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Abstract

Data augmentation is popular in the training of
large neural networks; however, currently, theo-
retical understanding of the discrepancy between
different algorithmic choices of leveraging aug-
mented data remains limited. In this paper, we
take a step in this direction – we first present a
simple and novel analysis for linear regression
with label invariant augmentations, demonstrat-
ing that data augmentation consistency (DAC)
is intrinsically more efficient than empirical risk
minimization on augmented data (DA-ERM).
The analysis is then generalized to misspecified
augmentations (i.e., augmentations that change
the labels), which again demonstrates the merit
of DAC over DA-ERM. Further, we extend our
analysis to non-linear models (e.g., neural net-
works) and present generalization bounds. Fi-
nally, we perform experiments that make a clean
and apples-to-apples comparison (i.e., with no
extra modeling or data tweaks) between DAC
and DA-ERM using CIFAR-100 and WideRes-
Net; these together demonstrate the superior effi-
cacy of DAC.

1 INTRODUCTION

Modern machine learning models, especially deep learn-
ing models, require abundant training samples. Since data
collection and human annotation are expensive, data aug-
mentation has become a ubiquitous practice in creating ar-
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tificial labeled samples and improving generalization per-
formance. This practice is corroborated by the fact that the
semantics of images remain the same through simple trans-
lations like obscuring, flipping, rotation, color jitter, rescal-
ing (Shorten and Khoshgoftaar, 2019). Conventional algo-
rithms use data augmentation to expand the training data
set (Simard et al., 1998; Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; He et al., 2016; Cubuk et al., 2018).

Data Augmentation Consistency (DAC) regularization, as
an alternative, enforces the model to output similar pre-
dictions on the original and augmented samples and has
contributed to many recent state-of-the-art supervised or
semi-supervised algorithms. This idea was first proposed
in Bachman et al. (2014) and popularized by Laine and
Aila (2016); Sajjadi et al. (2016), and gained more atten-
tion recently with the success of FixMatch (Sohn et al.,
2020) for semi-supervised few-shot learning as well as
AdaMatch (Berthelot et al., 2021) for domain adaptation.
DAC can utilize unlabeled samples, as one can augment the
training samples and enforce consistent predictions with-
out knowing the true labels. This bypasses the limitation
of the conventional algorithms that can only augment la-
beled samples and add them to the training set (referred to
as DA-ERM). However, it is not well-understood whether
DAC has additional algorithmic benefits compared to DA-
ERM. We are, therefore, seeking a theoretical answer.

Despite the empirical success, the theoretical understand-
ing of data augmentation (DA) remains limited. Existing
work (Chen et al., 2020a; Mei et al., 2021; Lyle et al., 2019)
focused on establishing that augmenting data saves on the
number of labeled samples needed for the same level of
accuracy. However, none of these explicitly compare the
efficacy (in terms of the number of augmented samples)
between different algorithmic choices on how to use the
augmented samples in an apples-to-apples way.

In this paper, we focus on the following research question:

Is DAC intrinsically more efficient than DA-ERM (even
without unlabeled samples)?
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We answer the question affirmatively. We show that DAC
is intrinsically more efficient than DA-ERM with a simple
and novel analysis for linear regression under label invari-
ant augmentations. We then extend the analysis to misspec-
ified augmentations (i.e., those that change the labels). We
further provide generalization bounds under consistency
regularization for non-linear models like two-layer neural
networks and DNN-based classifiers with expansion-based
augmentations. Intuitively, we show DAC is better than
DA-ERM in the following sense: 1) DAC enforces stronger
invariance in the learned models, yielding smaller estima-
tion error; and 2) DAC better tolerates mis-specified aug-
mentations and incurs smaller approximation error. Our
theoretical findings can also explain and guide some tech-
nical choices, e.g. why we can use stronger augmentation
in consistency regularization but only weaker augmentation
when creating pseudo-labels (Sohn et al., 2020).

Specifically, our main contributions are:

• Theoretical comparisons between DAC and DA-
ERM. We first present a simple and novel result for
linear regression, which shows that DAC yields a
strictly smaller generalization error than DA-ERM us-
ing the same augmented data. Further, we demon-
strate that with with the flexibility of hyper-parameter
tuning, DAC can better handle data augmentation with
small misspecification in the labels.

• Extended analysis for non-linear models. We derive
generalization bounds for DAC under two-layer neu-
ral networks, and classification with expansion-based
augmentations.

• Empirical comparisons between DAC and DA-
ERM. We perform experiments that make a clean and
apples-to-apples comparison (i.e., with no extra mod-
eling or data tweaks) between DAC and DA-ERM us-
ing CIFAR-100 and WideResNet. Our empirical re-
sults demonstrate the superior efficacy of DAC.

2 RELATED WORK

Empirical findings. Data augmentation (DA) is an essen-
tial ingredient for almost every state-of-the-art supervised
learning algorithm since the seminal work of Krizhevsky
et al. (2012) (see reference therein (Simard et al., 1998; Si-
monyan and Zisserman, 2014; He et al., 2016; Cubuk et al.,
2018; Kuchnik and Smith, 2018)). It started from adding
augmented data to the training samples via (random) per-
turbations, distortions, scales, crops, rotations, and hori-
zontal flips. More sophisticated variants were subsequently
designed; a non-exhaustive list includes Mixup (Zhang
et al., 2017), Cutout (DeVries and Taylor, 2017), and Cut-
mix (Yun et al., 2019). The choice of data augmentation
and their combinations require domain knowledge and ex-
perts’ heuristics, which triggered some automated search

algorithms to find the best augmentation strategies (Lim
et al., 2019; Cubuk et al., 2019). The effects of different
DAs are systematically explored in Tensmeyer and Mar-
tinez (2016).

Recent practices not only add augmented data to the train-
ing set but also enforce similar predictions by adding con-
sistency regularization (Bachman et al., 2014; Laine and
Aila, 2016; Sohn et al., 2020). One benefit of DAC
is the feasibility of exploiting unlabeled data. There-
fore input consistency on augmented data also formed a
major component to state-of-the-art algorithms for semi-
supervised learning (Laine and Aila, 2016; Sajjadi et al.,
2016; Sohn et al., 2020; Xie et al., 2020), self-supervised
learning (Chen et al., 2020b), and unsupervised domain
adaptation (French et al., 2017; Berthelot et al., 2021).

Theoretical studies. Many interpret the effect of DA
as some form of regularization (He et al., 2019). Some
work focuses on linear transformations and linear models
(Wu et al., 2020) or kernel classifiers (Dao et al., 2019).
Convolutional neural networks by design enforce transla-
tion equivariance symmetry (Benton et al., 2020; Li et al.,
2019); further studies have hard-coded CNN’s invariance
or equivariance to rotation (Cohen and Welling, 2016; Mar-
cos et al., 2017; Worrall et al., 2017; Zhou et al., 2017),
scaling (Sosnovik et al., 2019; Worrall and Welling, 2019)
and other types of transformations.

Another line of works view data augmentation as invariant
learning by averaging over group actions (Lyle et al., 2019;
Chen et al., 2020a; Mei et al., 2021; Bietti et al., 2021; Shao
et al., 2022). They consider an ideal setting that is equiv-
alent to ERM with all possible augmented data, bringing a
clean mathematical interpretation. In contrast, we are in-
terested in a more realistic setting with limited augmented
data. In this setting, it is crucial to utilize the limited data
with proper training methods, the difference of which can-
not be revealed under previously studied settings.

Some more recent work investigates the feature repre-
sentation learning procedure with DA for self-supervised
learning tasks (Garg and Liang, 2020; Wen and Li, 2021;
HaoChen et al., 2021; von Kügelgen et al., 2021). Cai et al.
(2021); Wei et al. (2021) studied the effect of data augmen-
tation with label propagation. Data augmentation is also
deployed to improve robustness (Rajput et al., 2019), to fa-
cilitate domain adaptation and domain generalization (Cai
et al., 2021; Sagawa et al., 2019).

3 PROBLEM SETUP AND DATA
AUGMENTATION CONSISTENCY

Consider the standard supervised learning problem setup:
x ∈ X is input feature, and y ∈ Y is its label (or response).
Let P be the true distribution of (x, y) (i.e., the label dis-
tribution follows y ∼ P (y|x)). We have the following def-
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inition for label invariant augmentation.

Definition 1 (Label Invariant Augmentation). For any
sample x ∈ X , we say that a random transformation
A : X → X is a label invariant augmentation if and only
if A (x) satisfies P (y|x) = P (y|A(x)).

Our work largely relies on label invariant augmentation but
also extends to augmentations that incur small misspecifi-
cation in their labels. Therefore our results apply to the
augmentations achieved via certain transformations (e.g.,
random cropping, rotation), and we do not intend to cover
augmentations that can largely alter the semantic meanings
(e.g., MixUp (Zhang et al., 2017)).

Now we introduce the learning problem on an augmented
dataset. Let (X,y) ∈ XN×YN be a training set consisting
ofN i.i.d. samples. Besides the original (X,y), each train-
ing sample is provided with α augmented samples. The
features of the augmented dataset Ã(x) ∈ X (1+α)N is:

Ã(X) = [x1; . . . ; xN ; x1,1; . . . ; xN,1; . . . ; x1,α; . . . ; xN,α] ,

where xi is in the original training set and xi,j ,∀j ∈ [α]
are the augmentations of xi. The labels of the augmented
samples are kept the same, which can be denoted as M̃y ∈
Y(1+α)N , where M̃ ∈ R(1+α)N×N is a vertical stack of
(1 + α) identity mappings.

Data Augmentation Consistency Regularization. Let
H = {h : X → Y} be a well-specified function class (e.g.,
for linear regression problems, ∃h∗ ∈ H, s.t. h∗(x) =
E[y|x]) that we hope to learn from. Without loss of gener-
ality, we assume that each function h ∈ H can be expressed
as h = fh◦φh, where φh ∈ Φ = {φ : X → W} is a proper
representation mapping and fh ∈ F = {f :W → Y} is a
predictor on top of the learned representation. We tend to
decompose h such that φh is a powerful feature extraction
function whereas fh can be as simple as a linear combiner.
For instance, in a deep neural network, all the layers before
the final layer can be viewed as feature extraction φh, and
the predictor fh is the final linear combination layer.

For a loss function l : Y × Y → R and a metric % properly
defined on the representation space W , learning with data
augmentation consistency (DAC) regularization is:

argmin
h∈H

N∑
i=1

l(h(xi), yi) + λ

N∑
i=1

α∑
j=1

% (φh(xi), φh(xi,j))︸ ︷︷ ︸
DAC regularization

.

(1)

Note that the DAC regularization in Equation (1) can be
easily implemented empirically as a regularizer. Intuitively,
DAC regularization penalizes the representation difference
between the original sample φh(xi) and the augmented
sample φh(xi,j), with the belief that similar samples (i.e.,

original and augmented samples) should have similar rep-
resentations. When the data augmentations do not alter the
labels, it is reasonable to enforce a strong regularization
(i.e., λ→∞) – since the conditional distribution of y does
not change. The learned function ĥdac can then be written
as the solution of a constrained optimization problem:

ĥdac , argmin
h∈H

N∑
i=1

l(h(xi), yi)

s.t. φh(xi) = φh(xi,j), ∀i ∈ [N ], j ∈ [α].

(2)

In the rest of the paper, we mainly focus on the data aug-
mentations satisfying Definition 1 and our analysis relies
on the formulation of Equation (2). When the data aug-
mentations alter the label distributions (i.e., not satisfying
Definition 1), it becomes necessary to adopt a finite λ for
Equation (1), and such extension is discussed in Section 5.

4 LINEAR MODEL AND LABEL
INVARIANT AUGMENTATIONS

In this section, we show the efficacy of DAC regularization
with linear regression under label invariant augmentations
(Definition 1).

To see the efficacy of DAC regularization (i.e., Equa-
tion (2)), we revisit a more commonly adopted training
method here – empirical risk minimization on augmented
data (DA-ERM):

ĥda−erm , argmin
h∈H

N∑
i=1

l(h(xi), yi)

+

N∑
i=1

α∑
j=1

l(h(xi,j), yi).

