therefore at ≤ 1/(ψ(t+ 1)) ≤ 1/(ψt).



Benign overfitting of non-smooth neural networks beyond lazy training

F ANALYSIS OF GENERALIZATION

F.1 Proof of Lemma 4.7

Let us inspect the change of ⟨w(t)
j , x⟩ for (x, y) ∼ P⋆. By (23) we have

⟨w(t+1)
j , x⟩ − ⟨w(t)

j , x⟩ = α

n
√
m

n∑
i=1

yiajgi(W
(t))∂σ(⟨w(t)

j , xi⟩)⟨y⋆i µ+ zi, yµ+ z⟩

=
αajy

n
√
m

n∑
i=1

yiygi(W
(t))∂σ(⟨w(t)

j , xi⟩)⟨y⋆i µ+ zi, yµ+ z⟩,

where we used y2 = 1 to write aj = ajy · y.

Denote δi = (yi − y⋆i )/2, then δi ∈ {−1, 1} and
∑n

i=1 |δi| ≤ ηn. The above expression can be further written as

ajy(⟨w(t+1)
j , x⟩ − ⟨w(t)

j , x⟩)

=
α

n
√
m

n∑
i=1

(y⋆i + 2δi)ygi(W
(t))∂σ(⟨w(t)

j , xi⟩)(y⋆i y∥µ∥2 + y⟨µ, zi⟩+ y⋆i ⟨µ, z⟩+ ⟨zi, z⟩)

=
α

n
√
m

n∑
i=1

gi(W
(t))∂σ(⟨w(t)

j , xi⟩)(∥µ∥2 + y⋆i ⟨µ, zi⟩)︸ ︷︷ ︸
T1(t)

+
2α

n
√
m

n∑
i=1

δigi(W
(t))(y∥µ∥2 + y⋆i y⟨µ, zi⟩)︸ ︷︷ ︸
T2(t)

+
α

n
√
m

n∑
i=1

yiy
⋆
i ygi(W

(t))∂σ(⟨w(t)
j , xi⟩)⟨µ, z⟩︸ ︷︷ ︸

T3(t)

+
α

n
√
m

〈
n∑

i=1

yiygi(W
(t))∂σ(⟨w(t)

j , xi⟩)zi, z

〉
︸ ︷︷ ︸

T4(t)

(45)

We control the four terms separately. For the first term we note that |⟨µ, zi⟩| ≤ ∥µ∥2/2 by Eqns. (15) and (7) in the main
text, thus ∥µ∥2 + y⋆i ⟨µ, zi⟩ ≥ ∥µ∥2/2, and all the summands is therefore nonnegative. Furthermore, by Lemma 4.3 we
have |Aj(t)| ≥ n/(60β2), which together with Lemma C.1 implies

∑
i∈Aj(t)

gi(W
(t)) ≥ C−1

r nĜ(W (t))/(60β2). Thus
the first term

T1(t) ≥
α

120β2Cr
√
m
γ∥µ∥2Ĝ(W (t)). (46)

For the second term we use again |⟨µ, zi⟩| ≤ ∥µ∥2/2 and recall that
∑n

i=1 |δi| ≤ ηn, which together with Lemma C.1
yields

|T2(t)| ≤
3ηCrα√

m
∥µ∥2Ĝ(W (t)). (47)

For the third term we simply bound

|T3(t)| ≤
Crα√
m
Ĝ(W (t))|⟨µ, z⟩|. (48)

Define an event E ′
1 by

E ′
1 :=

{
|⟨µ, z⟩| ≤ 64

√
β log(p/n)∥µ∥

}
.

By Proposition B.1 we have P(E ′
1) ≥ 1− (p/n)−11. Conditioning on E ′

1 we have

|T3(t)| ≤
64Crα∥µ∥√

m

√
β log(p/n)Ĝ(W (t)). (49)

By assumptions (6c) and (7) in the main text, the right hand sides of (47) and (49) can be absorbed by the right hand side
of (46): by the assumption η ≤ 1/C for sufficiently large we have 3ηCr ≤ 1/(960β2Cr); by the assumption (7) we have
∥µ∥ ≥ C

√
log(p/n) and hence 64Cr∥µ∥

√
β log(p/n) ≤ ∥µ∥2/(960β2Cr). These combined with (46), (47), (49) imply

T1(t) + T2(t) + T3(t) ≥
cα√
m
∥µ∥2Ĝ(W (t)), (50)
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where c > 0 is some constant depending only on β, γ. In fact, one may take c = γ/(160β2Cr).

