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Abstract

In mediated uncoupled learning (MU-learning),
the goal is to predict an output variable Y given
an input variable X as in ordinary supervised
learning while the training dataset has no joint
samples of (X,Y ) but only independent samples
of (X,U) and (U, Y ) each observed with a me-
diating variable U . The existing MU-learning
methods can only handle the squared loss, which
prohibited the use of other popular loss functions
such as the cross-entropy loss. We propose a
general MU-learning framework that allows for
the problems with Bregman divergences, which
cover a wide range of loss functions useful for
various types of tasks, in a unified manner. This
loss family has maximal generality among those
whose minimizers characterize the conditional ex-
pectation. We prove that the proposed objective
function is a tighter approximation to the oracle
loss that one would minimize if ordinary super-
vised samples of (X,Y ) were available. We also
propose an estimator of an interval containing
the expected test loss of predictions of a trained
model only using (X,U)- and (U, Y )-data. We
provide a theoretical analysis on the excess risk
for the proposed method and confirm its practical
usefulness with regression experiments with syn-
thetic data and low-quality image classification
experiments with benchmark datasets.

1 INTRODUCTION

Supervised learning has found many successful applications
and become a standard approach to many real-world pat-
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tern recognition and prediction tasks (Mohri et al., 2012;
Murphy, 2012; Shalev-Shwartz and Ben-David, 2014). In
its standard form, the goal of ordinary supervised learning
is to predict an output variable Y given an input variable
X from a training dataset consisting of direct input-output
correspondences, i.e., joint data samples of (X,Y ).

However, collecting such joint data samples can be diffi-
cult in some applications (Chapelle et al., 2006; Zhu, 2005;
van Engelen and Hoos, 2020). Mediated uncoupled learn-
ing (MU-learning), a framework for learning without direct
input-output correspondences, can facilitate training data
collection in such situations (Yamane et al., 2021). MU-
learning does not require joint data of (X,Y ) but allows
them to be independently observed with another variable
U called mediating variable. Namely, we only need inde-
pendent training data of (X,U) and (U ′, Y ′), called Me-
diated Uncoupled data (MU-data), where (X,U, Y ) and
(X ′, U ′, Y ′) are i.i.d. with Y and X ′ being unobserved.

For instance, it may be difficult to collect text translation
examples between minor languages (corresponding to X
and Y ) when we want to train a machine translator between
them (Haddow et al., 2022). Instead, we may collect text
data written in each of the languages with a major lan-
guage such as English translations (corresponding to U )
and apply an MU-learning method. Other examples in-
clude image sentiment analysis (Mittal et al., 2018) from
images with text captions (Xu et al., 2015) and text data with
sentiment labels (Medhat et al., 2014) and counterfactual
prediction (Pearl, 2009; Johansson et al., 2016; Zou et al.,
2020).

Yamane et al. (2021) proposed a two-step method for MU-
learning that yields a weakly consistent estimator under
some conditions on identifiability and model-specification.
They also proposed a regularized, one-step variant that
jointly performs the two steps, which was empirically shown
to improve the two-step method. However, their methods
can only handle the squared loss, whose specific properties
were necessary for deriving and analyzing their methods.
This limitation prohibited the use of, e.g., the cross-entropy
loss that is popular for classification.
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In this paper, we propose an MU-learning framework that
allows the use of a wide class of loss functions based on
Bregman divergences. Under mild conditions, this loss
family is in fact the most general among the ones whose
minimizers characterize the conditional expectation (Baner-
jee et al., 2005a). It includes many different types such as
the cross-entropy loss, the Itakura-Saito distance, the gen-
eralized I-divergence, and the robust bi-tempered logistic
loss (Banerjee et al., 2005b; Amid et al., 2019). The pro-
posed framework enables users to choose an appropriate
loss function depending on the task at hand. It is even pos-
sible to design a custom loss function tailored to the task
by learning the convex function used to define the Bregman
divergence (Siahkamari et al., 2020).

Under this setup, we develop a statistically consistent two-
step method and a regularized one-step method. Further-
more, we propose a way to validate the prediction perfor-
mance of models trained with our methods by providing
an interval estimate of the test loss only using MU-data,
without (X,Y )-data. This is useful for knowing whether
the trained model is good or bad before deployment.

We show that the proposed objective function, compared
with that of the existing approach, is a tighter approximation
to the oracle loss that one would use if (X,Y )-data were
available. Our approximation provides the proposed method
with another nice property that the asymptotic bias will be
zero if either (X,U) or (U ′, Y ′) is noise-free in some sense.
We also prove finite-sample error bounds for the two pro-
posed methods and confirm the usefulness of the proposed
method through experiments in least-squares regression and
low-quality image classification setups.

Our contributions: (i) We propose an MU-learning frame-
work that removes the limitation of the existing MU-learning
methods on the loss by introducing Bregman divergences
which maximally generalize the loss family. (ii) We also pro-
pose a way to validate the performance of a trained model
only using MU-data. (iii) We prove that the proposed ob-
jective function is a tighter approximation to the oracle loss
compared to the existing one. (iv) We provide finite-sample
excess risk bounds and a bias analysis for the proposed meth-
ods. Our code is available at https://github.com/
i-yamane/mediated_uncoupled_learning.

2 PROBLEM SETUP

Let X and Y denote an X -valued input variable and a Y-
valued output variable with an underlying probability mea-
sure P , respectively, where X ⊆ Rd and Y ⊆ Rk are mea-
surable spaces. Our goal is to learn the function f best pre-
dicting Y from X so that the expected loss E[ℓϕ(Y, f(X))]
will be minimized, where E[·] denotes the expectation and
ℓϕ(·, ·) is a Bregman divergence defined as follows.

Definition 2.1 (Bregman divergences, Bregman risk). Let

ϕ : Rk → R be a differentiable, strictly convex function.
We define the Bregman divergence associated with ϕ as

ℓϕ(y1, y2) := ϕ(y1)− ϕ(y2)− ⟨y1 − y2,∇ϕ(y2)⟩

for any (y1, y2) ∈ Rk×Rk, where∇ is the gradient operator.
Furthermore, for any Rk-valued random variables Y1 and
Y2, we define the Bregman risk associated with ϕ as

Dϕ(Y1, Y2) := E[ℓϕ(Y1, Y2)].

We have y1 = y2 if and only if ℓϕ(y1, y2) = 0. Similarly,
Y1 = Y2 almost surely if and only if Dϕ(Y1, Y2) = 0.
The symmetry ℓϕ(y1, y2) = ℓϕ(y2, y1) or D(Y1, Y2) =
Dϕ(Y2, Y1) does not generally hold.

This paper focuses on the setup called mediated uncoupled
learning (MU-learning) (Yamane et al., 2021). In the ordi-
nary supervised learning, we are given training samples of
any joint data of (X,Y ). In MU-learning, on the other hand,
we do not observe joint (X,Y )-data as training samples, but
we are only given data of (X,U) and (U, Y ) independently
observed with another U -valued variable U . More formally,
the training data that we have are {(Xi, Ui)}ni=1

i.i.d.∼ PX,U

and {(U ′
i , Y

′
i )}

n′

i=1

i.i.d.∼ PU,Y , where PX,U and PU,Y are
probability distributions of (X,U) and (U, Y ), respectively,
obtained by marginalizing the common joint distribution
PX,U,Y of (X,U, Y ) defined based on P . Since U mediates
between the uncoupled variables X and Y , we refer to data
of this form as mediated uncoupled data (MU-data), and
we refer to the task of learning from MU-data as mediated
uncoupled learning (MU-learning).

Yamane et al. (2021) proposed two methods for MU-
learning and theoretically and empirically studied their use-
fulness. However, their methods are limited to the case in
which ℓϕ(·, ·) is the squared loss. In Section 4, we propose
a method that can handle any Bregman divergence, which
covers a wide class of loss functions including the squared
loss and the cross-entropy loss as special cases.

In fact, Bregman divergences are the most general loss fam-
ily among those whose minimizers characterize the condi-
tional expectation. More specifically, any loss ℓ has to be a
Bregman divergence if we want E[Y | X] to be a minimizer
of E[ℓ(Y, f(X))] over all measurable functions f , under
regularity conditions (Banerjee et al., 2005a).

3 EXISTING METHODS

We review existing methods before presenting our methods.
To the best of our knowledge, existing methods only fo-
cused on the squared loss (y1, y2) 7→ 1

2∥y1−y2∥
2
2 (Yamane

et al., 2021), which is a special instance of the Bregman
divergence induced by ϕ(t) = 1

2∥t∥
2
2.

https://github.com/i-yamane/mediated_uncoupled_learning
https://github.com/i-yamane/mediated_uncoupled_learning
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3.1 Naive Approach Based on Separate Estimators

A naive approach to MU-learning is to separately learn two
functions and combine them: Let ĝ1(x) be a function for
predicting U from X and ĝ2(u) be a function for predicting
Y from U . Then, we predict U from X as Û := ĝ1(X) and
then Y based on Û as Ŷ := ĝ2(Û) = ĝ2(ĝ1(X)).

Although this approach is simple and intuitive, it introduces
avoidable bias unless E[Y | U ] is a linear function of U , or
U is a deterministic function of X (Yamane et al., 2021).

3.2 Two-step Regressed Regression (2Step-RR)

Two-Step Regressed Regression (2Step-RR) (Yamane et al.,
2021) is an MU-learning method that yields a weakly con-
sistent estimator to E[Y | X] as long as U is informative
enough in the sense that

E[Y | X,U ] = E[Y | U ], a.s., (1)

and models are correctly specified. Eq. 1 is called the con-
ditional mean independence. First, 2Step-RR performs re-
gression on {(U ′

i , Y
′
i )}

n′

i=1 to obtain an estimate ĥ2RR
u (U) of

E[Y | U ] as

ĥ2RR
u := arg min

hu∈Hu

1

n′

n′∑
i=1

∥hu(U
′
i)− Y ′

i ∥22,

whereHu is a hypothesis class for ĥ2RR
u . Then, it constructs

a supervised dataset {(Xi, Ŷi)}
n

i=1 by replacing each Ui of
the dataset {(Xi, Ui)}ni=1 with Ŷi := ĥ2RR

u (Ui). Finally, it
performs regression on {(Xi, Ŷi)}

n

i=1 to obtain an estimate
ĥ2RR
x (X) of E[Y | X]:

ĥ2RR
x := arg min

hx∈Hx

1

n

n∑
i=1

∥hx(Xi)− Ŷi∥22,

where Hx is a hypothesis class of bounded functions for
ĥ2RR
x . It only requires performing ordinary regression twice,

and one can use any standard machine learning models and
optimization methods for each step.

3.3 Joint Regressed Regression (Joint-RR)

In 2Step-RR, the first regression step trains ĥ2RR
u without

any reference to the second regression step for learning ĥ2RR
x .

Yamane et al. (2021) also proposed a variant of 2Step-RR
called Joint-RR which jointly performs the two steps of
2Step-RR. It solves a single optimization problem whose
objective function is a convex combination *1 of those of
2Step-RR:

(ĥJRR
x , ĥJRR

u ) := arg min
(hx,hu)∈Hx×Hu

ĴJoint-RR(hx, hu),

*1There is a freedom in the choice of the mixing coefficients,
but Yamane et al. (2021) suggested setting them to equal weights,
which is equivalent to what we present here.

where

ĴJoint-RR(hx, hu) :=
2

n′

n′∑
i=1

∥hu(U
′
i)− Y ′

i ∥22

+
2

n

n∑
i=1

∥hx(Xi)− hu(Ui)∥22. (2)

The expectation behind this approach is that hu’s output
will be adjusted through the joint optimization so that hx
will better fit the generated supervised data {(Xi, Ŷi)}

n

i=1,
where Ŷi := hu(Ui).

The expected objective function of Joint-RR is an upper
bound of the oracle mean squared error (MSE) that we
would minimize if (X,Y )-data were available:

E[∥hx(X)− Y ∥22] ≤ E[ĴJoint-RR(hx, hu)] (3)
=: JJoint-RR(hx, hu).

This implies that if we succeed in making the right hand
side small, the MSE will not exceed it. It was proven that
Joint-RR approximately minimizes the right hand side, and
the minimum of the empirical objective approaches to the
minimum of its expectation as the sample sizes tend to
infinity (Yamane et al., 2021).

4 PROPOSED METHODS

A limitation of 2Step-RR (Section 3.2) and Joint-RR (Sec-
tion 3.3) is that they only allow us to use the squared loss.
In this section, we propose an MU-learning framework that
can handle any of the loss functions based on Bregman di-
vergences. It is a wide loss family that includes the squared
loss as an instance. The central challenge in this extension
is that it is not straightforward to give theoretical guarantees
when we replace the squared loss with the general Bregman
divergence in 2Step-RR and Joint-RR. For instance, heuris-
tically replacing the loss functions in Joint-RR can fail to
keep the basic property analogous to Eq. (3).

4.1 Two-step MU-Learning with Bregman
Divergences (2Step-BregMU)

First, we present a new two-step MU-learning method with
Bregman divergences. This method generalizes 2Step-RR
to the case with any Bregman divergence ℓϕ. We train a
function ĥ2Breg

u : U → Y for predicting Y from U :

ĥ2Breg
u = arg min

hu∈Hu

1

n′

n′∑
i=1

ℓϕ(Y
′
i , hu(U

′
i)), (4)

Then, we train another function ĥ2Breg
x : X → Y so as to

predict ĥ2Breg
u (U) from X:

ĥ2Breg
x = arg min

hx∈Hx

1

n

n∑
i=1

ℓϕ(ĥ
2Breg
u (Ui), hx(Xi)). (5)
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Here, Hu ⊆ {hu : U → Y} and Hx ⊆ {hx : X → Y} are
function classes. We call this method 2Step-BregMU.

Note that swapping the arguments of the loss as
ℓϕ(hu(U

′
i), Y

′
i ) instead of Eq. (4) or ℓϕ(hx(Xi), ĥ

2Breg
u (Ui))

instead of Eq. (5) would not generally give the correct result
because of the asymmetry of the Bregman divergence.

4.2 Joint MU-Learning with Bregman Divergences
(Joint-BregMU)

Next, we present a one-step method that aims to jointly
learn the two functions in 2Step-BregMU, which is less
straightforward compared to the case of the squared loss.
The resulting method is similar to Joint-RR in the sense that
it minimizes an upper bound of the oracle supervised risk
Dϕ(Y, hx(X)). However, it remains to establish a bound in
terms of MU-data on the oracle supervised risk only using
general properties that all the Bregman divergences admit.
We start by introducing the following well-known property
of Bregman divergences (Nock et al., 2016; Dhillon and
Tropp, 2008).