(3)

Now we show that the DAC regularization (Equation (2))
learns more efficiently than DA-ERM. Consider the fol-
lowing setting: given N observations X ∈ RN×d, the
responses y ∈ RN are generated from a linear model
y = Xθ∗ + ε, where ε ∈ RN is zero-mean noise with
E
[
εε>

]
= σ2IN . Recall that Ã(X) is the entire aug-

mented dataset, and M̃y corresponds to the labels. We fo-
cus on the fixed design excess risk of θ on Ã(X), which is

defined as L(θ) , 1
(1+α)N

∥∥∥Ã(X)θ − Ã(X)θ∗
∥∥∥2
2
.

Let ∆ , Ã (X) − M̃X and daug , rank (∆) measure
the number of dimensions in the row space of X perturbed
by augmentations (which can be intuitively view as the
“strength” of data augmentations where the larger daug im-
plies the stronger perturbation brought by Ã(X) to X). As-
suming that Ã(X) has full column rank (such that the lin-
ear regression problem has a unique solution), we have the
following result for learning by DAC versus DA-ERM.
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Theorem 1 (Informal result on linear regression (formally
in Theorem 5)). Learning with DAC regularization,

Eε

[
L(θ̂dac)− L(θ∗)

]
=

(d− daug)σ2

N
,

while learning with ERM directly on the augmented
dataset, there exists d′ ∈ [0, daug] such that

Eε

[
L(θ̂da−erm)− L(θ∗)

]
=

(d− daug + d′)σ2

N
.

Formally, we have

d′ ,
tr
((

PÃ(X) −PS

)
M̃M̃>

)
1 + α

,

where PÃ(X) , Ã(X)Ã(X)†. PS is the projector onto

S ,
{

M̃Xθ | ∀θ ∈ Rd, s.t.
(
Ã(X)− M̃X

)
θ = 0

}
.

Under standard conditions (e.g., x is sub-Gaussian and N
is not too small), it is not hard to extend Theorem 1 to ran-
dom design (i.e., the more commonly acknowledged gen-
eralization bound) with the same order.

Remark 1 (Why DAC is more effective). Intuitively, DAC
reduces the dimensions from d to d−daug by enforcing con-
sistency regularization. DA-ERM, on the other hand, still
learns in the original d-dimensional space. d′ character-
izes such difference.
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Figure 1: Comparison of DAC regularization and DA-ERM
(Example 1). The results precisely match Theorem 1. DA-
ERM depends on the d′ induced by different augmenta-
tions, while the DAC regularization works equally well for
all d′ and better than the DA-ERM. Further, both DAC and
DA-ERM are affected by daug, the number of dimensions
perturbed by Ã(X).

Now we take a closer look at d′ ,
tr((PÃ(X)−PS)M̃M̃>)

1+α
characterizing the discrepancy between DAC and DA-
ERM. We first observe that σ2 · M̃M̃> is the noise co-
variance matrix of the augmented dataset. tr

(
PSM̃M̃>

)

represents the variance of θ̂dac, while tr
(
PÃ(X)M̃M̃>

)
denotes the variance of θ̂da−erm. Therefore, d′ ∝
tr
((

PÃ(X) −PS

)
M̃M̃>

)
measures the excess variance

of θ̂da−erm in comparison to θ̂dac. When PÃ(X) 6= PS (a
common scenario as instantiated in Example 1), DAC is
strictly better than DA-ERM.

Example 1. Consider a 30-dimensional linear regression.
The original training set contains 50 samples. The in-
puts xis are generated independently from N (0, I30) and
we set θ∗ = [θ∗c ; 0] with θ∗c ∼ N (0, I5) and 0 ∈ R25.
The noise variance σ is set to 1. We partition x into 3
parts [xc1, xe1 , xe2] and take the following augmentations:
A([xc1;xe1;xe2]) = [xc1; 2xe1;−xe2], xc1 ∈ Rdc1 , xe1 ∈
Rde1 , xe2 ∈ Rde2 , where dc1 + de1 + de2 = 30.

Notice that the augmentation perturbs xe1 and xe2 and
leaving xc1 unchanged, we therefore have daug = 30−dc1.
By changing dc1 and de1, we can have different augmenta-
tions with different daug, d

′. The results for daug ∈ {20, 25}
and various d′s are presented in Figure 1. The excess risks
precisely match Theorem 1. It confirms that the DAC regu-
larization is strictly better than DA-ERM for a wide variety
of augmentations.

5 BEYOND LABEL INVARIANT
AUGMENTATION

In this section, we extend our analysis to misspecified
augmentations by relaxing the label invariance assumption
(such that P (y|x) 6= P (y|A(x))). With an illustrative lin-
ear regression problem, we show that DAC also brings ad-
vantages over DA-ERM for misspecified augmentations.

We first recall the linear regression setup: given a set of N
i.i.d. samples (X,y) that follows y = Xθ∗ + ε where ε
are zero-mean independent noise with E

[
εε>

]
= σ2IN ,

we aim to learn the unknown ground truth θ∗. For ran-
domly generated misspecified augmentations Ã(X) that al-
ter the labels (i.e., Ã (X)θ∗ 6= M̃Xθ∗), a proper consis-
tency constraint is ‖φh(xi)− φh(xi,j)‖2 ≤ Cmis (where
xi,j is an augmentation of xi, noticing that Cmis = 0 cor-
responds to label invariant augmentations in Definition 1).
For Cmis > 0, the constrained optimization is equivalent to:

θ̂dac = argmin
θ∈Rd

1

N
‖Xθ − y‖22

+
λ

(1 + α)N

∥∥∥(Ã (X)− M̃X
)
θ
∥∥∥2
2

(4)

for some finite 0 < λ < ∞. We compare θ̂dac to the
solution learned with ERM on augmented data (as in Equa-
tion (3)):

θ̂da−erm = argmin
θ∈Rd

1

(1 + α)N

∥∥∥Ã (X)θ − M̃y
∥∥∥2
2
.



Shuo Yang, Yijun Dong, Rachel Ward, Inderjit S. Dhillon, Sujay Sanghavi, Qi Lei

Let ΣX , 1
NX>X and ΣÃ(X) ,

1
(1+α)N Ã (X)

> Ã (X).

With S = 1
1+αM̃>Ã (X), ∆ , Ã (X) − M̃X, and its

reweighted analog ∆̃ ,
(
M̃X

)
Ã (X)

†
∆, we further

introduce positive semidefinite matrices: ΣS , 1
N S>S,

Σ∆ , 1
(1+α)N∆>∆, and Σ∆̃ , 1

(1+α)N ∆̃>∆̃. For

demonstration purpose, we consider fixed X and Ã (X),
with respect to which we introduce distortion factors
cX , cS > 0 as the minimum constants that satisfy ΣÃ(X) 4
cXΣX and ΣÃ(X) 4 cSΣS (notice that such cX , cS exist

almost surely when X and Ã (X) are drawn from abso-
lutely continuous marginal distributions).

Recall daug , rank (∆) from Section 4. Let P∆ ,
∆†∆ denote the rank-daug orthogonal projector onto
Range

(
∆>

)
. Then, for L(θ) = 1

N ‖Xθ − y‖22, we have
the following result:

Figure 2: Comparison of DAC with different λ (optimal
choice at λopt = 3.2) and DA-ERM in Example 2, where
daug = 24 and α = 1. The results demonstrate that, with a
proper λ, DAC can outperform DA-ERM under misspeci-
fied augmentations.

Figure 3: Comparison of DAC with the optimal λ and
DA-ERM in Example 2 for different augmentation strength
daug. daug = 20 corresponds to the label-invariance aug-
mentations, whereas increasing daug leads to more misspec-
ification.

Theorem 2. Learning with DAC regularization (Equa-

tion (4)), we have that, at the optimal λ1,

Eε

[
L(θ̂dac)− L (θ∗)

]
≤
σ2 (d− daug)

N

+ ‖P∆θ
∗‖Σ∆

√
σ2

N
tr
(
ΣXΣ†∆

)
,

whereas learning with DA-ERM (Equation (3)),

Eε

[
L(θ̂da−erm)− L (θ∗)

]
≥ σ2d

NcXcS
+ ‖P∆θ

∗‖2Σ
∆̃
.

Here, P∆θ
∗ measures the misspecification in θ∗ by the

augmentations Ã (X).

One advantage of DAC regularization derives from its flex-
ibility in choosing regularization parameter λ. With a
proper λ (e.g., see Figure 2) that matches misspecification

C2
mis = 1

(1+α)N

∥∥∥(Ã (X)− M̃X
)
θ∗
∥∥∥2
2

= ‖P∆θ
∗‖2Σ∆

,

DAC effectively reduces the function class from Rd to{
θ
∣∣ ‖P∆θ‖Σ∆

≤ Cmis
}

and therefore improves the sam-
ple efficiency.

Another advantage of DAC is that, in contrast to DA-ERM,
the consistency regularization term in Equation (4) refrains
from learning the original labels with misspecified aug-
mentations Eε

[
M̃y

]
6= Ã (X)θ∗ when a suitable Cmis is

identified implicitly via λ. This allows DAC to learn from
fewer but stronger (potentially more severely misspecified)
augmentations (e.g., Figure 3). Specifically, as N → ∞,
the excess risk of DAC with the optimal λ converges to zero
by learning from unbiased labels Eε [y] = Xθ∗, whereas
DA-ERM suffers from a bias term ‖P∆θ

∗‖2Σ
∆̃
> 0 due to

the bias from misspecified augmentations.

Example 2. As in Example 1, we consider a linear regres-
sion problem of dimension d = 30 with α ≥ 1 misspecified
augmentations on N = 50 i.i.d. training samples drawn
from N (0, Id). We aim to learn θ∗ = [θ∗c ; 0] ∈ Rd (where
θ∗c ∈ {−1,+1}dc , dc = 10) under label noise σ = 0.1.
The misspecified augmentations mimic the effect of color
jitter by adding i.i.d. Gaussian noise entry-wisely to the
last daug feature coordinates: Ã (X) = [X; X′] where
X′ij = Xij + N (0, 0.1) for all i ∈ [N ], d − daug + 1 ≤
j ≤ d – such that daug = rank (∆) with probability 1. The
(d−daug +1), . . . , dc-th coordinates of θ∗ are misspecified
by the augmentations.

As previously discussed on Theorem 2, DAC is more robust
than DA-ERM to misspecified augmentations, and there-
fore can learn with fewer (smaller α) and stronger (larger
daug) augmentations. In addition, DAC generally achieves
better generalization than DA-ERM with limited samples.

1A positive (semi)definite matrix Σ induces a (semi)norm:
‖u‖Σ =

(
u>Σu

)1/2
for all conformable u.



Sample Efficiency of Data Augmentation Consistency Regularization

6 BEYOND LINEAR MODEL

In this section, we extend our analysis of DAC regulariza-
tion to non-linear models, including the two-layer neural
networks, and DNN-based classifiers with expansion-based
augmentations.

Further, in addition to the popular in-distribution setting
where we consider a unique distribution P for both training
and testing, DAC regularization is also known to improve
out-of-distribution generalization for settings like domain
adaptation. We defer detailed discussion on such advantage
of DAC regularization for linear regression in the domain
adaptation setting to Appendix D.

6.1 Two-layer Neural Network

We first generalize our analysis to an illustrative nonlin-
ear model – two-layer ReLU network. With X = Rd
and Y = R, we consider a ground truth distribution
P (y|x) induced by y =

(
x>B∗

)
+

w∗ + ε. For the
unknown ground truth function h∗ (x) ,

(
x>B∗

)
+

w∗,
(·)+ , max(0, ·) denotes the element-wisely ReLU func-
tion; B∗ =

[
b∗1 . . .b

∗
k . . .b

∗
q

]
∈ Rd×q consists of b∗k ∈

Sd−1 for all k ∈ [q]; and ε ∼ N
(
0, σ2

)
is i.i.d. Gaussian

noise. In terms of the function class H, for some constant
Cw ≥ ‖w∗‖1, let

H =
{
h(x) = (x>B)+w

∣∣ B = [b1 . . .bq] ∈ Rd×q,
‖bk‖2 = 1 ∀ j ∈ [q], ‖w‖1 ≤ Cw

}
,

such that h∗ ∈ H. For regression, we again consider square
loss l(h(x), y) = 1

2 (h(x)− y)2 and learn with DAC on the
first layer:

(
x>i B

)
+

=
(
x>i,jB

)
+

.