It remains to control the last term T4(t). This is where the difference between the local approach and the global approach
arises. We discuss these two approaches respectively.

The Local Approach. To control ⟨w(t)
j , x⟩ with the local approach, we need to control all of |⟨w(τ+1)

j − w
(τ)
j , x⟩| for

τ < t. The only efficient way to achieve this goal is to bound maxi |⟨zi, z⟩| so that

|T4(τ)| ≤
α√
m

max
i∈[n]

gi(W
(τ))max

i∈[n]
|⟨zi, z⟩| ≤

Crα√
m

max
i∈[n]

|⟨zi, z⟩|Ĝ(W (τ))

holds uniformly in τ . The desired bound (Eqn. (21) in the main text) follows immediately from this and (50).

The Global Approach. To control the last term, it turns out useful to adopt a new viewpoint that one should look at the
cumulative effect of the last term. More precisely, the cumulative effect of T4 in the difference ⟨w(t)

j , x⟩ − ⟨w(0)
j , x⟩ is∑t−1

τ=0 T4(τ). One may invoke Eqn. (14) in the main text to see∥∥∥∥∥
n∑

i=1

t−1∑
τ=0

yiygi(W
(τ))∂σ(⟨w(τ)

j , xi⟩)zi

∥∥∥∥∥
2

≤ 2p
n∑

i=1

(
T∑

τ=0

gi(W
(τ))∂σ(⟨w(τ)

j , xi⟩)

)2

≤ 2C2
rpn

(
t−1∑
τ=0

Ĝ(W (t))

)2

,

thus ∣∣∣∣∣
t−1∑
τ=0

T4(τ)

∣∣∣∣∣ ≤ 2Crα
√
p

√
nm

(
t−1∑
τ=0

Ĝ(W (t))

)
|⟨ϕ(t)j , z⟩| (51)

where ϕ(t)j ∈ Rp is some vector independent of z satisfying ∥ϕ(t)j ∥ ≤ 1.

Summing up, we have

ajy(⟨w(t)
j , x⟩ − ⟨w(0)

j , x⟩) =
t−1∑
τ=0

T1(τ) + T2(τ) + T3(τ) + T4(τ)

≥ cα√
m

(
∥µ∥2 − C ′

√
p

n
|⟨ϕ(t)j , z⟩|

) t−1∑
τ=0

Ĝ(W (τ)). (52)

Define yet another event E ′
2 as

E ′
2 =

{
max
j∈[m]

|⟨ϕ(t)j , z⟩| ≤ 64
√
β log(pm/n)

}
.

It follows from Proposition B.1 again that P(E ′
2) ≥ 1− (p/n)−11. On this event we have

ajy(⟨w(t)
j , x⟩ − ⟨w(0)

j , x⟩) =
t−1∑
τ=0

T1(τ) + T2(τ) + T3(τ) + T4(τ)

≥ cα√
m

(
∥µ∥2 − C ′

√
p log(pm/n)

n

)
t−1∑
τ=0

Ĝ(W (τ)).

This proves the desired bound (Eqn. (22) in the main text) conditioning on E ′
1 ∩E ′

2. By union bound this event occurs with
probability at least 1− 2(p/n)−11 ≥ 1− (p/n)−10, as desired.

F.2 Proof of Corollary 4.1

By Lemma 4.7 and its proof, we know that Eqn. (22) in the main text holds with probability at least 1 − 2(p/n)−11

(cf. the last paragraph in the proof of Lemma 4.7 in Section F.1). By assumption (7) in the main text we have ∥µ∥2 ≥
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3C ′
√
p log(pm/n)/n, hence

ajy⟨w(t)
j , x⟩ ≥ ajy⟨w(0)

j , x⟩+ 2cα

3
√
m
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)).

To prove Corollary 4.1, it suffices to show

|⟨w(0)
j , x⟩| ≤ cα

3
√
m
∥µ∥2Ĝ(W (0)) ≤ cα

3
√
m
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)).