Lemma 4.1. For any (y1, y2, z) ∈ (Rk)
3
,

ℓϕ(y1, y2) = ℓϕ(y1, z) + ℓϕ(z, y2)

+ (y1 − z)⊤(∇ϕ(z)−∇ϕ(y2)).

Lemma 4.1 is useful for developing MU-learning methods
because it allows us to express the oracle supervised risk
Dϕ(Y, hx(X)), which involves (X,Y )-data, in terms of
Dϕ(Y, hu(U)) and Dϕ(hu(U), hx(X)), which only require
(U, Y )- and (X,U)-data, respectively:

Dϕ(Y, hx(X)) = Dϕ(Y, hu(U)) +Dϕ(hu(U), hx(X))

+E[(Y − hu(U))
⊤
(∇ϕ(hu(U))−∇ϕ(hx(X)))].

However, we still have the last term
E[(Y − hu(U))

⊤
(∇ϕ(hu(U)) − ∇ϕ(hx(X)))] that we

cannot directly approximate using MU-data, {(Xi, Ui)}ni=1

and {(U ′
i , Y

′
i )}

n′

i=1. We bound this term using the
inequality −∥u∥2 · ∥v∥2 ≤ u⊤v ≤ ∥u∥2 · ∥v∥2 that
holds for any u, v ∈ Rd to obtain a tractable ex-
pression, where ∥·∥2 is the ℓ2-norm, which leads to
the following lemma. To state the lemma, denote
L2(X ,Y;P ) := {hx : X → Y,E[hx(X)

2
] < ∞} and

L2(U ,Y;P ) := {hu : U → Y,E[hu(U)
2
] < ∞}. Also

denote ∥f∥2L2 :=
∫
∥f∥22 dP for any square integrable

function f . For example, ∥hx(X)∥2L2 = E[∥hx(X)∥22] for
any hx ∈ L2(X ,U ;P ) and ∥hu(U)∥2L2 := E[∥hu(U)∥22]
for any hu ∈ L2(X ,U ;P ).
Lemma 4.2 (Bounds on Bregman divergences). For
any hx ∈ L2(X ,U ;P ) and any hu ∈ L2(X ,U ;P ),
Dϕ(Y, hx(X)) has the following lower and upper bound:

B×
ϕ (hx, hu,−1) ≤ Dϕ(Y, hx(X)) ≤ B×

ϕ (hx, hu,+1),
(6)

Algorithm 1 Joint-BregMU

(ĥJBreg
x , ĥJBreg

u )← arg min
(hx,hu)∈Hx×Hu

B̂×
ϕ (hx, hu,+1),

where we denote for s ∈ {−1,+1},

B̂×
ϕ (hx, hu, s)

:=
1

n′

n′∑
i=1

ℓϕ(Y
′
i , hu(U

′
i)) +

1

n

n∑
i=1

ℓϕ(hu(Ui), hx(Xi))

+ s

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hu(U ′

i)∥22

×

√√√√ 1

n

n∑
i=1

∥∇ϕ(hu(Ui))−∇ϕ(hx(Xi))∥22. (8)

Return ĥJBreg
x .

where we define for s ∈ {−1,+1},

B×
ϕ (hx, hu, s) := Dϕ(Y, hu(U)) +Dϕ(hu(U), hx(X))

+ s∥Y − hu(U)∥L2 × ∥∇ϕ(hu(U))−∇ϕ(hx(X))∥L2 .
(7)

Notice that each term on the right-hand side of Eq. (7) can
be approximated using {(Xi, Ui)}ni=1 or {(U ′

i , Y
′
i )}

n′

i=1.

We propose a one-step method, called Joint-BregMU, that
approximates the upper bound in Lemma 4.2 using MU-
data and minimizes the approximated bound as described in
Algorithm 1.

4.2.1 Examples with Different Bregman Divergences

We give two examples of the objective function of Joint-
BregMU with specific functions ϕ.

Squared Loss: Setting ϕ(t) = 1
2∥t∥

2
2 in the Bregman diver-

gence yields the squared loss: ℓϕ(y1, y2) = 1
2∥y1 − y2∥

2.
The bounds used by Joint-BregMU (Eq. (8) in Algorithm 1)
will be

B̂×
ϕ (hx, hu, s) =

1

2

(√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hu(U ′

i)∥22

+ s

√√√√ 1

n

n∑
i=1

∥hu(Ui)− hx(Xi)∥22
)2

.

Cross-entropy Loss: Define the cross-entropy loss as
ℓCE(y1, y2) = −

∑k
j=1[y1]j log[y2]j for any y1 ∈ [0, 1]k

and y2 ∈ (0, 1]k such that
∑k

j=1[y1]j =
∑k

j=1[y2]j = 1,
where [·]j denotes the j-th component of the vector in the
argument. Minimizing the expected cross-entropy loss is
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equivalent to minimizing the KL-divergence in the follow-
ing sense:

E[ℓCE(Y, f(X))] = E[ℓϕ(E[Y | X], f(X))︸ ︷︷ ︸
KL-divergence

]

−E

 k∑
j=1

E[[Y ]j | X] log(E[[Y ]j | X])


︸ ︷︷ ︸

Constant that does not depend on f .

,

where Y is a k-dimensional random variable of a one-hot
vector, f : X → [0, 1]k such that

∑k
j=1[f(x)]j = 1 for all

x ∈ X , and ϕ : t 7→
∑k

j=1[t]j log[t]j . Hence, when we
have functions hx : X → Y and hu : U → Y whose outputs
are positive and normalized, e.g., by a softmax layer, the
empirical version of the objective function of Joint-BregMU
(Eq. (8) in Algorithm 1) is

B̂×
ϕ (hx, hu, s) = −

1

n′

n′∑
i=1

k∑
j=1

[Y ′
i ]j log[hu(U

′
i)]j

+
1

n

n∑
i=1

k∑
j=1

[hu(Ui)]j log
[hu(Ui)]j
[hu(Xi)]j

+ s

√√√√ 1

n′

n′∑
i=1

k∑
j=1

([Y ′
i ]j − [hu(U ′

i)]j)
2
2

×

√√√√ 1

n

n∑
i=1

k∑
j=1

(log[hu(Ui)]j − log[hx(Xi)]j)
2

+ constant.

4.3 Performance Validation Using Interval Estimates
of Test Loss

Predicting whether a trained model is good or bad, is not
trivial when we only have MU-data since there is no (X,Y )-
data available for comparing the true output Y and the pre-
dicted output for X .

Conveniently, Lemma 4.2 provides a way to estimate the test
loss in the form of an interval. Let hx and hu be any fixed,
already trained models. We can obtain an interval estimate
of the expected test loss Dϕ(Y, hx(X)) using the bounds in
Eq. (6) approximated only with held-out MU-data, without
(X,Y )-data:

Ĩ×ε (hx, hu) := [B̃×
ϕ (hx, hu,−1)− ε, B̃×

ϕ (hx, hu,+1) + ε],

where B̃×
ϕ (·, ·, ·) is defined similarly to Eq. (8) but calcu-

lated using i.i.d. held-out MU-data {(X̃i, Ũi)}ñi=1 ∼ PX,U

and {Ũ ′
i , Ỹ

′
i }ñ

′

i=1 ∼ PU,Y independent of the training data.

5 THEORETICAL ANALYSIS

In this section, we present upper bounds on the errors of
the proposed methods. 2Step-BregMU is weakly consistent
but needs stronger assumptions in our analysis. In contrast,
Joint-BregMU has a bias but enjoys a bound with a better
rate with weaker assumptions. Refer to Section 5.3 for
disscussions on the assumptions of our analyses.

5.1 Analysis for 2Step-BregMU

Minimizing the Bregman divergence amounts to estimat-
ing the conditional expectation (see Banerjee et al. (2005a,
Theorem 1) or Lemma A.2 in the supplementary material).
Banerjee et al. (2005a, Theorem 2) further showed that
any estimator approximately minimizing the Bregman risk
converges in probability to the true conditional expectation.

Based on their results, we can show the weak consistency
of our two-step method provided that the estimator of each
step is weakly consistent as follows. Suppose that ĥ2Breg

u

and ĥ2Breg
x satisfy, as n tends to infinity,

Dϕ(Y, ĥ
2Breg
u (U))→ Dϕ(Y,E[Y | U ]) (9)

and Dϕ(ĥ
2Breg
u (U), ĥ2Breg

x (X))

→ Dϕ(E[ĥ2Breg
u (U),E[ĥ2Breg

u (U) | X]), (10)

which is the case when the models are well-specified, and
the function classes are not too complex. Then, ĥ2Breg

u (U)

converges to E[Y | U ] and ĥ2Breg
x (X) to E[ĥ2Breg

u (U) | X]
in probability (Banerjee et al., 2005a, Theorem 2). Thus,

ĥ2Breg
x (X)

P→ E[ĥ2Breg
u (U) | X]

P→ E[E[Y | U,X] | X] (11)
= E[Y | X] (Eq. (1)),

where P→ denotes convergence in probability. Eq. (11) fol-
lows from the dominated convergence for conditional expec-
tations (Resnick, 2014, Section 10.3)*2 and the boundedness
ofHx andHu.

We present a more refined result on the rate of convergence
below. For ease of notation, we denote H(v) := {h(v) |
h ∈ H} andH(V) :=

⋃
v∈V H(v) for any function classH,

any subset V of the domain of the functions, and any v ∈ V ,
whenever they are well-defined.

Theorem 5.1 (Excess risk bound for 2Step-BregMU, in
an asymptotic form). Assume that (i) Eq. (1) holds; (ii)
Cout := supy∈Y∪Hx(X )∪Hu(U)∥y∥2 < ∞ and Closs :=
sup(y1,y2)∈(Y∪Hx(X )∪Hu(U))2 ℓϕ(y1, y2) < ∞. (iii) E[Y |
U ] ∈ Hu(U) and E[Y | X] ∈ Hx(X); (iv) ϕ restricted to

*2We take sub-sequences converging almost surely before ap-
plying the dominated convergence mentioned in Resnick (2014).
See Appendix K of the supplementary material.
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Y ∪ Hx(X ) ∪ Hu(U) is Lipschitz continuous; and (v) for
some C1, C2 > 0, some p, q ∈ [1,∞], and some α ∈ [1,∞)
and β ∈ [1,∞] such that 1

p + 1
q ≤ 1, 1

α + 1
β ≤ 1, and any

g1, g2 ∈ Hu(U) ∪Hx(X) satisfy

C1∥g1 − g2∥αLp ≤ Dϕ(g1, g2)

and ∥∇1ℓϕ(g1(·), g2(·))∥βLq ≤ C2Dϕ(g1, g2),

where∇1 denotes the gradient operator with respect to the
first argument. Then,

Dϕ(E[Y | X], ĥ2Breg
x (X))

≤ OP

((
R1(n

′, ϕ,Hu) +

√
1

n′

)κ

+

(
R2(n, ϕ,Hu,Hx) +

√
1

n

)

+

(
R1(n

′, ϕ,Hu) +

√
1

n′

)α−1κ

×

(
R2(n, ϕ,Hu,Hx) +

√
1

n

)β−1 )
,

where κ := α−1(1 − β−1)−1 ∈ (0, 1], and Rl(. . . )
(l = 1, 2) are model complexity terms that depend on the ar-
guments, and OP (·) denotes the stochastic big-O notation.

Theorem 5.1 is an asymptotic summary of our finite-sample
result which can be found with a proof in Appendix B
of the supplementary material. The precise definitions of
Rl(· · · )’s are also in Appendix B.

The upper bound of Theorem 5.1 is at best OP (
√

1/n′ +√
1/n) when κ = 1, R1(n

′, ϕ,Hu) = OP (
√

1/n′), and
R2(n, ϕ,Hu,Hx) = OP (

√
1/n). κ depends on α and β

in Assumption (v), hence on the loss. For instance, we can
show that the squared loss achieves κ = 1, but we are not
aware whether the cross-entropy loss admits κ = 1. See
Section 5.3 for more discussions on the assumption.

A sketch of the proof of Theorem 5.1 goes as follows. First,
we upper-bound Dϕ(E[Y | X], ĥ2Breg

x (X)) using some dis-
crepancy measure between E[Y | U ] and ĥ2Breg

u (U) and
another between ĥ2Breg

u (U) and ĥ2Breg
x (X). The discrepan-

cies involve ∥ĥ2Breg
u (U) − E[Y | U ]∥Lp and ∥∇ℓϕ(E[Y |

X],E[ĥ2Breg
u (U) | X])∥Lq . Assumption (v) allows us to

bound them in terms of Dϕ(E[Y | X], ĥ2Breg
u (U)) and

Dϕ(E[ĥ2Breg
u (U) | X], ĥ2Breg

x (X)). Finally, we can asso-
ciate those quantities with the minimized training objectives
of 2Step-BregMU thorough the emirical process theory.

5.2 Analysis for Joint-BregMU

Next, we present the bound for Joint-BregMU. The bound
does not require Assumption (v) in contrast to that of Theo-

rem 5.1.

Theorem 5.2 (Excess risk bound for Joint-BregMU, in an
asymptotic form). Assume the conditions (i)–(iv) of The-
orem 5.1 and that infhu∈Hu

E[∥Y − hu(U)∥22] > 0 and
infhx∈Hx,hu∈Hu

E[∥∇ϕ(hu(U)) − ∇ϕ(hx(X))∥22] > 0.
Then,

Dϕ(E[Y | X], ĥJBreg
x (X))

≤ en′,n︸︷︷︸
vanishing error

+2 ∥Y −E[Y | U ]∥L2︸ ︷︷ ︸
1st bias factor

× ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2︸ ︷︷ ︸
2nd bias factor

,

where

en,n′ ≤ OP

(
R3(n

′, ϕ,Hu) +R4(n, ϕ,Hu,Hx)

+

√
1

n′
+

√
1

n

)
,

and Rl(· · · ) (l = 3, 4) are model complexity terms that
depend on the arguments.

A finite sample version of the bound, its proof, and the
precise definitions of Rl(· · · )’s are in Appendix C of the
supplementary material.

Notice that the rate of the upper bound in Theorem 5.2 can
be faster than that in Theorem 5.1 when κ < 1. We also
analyzed the asymptotic bias of Joint-BregMU as follows.

To illustrate the result, let us consider a one-dimensional,
linear example. Let X be a real-valued random variable,
Y = ayU + by + εy, and U = auX + bu + εu, where
ay, by, au, bu are constant real numbers, εy, εu are indepen-
dent centered normal variables with variance σy and σu,
respectively, and ϕ : t 7→ 1

2 t
2. Then, the asymptotic bias of

Joint-BregMU is 4ayσyσu. This indicates that the bias will
be small when σyσu is small. In particular, the bias will be
zero when either σy or σu is zero.

5.3 Discussions on the Assumptions

In this section, we discuss the assumptions used in the paper.