Let ∆ , Ã(X)− M̃X, and P⊥∆ be the projector onto the
null space of ∆. Under mild regularity conditions (i.e., αN
being sufficiently large, x being subgaussian, and distribu-
tion of ∆ being absolutely continuous, as specified in Ap-
pendix B), regression over two-layer ReLU networks with
the DAC regularization generalizes as following:
Theorem 3 (Informal result on two-layer neural net-
work with DAC (formally in Theorem 6)). Conditioned
on X and ∆, with L(h) = 1

N ‖h(X)− h∗(X)‖22 and√
1
N

∑N
i=1

∥∥P⊥∆xi
∥∥2
2
≤ CN , for any δ ∈ (0, 1), with

probability at least 1− δ over ε,

L
(
ĥdac

)
− L (h∗) . σCwCN

(
1√
N

+

√
log(1/δ)

N

)
.

Recall daug = rank(∆). With a sufficiently large N (as
specified in Appendix B), we have CN .

√
d− daug

with high probability2. Meanwhile, applying DA-ERM di-
rectly on the augmented samples achieves no better than

2Here we only account for the randomness in X but not that

L(ĥda−erm)−L(h∗) . σCwmax

(√
d

(α+1)N ,
√

d−daug

N

)
,

where the first term corresponds to the generalization
bound for a d-dimensional regression with (α + 1)N i.i.d.
samples (in contrast to augmented samples that are po-
tentially dependent); and the second term follows as the
augmentations Ã (X) keep a (d − daug)-dimensional sub-
space (i.e., the null space of ∆ = Ã(X)− M̃X) intact, in
which DA-ERM can only rely on the N original samples
for learning. In specific, the first term will dominate the
max with limited augmented data (i.e., α being small).

Comparing the two, we see that DAC tends to be more effi-
cient than DA-ERM, and such advantage is enhanced with
strong but limited data augmentations (i.e., large daug and
small α). For instance, with α = 1 and daug = d − 1, the
generalization error of DA-ERM scales as

√
d/N , while

DAC yields a dimension-free
√

1/N error.

As a synopsis for the regression cases in Section 4, Sec-
tion 5, and Section 6.1 generally, the effect of DAC regu-
larization can be casted as a dimension reduction by daug

– dimension of the subspace perturbed by data augmenta-
tions where features contain scarce label information.

6.2 Classification with Expansion-based
Augmentations

A natural generalization of the dimension reduction view-
point on DAC regularization in the regression setting is the
complexity reduction for general function classes. Here we
demonstrate the power of DAC on function class reduction
in a DNN-based classification setting.

Concretely, we consider a multi-class classification prob-
lem: given a probability space X with marginal distribu-
tion P (x) and K classes Y = [K], let h∗ : X → [K] be
the ground truth classifier, partitioning X into K disjoint
sets {Xk}k∈[K] such that P (y|x) = 1 {y = h∗ (x)} =

1 {x ∈ Xy}. In the classification setting, we replace Def-
inition 1 with expansion-based data augmentations intro-
duced in Wei et al. (2021); Cai et al. (2021).

Definition 2 (Expansion-based augmentations (for-
mally in Definition 4)). With respect to an aug-
mentation function A : X → 2X , let NB(S) ,
∪x∈S

{
x′ ∈ X

∣∣ A(x) ∩ A(x′) 6= ∅
}

be the neighborhood
of S ⊆ X . For any c > 1, we say that A induces c-
expansion-based data augmentations if (a) {x} ( A(x) ⊆
{x′ ∈ X | h∗(x) = h∗(x′)} for all x ∈ X ; and (b) for
all k ∈ [K], given any S ⊆ X with P (S ∩ Xk) ≤ 1

2 ,
P (NB (S) ∩ Xk) ≥ min {c · P (S ∩ Xk) , 1}.

Particularly, Definition 2(a) enforces that the ground truth
classifier h∗ is invariant throughout each neighborhood.

in ∆|X which characterizes daug for conciseness. We refer the
readers to Appendix B for a formal tail bound on CN .
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Meanwhile, the expansion factor c in Definition 2(b) serves
as a quantification of augmentation strength – a larger c im-
plies a stronger augmentation A.

We aim to learn h(x) , argmaxk∈[K] f(x)k with loss
l01 (h(x), y) = 1 {h(x) 6= y} fromH induced by the class
of p-layer fully connected neural networks with maximum
width q, F =

{
f : X → RK

∣∣ f = f2p−1 ◦ · · · ◦ f1,
}

where f2ι−1(x) = Wιx, f2ι(ε) = ϕ(ε), Wι ∈ Rdι×dι−1

∀ι ∈ [p], q , maxι∈[p] dι, and ϕ is the activation function.

Over a general probability space X , DAC with expansion-
based augmentations requires stronger conditions than
merely consistent classification over A(xi) for all labeled
training samples i ∈ [N ]. Instead, we enforce a large robust
marginmA(f,xu) (adapted from Wei et al. (2021), see Ap-
pendix C) over an finite set of unlabeled samples Xu that is
independent of X and drawn i.i.d. from P (x). Intuitively,
mA(f,xu) measures the maximum allowed perturbation
in all parameters of f such that predictions remain consis-
tent throughout A (xu) (e.g., mA(f,xu) > 0 is equiva-
lent to enforcing consistent classification outputs). For any
0 < τ ≤ maxf∈F infxu∈X mA(f,xu), the DAC regular-
ization reduces the function classH to

Hdac , {h ∈ H |mA(f,xu) > τ ∀ xu ∈ Xu} .

Then for ĥdac = argminh∈Hdac
1
N

∑N
i=1 l01 (h(xi), yi), we

have the following.

Theorem 4 (formally in Theorem 8). Given an augmenta-
tion function A that induces c-expansion-based data aug-
mentations (Definition 2) such that

µ , sup
h∈Hdac

PP [∃ x′ ∈ A(x) : h(x) 6= h(x′)] ≤ c− 1

4
,

for any δ ∈ (0, 1), with probability at least 1− δ, we have

µ ≤ Õ

(∑p
ι=1

√
q ‖Wι‖F

τ
√
|Xu|

+

√
p log |Xu|
|Xu|

)
such that

L01

(
ĥdac

)
− L01 (h∗) .

√
K log(N)

N
+

µ

min {c− 1, 1}

+

√
log(1/δ)

N
.

In particular, DAC regularization leverages the unlabeled
samples Xu and effectively decouples the labeled sample
complexity N = Õ (K) from the complexity of the func-
tion classH (characterized by {Wι}ι∈[p] and q and encap-
sulated in µ) via the reduced function class Hdac. Notably,
Theorem 4 is reminiscent of Wei et al. (2021) Theorem 3.6,
3.7, and Cai et al. (2021) Theorem 2.1, 2.2, 2.3. We uni-
fied the existing theories under our function class reduction
viewpoint to demonstrate its generality.

7 EXPERIMENTS

In this section, we empirically verify that training with
DAC learns more efficiently than DA-ERM. The dataset
is derived from CIFAR-100, where we randomly select
10,000 labeled data as the training set (i.e., 100 labeled
samples per class). During the training time, given a train-
ing batch, we generate augmentations by RandAugment
(Cubuk et al., 2020). We set the number of augmentations
per sample to 7 unless otherwise mentioned.

The experiments focus on comparisons of 1) training with
consistency regularization (DAC), and 2) empirical risk
minimization on the augmented dataset (DA-ERM). We
use the same network architecture (a WideResNet-28-2
(Zagoruyko and Komodakis, 2016)) and the same train-
ing settings (e.g., optimizer, learning rate schedule, etc) for
both methods. We defer the detailed experiment settings
to Appendix F. Our test set is the standard CIFAR-100 test
set, and we report the average and standard deviation of the
testing accuracy of 5 independent runs. The consistency
regularizer is implemented as the l2 distance of the model’s
predictions on the original and augmented samples.

Efficacy of DAC regularization. We first show that the
DAC regularization learns more efficiently than DA-ERM.
The results are listed in Table 1. In practice, the augmen-
tations almost always alter the label distribution, we there-
fore follow the discussion in section 5 and adopt a finite λ
(i.e., the multiplicative coefficient before the DAC regular-
ization, see Equation (1)). With proper choice of λ, training
with DAC significantly improves over DA-ERM.

DAC regularization helps more with limited augmenta-
tions. Our theoretical results suggest that the DAC regu-
larization learns efficiently with a limited number of aug-
mentations. While keeping the number of labeled samples
to be 10,000, we evaluate the performance of the DAC reg-
ularization and DA-ERM with different numbers of aug-
mentations. The number of augmentations for each train-
ing sample ranges from 1 to 15, and the results are listed
in Table 2. The DAC regularization offers a more signif-
icant improvement when the number of augmentations is
small. This clearly demonstrates that the DAC regulariza-
tion learns more efficiently than DA-ERM.

DAC regularization helps more when data is scarce.
We conduct experiments with different numbers of labeled
samples, ranging from 1,000 (i.e., 10 images per class) to
20,000 samples (i.e., 200 images per class). We generate
3 augmentations for each of the samples during the train-
ing time, and the results are presented in Table 3. Notice
that the DAC regularization gives a bigger improvement
over DA-ERM when the labeled samples are scarce. This
matches the intuition that when there are sufficient training
samples, data augmentation is less necessary. Therefore,
the difference between different ways of utilizing the aug-



Sample Efficiency of Data Augmentation Consistency Regularization

DA-ERM DAC Regularization
λ = 0 λ = 1 λ = 5 λ = 10 λ = 20

69.40± 0.05 62.82± 0.21 68.63± 0.11 70.56± 0.07 70.52± 0.14 68.65± 0.27

Table 1: Testing accuracy of DA-ERM and DAC with different λ’s (regularization coeff.).

Number of Augmentations 1 3 7 15
DA-ERM 67.92± 0.08 69.04± 0.05 69.25± 0.16 69.30± 0.11

DAC (λ = 10) 70.06± 0.08 70.77± 0.20 70.74± 0.11 70.31± 0.12

Table 2: Testing accuracy of DA-ERM and DAC with different numbers of augmentations.

Number of Labeled Data 1000 10000 20000
DA-ERM 31.11± 0.30 68.89± 0.07 76.79± 0.13

DAC (λ = 10) 33.59± 0.41 70.71± 0.10 76.86± 0.16

Table 3: Testing accuracy of ERM and DAC regularization with different numbers of labeled data.

No Augmentation DA-ERM DAC (λ = 0.1) DAC (λ = 1) DAC (λ = 10)
62.82± 0.21 61.35± 0.27 63.73± 0.33 64.30± 0.20 64.00± 0.26

Table 4: DAC performs well under misspecified augmentations after tuning λ.

Number of Unlabeled Data 5000 10000 20000
FixMatch 67.74 69.23 70.76

FixMatch + DAC (λ = 1) 71.24 72.7 74.04

Table 5: DAC helps FixMatch when the unlabeled data is scarce.

1 Transformation 10 Transformations

30 Transformations 100 Transformations

Figure 4: Different numbers of transformations.

mented samples becomes diminishing.

DAC performs well under misspecified augmentations.
As suggested by Theorem 2, DAC is more robust to mis-
specified augmentations with proper λ. We further empir-

ically verify this result with misspecified augmentations -
where the augmentations are generated by applying 100
random transformations. When too many transformations
are applied (see illustration in Figure 4), the augmentation
will alter the label distribution and is thus misspecified. The
results are presented in Table 4. Notice that with λ = 1, the
DAC delivers the best accuracy, which supports our theo-
retical results.

Further, comparing the results of Table 1 and Table 4, we
see that the optimal λ is different when the augmentations
are misspecified. Because of the flexibility in choosing λ,
DAC is able to outperform DA-ERM, which matches the
result in Theorem 2.

Combining with a semi-supervised learning algorithm.
Here we show that the DAC regularization can be eas-
ily extended to the semi-supervised learning setting. We
take the previously established semi-supervised learning
method FixMatch (Sohn et al., 2020) as the baseline and
adapt the FixMatch by combining it with the DAC regular-
ization. Specifically, besides using FixMatch to learn from
the unlabeled data, we additionally generate augmentations
for the labeled samples and apply DAC. In particular, we
focus on the data-scarce regime by only keeping 10,000 la-
beled samples and at most 20,000 unlabeled samples. Re-
sults are listed in Table 5. We see that the DAC regulariza-
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tion also improves the performance of FixMatch when the
unlabeled samples are scarce. This again demonstrates the
efficiency of learning with DAC.