Recalling inequality (17), we invoke Proposition B.1 to see

|⟨w(0)
j , x⟩| ≤ ∥w(0)

j ∥∥µ∥+ 32
√
β log(p/n)∥w(0)

j ∥ ≤ 2∥µ∥∥w(0)
j ∥ ≤ 4ωinit∥µ∥

√
p,

with probability at least 1 − (p/n)−11, where the penultimate inequality follows from the assumption (7). On the other
hand, it follows from Eqn. (18) in the main text that gi(W (0)) ≥ g(1) ≥ 1/4, thus Ĝ(W (0)) ≥ 1/4. Thus we may proceed
to bound, recalling ωinit ≤ α/

√
mp by (6f),

|⟨w(0)
j , x⟩| ≤ 4ωinit∥µ∥

√
p ≤ 4α∥µ∥/

√
m ≤ 12α√

m
∥µ∥Ĝ(W (0)) ≤ cα

3
√
m
∥µ∥2Ĝ(W (0)),

where the last inequality follows from assumption (7) in the main text which implies ∥µ∥2 ≥ 3c−1∥µ∥. Overall, the
probability that the above happens is at least 1− 2(p/n)−11 − (p/n)−11 ≥ 1− (p/n)−10. This completes the proof.

F.3 Proof of Lemma 4.8

By Lemma 4.7, we have a firm grasp of the the behavior of ⟨w(t)
j , x⟩ on “good events”. It remains to handle the “excep-

tional” bad events, described by the following lemma.

Lemma F.1. For any t > 0 and for any x = yµ+ z with y ∈ {−1, 1}, we have for some constant C ′ > 0 depending only
on β, γ that

|⟨w(t)
j , x⟩| ≤ C ′α√

m
(∥µ∥2 + ∥µ∥∥z∥+√

p∥z∥)
t−1∑
τ=0

Ĝ(W (τ)), ∀j ∈ [m]. (53)

Proof. As in the proof of Lemma 4.7 in Section F.1, we write

⟨w(t)
j , x⟩ = ⟨w(0)

j , x⟩+
t−1∑
τ=0

(⟨w(τ+1)
j , x⟩ − ⟨w(τ)

j , x⟩),

and decompose ⟨w(τ+1
j , x⟩ − ⟨w(τ)

j , x⟩ as in (45) and bound the term T1(τ), T2(τ) as in (46), (47). To bound T3(τ) and
T4(τ) we again use (48) and (51), but we proceed by using the simplest bound instead of the probabilistic argument there:
|⟨µ, z⟩| ≤ ∥µ∥∥z∥ and |⟨ϕ(t)j , z⟩| ≤ ∥z∥, thus

|T3(τ)| ≤
Crα√
m
Ĝ(W (t))|⟨µ, z⟩| ≤ Crα√

m
∥µ∥∥z∥Ĝ(W (t)),

and ∣∣∣∣∣
t−1∑
τ=0

T4(τ)

∣∣∣∣∣ ≤ 2Crα√
nm

√
p∥z∥

(
t−1∑
τ=0

Ĝ(W (t))

)
.

The conclusion then follows from the same argument as in the proof of Lemma 4.7, Section F.1.

Return to the proof of Lemma 4.8. We rewrite the margin yfW (t)(x) as

yfW (t)(x) =
1√
m

m∑
j=1

ajyσ(⟨w(t)
j , x⟩) = 1√

m

∑
j:aj=y

σ(⟨w(t)
j , x⟩)− 1√

m

∑
j:aj ̸=y

σ(⟨w(t)
j , x⟩).
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Handling good event. Denote by E1 the event that the conclusion of Corollary 4.1 holds, then P(E1) ≥ 1 − (p/n)−10

by that corollary. Observe that on E1 we have ⟨w(t)
j , x⟩ > 0 if aj = y and ⟨w(t)

j , x⟩ < 0 if aj ̸= y by the same corollary.
Recalling our assumption on σ, it is obvious that σ(u) ≥ γu if u > 0 and σ(u) ≤ 0 if u < 0, thus on E1 we have

yfW (t)(x) ≥
1√
m

m∑
j:aj=y

γ⟨w(t)
j , x⟩ ≥ cα|{j : aj = y}|

m
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)) ≥ cα

3
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)),

where the last inequality follows from Eqn. (11) in the main text. These arguments imply

E(x,y)∼P⋆
(yfW (t)(x)1E1

) ≥ cα

3
∥µ∥2P(E1)

t−1∑
τ=0

Ĝ(W (τ)) ≥ cα

4
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)), (54)

where the last inequality follows from P(E1) ≥ 1− (p/n)−10 ≥ 3/4.