5.3.1 The conditional mean independence (1)

The assumption states about how informative U is, and it
can be easy or hard to satisfy depending on the cost of col-
lecting such data. Yamane et al. (2021) assumed the same
assumption, and they proved a mini-max lower bound show-
ing that the worst-case L2 error is at least ϵ/

√
2 when the

assumption is relaxed as ∥E[Y |U ] − E[Y |U,X]∥L2 ≤ ϵ
(Yamane et al., 2021, Section 5.5). Intuitively, there is a
trade-off between the bias and the violation of the assump-
tion, and if we do not allow bias, ϵ = 0 (i.e., Eq. (1)) is
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necessary for any estimator. Note that Eq. (1) only con-
cerns the conditional expectation, which is weaker than the
conditional independence.

5.3.2 Assumptions (i-v)

Assumption (iv) is the Lipschitz-continuity (i.e., the bound-
edness of the gradient and hence the sensitivity) of ϕ. Note
that Assumption (iv) is only required on a restricted do-
main and is relatively easy to satisfy when the domain is
bounded as we assume in the paper. The first condition
of Assumption (v) is about the strength of the convexity:
larger p means stronger convexity. The second condition of
(v) is about the strength of the smoothness: larger q means
stronger smoothness. Those conditions are orthogonal to
each other and do not contradict each other. Note that the
result for the one-step method does not require Assumption
(v).

For example, the KL-divergence, the squared loss, and
Dt 7→∥t∥4(·, ·) satisfy the Lipschitz-continuity and Assump-
tion (v) with (p, q, α, β) = (1,∞, 2,∞), (p, q, α, β) =
(2, 2, 2, 2), and (p, q, α, β) = (4, 4, 4, 4), respectively. See
Appendix J.3 for more details. The boundedness of the
function classes is critical for these examples.

5.3.3 Difference between our assumptions and those of
Yamane et al. (2021)

Assumptions (i-iv) are commonly assumed in Yamane et al.
(2021) and our paper. Our analysis of the two-step method
additionally assumes Assumption (v) to bound the target
risk using the two objectives minimized in the two steps.
For the one-step method, we assume that Y − hu(U) and
∇ϕ(hu(U))−∇ϕ(hx(X)) are not almost surely zero. This
is satisfied when the compared terms do not have determinis-
tic relationships. Otherwise, we may add very small random
noise to the variables to ensure the conditions.

Our assumptions are weaker than Yamane et al. (2021) in
which the loss function must be the squared loss. In fact, all
of our results apply to the squared loss.

5.4 Analysis of the Interval Estimates of the Test Loss

As the following theorem states, the proposed test loss inter-
val Ĩε(hx, hu) includes the true test loss with high probabil-
ity with a slack parameter ε tending to zero.

Theorem 5.3. Assume that Cout :=
supy∈Y∪Hx(X )∪Hu(U)∥y∥2 < ∞, Closs :=
sup(y1,y2)∈(Y∪Hx(X )∪Hu(U))2 ℓϕ(y1, y2) < ∞,
infhu∈Hu

E[∥Y − hu(U)∥22] > 0, and
infhx∈Hx,hu∈Hu E[∥∇ϕ(hu(U)) − ∇ϕ(hx(X))∥22] > 0.
For any measurable functions hx : X → Y , hu : U → Y ,
any ñ, ñ′ ∈ N sufficiently large, and any δ > 0, with

probability at least 1− δ, we have

Dϕ(Y, hx(X)) ∈ Ĩ×ε (hx, hu)

where ε := (
√
2Closs + 2L2

ϕC
5/2
out )

√
1
ñ log 16

δ + (
√
2Closs +

2L
1/2
ϕ C

5/2
out )

√
1
ñ′ log

16
δ .

The proof is in Appendix L of the supplementary material.

We could obtain a similar interval estimate based on the
approach of Yamane et al. (2021):

Ĩ+ε (hx, hu) := [B̃+
ϕ (hx, hu,−1)− ε, B̃+

ϕ (hx, hu,+1)+ ε],

where we define B̃+
ϕ (hx, hu, s) as

1

ñ′

ñ′∑
i=1

ℓϕ(Ỹ
′
i , hu(Ũ

′
i)) +

1

ñ

ñ∑
i=1

ℓϕ(hu(Ũi), hx(X̃i))

+
s

2

( 1

ñ′

ñ′∑
i=1

∥Ỹi − hu(Ũi)∥22

+
1

ñ

ñ∑
i=1

∥∇ϕ(hu(Ũi))−∇ϕ(hx(X̃i))∥22
)
,

where {(X̃i, Ũi)}ñi=1 ∼ PX,U and {Ũ ′
i , Ỹ

′
i }ñ

′

i=1 ∼ PU,Y

are held-out samples independent of the training data.
B̃+

ϕ (hx, hu,+1) coincides with the objective function of
Joint-RR (Eq. (2)) times 1/2 when ϕ(t) = 1

2∥t∥
2
2.

However, we show in Proposition 5.1 that the proposed
interval Ĩ×ε (·, ·) is tighter than Ĩ+ε (·, ·).
Proposition 5.1. For any ε > 0, any hx : X → Y , and any
hu : U → Y , we have Ĩ×ε (hx, hu) ⊆ Ĩ+ε (hx, hu).

Proposition 5.1 combined with Theorem 5.3 implies that
Ĩ×ε (·, ·) is narrower and more precise than Ĩ+ε (·, ·). This re-
sult also implies that the objective function of Joint-BregMU
is a tighter approximation to the oracle loss Dϕ(Y, hx) than
that of Joint-RR of Yamane et al. (2021).

6 EXPERIMENTS

In this section, we present experimental results.

6.1 Error Interval Estimation in Regression Problems

We conducted experiments of regression problems to com-
pare the proposed interval estimator and that based on the ex-
isting approach (Yamane et al., 2021). Similarly to Yamane
et al. (2021), we consider the following setup for (X,U, Y ):
X follows the uniform distribution over [−1, 1]10, [U ]j =
[X]3j +[εu]j for all j ∈ {1, . . . , 10}, Y = ∥U∥22+ εy, εu ∼
N (0, 0.5I10), and εy ∼ N (0, 0.5). Recall that [·]j denotes
the j-th element of the vector in the argument. We gener-
ate independent MU-data {(Xi, Ui)}ni=1 and {(U ′

i , Y
′
i )}n

′

i=1
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(a) n = n′ = 1000.

Different Random Seeds
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Te
st

 L
os

s

Proposed
Joint-RR

(b) n = n′ = 5000.
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(c) n = n′ = 10000.

Figure 1: Interval estimates of the test loss for the synthetic data experiments. ε is set to zero. The blue circles and triangles
are the test losses of the proposed method and Joint-RR (Yamane et al., 2021), respectively, evaluated using test (X,Y )-data,
which are not accessible in the MU-learning setup. The bars indicate the interval estimates of the test losses calculated using
validation MU-data. The horizontal axis is for different random seeds used to generate the data.

identically distributed to (X,U) and (U, Y ), respectively.
The evaluation metric is Dϕ(·, ·) with ϕ(t) = 1

2∥t∥
2
2, i.e.,

the mean squared error (MSE), so that we can directly ap-
ply Joint-RR (Yamane et al., 2021) (see Section 3.3). We
train models with the proposed Joint-BregMU (see Sec-
tion 4.2 and 4.2.1) and Joint-RR with different sizes of
MU-data, n = n′ ∈ {1000, 2000, 3000, 5000, 10000}. For
the trained models, we compare the interval estimates given
by B̂×

ϕ (·, ·, ·) and B̂+
ϕ (·, ·, ·), respectively, calculated with

validation MU-data. We implemented the methods based
on the code of Yamane et al. (2021)*3. More details can be
found in the supplemental material.

Table 1 shows the average test loss of the two methods.
The performances for Joint-RR and the proposed method
are almost comparable, but Joint-RR tends to be slightly
more advantageous for the largest sample size. This may be
because the proposed tighter approximation does not always
lead to a better training, and the bias induced by Joint-RR
may be preferable to this specific experiment.

Figure 1 shows the results for the interval estimation for
n = n′ ∈ {1000, 5000, 10000}. More results are in the
supplemental material. For both methods, the intervals
successfully include the test loss in all cases. However, the
ones produced by the proposed method tend to be more
precise in terms of the sizes of the intervals. The proposed

*3Our code and that of Yamane et al. (2021) are both avail-
able at https://github.com/i-yamane/mediated_
uncoupled_learning

interval estimate becomes drastically narrower as the sample
size grows compared with the interval estimate with Joint-
RR. This matches the theoretical result in Proposition 5.1.

6.2 Classification of Low-Resolution Images

Next, we compare the performance of our proposed methods
with the existing methods on classification of low-resolution
images (Yamane et al., 2021). The task is to learn a function
for classifying low-resolution images only using MU-data
in training. The MU-data consist of a set of labeled high-
resolution images and a set of pairs of high-resolution and
low-resolution images.

The motivation behind this setup is that we want to per-
form predictions with small devices that can only afford
low-resolution cameras in the deployment environment, but
high-resolution images may be easier for human labelers to
classify, and thus we may be able to collect labeled high-
resolution images with relatively lower cost. In this case,
to obtain information necessary to fill the gap of low- and
high-resolution images, we also collect pairs of them. The
biggest advantage of this approach is that we only need to
collect labels with high-resolution images once even when
we need to adjust the deployment resolution to another one
or handle different resolutions at the same time.

We use image benchmark datasets prepared for standard
classification but modify images to artificially create low-
resolution images. More specifically, for each image and

Table 1: Results for the synthetic data experiment. The scores are the average MSEs calculated from 10 repetitions of
the experiment (and standard errors). The scores comparable to the best in terms of Wilcoxon’s signed rank test with
significance level 5% are emphasized in bold fonts.

n (= n′) 1000 2000 3000 5000 10000

Joint-RR 1.10 (0.01) 1.23 (0.02) 1.20 (0.02) 1.04 (0.01) 0.89 (0.00)
Joint-BregMU 1.07 (0.01) 1.22 (0.02) 1.19 (0.01) 1.08 (0.01) 0.92 (0.00)

https://github.com/i-yamane/mediated_uncoupled_learning
https://github.com/i-yamane/mediated_uncoupled_learning
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its class label in each benchmark dataset, we define X as
a down-sampled image, U as the original image, and Y as
the class label. We take subsamples of (X,U) to define
{(Xi, Ui)}ni=1 and of (U, Y ) to define {(U ′

i , Y
′
i )}n

′

i=1.

The task being classification, we use the zero-one loss as the
test evaluation metric. For training, we use the cross-entropy
(Section 4.2.1) as the surrogate loss for the proposed meth-
ods but the squared loss for the previous methods because
of its limitation. We implemented the methods based on the
code provided by Yamane et al. (2021). More details and
our code can be found in the supplemental material.

Table 2 shows the results for the low-quality image classi-
fication experiment. We can see that the performance of
Joint-BregMU is consistently among the best for all datasets.
The previous methods 2Step-RR and Joint-RR perform espe-
cially well for MNIST, the dataset with the least uncertainty.
However, with more uncertainty, Joint-BregMU become
more advantageous and performs significantly better than
the other methods. 2Step-BregMU did not show as good
performance as that of Joint-BregMU in these experiments.
This might be because of the advantage of Joint-BregMU in
convergence as Theorems 5.1 and 5.2 suggest.

7 CONCLUSION

We proposed two MU-learning methods that can handle
a wide range of loss functions defined with Bregman di-
vergences. One is a two-step method, each step of which
is reduced to simple, ordinary supervised learning. The
other one is a one-step method that has an appealing con-
vergence property and empirical performance. The one-step
method also yields a provably tighter interval estimate of
test loss compared with the existing approach (Yamane et al.,
2021). The current analyses rely on the assumptions which
may not be satisfied in some cases. Also, when the loss is
strongly convex, the analysis may not provide the optimal
rates. Future work includes relaxing those assumptions and
improving the rates. MU-learning could be seen as a way

to recover couplings of attributes reavealed independently.
This might seem to raise privacy issues when applied to
combinations of sensitive attributes such as face images and
regions of birth. However, MU-learning can only recover
statistical associations but cannot recover individual-level
couplings. Further investigating this topic using the the-
ory of differential privacy may be an important direction of
future research.
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A Properties of Bregman Divergences

Below is a well-known fact about Bregman divergences.

Lemma A.1 (Decomposition with the conditional expectation). For any y ∈ Y , it holds that

Dϕ(Y, y) = Dϕ(Y,E[Y | X]) +Dϕ(E[Y | X], y). (12)

Proof.

Dϕ(Y, y)−Dϕ(Y,E[Y | X])

= E[ϕ(E[Y | X])− ϕ(y)− (Y − y)⊤∇ϕ(y) + (Y −E[Y | X])⊤∇ϕ(E[Y | X])]

= E[ϕ(E[Y | X])− ϕ(y)− (E[Y | X]− y)⊤∇ϕ(y) + (E[Y | X]−E[Y | X])⊤∇ϕ(E[Y | X])]

= E[ϕ(E[Y | X])− ϕ(y)− (E[Y | X]− y)⊤∇ϕ(y)]
= Dϕ(E[Y | X], y).

Banerjee et al. (2005a, Theorem 1) proved that the conditional expectation is the minimizer of any Bregman divergence. We
restate their result using our notation below.

Lemma A.2 (Theorem 1 of Banerjee et al. (2005a)).

min
hx∈Hx

Dϕ(Y, hx(X)) = Dϕ(Y,E[Y | X])

when E[Y | X] ∈ Hx(X).

Proof. This is a corollary of Lemma A.1.

B Excess Risk Bound for 2Step-BregMU

Theorem B.1 (Excess risk bound for 2Step-BregMU, in an asymptotic form). Assume the following conditions.

(i) Eq. (1) holds.

(ii) Cout := supy∈Y∪Hx(X )∪Hu(U)∥y∥2 <∞, and Closs := sup(y1,y2)∈(Y∪Hx(X )∪Hu(U))2 ℓϕ(y1, y2) <∞.

(iii) E[Y | U ] ∈ Hu(U) and E[Y | X] ∈ Hx(X).

(iv) ϕ restricted to Y ∪Hx(X ) ∪Hu(U) is Lϕ-Lipschitz continuous for some Lϕ > 0.