8 CONCLUSION

In this paper, we take a step toward understanding the sta-
tistical efficiency of DAC with limited data augmentations.
At the core, DAC is statistically more efficient because it
reduces problem dimensions by enforcing consistency reg-
ularization.

We demonstrate the benefits of DAC compared to DA-
ERM (expanding training set with augmented samples)
both theoretically and empirically. Theoretically, we show
a strictly smaller generalization error under linear regres-
sion, and explicitly characterize the generalization upper
bound for two-layer neural networks and expansion-based
data augmentations. We further show that DAC better han-
dles the label misspecification caused by strong augmen-
tations. Empirically, we provide apples-to-apples compar-
isons between DAC and DA-ERM. These together demon-
strate the superior efficacy of DAC over DA-ERM.
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A Linear Regression Models

In this section, we present formal proofs for the results on linear regression in the fixed design where the training samples
(X,y) and their augmentations Ã (X) are considered to be fixed. We discuss two types of augmentations: the label
invariant augmentations in Section 4 and the misspecified augmentations in Section 5.

A.1 Linear Regression with Label Invariant Augmentations

For fixed Ã(X), let ∆ , Ã(X) − M̃X in this section. We recall that daug = rank (∆) since there is no randomness in
Ã,X in fix design setting. Assuming that Ã(X) admits full column rank, we have the following theorem on the excess
risk of DAC and ERM:

Theorem 5 (Formal restatement of Theorem 1 on linear regression.). Learning with DAC regularization, we
have E

[
L(θ̂dac)− L(θ∗)

]
=

(d−daug)σ
2

N , while learning with ERM directly on the augmented dataset, we have

E
[
L(θ̂da−erm)− L(θ∗)

]
=

(d−daug+d
′)σ2

N . d′ is defined as

d′ ,
tr
(
M̃>

(
PÃ(X) −PS

)
M̃
)

1 + α
,

where d′ ∈ [0, daug] with PÃ(X) = Ã(X)
(
Ã(X)>Ã(X)

)−1
Ã(X)> and PS ∈ R(α+1)N×(α+1)N is the orthogonal

projector onto S ,
{

M̃Xθ | ∀θ ∈ Rd, s.t.
(
Ã(X)− M̃X

)
θ = 0

}
.

Proof. With L(θ) , 1
(1+α)N

∥∥∥Ã(X)θ − Ã(X)θ∗
∥∥∥2
2
, the excess risk of ERM on the augmented training set satisfies that:

E
[
L(θ̂da−erm)

]
=

1

(1 + α)N
E
[∥∥∥Ã(X)θ̂da−erm − Ã(X)θ∗

∥∥∥2
2

]
=

1

(1 + α)N
E
[∥∥∥Ã(X)(Ã(X)>Ã(X))−1Ã(X)>(Ã(X)θ∗ + M̃ε)− Ã(X)θ∗

∥∥∥2
2

]
=

1

(1 + α)N
E
[∥∥∥PÃ(X)Ã(X)θ∗ + PÃ(X)M̃ε− Ã(X)θ∗

∥∥∥2
2

]
=

1

(1 + α)N
E
[∥∥∥PÃ(X)M̃ε

∥∥∥2
2

]
=

1

(1 + α)N
E
[
tr(ε>M̃>PÃ(X)M̃ε)

]
=

σ2

(1 + α)N
tr
(
M̃>PÃ(X)M̃

)
.

Let CÃ(X) and C
M̃

denote the column space of Ã(X) and M̃, respectively. Notice that S is a subspace of both CÃ(X) and
C

M̃
. Observing that daug = rank (∆) = rank (PS), we have

E
[
L(θ̂da−erm)

]
=

σ2

(1 + α)N
tr(M̃>PÃ(X)M̃)

=
σ2

(1 + α)N
tr(M̃>PSM̃) +

σ2

(1 + α)N
tr(M̃>(PÃ(X) −PS)M̃)

=
σ2

(1 + α)N
tr(M̃>PSM̃) +

σ2

N
·

tr(M̃>(PÃ(X) −PS)M̃)

1 + α

By the data augmentation consistency constraint, we are essentially solving the linear regression on the (d − daug)-
dimensional space {θ |∆θ = 0}. The rest of proof is identical to standard regression analysis, with features first projected
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to S:

E
[
L(θ̂dac)

]
=

1

(1 + α)N
E
[∥∥∥Ã(X)θ̂dac − Ã(X)θ∗

∥∥∥2
2

]
=

1

(1 + α)N
E
[∥∥∥Ã(X)(Ã(X)>Ã(X))−1Ã(X)>PS(Ã(X)θ∗ + M̃ε)− Ã(X)θ∗

∥∥∥2
2

]
=

1

(1 + α)N
E
[∥∥∥PÃ(X)PSÃ(X)θ∗ + PÃ(X)PSM̃ε− Ã(X)θ∗

∥∥∥2
2

]
(

since Ã(X)θ∗ ∈ S, and PÃ(X)PS = PS since S ⊆ CÃ(X)

)
=

1

(1 + α)N
E
[∥∥∥PSM̃ε

∥∥∥2
2

]
=

σ2

(1 + α)N
tr(M̃>PSM̃)

=
(d− daug)σ2

N
.

�

A.2 Linear Regression Beyond Label Invariant Augmentations

Proof of Theorem 2. WithL(θ) , 1
N ‖Xθ −Xθ∗‖22 = ‖θ − θ∗‖2ΣX

, we start by partitioning the excess risk into two parts

– the variance from label noise and the bias from feature-label mismatch due to augmentations (i.e., Ã (X)θ∗ 6= M̃Xθ∗):

Eε [L (θ)− L (θ∗)] = Eε

[
‖θ − θ∗‖2ΣX

]
= Eε

[
‖θ − Eε [θ]‖2ΣX

]
︸ ︷︷ ︸

Variance

+ ‖Eε [θ]− θ∗‖2ΣX︸ ︷︷ ︸
Bias

.

First, we consider learning with DAC regularization with some finite 0 < λ <∞,

θ̂dac = argmin
θ∈Rd

1

N
‖Xθ − y‖22 +

λ

(1 + α)N

∥∥∥(Ã (X)− M̃X
)
θ
∥∥∥2
2
.

By setting the gradient of Equation (4) with respect to θ to 0, with y = Xθ∗ + ε, we have

θ̂dac =
1

N
(ΣX + λΣ∆)

†
X> (Xθ∗ + ε) ,

Then with Eε

[
θ̂dac

]
= (ΣX + λΣ∆)

†
ΣXθ

∗,

Var = Eε

[∥∥∥∥ 1

N
(ΣX + λΣ∆)

†
X>ε

∥∥∥∥2
ΣX

]
, Bias =

∥∥∥(ΣX + λΣ∆)
†
ΣXθ

∗ − θ∗
∥∥∥2

ΣX

.

For the variance term, we have

Var =
σ2

N
tr
(

(ΣX + λΣ∆)
†
ΣX (ΣX + λΣ∆)

†
ΣX

)
=
σ2

N
tr

([
Σ

1/2
X (ΣX + λΣ∆)

†
Σ

1/2
X

]2)
=
σ2

N
tr

((
Id + λΣ

−1/2
X Σ∆Σ

−1/2
X

)−2)
For the semi-positive definite matrix Σ

−1/2
X Σ∆Σ

−1/2
X , we introduce the spectral decomposition:

Σ
−1/2
X Σ∆Σ

−1/2
X = Q

d×daug

Γ
daug×daug

Q>, Γ = diag
(
γ1, . . . , γdaug

)
,
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where Q consists of orthonormal columns and γ1 ≥ · · · ≥ γdaug > 0. Then

Var =
σ2

N
tr
((

Id −QQ>
)

+ Q
(
Idaug + λΓ

)−2
Q>
)

=
σ2 (d− daug)

N
+
σ2

N

daug∑
i=1

1

(1 + λγi)
2 .

For the bias term, we observe that

Bias =
∥∥∥(ΣX + λΣ∆)

†
ΣXθ

∗ − θ∗
∥∥∥2

ΣX

=
∥∥∥(ΣX + λΣ∆)

†
(−λΣ∆)θ∗

∥∥∥2
ΣX

=

∥∥∥∥(Id + λΣ
− 1

2

X Σ∆Σ
− 1

2

X

)−1 (
λΣ
− 1

2

X Σ∆Σ
− 1

2

X

)(
Σ

1/2
X P∆θ

∗
)∥∥∥∥2

2

.

Then with ϑ , Σ
1/2
X P∆θ

∗, we have

Bias =

daug∑
i=1

ϑ2i

(
λγi

1 + λγi

)2

To simply the optimization of regularization parameter λ, we leverage upper bounds of the variance and bias terms:

Var−
σ2 (d− daug)

N
≤ σ2

N

daug∑
i=1

1

(1 + λγi)
2 ≤

σ2

2Nλ

daug∑
i=1

1

γi
≤ σ2

2Nλ
tr
(
ΣXΣ†∆

)
,

Bias =

daug∑
i=1

ϑ2i

(
λγi

1 + λγi

)2

≤ λ

2

daug∑
i=1

ϑ2i γi =
λ

2
‖P∆θ

∗‖2Σ∆
.

Then with λ =

√
σ2 tr(ΣXΣ†∆)
N‖P∆θ∗‖2Σ∆

, we have the generalization bound for θ̂dac in Theorem 2.

Second, we consider learning with DA-ERM:

θ̂da−erm = argmin
θ∈Rd

1

(1 + α)N

∥∥∥Ã (X)θ − M̃y
∥∥∥2
2
.

With

θ̂da−erm =
1

(1 + α)N
Σ−1
Ã(X)
Ã (X)

>
M̃ (Xθ∗ + ε) ,

we again partition the excess risk into the variance and bias terms. For the variance term, with the assumptions ΣÃ(X) 4
cXΣX and ΣÃ(X) 4 cSΣS, we have

Var =Eε

[∥∥∥∥ 1

(1 + α)N
Σ−1
Ã(X)
Ã (X)

>
M̃ε

∥∥∥∥2
ΣX

]

=Eε

[∥∥∥∥ 1

N
Σ−1
Ã(X)

S>ε

∥∥∥∥2
ΣX

]

=
σ2

N
tr
(
ΣXΣ−1

Ã(X)
ΣSΣ−1

Ã(X)

)
≥σ

2

N
tr

(
1

cXcS
Id

)
=

σ2d

NcXcS
.
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Additionally, for the bias term, we have

Bias =

∥∥∥∥ 1

(1 + α)N
Σ−1
Ã(X)
Ã (X)

>
M̃Xθ∗ − θ∗

∥∥∥∥2
ΣX

=

∥∥∥∥(Ã (X)
> Ã (X)

)−1
Ã (X)

>
∆ (P∆θ

∗)

∥∥∥∥2
ΣX

=
∥∥∥Ã (X)

†
∆ (P∆θ

∗)
∥∥∥2

ΣX

= ‖P∆θ
∗‖2Σ

∆̃
.

Combining the variance and bias leads to the generalization bound for θ̂da−erm in Theorem 2. �

B Two-layer Neural Network Regression

In the two-layer neural network regression setting with X = Rd described in Section 6.1, let X ∼ PN (x) be a set of N
i.i.d. samples drawn from the marginal distribution P (x) that satifies the following.

Assumption 1 (Regularity of marginal distribution). Let x ∼ P (x) be zero-mean E[x] = 0, with covairance matrix
E[xx>] = Σx � 0 whose eigenvalues are bounded by constant factors Ω(1) = σmin(Σx) ≤ σmax(Σx) = O(1), such
that (Σ

−1/2
x x) is ρ2-subgaussian 3.

For the sake of analysis, we isolate the augmented part in Ã(X) and denote the set of these augmentations as

A(X) = [x1,1; · · · ; xN,1; · · · ; x1,α; · · · ; xN,α] ∈ XαN ,

where for each sample i ∈ [N ], {xi,j}j∈[α] is a set of α augmentations generated from xi, and M ∈ RαN×N is the

vertical stack of α N ×N identity matrices. Analogous to the notions with respect to Ã(X) in the linear regression cases
in Appendix A, in this section, we denote ∆ , A(X)−MX and quantify the augmentation strength as

daug , rank (∆) = rank
(
Ã (X)− M̃X

)
such that 0 ≤ daug ≤ min (d, αN) can be intuitively interpreted as the number of dimensions in the span of the unlabeled
samples, Row(X), perturbed by the augmentations.