Handling exceptional event. We proceed to handle the exceptional case Ec
1 . To this end we apply Lemma F.1 and the

idea that ∥z∥ is essentially O(
√
p). More precisely, since |σ(u)| ≤ u by Lipschitz continuity of σ, we have

∣∣E(x,y)∼P⋆
(yfW (t)(x)1Ec

1
)
∣∣ ≤ E(x,y)∼P⋆

1√
m

m∑
j=1

|⟨w(t)
j , x⟩|1Ec

1

≤ C ′α∥µ∥2P(Ec
1)

t−1∑
τ=0

Ĝ(W (τ)) + C ′α(∥µ∥+√
p)E(1Ec

1
∥z∥)

t−1∑
τ=0

Ĝ(W (τ)),

We already know that P(Ec
1) ≤ (p/n)−10, which is sufficient to control the first term in the above expression. It remains

to control the second term, which amounts to bounding E(1Ec
1
∥z∥). Denote

E2 =
{
∥z∥ ≤ 40

√
βp log(p/n)

}
,

then we have

E(1Ec
1
1E2

∥z∥) ≤ 40E(1Ec
1

√
p log(p/n)) ≤ 40

√
βp log(p/n)P(Ec

1) ≤ (p/n)−8,

where in the last inequality we used the assumption (6c); while

E(1Ec
1
1Ec

2
∥z∥) ≤ E(1Ec

2
∥z∥) ≤ (p/n)−10,

where the last inequality follows from Proposition B.2. Summing up the above two inequalities we obtain

∣∣E(x,y)∼P(yfW (t)(x)1Ec
1
)
∣∣ ≤ C ′α(p/n)−8(∥µ∥2 + ∥µ∥+√

p)

t−1∑
τ=0

Ĝ(W (τ)) ≤ cα

8
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)) (55)

where the last inequality follows from the assumptions (6c) and (7), assuming the constant C there is sufficiently large so
that C > 8C ′/c.

Putting things together. Combining (54) and (55) we obtain

E(x,y)∼P⋆
(yfW (t)(x)) = E(x,y)∼P⋆

(yfW (t)(x)1E1
) + E(x,y)∼P⋆

(yfW (t)(x)1Ec
1
)

≥ E(x,y)∼P⋆
(yfW (t)(x)1E1

)−
∣∣E(x,y)∼P⋆

(yfW (t)(x)1Ec
1
)
∣∣

≥ cα

8
∥µ∥2

t−1∑
τ=0

Ĝ(W (τ)),

as desired. This completes the proof.
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F.4 Proof of Lemma 4.9

By (23) we have

∥w(t+1)
j − w

(t)
j ∥ = α∥∇wj

L̂(W (t))∥ ≤ α

n
√
m

n∑
i=1

gi(W
(t))∥µ∥+ α

n
√
m

∥∥∥∥∥
n∑

i=1

yigi(W
(t))∂σ(⟨w(t)

j , xi⟩)(xi − y⋆i µ)

∥∥∥∥∥ .
But from Eqn. (14) in the main text we have∥∥∥∥∥

n∑
i=1

yigi(W
(t))∂σ(⟨w(t)

j , xi⟩)(xi − y⋆i µ)

∥∥∥∥∥
2

≤ 5p

4

n∑
i=1

y2i gi(W
(t))2∂σ(⟨w(t)

j , xi⟩)2 ≤ 5Crp

4
nĜ(W (t))2,

where in the last inequality we used Lemma C.1. Taking square roots and plugging this into the first equation, we obtain

∥w(t+1)
j − w

(t)
j ∥ ≤ α√

m
∥µ∥Ĝ(W (t)) + α

√
5Crp

4nm
Ĝ(W (t)) ≤ C ′α

√
p

nm
Ĝ(W (t)),

with C ′ = 2
√
Cr + 1, where we used the assumption (6c) in the main text to show ∥µ∥ ≤

√
p/n. This completes the

proof.
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