(v) For some C1, C2 > 0, p, q ∈ [1,∞], α ∈ [1,∞), and β ∈ [1,∞] such that 1
p + 1

q ≤ 1, 1
α + 1

β ≤ 1, and any
g1, g2 ∈ Hu ◦ U ∪Hx ◦X satisfy∫

[ϕ(g1)− ϕ(g2)]dP ≥
∫

(g1 − g2)⊤∇ϕ(g2)dP + C1∥g1 − g2∥αLp , (13)

∥∇ϕ(g1)−∇ϕ(g2)∥βLp ≤ C2Dϕ(g1, g2). (14)

These are equivalent to saying

C1∥g1 − g2∥αLp ≤ Dϕ(g1, g2), and (15)

∥∇1ℓϕ(g1(·), g2(·))∥βLq ≤ C2Dϕ(g1, g2), (16)

where∇1 denotes the gradient operator with respect to the first argument. When α =∞, we mean C1∥g1− g2∥Lp ≤ 1
by Eq. (15). When β =∞, we mean ∥∇1ℓϕ(g1(·), g2(·))∥Lq ≤ C2 by Eq. (16).



Mediated Uncoupled Learning and Validation with Bregman Divergences

Then,

Dϕ(E[Y | X], ĥx(X))

≤ C−η
1 C

1
β−1

2

(
R1(n

′, ϕ,Hu) + 2Closs

√
2

n′
log

1

δ

)η

+

(
R2(n, ϕ,Hx,Hu) + 2Closs

√
2

n
log

1

δ

)
(17)

+ C
(1−η)

α
1 C

1+η
β

2

(
R1(n

′, ϕ,Hu) + 2Closs

√
1

n
log

1

δ

) η
α
(
R2(n

′, ϕ,Hx,Hu) + 2Closs

√
2

n
log

1

δ

) 1
β

, (18)

and in any asymptotic form,

Dϕ(E[Y | X], ĥx(X)) ≤ OP

((
R1(n

′, ϕ,Hu) +

√
1

n′

)η

+

(
R2(n, ϕ,Hu,Hx) +

√
1

n

)

+

(
R1(n

′, ϕ,Hu) +

√
1

n′

)α−1η

×

(
R2(n, ϕ,Hu,Hx) +

√
1

n

)β−1 )
,

where η := α−1(1− β−1)−1 ∈ (0, 1], Rl(. . . ) (l = 1, 2) are model complexity terms that depend on the arguments, and
we denote f(n) ≤ OP (g(n)) for non-negative functions f, g of n ∈ N if and only if for all ϵ > 0, there exist C > 0 and
N0 ∈ N such that for all n ≥ N , 1− ε ≤ P [f(n) ≤ Cg(n)].

Proof. Let

ĥu := arg min
hu∈Hu

1

n′

n′∑
i=1

ℓϕ(Y
′
i , hu(U

′
i)),

ĥx := arg min
hx∈Hx

1

n

n∑
i=1

ℓϕ(hu(Ui), hx(Xi)).

Reduction to Two Regression Analyses. From Lemma A.1, the excess risk can be expressed as

(Excess risk of ĥx) ≡ Dϕ(Y, ĥx(X))−Dϕ(Y,E[Y | X]) = Dϕ(E[Y | X], ĥx(X)). (19)

Furthermore,

Dϕ(E[Y | X], ĥx(X))

= Dϕ(E[Y | X],E[ĥu(U) | X]) +Dϕ(E[ĥu(U) | X], ĥx(X))

+E[(E[Y | X]−E[ĥu(U) | X])⊤(∇ϕ(E[ĥu(U) | X])−∇ϕ(ĥx(X)))]

≤ Dϕ(E[Y | X],E[ĥu(U) | X]) +Dϕ(E[ĥu(U) | X], ĥx(X))

+ ∥E[Y | X]−E[ĥu(U) | X]∥Lp · ∥∇ϕ(E[ĥu(U) | X])−∇ϕ(ĥx(X))∥Lq .

From Eqs. (15) and (16),

Dϕ(E[Y | X], ĥx(X))

≤ Dϕ(E[Y | X],E[ĥu(U) | X]) +Dϕ(E[ĥu(U) | X], ĥx(X))

+ C
−1/α
1 C

1/β
2 Dϕ(E[Y | X],E[ĥu(U) | X])1/α ·Dϕ(E[ĥu(U) | X], ĥx(X))1/β . (20)

It suffices to bound each of Dϕ(E[Y | X],E[ĥu(U) | X]) (the error of the first regression step) and Dϕ(E[ĥu(U) |
X], ĥx(X)) (the error of the second regression step).

Bound on Dϕ(E[Y | X],E[ĥu(U) | X]): Since E[ĥu(U) | X = x] is the minimizer of the functional hx 7→
Dϕ(ĥu(U), hx(X)), we have

Dϕ(ĥu(U),E[ĥu(U) | X]) ≤ Dϕ(ĥu(U),E[Y | X]),
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and thus

Dϕ(ĥu(U),E[ĥu(U) | X])

= Dϕ(ĥu(U),E[Y | X]) +Dϕ(E[Y | X],E[ĥu(U) | X])

+E[(ĥu(U)−E[Y | X])⊤(∇ϕ(E[Y | X])−∇ϕ(E[ĥu(U) | X]))] ≤ Dϕ(ĥu(U),E[Y | X]).

Rearranging the both sides, we get

Dϕ(E[Y | X],E[ĥu(U) | X])

≤ −E[(ĥu(U)−E[Y | X])⊤(∇ϕ(E[Y | X])−∇ϕ(E[ĥu(U) | X]))]

= −E[E[ĥu(U)−E[Y | U,X] | X]⊤(∇ϕ(E[Y | X])−∇ϕ(E[ĥu(U) | X]))]

= −E[(ĥu(U)−E[Y | U ])⊤(∇ϕ(E[Y | X])−∇ϕ(E[ĥu(U) | X]))]

= −E[(ĥu(U)−E[Y | U ])⊤∇ℓϕ(E[Y | X],E[ĥu(U) | X])]

≤ ∥ĥu(U)−E[Y | U ]∥Lp × ∥∇ℓϕ(E[Y | X],E[ĥu(U) | X])∥Lq

by Hölder’s inequality. From Eqs. (15) and (16), we can further bound the right hand side as

∥ĥu(U)−E[Y | U ]∥Lp × ∥∇ℓϕ(E[Y | X],E[ĥu(U) | X])∥Lq

≤ C−1/α
1 C

1/β
2 Dϕ(ĥu(U),E[Y | U ])1/α ×Dϕ(E[Y | X],E[ĥu(U) | X])1/β .

Thus, we have

Dϕ(E[Y | X],E[ĥu(U) | X]) ≤ C−1/α
1 C

1/β
2 Dϕ(E[Y | U ], ĥu(U))1/α ×Dϕ(E[Y | X],E[ĥu(U) | X])1/β ,

Dϕ(E[Y | X],E[ĥu(U) | X])1−1/β ≤ C−1/α
1 C

1/β
2 Dϕ(E[Y | U ], ĥu(U))1/α,

Dϕ(E[Y | X],E[ĥu(U) | X]) ≤ (C
−1/α
1 C

1/β
2 Dϕ(E[Y | U ], ĥu(U))1/α)(1−1/β)−1

= C
−α−1(1−1/β)−1

1 C
β−1(1−1/β)−1

2 Dϕ(E[Y | U ], ĥu(U))α
−1(1−1/β)−1

= C−η
1 C

β−1(1−1/β)−1

2 Dϕ(E[Y | U ], ĥu(U))η, (21)

where η := α−1(1− 1/β)−1. Hence, it suffices to bound Dϕ(E[Y | U ], ĥu(U)) to bound Dϕ(E[Y | X],E[ĥu(U) | X]).

Note that in the bound above, we could have introduced Dϕ(ĥu(U),E[Y | U ]) instead of Dϕ(E[Y | U ], ĥu(U)). We found
that our choice will be more convenient in the very last step of this subsection in which Lemma A.1 works nicely together
with Dϕ(E[Y | U ], ĥu(U)).

Upper bound on Dϕ(E[Y | U ], ĥu(U)):

with probability at least 1− δ, we have

Dϕ(E[Y | U ], ĥu(U)) ≤ R1(n
′, ϕ,Hu) + 2Closs

√
2

n′
log

1

δ
, (22)

where

R1(n
′, ϕ,Hu) := 2R(ϕ ◦ Hu(S

′)) + 8(Lϕ + Cout)

k∑
j=1

(
R(∇(j)ϕ ◦ Hu(S

′)) +R(Hu(S
′))
)
. (23)

Upper bound on Dϕ(E[ĥu(U) | X], ĥx(X)): From Lemma C.4 and Lemma C.5, with probability at least 1− δ, we have

Dϕ(E[ĥu(U) | X], ĥx(X)) ≤ R2(n, ϕ,Hx,Hu) + 2Closs

√
2

n
log

1

δ
, (24)
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where

R2(n, ϕ,Hx,Hu) := 2R(ϕ ◦ Hx(S)) + 2R(ϕ ◦ Hu(S)) (25)

+ 8(Lϕ + Cout)

k∑
j=1

(R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S))) (26)

+ 8(Lϕ + Cout)

k∑
j=1

(R(H(j)
x (S)) +R(H(j)

u (S))). (27)

Combining Eqs. (20), (21), (22), and (24), we obtain

Dϕ(E[Y | X], ĥx(X))

≤ Dϕ(E[Y | X],E[ĥu(U) | X]) +Dϕ(E[ĥu(U) | X], ĥx(X))

+ C
1/p
1 C

1/β
2 Dϕ(E[Y | X],E[ĥu(U) | X])1/p ·Dϕ(E[ĥu(U) | X], ĥx(X))1/β (28)

≤ C−η
1 C

(β−1)−1

2 Dϕ(E[Y | U ], ĥu(U))η +Dϕ(E[ĥu(U) | X], ĥx(X)) (29)

+ Cp−1

1 Cβ−1

2 (C−η
1 C

β−1(1−1/β)−1

2 Dϕ(E[Y | U ], ĥu(U))η)p
−1

(30)

×Dϕ(E[ĥu(U) | X], ĥx(X))1/β (31)

≤ C−η
1 C

(β−1)−1

2 Dϕ(E[Y | U ], ĥu(U))η (32)

+Dϕ(E[ĥu(U) | X], ĥx(X)) (33)

+ C
α−1(1−η)
1 C

β−1(1+η)
2 Dϕ(E[Y | U ], ĥu(U))α

−1η ×Dϕ(E[ĥu(U) | X], ĥx(X))β
−1

(34)

≤ C−η
1 C

1
β−1

2

(
R1(n

′, ϕ,Hu) + 2Closs

√
2

n′
log

1

δ

)η

+

(
R2(n, ϕ,Hx,Hu) + 2Closs

√
2

n
log

1

δ

)
(35)

+ C
(1−η)

α
1 C

1+η
β

2

(
R1(n

′, ϕ,Hu) + 2Closs

√
1

n
log

1

δ

) η
α
(
R2(n

′, ϕ,Hx,Hu) + 2Closs

√
2

n
log

1

δ

) 1
β

, (36)

By summarizing the result in an asymptotic form, we obtain

Dϕ(E[Y | X], ĥx(X)) (37)

≤ OP

((
R1(n

′, ϕ,Hu) +

√
1

n′

)η

+

(
R2(n, ϕ,Hx,Hu) +

√
1

n

)
(38)

+

(
R1(n

′, ϕ,Hu) +

√
1

n′

)α−1η

×

(
R2(n, ϕ,Hx,Hu) +

√
1

n

)β−1 )
, (39)

where

R1(n
′, ϕ,Hu) := 2R(ϕ ◦ Hu(S

′)) + 8(Lϕ + Cout)

k∑
j=1

(
R(∇(j)ϕ ◦ Hu(S

′)) +R(Hu(S
′))
)
, (40)

R2(n, ϕ,Hx,Hu) := R(ϕ ◦ Hx(S)) +R(ϕ ◦ Hu(S)) (41)

+ 8(Lϕ + Cout)

k∑
j=1

(
R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S)) +R(H(j)

x (S)) +R(H(j)
u (S))

)
.

(42)
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C Excess Risk Bound for Joint-BregMU

Let

(ĥJBreg
x , ĥJBreg

u ) := arg min
(hx,hu)∈Hx×Hu

B̂×
ϕ (hx, hu,+1), (43)

(hJBreg
x , hJBreg

u ) := arg min
(hx,hu)∈Hx×Hu

B×
ϕ (hx, hu,+1), (44)

where

B̂×
ϕ (hx, hu,+1) :=

1

n′

n′∑
i=1

ℓϕ(Y
′
i , hu(U

′
i)) +

1

n

n∑
i=1

ℓϕ(hu(Ui), hx(Xi))

+

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hu(U ′

i)∥22 ×

√√√√ 1

n

n∑
i=1

∥∇ϕ(hu(Ui))−∇ϕ(hx(Xi))∥22, (45)

B×
ϕ (hx, hu,+1) := E[ℓϕ(Y, hu(U))] +E[ℓϕ(hu(U), hx(X))]

+
√
E[∥Y − hu(U)∥22]×

√
E[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥22]. (46)

Theorem C.1 (Excess risk bound for Joint-BregMU). Assume that the conditions (i)–(iv) of Theorem 5.1, infhu∈Hu
E[∥Y −

hu(U)∥22] > 0, and infhx∈Hx,hu∈Hu
E[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥22] > 0 hold. Let

(ĥJBreg
x , ĥJBreg

u ) := arg min
(hx,,hu)∈Hx×Hu

B̂×
ϕ (hx, hu,+1), (hJBreg

x , hJBreg
u ) := arg min

(hx,,hu)∈Hx×Hu

B×
ϕ (hx, hu,+1).