Then, to learn the ground truth distribution y = h∗(X) + ε = (XB∗)+ w∗ + ε where ε ∼ N (0, σ2IN ), training with the
DAC regularization can be formulated explicitly as

B̂dac, ŵdac = argmin
B∈Rd×q,w∈Rq

1

N

∥∥y − (XB)+ w
∥∥2
2

s.t. B =
[
b1 . . .bk . . .bq

]
, bk ∈ Sd−1 ∀ k ∈ [q], ‖w‖1 ≤ Cw

(A (X) B)+ = (MXB)+ .

For the resulted minimizer ĥdac(x) , (x>B̂dac)+ŵdac, we have the following.

Theorem 6 (Formal restatement of Theorem 3 on two-layer neural network with DAC). Under Assumption 1, we suppose
X and ∆ satisfy that (a) αN ≥ 4daug; and (b) ∆ admits an absolutely continuous distribution. Then conditioned on X

and ∆, with L(h) = 1
N ‖h(X)− h∗(X)‖22 and 1

N

∑N
i=1

∥∥P⊥∆xi
∥∥2
2
≤ C2

N for some CN > 0, for all δ ∈ (0, 1), with
probability at least 1− δ (over ε),

L
(
ĥdac

)
− L (h∗) . σCwCN

(
1√
N

+

√
log(1/δ)

N

)
.

Moreover, to account for randomness in X and ∆, we introduce the following notion of augmentation strength.

3A random vector v ∈ Rd is ρ2-subgaussian if for any unit vector u ∈ Sd−1, u>v is ρ2-subgaussian, E
[
exp(s · u>v)

]
≤

exp
(
s2ρ2/2

)
.
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Definition 3 (Augmentation strength). For any δ ∈ [0, 1), let

daug(δ) , argmax
d′

P∆ [rank (∆) < d′] ≤ δ.

Intuitively, the augmentation strength daug ensures that the feature subspace perturbed by the augmentations in A(X) has
a minimum dimension daug(δ) with probability at least 1− δ. A larger daug(δ) corresponds to stronger augmentations. For
instance, when A(X) = MX almost surely (e.g., when the augmentations are identical copies of the original samples,
corresponding to the weakest augmentation – no augmentations at all), we have daug(δ) = daug = 0 for all δ < 1. Whereas
for randomly generated augmentations, daug is likely to be larger (i.e., with more dimensions being perturbed). For example
in Example 2, for a given daug, with random augmentations A (X) = X′ where X′ij = Xij +N (0, 0.1) for all i ∈ [N ],
d− daug + 1 ≤ j ≤ d, we have rank (∆) = daug with probability 1. That is daug(δ) = daug for all δ ≥ 0.

Leveraging the notion of augmentation strength in Definition 3, we show that the stronger augmentations lead to the better
generalization by reducing CN in Theorem 6.

Corollary 1. When N � ρ4d and αN ≥ d, for any δ ∈ (0, 1), with probability at least 1 − δ (over X and ∆), we have
CN .

√
d− daug(δ).

To prove Theorem 6, we start by showing that, with sufficient samples (αN ≥ 4daug), consistency of the first layer outputs
over the samples implies consistency of those over the population.

Lemma 1. Under the assumptions in Theorem 6, every size-daug subset of rows in ∆ = A(X)−MX is linearly indepen-
dent almost surely.

Proof of Lemma 1. Since αN > daug, it is sufficient to show that a random matrix with an absolutely continuous distribu-
tion is totally invertible 4 almost surely.

It is known that for any dimensionm ∈ N, anm×m square matrix S is singular if det(S) = 0 where entries of S lie within
the roots of the polynomial equation specified by the determinant. Therefore, the set of all singular matrices in Rm×m has
Lebesgue measure zero,

λ
({

S ∈ Rm×m
∣∣ det(S) = 0

})
= 0.

Then, for an absolutely continuous probability measure µ with respect to λ, we also have

Pµ
[
S ∈ Rm×m is singular

]
= µ

({
S ∈ Rm×m

∣∣ det(S) = 0
})

= 0.

Since a general matrix R contains only finite number of submatrices, when R is drawn from an absolutely continuous
distribution, by the union bound, P [R cotains a singular submatrix] = 0. That is, R is totally invertible almost surely. �

Lemma 2. Under the assumptions in Theorem 6, the hidden layer in the two-layer ReLU network learns Null (∆), the
invariant subspace under data augmentations : with high probability,(

x>B̂dac
)
+

=
(
x>P⊥∆B̂dac

)
+
∀ x ∈ X .

Proof of Lemma 2. We will show that for all bk = P⊥∆bk + P∆bk, k ∈ [q], P∆bk = 0 with high probability, which then
implies that given any x ∈ X , (x>bk)+ = (x>P⊥∆bk)+ for all k ∈ [q].

For any k ∈ [q] associated with an arbitrary fixed bk ∈ Sd−1, let Xk , XkP
⊥
∆ + XkP∆ ∈ XNk be the inclusion-

wisely maximum row subset of X such that Xkbk > 0 element-wisely. Meanwhile, we denote A(Xk) = MkXkP
⊥
∆ +

A(Xk)P∆ ∈ XαNk as the augmentation of Xk where Mk ∈ RαNk×Nk is the vertical stack of α identity matrices with
size Nk ×Nk. Then the DAC constraint implies that (A(Xk)−MkXk)P∆bk = 0.

With Assumption 1, for a fixed bk ∈ Sd−1, P[x>bk > 0] = 1
2 . Then, with the Chernoff bound,

P
[
Nk <

N

2
− t
]
≤ e− 2t2

N ,

4A matrix is totally invertible if all its square submatrices are invertible.
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which implies that, Nk ≥ N
4 with high probability.

Leveraging the assumptions in Theorem 6, αN ≥ 4daug implies that αNk ≥ daug. Therefore by Lemma 1,
Row (A(Xk)−MkXk) = Row (∆) with probability 1. Thus, (A(Xk) −MkXk)P∆bk = 0 enforces that P∆bk =
0. �

Proof of Theorem 6. Conditioned on X and ∆, we are interested in the excess risk L(ĥdac) − L(h∗) =

1
N

∥∥∥(XB̂dac)+ŵdac − (XB∗)+w∗
∥∥∥2
2

with randomness on ε.

We first recall that Lemma 2 implies ĥdac ∈ Hdac =
{
h(x) =

(
x>B

)
+

w
∣∣∣ B ∈ B, ‖w‖1 ≤ Cw} where

B ,
{
B = [b1 . . .bq] | ‖bk‖ = 1 ∀ k ∈ [q], (XB)+ = (XP⊥∆B)+

}
.

Leveraging Equation (21) and (22) in Du et al. (2020), since (B∗,w∗) is feasible under the constraint, by the basic
inequality,

∥∥∥y − (XB̂dac)+ŵdac
∥∥∥2
2
≤ ‖y − (XB∗)+w∗‖22 . (5)

Knowing that y = (XB∗)+w∗ + ε with ε ∼ N
(
0, σ2IN

)
, we can rewrite Equation (5) as

1

N

∥∥∥(XB̂dac)+ŵdac − (XB∗)+w∗
∥∥∥2
2
≤ 2

N
ε>
(

(XB̂dac)+ŵdac − (XB∗)+w∗
)

≤4 sup
h∈Hdac

1

N
ε>h(X)

First, we observe that σ−1Eε

[
suph∈Hdac

1
N ε
>h(X)

]
= ĜX (Hdac) measures the empirical Gaussian width of Hdac over

X. Moreover, by observing that for any h ∈ Hdac and xi ∈ X,

|h(xi)| ≤
∥∥∥(B>xi

)
+

∥∥∥
∞
‖w‖1 ≤ max

k∈[q]

∣∣b>k P⊥∆xi
∣∣ ‖w‖1 ≤ ∥∥P⊥∆xi

∥∥
2
‖w‖1 ,

1

N
‖h(X)‖22 =

1

N

N∑
i=1

|h(xi)|2 ≤ ‖w‖21 ·
1

N

N∑
i=1

∥∥P⊥∆xi
∥∥2
2
≤ C2

wC
2
N

and ∣∣∣∣ sup
h∈Hdac

1

N
ε>1 h(X)− sup

h∈Hdac

1

N
ε>2 h(X)

∣∣∣∣
≤
∣∣∣∣ sup
h∈Hdac

1

N
h(X)> (ε1 − ε2)

∣∣∣∣
≤ 1√

N

∥∥∥∥ 1√
N
h(X)

∥∥∥∥
2

‖ε1 − ε2‖2

≤CwCN√
N
‖ε1 − ε2‖2 ,

we know that the function ε → suph∈Hdac
1
N ε
>h(X) is CNCw√

N
-Lipschitz in `2 norm. Therefore, by Wainwright (2019)

Theorem 2.26, we have that with probability at least 1− δ,

sup
h∈Hdac

1

N
ε>h(X) ≤ σ ·

(
ĜX (Hdac) + CwCN

√
2 log(1/δ)

N

)
,
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where the empirical Gaussian complexity is upper bounded by

ĜX (Hdac) = E
g∼N (0,IN )

[
sup

B∈B,‖w‖1≤R

1

N
g>(XB)+w

]

≤Cw
N

E
g

[
sup
B∈B

∥∥(XB)>+g
∥∥
∞

]
=
Cw
N

E
g

[
sup

b∈Sd−1

g>
(
XP⊥∆b

)
+

]
(Lemma 6, (·)+ is 1-Lipschitz)

≤Cw
N

E
g

[
sup

b∈Sd−1

g>XP⊥∆b

]
=
Cw
N

E
g

[∥∥P⊥∆X>g
∥∥
2

]
≤Cw
N

(
E
g

[∥∥P⊥∆X>g
∥∥2
2

])1/2

=
Cw
N

√
tr(P⊥∆X>XP⊥∆)

=
CwCN√

N
.

�

Proof of Corollary 1. By Definition 3, we have with probability at least 1 − δ that daug = rank(P∆) ≥ daug(δ) and
rank(P⊥∆) ≤ d − daug(δ). Meanwhile, leveraging Lemma 5, we have that under Assumption 1 and with N � ρ4d, with
high probability, ∥∥∥∥ 1

N
P⊥∆X>XP⊥∆

∥∥∥∥
2

≤
∥∥∥∥ 1

N
X>X

∥∥∥∥
2

≤ 1.1C . 1.

Therefore, there exists CN > 0 with 1
N

∑n
i=1

∥∥P⊥∆xi
∥∥2
2
≤ C2

N such that, with probability at least 1− δ,

C2
N ≤ (d− daug) ·

∥∥∥∥ 1

N
P⊥∆X>XP⊥∆

∥∥∥∥
2

. d− daug(δ).

�

C Classification with Expansion-based Augmentations

We first recall the multi-class classification problem setup in Section 6.2, while introducing some helpful notions. For an
arbitrary set X , let Y = [K], and h∗ : X → [K] be the ground truth classifier that partitions X : for each k ∈ [K], let
Xk , {x ∈ X | h∗(x) = k}, with Xi ∩Xj = ∅,∀i 6= j. In addition, for an arbitrary classifier h : X → [K], we denote the
majority label with respect to h for each class,

ŷk , argmax
y∈[K]

PP
[
h(x) = y

∣∣ x ∈ Xk] ∀ k ∈ [K],

along with the respective class-wise local and global minority sets,

Mk ,
{
x ∈ Xk

∣∣ h(x) 6= ŷk
}
( Xk ∀ k ∈ [K], M ,

K⋃
k=1

Mk.