Then, for any δ > 0, with probability at least 1− δ, it holds that

B×
ϕ (ĥJBreg

x , ĥJBreg
u ,+1)−B×

ϕ (hJBreg
x , hJBreg

u ,+1) (47)

≤ R̃5(n
′, ϕ,Hx,Hu) + R̃6(n, ϕ,Hx,Hu) + Closs

√
2 log

1

δ

(√
1

n′
+

√
1

n

)
(48)

+



√
2LϕCout

c1

(
R̃7(n

′,Hu) + 2Cout

√
1

2n′ log
2
δ

)
+
√

2Cout
c2

(
R̃8(n, ϕ,Hx,Hu) + 2Lϕ

√
1
2n log 2

δ

)
if e1,n′ ≤ 3c1/4 and e2,n ≤ 3c2/4,√

2LϕCout

√
R̃7(n′,Hu) + 2Cout

√
1

2n′ log
2
δ +
√
2Cout

√
R̃8(n, ϕ,Hx,Hu) + 2Lϕ

√
1
2n log 2

δ

otherwise,

(49)

where

R̃5(n
′, ϕ,Hx,Hu) := R(ϕ ◦ Hu(S

′)) + 4(Lϕ + Cout)

k∑
j=1

(R(∇(j)ϕ ◦ Hu(S
′)) +R(H(j)

x (S′))), (50)

R̃6(n, ϕ,Hx,Hu) := R(ϕ ◦ Hx(S)) +R(ϕ ◦ Hu(S)) (51)

+ 4(Lϕ + Cout)

k∑
j=1

(R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S))) (52)

+ 4(Lϕ + Cout)

k∑
j=1

(R(H(j)
x (S)) +R(H(j)

u (S))), (53)

R̃7(n
′, ϕ,Hu) := 2CoutR(H(j)

u (S′)), (54)

R̃8(n, ϕ,Hx,Hu) := 2Lϕ

k∑
j=1

(R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S
′))). (55)
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In an asymptotic form, we have

B×
ϕ (ĥJBreg

x , ĥJBreg
u ,+1)−B×

ϕ (hJBreg
x , hJBreg

u ,+1) (56)

≤ OP

(
R5(n

′,Hu) +R6(n
′, ϕ,Hu) +R7(n, ϕ,Hu,Hx) +

√
1

n′
+

√
1

n

)
, (57)

where

R5(n
′,Hu) := Rn′(H(j)

u ), (58)

R6(n
′, ϕ,Hu) := R(ϕ ◦ Hu) +

k∑
j=1

(R(∇(j)ϕ ◦ Hu) +R(H(j)
x )), (59)

R7(n, ϕ,Hx,Hu) := R(ϕ ◦ Hx) +R(ϕ ◦ Hu) (60)

+

k∑
j=1

(R(∇(j)ϕ ◦ Hx) +R(∇(j)ϕ ◦ Hu)) (61)

+

k∑
j=1

(R(H(j)
x ) +R(H(j)

u )) (62)

+

k∑
j=1

(Rn(∇(j)ϕ ◦ Hx) +Rn′(∇(j)ϕ ◦ Hu)). (63)

Proof of Theorem C.1. Decompose the excess risk as

B×
ϕ (ĥJBreg

x , ĥJBreg
u ,+1)−B×

ϕ (hJBreg
x , hJBreg

u ,+1) (64)

= E[ℓϕ(Y, ĥ
JBreg
u (U))] +E[ℓϕ(ĥ

JBreg
u (U), ĥJBreg

x (X))] (65)

+

√
E[∥Y − ĥJBreg

u (U)∥22]×
√

E[∥∇ϕ(ĥJBreg
u (U))−∇ϕ(ĥJBreg

x (X))∥22] (66)

−E[ℓϕ(Y, h
JBreg
u (U))]−E[ℓϕ(h

JBreg
u (U), hJBreg

x (X))] (67)

−
√
E[∥Y − hJBreg

u (U)∥22]×
√

E[∥∇ϕ(hJBreg
u (U))−∇ϕ(hJBreg

x (X))∥22] (68)

= A1 +A2 +A3, (69)

where

A1 := E[ℓϕ(Y, ĥ
JBreg
u (U))] +E[ℓϕ(ĥ

JBreg
u (U), ĥJBreg

x (X))] (70)

+

√
E[∥Y − ĥJBreg

u (U)∥22]×
√
E[∥∇ϕ(ĥJBreg

u (U))−∇ϕ(ĥJBreg
x (X))∥22] (71)

− 1

n′

n′∑
i=1

ℓϕ(Y
′
i , ĥ

JBreg
u (U ′

i)) +
1

n

n∑
i=1

ℓϕ(ĥ
JBreg
u (Ui), ĥ

JBreg
x (Xi)) (72)

−

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − ĥ

JBreg
u (U ′

i)∥22 ×

√√√√ 1

n

n∑
i=1

∥∇ϕ(ĥJBreg
u (Ui))−∇ϕ(ĥJBreg

x (X ′
i))∥22, (73)



Ikko Yamane, Yann Chevaleyre, Takashi Ishida, Florian Yger

A2 :=
1

n′

n′∑
i=1

ℓϕ(Y
′
i , ĥ

JBreg
u (U ′

i)) +
1

n

n∑
i=1

ℓϕ(ĥ
JBreg
u (Ui), ĥ

JBreg
x (Xi)) (74)

+

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − ĥ

JBreg
u (U ′

i)∥22 ×

√√√√ 1

n

n∑
i=1

∥∇ϕ(ĥJBreg
u (Ui))−∇ϕ(ĥJBreg

x (X ′
i))∥22 (75)

− 1

n′

n′∑
i=1

ℓϕ(Y
′
i , h

×
u (U

′
i)) +

1

n

n∑
i=1

ℓϕ(h
JBreg
u (Ui), h

JBreg
x (Xi)) (76)

−

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − h

JBreg
u (U ′

i)∥22 ×

√√√√ 1

n

n∑
i=1

∥∇ϕ(hJBreg
u (Ui))−∇ϕ(hJBreg

x (X ′
i))∥22, (77)

and

A3 :=
1

n′

n′∑
i=1

ℓϕ(Y
′
i , h

×
u (U

′
i)) +

1

n

n∑
i=1

ℓϕ(h
×
u (Ui), h

×
x (Xi)) (78)

+

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − h

×
u (U ′

i)∥22 ×

√√√√ 1

n

n∑
i=1

∥∇ϕ(h×u (Ui))−∇ϕ(h×x (X ′
i))∥22 (79)

−E[ℓϕ(Y, h
JBreg
u (U))]−E[ℓϕ(h

JBreg
u (U), hJBreg

x (X))] (80)

−
√
E[∥Y − hJBreg

u (U)∥22]×
√

E[∥∇ϕ(hJBreg
u (U))−∇ϕ(hJBreg

x (X))∥22]. (81)

A2 ≤ 0 from the optimality of (ĥJBreg
x , ĥJBreg

u ). To bound A1 and A3, it suffices to bound

A4,1 := sup
hu∈Hu

∣∣∣∣∣∣E[ℓϕ(Y, hu(U))]− 1

n′

n′∑
i=1

ℓϕ(Y
′
i , hu(U

′
i))

∣∣∣∣∣∣ , (82)

A4,2 := sup
hx∈Hx,hu∈Hu

∣∣∣∣∣E[ℓϕ(hu(U), hx(X))]− 1

n

n∑
i=1

ℓϕ(hu(Ui), hx(Xi))

∣∣∣∣∣ , (83)

A4,3 := sup
hx∈Hx,hu∈Hu

∣∣∣∣√E[∥Y − hu(U)∥22]×
√

E[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥22] (84)

−

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hu(U ′

i)∥22 ×

√√√√ 1

n

n∑
i=1

∥∇ϕ(hu(Ui))−∇ϕ(hx(X ′
i))∥22

∣∣∣∣∣∣ . (85)

From Lemma C.4,

A4,1 = sup
hu∈Hu

∣∣∣∣∣∣E[ℓϕ(Y, hu(U))]− 1

n′

n′∑
i=1

ℓϕ(Y
′
i , hu(U

′
i))

∣∣∣∣∣∣ (86)

≤ R̃5(n
′, ϕ,Hu) + Closs

√
1

2n′
log

1

δ
, (87)

and

A4,2 = sup
hx∈Hx,hu∈Hu

∣∣∣∣∣E[ℓϕ(hu(U), hx(X))]− 1

n

n∑
i=1

ℓϕ(hu(Ui), hx(Xi))

∣∣∣∣∣ (88)

≤ R̃6(n, ϕ,Hx,Hu) + Closs

√
1

2n
log

1

δ
, (89)
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where

R̃5(n
′, ϕ,Hu) := R(ϕ ◦ Hu) + 4(Lϕ + Cout)

k∑
j=1

(R(∇(j)ϕ ◦ Hu) +R(H(j)
x )), (90)

R̃6(n, ϕ,Hx,Hu) := R(ϕ ◦ Hx) +R(ϕ ◦ Hu) (91)

+ 4(Lϕ + Cout)

k∑
j=1

(R(∇(j)ϕ ◦ Hx) +R(∇(j)ϕ ◦ Hu)) (92)

+ 4(Lϕ + Cout)

k∑
j=1

(R(H(j)
x ) +R(H(j)

u )). (93)

We will bound A4,3 next. Denote c1 := infhu∈Hu
E[∥Y − hu(U)∥22] > 0 and c2 := infhx∈Hx,hu∈Hu

E[∥∇ϕ(hu(U)) −
∇ϕ(hx(X))∥22] > 0. Let B1 := ∥Y − hu(U)∥22 and B2 := ∥∇ϕ(hu(U)) − ∇ϕ(hx(X))∥22. Note that B1 ≤ 2Cout and
B2 ≤ 2LϕCout. Let Ê[·] denote the empirical average using the empirical measure defined by the training data. Then, we
want to bound ∣∣∣∣√E[B1]E[B2]−

√
Ê[B1]Ê[B2]

∣∣∣∣
uniformly over the choice of (hx, hu) ∈ Hx ×Hu. We are going to use the bounds obtained from Lemmas C.6 and C.7,∣∣∣E[B1]− Ê[B1]

∣∣∣ ≤ e1,n′ and
∣∣∣E[B2]− Ê[B2]

∣∣∣ ≤ e2,n (94)

that hold uniformly over the choice of (hx, hu) ∈ Hx ×Hu with probability at least 1− δ, where

e1,n′ := R̃7(n
′,Hu) + 2Cout

√
1

2n′
log

2

δ
, (95)

e2,n := R̃8(n, ϕ,Hx,Hu) + 2Lϕ

√
1

2n
log

2

δ
, (96)

R̃7(n
′, ϕ,Hu) := 2CoutR(H(j)

u (S′)), (97)

R̃8(n, ϕ,Hx,Hu) := 2Lϕ

k∑
j=1

(R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S))). (98)

The case in which e1,n′ ≤ 3c1/4 and e2,n ≤ 3c2/4: In this case, denoting δ1 := Ê[B1]−E[B1] and δ2 := Ê[B2]−E[B2],
we have √

Ê[B1]−
√
E[B1] =

√
E[B1] + δ1 −

√
E[B1] ≤

δ1

2
√
E[B1]

≤ e1,n′

2
√
c1
, (99)

where we used the inequality

√
a+∆a−

√
a ≤ ∆a

2
√
a

(100)

that holds for any a > 0 and ∆a ∈ R such that a+∆a ≥ 0. The second inequality follows because of the definition of c1.
Similarly, √

Ê[B2]−
√
E[B2] ≤

e2,n
2
√
c2
. (101)
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On the other hand,

√
E[B1]−

√
Ê[B1] =

√
Ê[B1]− δ1 −

√
Ê[B1] (102)

≤ −δ1

2

√
Ê[B1]

(103)

≤ e1,n′

2

√
Ê[B1]

(104)

≤ e1,n′
√
c1
. (105)

since

Ê[B1] = E[B1] + Ê[B1]−E[B1] (106)

= |E[B1]| −
∣∣∣Ê[B1]−E[B1]

∣∣∣ (107)

≥ c1 − e1,n′ (108)

≥ c1 −
3

4
c1 =

c1
4
. (109)

Similarly,

√
Ê[B2]−

√
E[B2] ≤

e2,n√
c2
. (110)

Thus,

∣∣∣∣√E[B1]−
√
Ê[B1]

∣∣∣∣ ≤ e1,n′
√
c1
, (111)∣∣∣∣√E[B2]−

√
Ê[B2]

∣∣∣∣ ≤ e2,n√
c2
. (112)

Using these inequalities, we obtain

∣∣∣∣√E[B1]E[B2]−
√

Ê[B1]Ê[B2]

∣∣∣∣ (113)

≤
∣∣∣∣(√E[B1]−

√
Ê[B1] +

√
Ê[B1]

)√
E[B2]−

√
Ê[B1]Ê[B2]

∣∣∣∣ (114)

≤
∣∣∣∣√E[B1]−

√
Ê[B1]

∣∣∣∣×√E[B2] +

√
Ê[B1]×

∣∣∣∣√E[B2]−
√
Ê[B2]

∣∣∣∣ (115)

≤
√
E[B2]

e1,n′
√
c1

+

√
Ê[B1]

e2,n√
c2

(116)

≤
√

2LϕCout

c1
e1,n′ +

√
2Cout

c2
e2,n. (117)
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Other cases: ∣∣∣∣√E[B1]E[B2]−
√
Ê[B1]Ê[B2]

∣∣∣∣ (118)

=

√(
E[B1]− Ê[B1] + Ê[B1]

)
E[B2]−

√
Ê[B1]Ê[B2] (119)

≤
√(

E[B1]− Ê[B1]
)
E[B2] +

√
Ê[B1]E[B2]−

√
Ê[B1]Ê[B2] (120)

≤
√(

E[B1]− Ê[B1]
)
E[B2] +

√
Ê[B1]

(√
E[B2]−

√
Ê[B2]

)
(121)

≤
√(

E[B1]− Ê[B1]
)
E[B2] +

√
Ê[B1]

(√
E[B2]−

√
Ê[B2]

)
(122)

≤
√(

E[B1]− Ê[B1]
)
E[B2] +

√
Ê[B1]

(√
E[B2]− Ê[B2] + Ê[B2]−

√
Ê[B2]

)
(123)

≤
√(

E[B1]− Ê[B1]
)
E[B2] +

√
Ê[B1]

√
E[B2]− Ê[B2] (124)

≤
√

E[B2]
√
e1,n′ +

√
Ê[B1]

√
e2,n (125)

≤
√
2LϕCoute1,n′ +

√
2Coute2,n. (126)

These bounds hold uniformly for all hx ∈ Hx and hu ∈ Hu. Hence, summarizing the results above gives

A4,3 ≤

{√
2LϕCout

c1
e1,n′ +

√
2Cout
c1

e2,n if e1,n′ ≤ 3c1/4 and e2,n ≤ 3c2/4,√
2LϕCoute1,n′ +

√
2Coute2,n otherwise.

(127)

Note that when min{n, n′} is sufficiently large, the first case holds with high probability. Hence, in an asymptotic form, we
obtain ∣∣∣∣√E[B1]E[B2]−

√
Ê[B1]Ê[B2]

∣∣∣∣ ≤ O (e1,n′ + e1,n′) . (128)

Collecting the results we have obtained, we conclude that with probability at least 1− δ, it holds that

B×
ϕ (ĥJBreg

x , ĥJBreg
u ,+1)−B×

ϕ (hJBreg
x , hJBreg

u ,+1) (129)

≤ A1 +A2 +A3 ≤ A4,1 +A4,2 +A4,3 (130)

≤ R̃5(n
′, ϕ,Hu) + R̃6(n, ϕ,Hx,Hu) + Closs

√
1

2
log

1

δ

(√
1

n′
+

√
1

n

)
(131)

+



√
2LϕCout

c1

(
R̃7(n

′,Hu) + 2Cout

√
1

2n′ log
2
δ

)
+
√

2Cout
c2

(
R̃8(n, ϕ,Hx,Hu) + 2Lϕ

√
1
2n log 2

δ

)
if e1,n′ ≤ 3c1/4 and e2,n ≤ 3c2/4,√

2LϕCout

√
R̃7(n′,Hu) + 2Cout

√
1

2n′ log
2
δ +
√
2Cout

√
R̃8(n, ϕ,Hx,Hu) + 2Lϕ

√
1
2n log 2

δ

otherwise.

(132)

Summarizing this in an asymptotic form, we get

B×
ϕ (ĥJBreg

x , ĥJBreg
u ,+1)−B×

ϕ (hJBreg
x , hJBreg

u ,+1) (133)

≤ OP

(
R5(n

′,Hu) +R6(n
′, ϕ,Hu) +R7(n, ϕ,Hu,Hx,Hu) +

√
1

n′
+

√
1

n

)
, (134)

where

R5(n
′,Hu) := R̃7(n

′,Hu), (135)

R6(n
′, ϕ,Hu) := R̃5(n

′, ϕ,Hu), (136)

R7(n, ϕ,Hx,Hu) := R̃6(n, ϕ,Hx,Hu) + R̃8(n, ϕ,Hx,Hu). (137)
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Theorem 5.2 (Excess risk bound for Joint-BregMU, in an asymptotic form). Assume the conditions (i)–(iv) of Theorem 5.1
and that infhu∈Hu

E[∥Y − hu(U)∥22] > 0 and infhx∈Hx,hu∈Hu
E[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥22] > 0. Then,

Dϕ(E[Y | X], ĥJBreg
x (X))

≤ en′,n︸︷︷︸
vanishing error

+2 ∥Y −E[Y | U ]∥L2︸ ︷︷ ︸
1st bias factor

× ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2︸ ︷︷ ︸
2nd bias factor

,

where

en,n′ ≤ OP

(
R3(n

′, ϕ,Hu) +R4(n, ϕ,Hu,Hx)

+

√
1

n′
+

√
1

n

)
,

and Rl(· · · ) (l = 3, 4) are model complexity terms that depend on the arguments.

Proof of Theorem 5.2.

E[ℓϕ(Y, ĥ
JBreg
x (X))] (138)

≤ B×
ϕ (ĥJBreg

x , ĥJBreg
u ,+1) (139)

≤ B×
ϕ (hJBreg

x , hJBreg
u ,+1) + en,n′ (from Theorem C.1) (140)

≤ B×
ϕ (E[Y | X = (·)],E[Y | U = (·)],+1) + en,n′ (141)

(from the optimality of (hJBreg
x , hJBreg

u )). (142)

The first term of the last expression can be further bounded as

B×
ϕ (E[Y | X = (·)],E[Y | U = (·)],+1) (143)

= E[ℓϕ(Y,E[Y | U ])] +E[ℓϕ(E[Y | U ],E[Y | X])] (144)
+ ∥Y −E[Y | U ]∥L2 × ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2 (145)

= E[ℓϕ(Y,E[Y | U ])] +E[ℓϕ(E[Y | U ],E[Y | X])] (146)
+ ∥Y −E[Y | U ]∥L2 × ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2 (147)

+E[(Y −E[Y | U ])⊤(∇ϕ(E[Y | U ])−∇ϕ(E[Y | X]))] (148)

−E[(Y −E[Y | U ])⊤(∇ϕ(E[Y | U ])−∇ϕ(E[Y | X]))] (149)
= E[ℓϕ(Y,E[Y | X])] (150)
+ ∥Y −E[Y | U ]∥L2 × ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2 (151)

−E[(Y −E[Y | U ])⊤(∇ϕ(E[Y | U ])−∇ϕ(E[Y | X]))] (152)
≤ E[ℓϕ(Y,E[Y | X])] + 2∥Y −E[Y | U ]∥L2 × ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2 . (153)

From Lemma A.1, we get

E[ℓϕ(E[Y | X], ĥJBreg
x (X))] ≤ en′,n + 2∥Y −E[Y | U ]∥L2 × ∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2 . (154)

C.1 Lemmas for Excess Risk Bounds

Definition C.1 (Rademacher Complexity). Let A = {{ai}Ni=1 ⊆ R} be a set of real sequences. Define the Rademacher
complexity of A as

R(A) := E
ε1,...,εN

[
sup

{ai}N
i=1∈A

1

N

n∑
i=1

εiai

]
, (155)
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where ε1, . . . , εN are Rademacher variables, namely, independent, {-1, 1}-valued, uniform random variables. Furthermore,
for any function classH, define the Rademacher complexity ofH over S := {xi}Ni=1 ⊆ Rd as

R(H(S)) = E
ε1,...,εN

[
sup

{yi}N
i=1∈H(S)

1

N

n∑
i=1

εiyi

]
(156)

= E
ε1,...,εN

[
sup
h∈H

1

N

n∑
i=1

εih(xi)

]
, (157)

where we used the notation

H(S) := {{h(xi)}Ni=1 | h ∈ H}. (158)

To derive a uniform deviation bound of our empirical process, we use the following theorem called McDiarmid’s inequality.

Lemma C.1 (McDiarmid’s inequality). Let φ : DN → R be a measurable function. Assume that there exists B ∈ (0,∞)
such that

|φ(v1, . . . , vN )− φ(v′1, . . . , v′N )| ≤ B, (159)

for any vi, . . . , vN , v1, . . . , v′N ∈ D where vi = v′i for all but one i ∈ {1, . . . , N}. Then, for any D-valued independent
random variables V1, . . . , VN and any δ > 0 the following holds with probability at least 1− δ:

φ(V1, . . . , VN ) ≤ E[φ(V1, . . . , VN )] +

√
B2N

2
log

1

δ
.

Lemma C.2. Let Z andW be measurable spaces. LetHz ⊆ {h : Z → Y} andHw ⊆ {h : W → Y} be function classes
such that there exists a constant C ∈ R satisfying

ℓϕ(h1(z), h1(w)) ≤ C (160)

for all h1 ∈ Hz, h2 ∈ Hw, z ∈ Z , and w ∈ W . Define ψ(·) by

ψ
(
{(zi, wi)}Ni=1;Hz,Hw

)
:= sup

h1∈Hz,h2∈Hw

∣∣∣∣∣ 1N
N∑
i=1

ℓϕ(h1(zi), h2(wi))−E[ℓϕ(h1(Zi), h2(Wi))]

∣∣∣∣∣ , (161)

where {(zi, wi)}Ni=1 ⊆ Z ×W , and Zi and Wi are Z-valued andW-valued independent random variables. Then, with
probability at least 1− δ, it holds that

ψ
(
{(Zi,Wi)}Ni=1;Hz,Hw

)
≤ E

[
ψ
(
{(Zi,Wi)}Ni=1;Hz,Hw

)]
+ C

√
1

2N
log

1

δ
. (162)

Proof. Let {(zi, wi)}Ni=1 ⊆ Z ×W and {(z′i, w′
i)}Ni=1 ⊆ Z ×W such that (zi, wi) = (z′i, w

′
i) for all i ∈ [N ] but some

j ∈ [N ]. ∣∣ψ ({(zi, wi)}Ni=1;Hz,Hw

)
− ψ

(
{(z′i, w′

i)}Ni=1;Hz,Hw

)∣∣ (163)

≤ 1

N
sup

h1∈Hz,h2∈Hw

∣∣ℓϕ(h1(zj), h2(wj))− ℓϕ(h1(z′j), h2(w′
j))
∣∣ (164)

≤ 1

N
sup

h1∈Hz,h2∈Hw

max{ℓϕ(h1(zj), h2(wj)), ℓϕ(h1(z
′
j), h2(w

′
j))} (165)

≤ C

N
, (166)

where we used |a− b| ≤ max{a− b, b− a} ≤ max{a, b} for any (a, b) ∈ [0,∞)2. We obtain the result of the lemma by
applying McDiarmid’s inequality.
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Lemma C.3. Let Sz,w := {(Zi,Wi)}Ni=1 with {(Zi,Wi)}Ni=1 defined as in Lemma C.2. Let Sz := {Zi | (Zi,Wi) ∈
Sz,w, i ∈ [N ]} and Sw := {Wi | (Zi,Wi) ∈ Sz,w, i ∈ [N ]}. DefineHz,Hw, and ψ(·) as in Lemma C.2. Then, we have

E[ψ (Sz,w;Hz,Hw)] ≤ R(ϕ ◦ Hz(Sz)) +R(ϕ ◦ Hw(Sw)) (167)

+ 2(2Lϕ + Cout)

K∑
j=1

(R(∇(j)ϕ ◦ Hz(Sz)) +R(∇(j)ϕ ◦ Hw(Sw))) (168)

+ 2(Lϕ + 2Cout)

K∑
j=1

(R(H(j)
z (Sz)) +R(H(j)

w (Sw))), (169)

whereH(j)
z := {z 7→ [h(z)]j | h ∈ Hz} andH(j)

w := {w 7→ [h(w)]j | h ∈ Hw}.

Proof.

E
[
ψ
(
{(Zi,Wi)}Ni=1;Hz,Hw

)]
(170)

≤ E

[
1

N
sup

h1∈Hz,h2∈Hw

∣∣∣∣∣
N∑
i=1

ℓϕ(h1(Zi), h2(Wi))−
N∑
i=1

ℓϕ(h1(Z
′
i), h2(W

′
i ))

∣∣∣∣∣
]

(from Jensen’s inequality, where (Z ′
i,W

′
i ) is an independent copy of (Zi,Wi)) (171)

≤ E

[
1

N
sup

h1∈Hz,h2∈Hw

N∑
i=1

εiℓϕ(h1(Zi), h2(Wi))

]
(172)

≤ R({(z, w) 7→ ℓϕ(h1(z), h2(w)) | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (173)

≤ R({(z, w) 7→ ϕ(h1(z))−∇ϕ(h2(w))⊤h1(z) (174)

− ϕ(h2(w)) +∇ϕ(h2(w))⊤h2(w) | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (175)

≤ R({z 7→ ϕ(h1(z)) | h1 ∈ Hz}(Sz)) +R({(z, w) 7→ ∇ϕ(h2(w))⊤h1(z) | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (176)

+R({w 7→ ϕ(h2(w)) | h2 ∈ Hw}(Sw)) +R({(z, w) 7→ ∇ϕ(h1(z))⊤h2(w) | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)). (177)

Denote

ϕ ◦ Hz := {z 7→ ϕ(h1(z)) | h1 ∈ Hz}, (178)
ϕ ◦ Hw := {w 7→ ϕ(h2(w)) | h2 ∈ Hw}. (179)

Then,

R({z 7→ ϕ(h1(z)) | h1 ∈ Hz}) = R(ϕ ◦ Hz), (180)
R({w 7→ ϕ(h2(w)) | h2 ∈ Hw}) = R(ϕ ◦ Hw). (181)

For a function classH bounded as suph∈H,z∈Z |h(z)| < B ∈ (0,∞), we have R({h(z)2 | h ∈ H}) = 2BR(H) from the
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Ledoux-Talagrand contraction lemma. Thus,

R({(z, w) 7→ ∇ϕ(h2(w))⊤h1(z) | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (182)

≤
K∑
j=1

R({(z, w) 7→ ∇(j)ϕ(h2(w))[h1(z)]j | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (183)

≤
K∑
j=1

R({(z, w) 7→ (∇(j)ϕ(h2(w))− [h1(z)]j)
2 − (∇(j)ϕ(h2(w)))

2 − [h1(z)]
2
j (184)

| h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (185)

≤
K∑
j=1

R({(z, w) 7→ (∇(j)ϕ(h2(w))− [h1(z)]j)
2 | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (186)

+

K∑
j=1

R({w 7→ ∇(j)ϕ(h2(w))
2 | h2 ∈ Hw}(Sw)) (187)

+

K∑
j=1

R({z 7→ [h1(z)]
2
j | h1 ∈ Hz}(Sz)) (188)

≤ 2

K∑
j=1

(Lϕ + Cout)(R(∇(j)ϕ ◦ Hw(Sw)) +R(H(j)
z (Sz))) (189)

+ 2

K∑
j=1

LϕR(∇(j)ϕ ◦ Hw(Sw)) + 2

K∑
j=1

CoutR(H(j)
z (Sz)) (190)

≤ 2(2Lϕ + Cout)

K∑
j=1

R(∇(j)ϕ ◦ Hw(Sw)) + 2(Lϕ + 2Cout)

K∑
j=1

R(H(j)
z (Sz)). (191)

Similarly,

R({(z, w) 7→ ∇ϕ(h1(z))⊤h2(w) | h1 ∈ Hz, h2 ∈ Hw}(Sz,w)) (192)

≤ 2(2Lϕ + Cout)

K∑
j=1

R(∇(j)ϕ ◦ Hz(Sz)) + 2(Lϕ + 2Cout)

K∑
j=1

R(H(j)
w (Sw)). (193)

We obtain the result of the lemma by combining the inequalities.

Lemma C.4.

ψ (Sz,w;Hz,Hw) (194)
≤ R(ϕ ◦ Hz(Sz)) +R(ϕ ◦ Hw(Sw)) (195)

+ 2(2Lϕ + Cout)

K∑
j=1

(R(∇(j)ϕ ◦ Hz(Sz)) +R(∇(j)ϕ ◦ Hw(Sw))) (196)

+ 2(Lϕ + 2Cout)

K∑
j=1

(R(H(j)
z (Sz)) +R(H(j)

w (Sw))) + Closs

√
1

2N
log

1

δ
. (197)

Proof. Combine Lemma C.2 and Lemma C.3.

Lemma C.5.