Given the marginal distribution P (x), we introduce the expansion-based data augmentations that concretizes Definition 1
in the classification setting:



Shuo Yang, Yijun Dong, Rachel Ward, Inderjit S. Dhillon, Sujay Sanghavi, Qi Lei

Definition 4 (Expansion-based data augmentations, Cai et al. (2021)). We call A : X → 2X an augmentation function
that induces expansion-based data augmentations if A is class invariant: {x} ( A(x) ⊆ {x′ ∈ X | h∗(x) = h∗(x′)} for
all x ∈ X . Let

NB(x) ,
{
x′ ∈ X

∣∣ A(x) ∩ A(x′) 6= ∅
}
, NB(S) , ∪x∈SNB(x)

be the neighborhoods of x ∈ X and S ⊆ X with respect to A. Then, A satisfies

(a) (q, ξ)-constant expansion if given any S ⊆ X with P (S) ≥ q and P (S ∩ Xk) ≤ 1
2 for all k ∈ [K], P (NB (S)) ≥

min {P (S) , ξ}+ P (S);
(b) (a, c)-multiplicative expansion if for all k ∈ [K], given any S ⊆ X with P (S ∩ Xk) ≤ a, P (NB (S) ∩ Xk) ≥

min {c · P (S ∩ Xk) , 1}.

On Definition 4, we first point out that the ground truth classifier is invariant throughout the neighborhood: given any
x ∈ X , h∗ (x) = h∗ (x′) for all x′ ∈ NB(x). Second, in contrast to the linear regression and two-layer neural network
cases where we assume X ⊆ Rd, with the expansion-based data augmentation over a general X , the notion of daug in
Definition 3 is not well-established. Alternatively, we leverage the concept of constant / multiplicative expansion from
Cai et al. (2021), and quantify the augmentation strength with parameters (q, ξ) or (a, c). Intuitively, the strength of
expansion-based data augmentations is characterized by expansion capability of A: for a neighborhood S ⊆ X of proper
size (characterized by q or a under measure P ), the stronger augmentation A leads to more expansion in NB(S), and
therefore larger ξ or c. For example in Definition 2, we use an expansion-based augmentation function A that satisfies(
1
2 , c
)
-multiplicative expansion.

Adapting the existing setting in Wei et al. (2021); Cai et al. (2021), we concretize the classifier class H with a function
class F ⊆

{
f : X → RK

}
of fully connected neural networks such that H =

{
h(x) , argmaxk∈[K] f(x)k

∣∣∣ f ∈ F}.
To constrain the feasible hypothesis class through the DAC regularization with finite unlabeled samples, we recall the notion
of all-layer-margin, m : F ×X ×Y → R≥0 (from Wei et al. (2021)) that measures the maximum possible perturbation in
all layers of f while maintaining the prediction y. Precisely, given any f ∈ F such that f (x) = Wpϕ (. . . ϕ (W1x) . . . )
for some activation function ϕ : R → R and parameters

{
Wι ∈ Rdι×dι−1

}p
ι=1

, we can write f = f2p−1 ◦ · · · ◦ f1
where f2ι−1(x) = Wιx for all ι ∈ [p] and f2ι(z) = ϕ(z) for ι ∈ [p − 1]. For an arbitrary set of perturbation vectors
δ = (δ1, . . . , δ2p−1) such that δ2ι−1, δ2ι ∈ Rdι for all ι, let f(x, δ) be the perturbed neural network defined recursively
such that

z̃1 = f1 (x) + ‖x‖2 δ1,
z̃ι = fι (z̃ι−1) + ‖z̃ι−1‖2 δι ∀ ι = 2, . . . , 2p− 1,

f(x, δ) = z̃2p−1.

The all-layer-margin m(f,x, y) measures the minimum norm of the perturbation δ such that f(x, δ) fails to provide the
classification y,

m(f,x, y) , min
δ=(δ1,...,δ2p−1)

√√√√2p−1∑
ι=1

‖δι‖22 s.t. argmax
k∈[K]

f(x, δ)k 6= y. (6)

With the notion of all-layer-margin established, for any A : X → 2X that satisfies conditions in Definition 4, the robust
margin is defined as

mA(f,x) , sup
x′∈A(x)

m

(
f,x′, argmax

k∈[K]

f(x)k

)
.

Intuitively, the robust margin measures the maximum possible perturbation in all-layer weights of f such that predictions
on all data augmentations of x remain consistent. For instance, mA(f,x) > 0 is equivalent to enforcing h(x) = h(x′) for
all x′ ∈ A (x).

To achieve finite sample guarantees, DAC regularization requires stronger consistency conditions than merely con-
sistent classification outputs (i.e., mA(f,x) > 0). Instead, we enforce mA(f,x) > τ for any 0 < τ <
maxf∈F infx∈X mA(f,x)5 over an finite set of unlabeled samples Xu that is independent of X and drawn i.i.d. from

5The upper bound on τ ensures the proper learning setting, i.e., there exists f ∈ F such that mA (f,x) > τ for all x ∈ X .
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P (x). Then, learning the classifier with zero-one loss l01 (h(x), y) = 1 {h(x) 6= y} from a class of p-layer fully connected
neural networks with maximum width q,

F =
{
f : X → RK

∣∣ f = f2p−1 ◦ · · · ◦ f1, f2ι−1(x) = Wιx, f2ι(z) = ϕ(z)
}
,

where Wι ∈ Rdι×dι−1 for all ι ∈ [p], and q , maxι=0,...,p dι, we solve

ĥdac , argmin
h∈H

L̂dac01 (h) =
1

N

N∑
i=1

1 {h (xi) 6= h∗ (xi)} (7)

s.t. mA(f,xui ) > τ ∀ i ∈ [|Xu|]

for any 0 < τ < maxf∈F infx∈X mA(f,x). The corresponding reduced function class is given by

Hdac , {h ∈ H |mA(f,xui ) > τ ∀ i ∈ [|Xu|]} .

Specifically, with µ , suph∈Hdac
PP [∃ x′ ∈ A(x) : h(x) 6= h(x′)], Wei et al. (2021); Cai et al. (2021) demonstrate the

following forHdac:

Proposition 7 (Wei et al. (2021) Theorem 3.7, Cai et al. (2021) Proposition 2.2). For any δ ∈ (0, 1), with probability at
least 1− δ/2 (over Xu),

µ ≤ Õ

(∑p
ι=1

√
q ‖Wι‖F

τ
√
|Xu|

+

√
log (1/δ) + p log |Xu|

|Xu|

)
,

where Õ (·) hides polylogarithmic factors in |Xu| and d.

Leveraging the existing theory above on finite sample guarantee of the maximum possible inconsistency, we have the
following.

Theorem 8 (Formal restatement of Theorem 4 on classification with DAC). Learning the classifier with DAC regulariza-
tion in Equation (7) provides that, for any δ ∈ (0, 1), with probability at least 1− δ,

L01

(
ĥdac

)
− L01 (h∗) ≤ 4R +

√
2 log(4/δ)

N
, (8)

where with 0 < µ < 1 defined in Proposition 7, for any 0 ≤ q < 1
2 and c > 1 + 4µ,

(a) when A satisfies (q, 2µ)-constant expansion, R ≤
√

2K log(2N)
N + 2 max {q, 2µ};

(b) when A satisfies ( 1
2 , c)-multiplicative expansion, R ≤

√
2K log(2N)

N + 4µ
min{c−1,1} .

First, to quantify the function class complexity and relate it to the generalization error, we leverage the notion of
Rademacher complexity and the associated standard generalization bound.

Lemma 3. Given a fixed function class Hdac (i.e., conditioned on Xu) and a B-bounded and Cl-Lipschitz loss function l,
let L̂(h) = 1

N

∑N
i=1 l(h(xi), yi), L(h) = E [l(h(xi), yi)], and ĥdac = argminh∈Hdac

L̂(h). Then for any δ ∈ (0, 1), with
probability at least 1− δ over X,

L(ĥdac)− L(h∗) ≤4Cl ·RN (Hdac) +

√
2B2 log(4/δ)

N
.

Proof of Lemma 3. We first decompose the expected excess risk as

L(ĥdac)− L(h∗) =
(
L(ĥdac)− L̂(ĥdac)

)
+
(
L̂(ĥdac)− L̂(h∗)

)
+
(
L̂(h∗)− L(h∗)

)
,

where L̂(ĥdac)− L̂(h∗) ≤ 0 by the basic inequality. Since both ĥdac, h∗ ∈ Hdac, we then have

L(ĥdac)− L(h∗) ≤ 2 sup
h∈Hdac

∣∣∣L(h)− L̂(h)
∣∣∣ .
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Let g+(X,y) = suph∈Hdac
: L(h)− L̂(h) and g−(X,y) = suph∈Hdac

: −L(h) + L̂(h). Then,

P
[
L(ĥdac)− L(h∗) ≥ ε

]
≤ P

[
g+(X,y) ≥ ε

2

]
+ P

[
g−(X,y) ≥ ε

2

]
.

We will derive a tail bound for g+(X,y) with the standard inequalities and symmetrization argument Wainwright (2019);
Bartlett and Mendelson (2003), while the analogous statement holds for g−(X,y).

Let (X(1),y(1)) be a sample set generated by replacing an arbitrary sample in (X,y) with an independent sample (x, y) ∼
P (x, y). Since l is B-bounded, we have

∣∣g+(X,y)− g+(X(1),y(1))
∣∣ ≤ B/N . Then, via McDiarmid’s inequality Bartlett

and Mendelson (2003),

P
[
g+(X,y) ≥ E[g+(X,y)] + t

]
≤ exp

(
−2Nt2

B2

)
.

For an arbitrary sample set (X,y), let L̂(X,y) (h) = 1
N

∑N
i=1 l (h(xi), yi) be the empirical risk of h with respect to

(X,y). Then, by a classical symmetrization argument (e.g., proof of Wainwright (2019) Theorem 4.10), we can bound the
expectation: for an independent sample set (X′,y′) ∈ XN × YN drawn i.i.d. from P ,

E
[
g+(X,y)

]
=E(X,y)

[
sup
h∈Hdac

L(h)− L̂(X,y)(h)

]
=E(X,y)

[
sup
h∈Hdac

E(X′,y′)

[
L̂(X′,y′)(h)

]
− L̂(X,y)(h)

]
=E(X,y)

[
sup
h∈Hdac

E(X′,y′)

[
L̂(X′,y′)(h)− L̂(X,y)(h)

∣∣∣ (X,y)
]]

≤E(X,y)

[
E(X′,y′)

[
sup
h∈Hdac

L̂(X′,y′)(h)− L̂(X,y)(h)

∣∣∣∣ (X,y)

]]
(Law of iterated conditional expectation)

=E(X,y,X′,y′)

[
sup
h∈Hdac

L̂(X′,y′)(h)− L̂(X,y)(h)

]
Since (X,y) , (X′,y′) are drawn i.i.d. from P , we can introduce i.i.d. Rademacher random variables r =
{ri ∈ {−1,+1} | i ∈ [N ]} (independent of both (X,y) and (X′,y′)) such that

E
[
g+(X,y)

]
≤E(X,y,X′,y′,r)

[
sup
h∈Hdac

1

N

N∑
i=1

ri · (l (h (x′i) , y
′
i)− l (h (xi) , yi))

]

≤2 E(X,y,r)

[
sup
h∈Hdac

1

N

N∑
i=1

ri · l (h (xi) , yi)

]
≤2 RN (l ◦ Hdac)

where l ◦ Hdac = {l(h(·), ·) : X × Y → R : h ∈ Hdac} is the loss function class, and

RN (F) , E(X,y,r)

[
sup
f∈F

1

N

N∑
i=1

ri · f (xi, yi)

]

denotes the Rademacher complexity. Analogously, E[g−(X,y)] ≤ 2RN (l ◦ Hdac). Therefore, assuming that T dac
Ã,X

(H) ⊆
Hdac(H) holds, with probability at least 1− δ/2,

L(ĥdac)− L(h∗) ≤ 4RN (l ◦ Hdac) +

√
2B2 log(4/δ)

N

Finally, since l(·, y) is Cl-Lipschitz for all y ∈ Y , by Ledoux and Talagrand (2013) Theorem 4.12, we have
RN (l ◦ Hdac) ≤ Cl ·RN (Hdac). �

Lemma 4 (Cai et al. (2021), Lemma A.1). For any h ∈ Hdac, when P satisfies
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(a) (q, 2µ)-constant expansion with q < 1
2 , P (M) ≤ max {q, 2µ};

(b)
(
1
2 , c
)
-multiplicative expansion with c > 1 + 4µ, P (M) ≤ max

{
2µ
c−1 , 2µ

}
.

Proof of Lemma 4. We start with the proof for Lemma 4 (a). By definition ofMk and ŷk, we know thatMk = M∩Xk ≤ 1
2 .