Dϕ(E[h1(Z) |W ], ĥ2(W )) ≤ 2ψ
(
{(Zi,Wi)}Ni=1;Hz,Hw

)
. (198)
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Proof. From Lemma A.1,

D(E[h1(Z) |W ], ĥ2(W )) (199)

= Dϕ(h1(Z), ĥ2(W ))−Dϕ(h1(Z),E[h2(Z) | Z]) (200)

≤ Dϕ(h1(Z), ĥ2(W ))− 1

N

N∑
i=1

ℓϕ(h1(Zi), ĥ2(Wi)) (201)

+
1

N

N∑
i=1

ℓϕ(h1(Zi), ĥ2(Wi))−
1

N

N∑
i=1

ℓϕ(h1(Zi),E[h1(Z) |W =Wi])︸ ︷︷ ︸
= 0 (from the optimality of ĥ2)

(202)

+
1

N

N∑
i=1

ℓϕ(h1(Zi),E[h1(Z) |W =Wi])−Dϕ(h1(Z),E[h1(Z) |W ]) (203)

≤ 2 sup
g1∈Hz, g2∈Hw

∣∣∣∣∣ 1N
N∑
i=1

ℓϕ(g1(Zi), g2(Wi))−E[ℓϕ(g1(Z), g2(W ))]

∣∣∣∣∣ (204)

≤ 2ψ({(Zi,Wi)}Ni=1;Hz,Hw). (205)

Lemma C.6. Assume c1 := infhu∈Hu
E[∥Y − hu(U)∥22] > 0. Let B1 := ∥Y − hu(U)∥22. Let Ê[·] denote the empirical

average using the empirical measure defined by the training data. Then, it holds that∣∣∣E[B1]− Ê[B1]
∣∣∣ ≤ e1,n′ (206)

uniformly over the choice of hu ∈ Hu with probability at least 1− δ, where

e1,n′ := R̃7(n
′,Hu) + 2Cout

√
1

2n′
log

2

δ
, (207)

R̃7(n
′, ϕ,Hu) := 2Cout

k∑
j=1

R(H(j)
u (S′)). (208)

Proof. Note that B1 ≤ 2Cout. Define ψ(·) by

ψ
(
{(ui, yi)}n

′

i=1;Hu

)
:= sup

h1∈Hu

∣∣∣∣∣∣ 1n′
n′∑
i=1

∥h1(ui)− yi∥22 −E[∥h1(U), Y ∥22]

∣∣∣∣∣∣ , (209)

where {(ui, yi)}Ni=1 ⊆ U × Y , and Ui and Yi are U-valued and Y-valued independent random variables, respectively. Let
{(ui, yi)}n

′

i=1 ⊆ U × Y and {(u′i, y′i)}n
′

i=1 ⊆ U × Y such that (ui, yi) = (u′i, y
′
i) for all i ∈ [n′] but some j ∈ [n′].∣∣∣ψ ({(ui, yi)}n′

i=1;Hu,Hy

)
− ψ

(
{(u′i, y′i)}n

′

i=1;Hu,Hy

)∣∣∣ (210)

≤ 1

n′
sup

h1∈Hu,h2∈Hy

∣∣∥h1(uj)− yj∥22 − ∥h1(u′j), h2(y′j)∥22∣∣ (211)

≤ 1

n′
sup

h1∈Hu,h2∈Hy

max{∥h1(uj), (yj)∥22, ∥h1(u′j), y′j∥22} (212)

≤ 2Cout

n′
, (213)

where we used |a− b| ≤ max{a− b, b− a} ≤ max{a, b} for any (a, b) ∈ [0,∞)2. From McDiarmid’s inequality, for any
δ > 0 the following holds with probability at least 1− δ:

ψ
(
{(ui, yi)}n

′

i=1;Hu,Hy

)
≤ E

[
ψ
(
{(ui, yi)}n

′

i=1;Hu,Hy

)]
+

√
2C2

out

n′
log

1

δ
. (214)
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The first term of the right hand side can be bounded as

E
[
ψ
(
{(Ui, Yi)}Ni=1;Hu

)]
(215)

≤ E

[
1

N
sup

h1∈Hu,h2∈Hy

∣∣∣∣∣
N∑
i=1

∥h1(U ′
i)− Y ′

i ∥22 −
N∑
i=1

∥h1(Ũ ′
i)− Ỹ ′

i ∥22

∣∣∣∣∣
]

(from Jensen’s inequality, where (Ũ ′
i , Ỹi) is an independent copy of (U ′

i , Y
′
i )) (216)

≤ E

[
1

N
sup

h1∈Hu,h2∈Hy

N∑
i=1

εi∥h1(U ′
1)− Y ′

i ∥22

]
(217)

≤
k∑

j=1

R({(u, y) 7→ ([h1(u)]j − [y]j)
2 | h1 ∈ Hu}(S′)) (218)

≤ 2Cout

k∑
j=1

R({u 7→ [h1(u)]j | h1 ∈ Hu}(S′)) (219)

= 2Cout

k∑
j=1

R(H(j)
u (S′)), (220)

where we used the Ledoux-Talagrand contraction lemma. Combining the above with 214, we conclude the claim of
Lemma C.6.

Lemma C.7. Assume c2 := infhx∈Hx,hu∈Hu E[∥∇ϕ◦hx(X)−∇ϕ◦hu(U)∥22] > 0. LetB2 := ∥∇ϕ◦hx(X)−∇ϕ◦hu(U)∥22.
Let Ê[·] denote the empirical average using the empirical measure defined by the training data. Then, it holds that with
probability at least 1− δ, ∣∣∣E[B2]− Ê[B2]

∣∣∣ ≤ e2,n (221)

uniformly over the choice of hx ∈ Hx and hu ∈ Hu, where

e2,n := R̃8(n, ϕ,Hx,Hu) + 2LϕCout

√
1

2n
log

2

δ
, (222)

R̃8(n, ϕ,Hx,Hu) := 2Lϕ

k∑
j=1

(R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S
′))). (223)

Proof. Since B2 ≤ 2LϕCout, similarly to the proof of Lemma C.6, it holds that with probability at least 1− δ,

sup
hx∈Hx,hu∈Hu

∣∣∣∣∣ 1n
n∑

i=1

∥∇ϕ ◦ hx(Xi)−∇ϕ ◦ hu(Ui)∥22 −E[∥hx(X)− hu(U)∥22]

∣∣∣∣∣ (224)

≤ R({(x, u) 7→ ∥∇ϕ ◦ hx(x)−∇ϕ ◦ hu(u)∥22 | hx ∈ Hx, hu ∈ Hu}(S)) +

√
2L2

ϕC
2
out

n
log

1

δ
(225)

≤ 2Lϕ

k∑
j=1

(R(∇(j)ϕ ◦ Hx(S)) +R(∇(j)ϕ ◦ Hu(S
′))) +

√
2L2

ϕC
2
out

n
log

1

δ
. (226)

D One-dimensional example

We present a one-dimensional example for illustrating Theorem B.1.

To illustrate our objective function, let us consider a one-dimensional linear model. Let X be a real-valued random variable,
Y = ayU + by + εy, and U = auX + bu + εu, where ay, by, au, bu are constant real numbers, and εy, εu are independent
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normal variables. ϕ : R ∋ t 7→ 1
2 t

2 ∈ R. Then,

2∥Y −E[Y | U ]∥L2

= 2∥ayU + by + εy −E[ayU + by + εy | U ]∥L2

= 2∥εy∥L2 = 2σy,

and

2∥∇ϕ(E[Y | U ])−∇ϕ(E[Y | X])∥L2

= 2∥E[Y | U ]−E[Y | X]∥L2

= 2∥E[ayU + by + εy | U ]−E[ayU + by + εy | X]∥L2

= 2ay∥auX + bu + εu −E[auX + bu + εu | X]∥L2

= 2ay∥εu −E[εu | X]∥L2 = 2∥εu∥L2 = 2ayσu.

In total, the irreducible error is 2σy + 2ayσu.

E B×
ϕ (. . . ) is Tighter than B+

ϕ (. . . )

We can show that B×
ϕ (. . . ) is tighter than B+

ϕ (. . . ) as follows.

Dϕ(Y, hu(U)) +Dϕ(hu(U), hx(X))

+ ∥Y − hu(U)∥L2 × ∥∇ϕ(hu(U))−∇ϕ(hx(X))∥L2

≤ Dϕ(Y, hu(U)) +Dϕ(hu(U), hx(X))

+
1

2
∥Y − hu(U)∥2L2 +

1

2
∥∇ϕ(hu(U))−∇ϕ(hx(X))∥2L2 ,

where we used the inequality ab ≤ (a2 + b2)/2.

F Examples with Different Loss Functions

We show two examples by instantiating the Bregman loss with specific functions ϕ.

F.1 Squared loss

Setting ϕ(t) = 1
2∥t∥

2
2 in the Bregman loss yields the squared loss:

ℓϕ(y1, y2) =
1

2
∥y1 − y2∥2.

The gradient of ϕ are
[∇ϕ(v)]j = 2[v]j .

The objective function of BregMU-ProdUB will be

B̂×
ϕ (hx, hu, s) =

1

2n′

n′∑
i=1

∥Y ′
i − hx(U

′
i)∥22 +

1

2n

n∑
i=1

∥hu(Ui)− hx(Xi)∥22

+ s

√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hu(U ′

i)∥22

√√√√ 1

n

n∑
i=1

∥hu(Ui)− hx(Xi)∥22

=
1

2


√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hx(U ′

i)∥22 + s

√√√√ 1

n

n∑
i=1

∥h(Ui)− hx(Xi)∥22

2

.

Minimization of this objective is equivalent to minimizing√√√√ 1

n′

n′∑
i=1

∥Y ′
i − hx(U ′

i)∥22 +

√√√√ 1

n

n∑
i=1

∥h(Ui)− hx(Xi)∥22.
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F.2 Generalized I-divergence

Another example is the generalized I-divergence (Banerjee et al., 2005b). For ϕ(v) =
∑k

j=1[v]j log[v]j (v ∈ (0,∞)k),
whose gradient is

[∇ϕ(v)]j = log[v]j + 1, for j = 1, . . . , k,

the Bregman loss ℓϕ will be instantiated as the generalized I-divergence:

ℓϕ(y1, y2) =

k∑
j=1

[y1]j log

(
[y1]j
[y2]j

)
−

k∑
j=1

([y1]j − [y2]j), (227)

where y1, y2 ∈ (0,∞)k.

F.3 KL-divergence

When y1 and y2 are normalized vectors in Eq. (227), i.e.,
∑k

j=1[y1]j =
∑k

j=1[y2]j = 1, the generalized I-divergence
recovers the KL-divergence as a special case:

ℓϕ(y1, y2) :=

k∑
j=1

[y1]j log

(
[y1]j
[y2]j

)
, (228)

which is a popular divergence for comparing probability density functions.

F.4 Cross-entropy Loss

Define the cross-entropy loss as

ℓCE(y1, y2) = −
k∑

j=1

[y1]j log([y2]j)

for any y1 ∈ [0, 1]k and y2 ∈ (0, 1]k such that
∑k

j=1[y1]j =
∑k

j=1[y2]j = 1, where [·]j denotes the j-th component of the
vector in the argument. Minimizing the expected cross-entropy loss is equivalent to minimizing the KL-divergence in the
following sense:

E[ℓCE(Y, f(X))] = E[ℓϕ(E[Y | X], f(X))︸ ︷︷ ︸
KL-divergence

]−E

 k∑
j=1

E[[Y ]j | X] log(E[[Y ]j | X])


︸ ︷︷ ︸

Constant that does not depend on f .

,

where Y is a k-dimensional random variable of a one-hot vector, f : X → [0, 1]k such that
∑k

j=1[f(x)]j = 1 for all x ∈ X ,

and ϕ : t 7→
∑k

j=1[t]j log[t]j . Hence, when we have function models hx : X → Y and hu : U → Y whose outputs are
positive and normalized, e.g., by a softmax layer, the empirical version of the objective function of Joint-BregMU (Eq. (8)
in Algorithm 1) is

B̂×
ϕ (hx, hu, s) = −

1

n′

n′∑
i=1

k∑
j=1

[Y ′
i ]j log[hu(U

′
i)]j +

1

n

n∑
i=1

k∑
j=1

[hu(Ui)]j log
[hu(Ui)]j
[hu(Xi)]j

+ s

√√√√ 1

n′

n′∑
i=1

k∑
j=1

([Y ′
i ]j − [hu(U ′

i)]j)
2
2 ×

√√√√ 1

n

n∑
i=1

k∑
j=1

(log[hu(Ui)]j − log[hx(Xi)]j)
2
+ constant.

G Figures for Interval Estimates
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(c) n = n′ = 3000.
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(d) n = n′ = 5000.
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(e) n = n′ = 10000.

Figure 2: Results for the interval estimate experiment with the synthetic data.
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H Details of Experiments

We conducted experiments using a computer with

• CPU: AMD EPYC (with IBPB) (16) @ 3.800GHz,

• GPU: NVIDIA GeForce GTX 1080 Ti,

• Memory: 64058MiB.

Regression with synthetic data: Similarly to Yamane et al. (2021), we consider the following setup for (X,U, Y ):
X follows the uniform distribution over [−1, 1]10, [U ]j = [X]3j + [εu]j for all j ∈ {1, . . . , 10}, Y = ∥U∥22 + εy,
εu ∼ N (0, 0.5I10), and εy ∼ N (0, 0.001). Recall that [·]j denotes the j-th element of the vector in the argument. We
generate independent MU-data {(Xi, Ui)}ni=1 and {(U ′

i , Y
′
i )}n

′

i=1 identically distributed to (X,U) and (U, Y ), respectively.
The evaluation metric is Dϕ(·, ·) with ϕ(t) = 1

2∥t∥
2
2, i.e., the mean squared error (MSE), so that we can directly apply Joint-

RR (Yamane et al., 2021) (see Section 3.3). We train models with the proposed Joint-BregMU (see Section 4.2 and 4.2.1)
and Joint-RR with different sizes of MU-data, n = n′ ∈ {1000, 2000, 3000, 5000, 10000}. For the trained models, we

compare the interval estimates given by B̂×
ϕ ϕ

(·, ·, ·) and B̂+
ϕ ϕ

(·, ·, ·), respectively, calculated with validation MU-data.

For all models, we used 4-layer multi-layer perceptrons with the ReLU activation and 50 hidden units in each hidden layer.
We trained the models using Adam with no weight decay, learning rate 0.001, batch size 512 for 1000 epochs. We set the
other parameters of Adam as in the default provided by PyTorch.

For Joint-BregMU, we perform warm-starting initialized by 2Step-BregMU. We found that this significantly accelerates the
training.

We used MU-data of size n = n′ ∈ {1000, 2000, 3000, 5000, 10000} for training. We used 10000 validation MU-data for
estimating the interval for predicting test losses. For calculating test losses for evaluation, we used 10000 (X,Y )-data.

We implemented the methods based on the code of Yamane et al. (2021) licensed under the GNU General Public License
v3.0. Our code can be found in the supplemental material and will be published under the same license.

Classification of Low-Resolution Images: We used four standard image classification benchmark datasets, MNIST (Le-
Cun et al., 2010), FashionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky, 2009), and CIFAR100 (Krizhevsky, 2009),
but we modified images to artificially create low-resolution images. More specifically, for each image and its class label in
each benchmark dataset, we define X as a down-sampled image, U as the original image, and Y as the class label. For
training data, we take 10000 subsamples of (X,U) as {(Xi, Ui)}ni=1 and 10000 subsamples of (U, Y ) as {(U ′

i , Y
′
i )}n

′

i=1.
For calculating test losses for evaluation, we used 10000 (X,Y )-data.

The task being classification, we use the zero-one loss as the test evaluation metric. For training, we use the cross-entropy
(Section 4.2.1) as the surrogate loss for the proposed methods but the squared loss for the previous methods because of its
limitation.

For the naive method, we used a U-Net (Ronneberger et al., 2015) implemented by Linder-Norén (2018) for predicting U
from X since the task is essentially image-to-image translation. For the model predicting Y from U , we used a ResNet (He
et al., 2016) with 20 layers implemented by Idelbayev (2020).