Therefore, for any 0 < q < 1
2 , one of the following two cases holds:

(i) P (M) < q;
(ii) P (M) ≥ q. Since P (M ∩ Xk) < 1

2 for all k ∈ [K] holds by construction, with the (q, 2µ)-constant expansion,
P (NB (M)) ≥ min {P (M) , 2µ}+ P (M).
Meanwhile, since the ground truth classifier h∗ is invariant throughout the neighborhoods, NB (Mk)∩NB (Mk′) = ∅
for k 6= k′, and therefore NB (M) \M =

⋃K
k=1 NB (Mk) \Mk with each NB (Mk) \Mk disjoint. Then, we observe

that for each x ∈ NB (M) \M , here exists some k = h∗ (x) such that x ∈ NB (Mk) \Mk. x ∈ Xk\Mk implies
that h (x) = ŷk, while x ∈ NB (Mk) suggests that there exists some x′ ∈ A (x) ∩ A (x′′) where x′′ ∈ Mk such
that either h (x′) = ŷk and h (x′) 6= h (x′′) for x′ ∈ A (x′′), or h (x′) 6= ŷk and h (x′) 6= h (x) for x′ ∈ A (x).
Therefore, we have

P (NB (M) \M) ≤ 2PP [∃ x′ ∈ A(x) s.t. h(x) 6= h(x′)] ≤ 2µ.

Moreover, since P (NB (M))− P (M) ≤ P (NB (M) \M) ≤ 2µ, we know that

min {P (M) , 2µ}+ P (M) ≤ P (NB (M)) ≤ P (M) + 2µ.

That is, P (M) ≤ 2µ.

Overall, we have P (M) ≤ max {q, 2µ}.

To show Lemma 4 (b), we recall from Wei et al. (2021) Lemma B.6 that for any c > 1 + 4µ,
(
1
2 , c
)
-multiplicative

expansion implies
(

2µ
c−1 , 2µ

)
-constant expansion. Then leveraging the proof for Lemma 4 (a), with q = 2µ

c−1 , we have

P (M) ≤ max
{

2µ
c−1 , 2µ

}
. �

Proof of Theorem 8. To show Equation (8), we leverage Lemma 3 and observe that B = 1 with the zero-one loss. There-
fore, conditioned onHdac (which depends only on Xu but not on X), for any δ ∈ (0, 1), with probability at least 1− δ/2,

L01

(
ĥdac

)
− L01 (h∗) ≤ 4RN (l01 ◦ Hdac) +

√
2 log(4/δ)

N
.

For the upper bounds of the Rademacher complexity, let µ̃ , suph∈Hdac
P (M) where M denotes the global minority set

with respect to h ∈ Hdac. Lemma 4 suggests that

(a) when P satisfies (q, 2µ)-constant expansion for some q < 1
2 , µ̃ ≤ max {q, 2µ}; while

(b) when P satisfies ( 1
2 , c)-multiplicative expansion for some c > 1 + 4µ, µ̃ ≤ 2µ

min{c−1,1} .

Then, it is sufficient to show that, conditioned onHdac,

RN (l01 ◦ Hdac) ≤
√

2K log(2N)

N
+ 2µ̃. (9)

To show this, we first consider a fixed set of n observations in X , X = [x1, . . . ,xN ]
> ∈ XN . Let the number of distinct

behaviors over X inHdac be

s (l01 ◦ Hdac,X) ,
∣∣{[l01 ◦ h (x1) , . . . , l01 ◦ h (xN )]

∣∣ h ∈ Hdac
}∣∣ .

Then, by the Massart’s finite lemma, the empirical rademacher complexity with respect to X is upper bounded by

R̂X (l01 ◦ Hdac) ≤
√

2 log s (l01 ◦ Hdac,X)

N
.
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By the concavity of
√

log (·), we know that,

RN (l01 ◦ Hdac) =EX

[
R̂X (l01 ◦ Hdac)

]
≤ EX

[√
2 log s (l01 ◦ Hdac,X)

N

]

≤
√

2 logEX [s (l01 ◦ Hdac,X)]

N
. (10)

Since P (M) ≤ µ̃ ≤ 1
2 for all h ∈ Hdac, we have that, conditioned onHdac,

EX [s (l01 ◦ Hdac,X)] ≤
N∑
r=0

(
N

r

)
µ̃r (1− µ̃)

N−r ·
(

N − r − 1

min(K,N − r)− 1

)
2K+r

≤(2N)K
N∑
r=0

(
N

r

)
(2µ̃)

r
(1− µ̃)

N−r

=(2N)K (1− µ̃+ 2µ̃)
N

≤(2N)K · eNµ̃.

Plugging this into Equation (10) yields Equation (9). Finally, the randomness in Hdac is quantified by µ̃, µ, and upper
bounded by Proposition 7. �

D Supplementary Application: Domain Adaptation

As a supplementary example, we demonstrate the possible failure of DA-ERM, and alternatively how DAC regularization
can serve as a remedy. Concretely, we consider an illustrative linear regression problem in the domain adaptation setting:
with training samples drawn from a source distribution P s and generalization (in terms of excess risk) evaluated over a
related but different target distribution P t. With distinct EP s [y|x] and EP t [y|x], we assume the existence of an unknown
but unique inclusionwisely maximal invariant feature subspace Xr ⊂ X such that P s [y|x ∈ Xr] = P t [y|x ∈ Xr], we
aim to demonstrate the advantage of the DAC regularization over the ERM on augmented training set, with a provable
separation in the respective excess risks.

x

ζiv ζe

ey

Figure 5: Causal graph shared by P s and P t.

Source and target distributions. Formally, the source and target distributions are concretized with the causal graph in
Figure 5. For both P s and P t, the observable feature x is described via a linear generative model in terms of two latent
features, the ‘invariant’ feature ζiv ∈ Rdiv and the ‘environmental’ feature ζe ∈ Rde :

x = g(ζiv, ζe) , S
[
ζiv; ζe

]
= Sivζiv + Seζe,

where S =
[
Siv,Se

]
∈ Rd×(div+de) (div + de ≤ d) consists of orthonormal columns. Let the label y depends only on the

invariant feature ζiv for both domains,

y = (θ∗)
>

x + z = (θ∗)
>

Sivζiv + z, z ∼ N
(
0, σ2

)
, z ⊥ ζiv,

for some θ∗ ∈ Range (Siv) such that P s [y|ζiv] = P t [y|ζiv], while the environmental feature ζe is conditioned on y, ζiv ,
(along with the Gaussian noise z), and varies across different domains e with EP s [y|x] 6= EP t [y|x]. In other words, with
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the square loss l(h(x), y) = 1
2 (h(x)− y)2, the optimal hypotheses that minimize the expected excess risk over the source

and target distributions are distinct. Therefore, learning via the ERM with training samples from P s can overfit the source
distribution, in which scenario identifying the invariant feature subspace Range (Siv) becomes indispensable for achieving
good generalization in the target domain.

For P s and P t, we assume the following regularity conditions:
Assumption 2 (Regularity conditions for P s and P t). Let P s satisfy Assumption 1. While P t satisfies that EP t [xx>] � 0,
and

(a) for the invariant feature, ct,ivIdiv 4 EP t [ζivζ>iv] 4 Ct,ivIdiv for some Ct,iv ≥ ct,iv = Θ(1);
(b) for the environmental feature, EP t [ζeζ>e ] < ct,eIde for some ct,e > 0, and EP t [z · ζe] = 0.

Training samples and data augmentations. Let X = [x1; . . . ; xN ] be a set of N samples drawn i.i.d. from P s(x) such
that y = Xθ∗ + z where z ∼ N (0, σ2IN ). Recall that we denote the augmented training sets, including/excluding the
original samples, respectively, with

Ã(X) = [x1; · · · ; xN ; x1,1; · · · ; xN,1; · · · ; x1,α; · · · ; xN,α] ∈ X (1+α)N ,

A(X) = [x1,1; · · · ; xN,1; · · · ; x1,α; · · · ; xN,α] ∈ XαN .

In particular, we consider a set of augmentations that only perturb the environmental feature ζe, while keep the invariant
feature ζiv intact:

S>ivxi = S>ivxi,j , S>e xi 6= S>e xi,j ∀ i ∈ [n], j ∈ [α]. (11)

We recall the notion ∆ , A (X) −MX such that daug , rank (∆) = rank
(
Ã (X)− M̃X

)
(0 ≤ daug ≤ de), and

assume that X and A(X) are representative enough:
Assumption 3 (Diversity of X and A(X)). (X,y) ∈ Xn × Yn is sufficiently large with n � ρ4d, θ∗ ∈ Row(X), and
daug = de.

Excess risks in target domain. Learning from the linear hypothesis classH =
{
h(x) = x>θ

∣∣ θ ∈ Rd
}

, with the DAC
regularization on h (xi) = h (xi,j), we have

θ̂dac = argmin
θ∈Hdac

1

2N
‖y −Xθ‖22 , Hdac =

{
h (x) = θ>x

∣∣∆θ = 0
}
,

while with the ERM on augmented training set,

θ̂da−erm = argmin
θ∈Rd

1

2(1 + α)N

∥∥∥M̃y − Ã(X)θ
∥∥∥2
2
,

where M and M̃ denote the vertical stacks of α and 1 + α identity matrices of size n× n, respectively as denoted earlier.

We are interested in the excess risk on P t: Lt (θ)− Lt (θ∗) where Lt (θ) , EP t(x,y)
[
1
2 (y − x>θ)2

]
.

Theorem 9 (Domain adaptation with DAC). Under Assumption 2(a) and Assumption 3, θ̂dac satisfies that, with constant
probability,

EP s
[
Lt(θ̂

dac)− Lt(θ∗)
]
.

σ2div
N

. (12)

Theorem 10 (Domain adaptation with ERM on augmented samples). Under Assumption 2 and Assumption 3, θ̂dac and
θ̂da−erm satisfies that,

EP s
[
Lt(θ̂

da−erm)− Lt(θ∗)
]
≥ EP s

[
Lt(θ̂

dac)− Lt(θ∗)
]

+ ct,e · EERe, (13)

for some EERe > 0.

In contrast to θ̂dac where the DAC constraints enforce S>e θ̂
dac = 0 with a sufficiently diverse A (X) (Assumption 3),

the ERM on augmented training set fails to filter out the environmental feature in θ̂da−erm: S>e θ̂
da−erm 6= 0. As a

consequence, the expected excess risk of θ̂da−erm in the target domain can be catastrophic when ct,e →∞, as instantiated
by Example 3.
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Proofs and instantiation. Recall that for ∆ , A(X)−MX, P⊥∆ , Id −∆†∆ denotes the orthogonal projector onto
the dimension-(d − daug) null space of ∆. Furthermore, let Piv , SivS

>
iv and Pe , SeS

>
e be the orthogonal projectors

onto the invariant and environmental feature subspaces, respectively, such that x = Sivζiv + Seζe = (Piv + Pe) x for all
x.

Proof of Theorem 9. By construction Equation (11), ∆Piv = 0, and it follows that Piv 4 P⊥∆. Meanwhile from Assump-
tion 3, daug = de implies that dim

(
P⊥∆

)
= div . Therefore, Piv = P⊥∆, and the data augmentation consistency constraints

can be restated as

Hdac =
{
h (x) = θ>x

∣∣ P⊥∆θ = θ
}

=
{
h (x) = θ>x

∣∣ Pivθ = θ
}

Then with θ∗ ∈ Row(X) from Assumption 3,

θ̂dac − θ∗ =
1

N
Σ̂†Xiv

PivX
>(XPivθ

∗ + z)− θ∗ =
1

N
Σ̂†Xiv

PivX
>z,

where Σ̂Xiv
, 1

NPivX
>XPiv . Since θ̂dac − θ∗ ∈ Col (Siv), we have EP t

[
z · x>Pe(θ̂

dac − θ∗)
]

= 0. Therefore, let

Σx,t , EP t [xx>], with high probability,

EP s
[
Lt(θ̂

dac)− Lt(θ∗)
]

= EP s

[
1

2

∥∥∥θ̂dac − θ∗∥∥∥2
Σx,t

]
= tr

(
1

2N
EP s

[
zz>

]
EP s

[(
1

N
PivX

>XPiv

)†]
Σx,t

)

= tr

(
σ2

2N
EP s

[
Σ̂†Xiv

]
Σx,t

)
≤ Ct,iv

σ2

2N
tr
(
EP s

[
Σ̂†Xiv

])
(Lemma 5, w.h.p.)