In order to adapt the multi-class classification to 2Step-RR and Joint-RR, we use the “squared-softmax” layer to the output
of the models as proposed by Yamane et al. (2021). For 2Step-BregMU and Joint-BregMU, we apply the ordinary softmax
layer to the output.

We trained the models using Adam with no weight decay and batch size 512 for 200 epochs. We set the other parameters of
Adam as in the default provided by PyTorch. We set the learning rate to 0.01 for MNIST, FashionMNIST, CIFAR10 and
0.001 for CIFAR100.

For Joint-BregMU and Joint-RR, we perform warm-starting initialized by 2Step-BregMU and 2Step-RR, respectively. We
found that this significantly accelerates the training.

We implemented the methods based on the code of Yamane et al. (2021) licensed under the GNU General Public License
v3.0. Our code can be found in the supplemental material and will be published under the same license.
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I Maximal generality of Bregman divergences

Banerjee et al. (2005a, Theorems 3–4) proved that “under mild regularity conditions, that if F : Rd × Rd : → R is a
non-negative loss function such that arg minY ∈G E[F (X,Y )] = E[X | G], for all random variable X , then F has to be a
Bregman Loss Function (BLF).”

Theorem I.1 (Theorem 3 of Banerjee et al. (2005a)). Let F : R× R→ R be a nonnegative function such that F (x, x) = 0,
for all x ∈ R. Assume that F and Fx are both continuous, where Fx denotes F ’s partial derivative with respect to the first
argument. If for all random variables X taking values in R, E[X] is the unique minimizer of E[F (X, y)] over all constants
y ∈ R, i.e.,

arg min
y∈R

E[F (X, y)] = E[X],

then F (x, y) = ℓϕ(x, y) for some strictly convex differentiable function ϕ : R→ R.

The following is the multi-dimensional version of their theorem, which requires slightly stronger assumptions.

Theorem I.2 (Theorem 4 of Banerjee et al. (2005a)). Let F : Rd×Rd → R be a nonnegative function such that F (x, x) = 0,
for all x ∈ Rd. Assume that F (x1, x2) and ∂2F (x1,x2)

∂[x1]i∂[x2]j
, i, j ∈ [d], are all continuous. For all random variables X taking

values in Rd, if E[X] is the unique minimizer of E[F (X, y)] over all constants y ∈ Rd, i.e.,

arg min
y∈Rd

E[F (X, y)] = E[X],

then F (x, y) = ℓϕ(x, y) for some strictly convex differentiable function ϕ : Rd → R.

J Discussions on the Assumptions

In this section, we discuss the assumptions used in the paper.

J.1 Difference between our assumptions and those of Yamane et al. (2021)

Assumptions (i-iv) are commonly assumed in Yamane et al. (2021) and our paper. Additional assumptions of ours compared
with Yamane et al. (2021) are as follows.

• The analysis of the two-step method assumes (v) to bound the target risk using the two objectives minimized in the two
steps.

• The analysis of the one-step method assumes that Y − hu(U) and ∇ϕ(hu(U))−∇ϕ(hx(X)) are not almost surely
zero. This is satisfied when the compared terms do not have deterministic relationships. Otherwise, we may add very
small random noise to the variables to ensure the conditions.

J.2 Discussions on Eq. (1)

The assumption states about how informative U is, and it can be easy or hard to satisfy depending on the cost of collecting
such data. Yamane et al. (2021) assumed the same assumption, and they proved a mini-max lower bound showing that the
worst-case L2 error is at least ϵ/

√
2 when the assumption is relaxed as ∥E[Y |U ]−E[Y |U,X]∥L2 ≤ ϵ (Yamane et al., 2021,

Section 5.5). Intuitively, there is a trade-off between the bias and the violation of the assumption, and if we do not allow
bias, ϵ = 0 (i.e., Eq. (1)) is necessary for any estimator. Note that Eq. (1) only concerns the conditional expectation, which
is weaker than the conditional independence.

On the other hand, the methods of Yamane et al. (2021) and our methods would suffer asymptotic bias at most ϵ in L2 since
what they do is essentially estimating E[E[Y |U ]|X] and the gap from E[Y |X] is at most ∥E[E[Y |U ]−E[Y |U,X]|X]∥L2 ≤
E[∥E[Y |U ]−E[Y |U,X]∥L2 |X] ≤ ϵ. It would be interesting to extend this result to the general Bregman divergence, which
is future work.
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J.3 Discussions on the assumptions of 2Step-BregMU

Assumption (iv) is Lipschitz-continuity (i.e., the boundedness of the gradient and hence the sensitivity) of ϕ. Note that
Assumption (iv) is only required on a restricted domain and is relatively easy to satisfy when the domain is bounded as we
assume in the paper. The first condition of Assumption (v) is about the strength of the convexity: larger p means stronger
convexity. The second condition of (v) is about the strength of the smoothness: larger q means stronger smoothness. Those
conditions are orthogonal to each other and do not contradict each other.

We give three examples that satisfy the Lipschitz-continuity and Assumption (v) here.

The KL-divergence: The KL-divergence satisfies the strong convexity in L1 (it is known as Pinsker’s inequality):

1

2
∥g1 − g2∥2L1 ≤ Dϕ(g1, g2), (229)

where ϕ : Rd ∋ t 7→
∑d

j=1[t]j log[t]j ∈ R. When pinf := infg∈H,x∈X ,j=1,...,d[g]j > 0, we also have

∥∇ϕ(g1)−∇ϕ(g2)∥∞ = sup
x∈X , j∈[d]

|log [g1]j − log [g2]j |

≤ 2 sup
x∈X , j∈[d], h∈H

|log [g]j |

≤ 2 log pinf.

Note that g ∈ (0, 1]. Therefore, Assumption (v) holds with p = 1, q =∞, α = 2, and β =∞.

The squared loss.
|ϕ(g1)− ϕ(g2)| = |(g1 + g2)

⊤(g1 − g2)| ≤ 2Cout∥g1 − g2∥L2 ,

where Cout := supY ∪Hx(X ) ∪Hu(U), i.e., the Lipschitz continuity holds. Also,

Dϕ(g1, g2) = ∥g1 − g2∥2L2 =
1

4
∥∇ϕ(g1)−∇ϕ(g2)∥2L2 ,

and thus Assumption (v) holds with p = q = α = β = 2.

The loss corresponding to ϕ(t) = ∥t∥4. |ϕ(g1)− ϕ(g2)| = |∥g1∥4L4 − ∥g2∥4L4 | ≤ 3C3
out∥g1 − g2∥L2 , i.e., the Lipschitz

continuity holds. Also, Dϕ(g1, g2) = E
[
2
3

∑d
j=1[g1 + 2g2]

2
j × [g1 − g2]2j + 1

3

∑d
j=1[g1 − g2]4

]
. Thus, 1

3∥g1 − g2∥
4
L4 ≤

Dϕ(g1, g2) and ∥∇ϕ(g1) −∇ϕ(g2)∥4L4 = 44E[([g1]
3
j − [g2]

3
j )

4] ≤ 44 × 34C4
out∥g1 − g2∥4L4 ≤ 44 × 35C4

outDϕ(g1, g2),
i.e., Assumption (v) holds with p = q = α = β = 4.

As we can see, the boundedness of the function classes is critical for these examples. We conjecture that Assumption (v)
holds for ϕ(t) = ∥t∥2k with any positive integer k, but we do not have a proof yet.

Note that the theorem for the one-step method does not require Assumption (v) and does not have this weakness.

The proposed method has many assumptions in the theory, but this does not mean the proposed method needs stronger
assumptions. In fact, it relaxes the strong condition of the previous approach in which the loss function must be the squared
loss. All of our results apply to the squared loss.

On the other hand, our proposed one-step method minimizes

B̂×
ϕ (hx, hu,+1) = D̂ϕ(Y, hu(U)) + D̂ϕ(hu(U), hx(X))

+

√
1

n′

∑
i

∥Y ′
i − hu(U ′

i)∥22 ×
√

1

n

∑
i

∥∇ϕ(hu(Ui))−∇ϕ(hx(Xi))∥22. (230)

Using the inequality (a + b)/2 ≤
√
a
√
b that holds for any a, b ≥ 0, one can show that the latter objective function is a

lower bound of the former, and thus the latter is a tighter approximation to Dϕ(Y, hx(X)) because of Proposition 6.1 and
Lemma 4.2.
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K Dominated Convergence in Probability for Conditional Expectations

Here, we will show the following fact using the dominated convergence theorem in terms of almost sure convergence.

Proposition K.1. E[Yn | X]
P→ E[Y | X] for any sequence of random variables {Yn}∞n=1 when Yn

P→ Y and |Yn| ≤ U
for some U ∈ L1, where σ(X) is the sigma-algebra generated by X .

Proof. Since any sequence of random variables converging in probability has a sub-sequence converging almost surely,
we can take a sub-sequence {Ynk

}∞k=1 of {Yn}∞n=1 that converges almost surely. Resnick (2014, Section 10.3) states the
dominated almost sure convergence of the conditional expectations:

E[Ynk
| X]→ E[Y | X] a.s.

The fact that the sequence {E[Yn | X]}∞n=1 has a sub-sequence {E[Ynk
| X]}∞k=1 converging almost surely implies that

{E[Yn | X]}∞n=1 converges in probability to the same limit.

L Proof of Theorem 5.3

Fix s ∈ {−1, 1}. We have ∣∣∣B̃×
ϕ (hu, hx, s)−B×

ϕ (hu, hx, s)
∣∣∣ ≤ A5,1 +A5,2 +A5,3, (231)

where

A5,1 :=
∣∣∣Ẽ[ℓϕ(Y, hu(U))]−E[ℓϕ(Y, hu(U))]

∣∣∣ ,
A5,2 :=

∣∣∣Ẽ[ℓϕ(hu(U), hx(X))]−E[ℓϕ(hu(U), hx(X))]
∣∣∣ ,

A5,3 :=

∣∣∣∣√Ẽ[∥Y − hu(U)∥22]×
√
Ẽ[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥]

−
√
E[∥Y − hu(U)∥22]×

√
E[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥]

∣∣∣∣,
where Ẽ denotes the empirical average using i.i.d. samples {(X̃i, Ũi)}ñi=1 ∼ PX,U and {(Ũ ′

i , Ỹ
′
i )}ñ

′

i=1 ∼ PU,Y . From
Hoeffding’s inequality and the union bound, for any δ > 0, with probability at least 1− δ/4,

A5,1 ≤
√
C2

loss

2ñ′
log

16

δ
, (232)

A5,2 ≤
√
C2

loss

2ñ
log

16

δ
. (233)

Let B5,1 := ∥Y − hu(U)∥22 and B5,2 := ∥∇ϕ(hu(U)) − ∇ϕ(hx(X))∥22. Note that B5,1 ≤ 2C2
out and B5,2 ≤ 2LϕC

2
out.

Denote δ5,1 := Ẽ[B5,1]−E[B5,1] and δ5,2 := Ẽ[B5,2]−E[B5,2]. From Hoeffding’s inequality and the union bound, with
probability at least 1− δ/4,

|δ5,1| ≤
√

2C4
out

ñ′
log

16

δ
=: e5,1,

|δ5,2| ≤

√
2L4

ϕC
4
out

ñ
log

16

δ
=: e5,2.

Denote c1 := infhu∈Hu
E[∥Y −hu(U)∥22] > 0 and c2 := infhx∈Hx,hu∈Hu

E[∥∇ϕ(hu(U))−∇ϕ(hx(X))∥22] > 0. Suppose
that ñ and ñ′ are sufficiently large so that e5,1 ≤ 3

4c1 and e5,2 ≤ 3
4c2. Then,

Ẽ[B5,1] ≥ |E[B5,1]| − |Ẽ[B5,1]−E[B5,1]|
≥ c1 − e5,1

≥ c1 −
3

4
c1 =

c1
4
.
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Similarly, Ẽ[B5,2] ≥ c2/4. Thus,√
Ẽ[B5,1]−

√
E[B5,1] =

√
E[B5,1] + δ5,1 −

√
E[B5,1] ≤

δ5,1

2
√

E[B5,1]
≤ e5,1

2
√
c1
,√

Ẽ[B5,1]−
√
E[B5,1] =

√
E[B5,2] + δ5,2 −

√
E[B5,2] ≤

δ5,2

2
√

E[B5,2]
≤ e5,2

2
√
c2
,√

E[B5,1]−
√
Ẽ[B5,1] =

√
Ẽ[B5,1] + δ5,1 −

√
Ẽ[B5,1] ≤

δ5,1

2

√
Ẽ[B5,1]

≤ e5,1√
c1
,

√
E[B5,2]−

√
Ẽ[B5,2] =

√
Ẽ[B5,2] + δ5,2 −

√
Ẽ[B5,2] ≤

δ5,2

2

√
Ẽ[B5,2]

≤ e5,2√
c2
.

Summarizing the inequalities above, we get∣∣∣∣√Ẽ[B5,1]−
√
E[B5,1]

∣∣∣∣ ≤ e5,1√
c1
,∣∣∣∣√Ẽ[B5,2]−

√
E[B5,2]

∣∣∣∣ ≤ e5,2√
c2
.

Using these inequalities, we obtain

A5,3 =

∣∣∣∣√E[B5,1]E[B5,2]−
√

Ẽ[B5,1]Ẽ[B5,2]

∣∣∣∣
≤
∣∣∣∣(√E[B5,1]−

√
Ẽ[B5,1] +

√
Ẽ[B5,1]

)√
E[B5,2]−

√
Ẽ[B5,1]Ẽ[B5,2]

∣∣∣∣
≤
∣∣∣∣√E[B5,1]−

√
Ẽ[B5,1]

∣∣∣∣×√E[B5,2] +

√
Ẽ[B5,1]×

∣∣∣∣√E[B5,2]−
√
Ẽ[B5,2]

∣∣∣∣
≤
√
E[B5,2]

e5,1√
c1

+

√
Ẽ[B5,1]

e5,2√
c2

≤
√

2LϕCout

c1
e5,1 +

√
2Cout

c2
e5,2. (234)

From Eqs. (231-234) and the union bound, with probability at least 1− δ,∣∣∣B̃×
ϕ (hu, hx, s)−B×

ϕ (hu, hx, s)
∣∣∣

≤ A5,1 +A5,2 +A5,3

≤
√

2C2
loss

ñ
log

16

δ
+

√
2C2

loss

ñ′
log

16

δ
+

√
4LϕC5

out

ñ′
log

16

δ
+

√
4L4

ϕC
5
out

ñ
log

16

δ

≤ (
√
2Closs + 2L2

ϕC
5/2
out )

√
1

ñ
log

16

δ
+ (
√
2Closs + 2L

1/2
ϕ C

5/2
out )

√
1

ñ′
log

16

δ

for both s = {−1, 1} at the same time.
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