.
σ2

2N
tr
((

EP s
[
Pivxx>Piv

])†)
≤ σ2div

2Nc
.

σ2div
2N

.

�

Proof of Theorem 10. Let Σ̂Ã(X) ,
1

(1+α)N Ã (X)
> Ã (X). Then with θ∗ ∈ Row(X) from Assumption 3, we have

θ∗ = Σ̂†
Ã(X)

Σ̂Ã(X)θ
∗. Since θ∗ ∈ Col (Siv), M̃Xθ∗ = M̃XPivθ

∗ = Ã(X)θ∗. Then, the ERM on the augmented
training set yields

θ̂da−erm − θ∗ =
1

(1 + α)N
Σ̂†
Ã(X)
Ã(X)>M̃(Xθ∗ + z)− Σ̂†

Ã(X)
Σ̂Ã(X)θ

∗

=
1

(1 + α)N
Σ̂†
Ã(X)
Ã(X)>M̃z.

Meanwhile with EP t [z · ζe] = 0 from Assumption 2, we have EP t [z ·Pex] = 0. Therefore, by recalling that Σx,t ,
EP t [xx>],

Lt(θ)− Lt(θ∗) = EP t(x)
[

1

2

(
x>(θ − θ∗)

)2
+ z · x>Pe(θ − θ∗)

]
=

1

2
‖θ∗ − θ‖2Σx,t

,

such that the expected excess risk can be expressed as

EP s
[
Lt(θ̂

da−erm)− Lt(θ∗)
]

=
1

2(1 + α)2N2
tr
(
EP s

[
Σ̂†
Ã(X)

(
Ã(X)>M̃zz>M̃>Ã(X)

)
Σ̂†
Ã(X)

]
Σx,t

)
,
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where let Σ̂Ã(Xe)
, PeΣ̂Ã(X)Pe,

EP s
[
Σ̂†
Ã(X)

(
Ã(X)>M̃zz>M̃>Ã(X)

)
Σ̂†
Ã(X)

]
< EP s

[(
PivΣ̂

†
Ã(X)

Piv + PeΣ̂
†
Ã(X)

Pe

)
Ã(X)>M̃zz>M̃>Ã(X)

(
PivΣ̂

†
Ã(X)

Piv + PeΣ̂
†
Ã(X)

Pe

)]
< σ2(1 + α)2N · EP s

[
Σ̂†Xiv

]
+ EP s

[
Σ̂†
Ã(Xe)

Ã(Xe)
>M̃zz>M̃>Ã(Xe)Σ̂

†
Ã(Xe)

]
.

We denote

EERe , tr

(
EP s

[
1

2(1 + α)2N2
Σ̂†
Ã(Xe)

Ã(Xe)
>M̃zz>M̃>Ã(Xe)Σ̂

†
Ã(Xe)

])
,

and observe that

EERe = EP s
[

1

2

∥∥∥∥ 1

(1 + α)N
Σ̂†
Ã(Xe)

Ã(Xe)
>M̃z

∥∥∥∥2
2

]
> 0.

Finally, we complete the proof by partitioning the lower bound for the target expected excess risk of θ̂da−erm into the
invariantand environmental parts such that

EP s
[
Lt(θ̂

da−erm)− Lt(θ∗)
]

≥ tr

(
σ2

2N
EP s

[
Σ̂†Xiv

]
Σx,t

)
︸ ︷︷ ︸

=E[Lt(θ̂dac)−Lt(θ∗)]

+ tr

(
EP s

[
1

2(1 + α)2N2
Σ̂†
Ã(Xe)

Ã(Xe)
>M̃zz>M̃>Ã(Xe)Σ̂

†
Ã(Xe)

]
Σx,t

)
︸ ︷︷ ︸

expected excess risk from environmental feature subspace≥ct,e·EERe

≥ EP s
[
Lt(θ̂

dac)− Lt(θ∗)
]

+ ct,e · EERe.

�

Now we construct a specific domain adaptation example with a large separation (i.e., proportional to de) in the target excess
risk between learning with the DAC regularization (i.e., θ̂dac) and with the ERM on augmented training set (i.e., θ̂da−erm).

Example 3. We consider P s and P t that follow the same set of relations in Figure 5, except for the distributions over e
where P s (e) 6= P t (e). Precisely, let the environmental feature ζe depend on (ζiv, y, e):

ζe = sign
(
y − (θ∗)

>
Sivζiv

)
e = sign(z)e, z ∼ N (0, σ2), z ⊥ e,

where e ∼ N (0, Ide) for P s(e) and e ∼ N
(
0, σ2

t Ide
)

for P t(e), σt ≥ ct,e (recall ct,e from Assumption 2). Assume that
the training set X is sufficiently large, n � de + log (1/δ) for some given δ ∈ (0, 1). Augmenting X with a simple by
common type of data augmentations – the linear transforms, we let

Ã(X) = [X; (XA1) ; . . . ; (XAα)] , Aj = Piv + ujv
>
j , uj ,vj ∈ Col (Se) ∀ j ∈ [α],

and define

ν1 , max {1} ∪ {σmax(Aj) | j ∈ [α]} and ν2 , σmin

 1

1 + α

Id +

α∑
j=1

Ak

 ,

where σmin(·) and σmax(·) refer to the minimum and maximum singular values, respectively. Then under Assumption 2
and Assumption 3, with constant probability,

EP s
[
Lt(θ̂

da−erm)− Lt(θ∗)
]
& EP s

[
Lt(θ̂

dac)− Lt(θ∗)
]

+ ct,e ·
σ2de
2N

.
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Proof of Example 3. With the specified distribution, for E = [e1; . . . ; eN ] ∈ RN×de ,

Σ̂Ã(Xe)
=

1

(1 + α)N
Se

E>E +

α∑
j=1

A>j E>EAj

S>e 4
ν21
N

SeE
>ES>e ,

1

(1 + α)N
Ã(Xe)

>M̃z =

 1

1 + α

Id +

α∑
j=1

Aj

> 1

N
SeE

> |z| .

By Lemma 5, under Assumption 2 and Assumption 3, we have that with high probability, 0.9Ide 4
1
NE>E 4 1.1Ide .

Therefore with E and z being independent,

EERe = EP s
[

1

2

∥∥∥∥ 1

(1 + α)N
Σ̂†
Ã(Xe)

Ã(Xe)
>M̃z

∥∥∥∥2
2

]

≥ σ2

2N

ν22
ν41

tr

(
EP s

[(
1

N
SeE

>ES>e

)†])

&
σ2

2N

ν22
ν41
de

&
σ2de
2N

,

and the rest follows from Theorem 10. �

E Technical Lemmas

Lemma 5. We consider a random vector x ∈ Rd with E[x] = 0, E[xx>] = Σ, and x = Σ−1/2x 6 being ρ2-subgaussian.
Given an i.i.d. sample of x, X = [x1, . . . ,xn]>, for any δ ∈ (0, 1), if n � ρ4d, then 0.9Σ 4 1

nX>X 4 1.1Σ with high
probability.

Proof. We first denote PX , ΣΣ† as the orthogonal projector onto the subspace X ⊆ Rd supported by the distribution
of x. With the assumptions E[x] = 0 and E[xx>] = Σ, we observe that E [x] = 0 and E

[
xx>

]
= E

[
xΣ−1x>

]
= PX .

Given the sample set X of size n � ρ4 (d+ log(1/δ)) for some δ ∈ (0, 1), we let U = 1
n

∑n
i=1 xiΣ

−1x>i − PX . Then
the problem can be reduced to showing that, with probability at least 1 − δ, ‖U‖2 ≤ 0.1. For this, we leverage the ε-net
argument as following.

For an arbitrary v ∈ X ∩ Sd−1, we have

v>Uv =
1

n

n∑
i=1

(
v>xiΣ

−1x>i v − 1
)

=
1

n

n∑
i=1

((
v>xi

)2 − 1
)
,

where, given xi being ρ2-subgaussian, v>xi is ρ2-subgaussian. Since

E
[(

v>xi
)2]

= v>E
[
xix
>
i

]
v = 1,

we know that
(
v>xi

)2 − 1 is 16ρ2-subexponential. Then, we recall the Bernstein’s inequality,

P
[∣∣v>Uv

∣∣ > ε
]
≤ 2 exp

(
−n

2
min

(
ε2

(16ρ2)
2 ,

ε

16ρ2

))
.

6In the case where Σ is rank-deficient, we slightly abuse the notation such that Σ−1/2 and Σ−1 refer to the respective pseudo-
inverses.
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Let N ⊂ X ∩ Sd−1 be an ε1-net such that |N | = eO(d). Then for some 0 < ε2 ≤ 16ρ2, by the union bound,

P
[
max
v∈N

:
∣∣v>Uv

∣∣ > ε2

]
≤ 2 |N | exp

(
−n

2
min

(
ε22

(16ρ2)
2 ,

ε2
16ρ2

))

≤ exp

(
O (d)− n

2
· ε22

(16ρ2)
2

)
≤ δ

whenever n >
2(16ρ2)

2

ε22

(
Θ (d) + log 1

δ

)
. By taking δ = exp

(
− 1

4

(
ε2

16ρ2

)2
n

)
, we have that max

v∈N

∣∣v>Uv
∣∣ ≤ ε2 with

high probability when n > 4
(

16ρ2

ε2

)2
Θ (d), and taking n� ρ4d is sufficient.

Now for any v ∈ X ∩ Sd−1, there exists some v′ ∈ N such that ‖v − v′‖2 ≤ ε1. Therefore,∣∣v>Uv
∣∣ =

∣∣∣v′>Uv′ + 2v′>U (v − v′) + (v − v′)
>

U (v − v′)
∣∣∣

≤
(

max
v∈N

:
∣∣v>Uv

∣∣)+ 2 ‖U‖2 ‖v
′‖2 ‖v − v′‖2 + ‖U‖2 ‖v − v′‖22

≤
(

max
v∈N

:
∣∣v>Uv

∣∣)+ ‖U‖2
(
2ε1 + ε21

)
.

Taking the supremum over v ∈ Sd−1, with probability at least 1− δ,

max
v∈X∩ Sd−1

:
∣∣v>Uv

∣∣ = ‖U‖2 ≤ ε2 + ‖U‖2
(
2ε1 + ε21

)
, ‖U‖2 ≤

ε2

2− (1 + ε1)
2 .

With ε1 = 1
3 and ε2 = 1

45 , we have ε2
2−(1+ε1)2

= 1
10 .

Overall, if n� ρ4d, then with high probability, we have ‖U‖2 ≤ 0.1. �

Lemma 6. Let U ⊆ Rd be an arbitrary subspace in Rd, and g ∼ N (0, Id) be a Gaussian random vector. Then for any
continuous and Cl-Lipschitz function ϕ : R→ R (i.e., |ϕ(u)− ϕ(u′)| ≤ Cl · |u− u′| for all u, u′ ∈ R),

Eg

[
sup
u∈U

g>ϕ(u)

]
≤ Cl · Eg

[
sup
u∈U

g>u

]
,

where ϕ acts on u entry-wisely, (ϕ(u))j = ϕ(uj). In other words, the Gaussian width of the image set ϕ(U) ,{
ϕ(u) ∈ Rd | u ∈ U

}
is upper bounded by that of U scaled by the Lipschitz constant.

Proof.

Eg

[
sup
u∈U

g>ϕ(u)

]
=

1

2
Eg

[
sup
u∈U

g>ϕ(u) + sup
u′∈U

g>ϕ(u)

]
=

1

2
Eg

[
sup

u,u′∈U
g> (ϕ(u)− ϕ(u′))

]

≤1

2
Eg

 sup
u,u′∈U

d∑
j=1

|gj |
∣∣ϕ(uj)− ϕ(u′j)

∣∣ (since ϕ is Cl-Lipschitz)

≤Cl
2
Eg

 sup
u,u′∈U

d∑
j=1

|gj |
∣∣uj − u′j∣∣


=
Cl
2
Eg

[
sup

u,u′∈U
g> (u− u′)

]
=
Cl
2
Eg

[
sup
u∈U

g>u + sup
u′∈U

g> (−u′)

]
=Cl · Eg

[
sup
u∈U

g>u

]
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F Experiment Details

In this section, we provide the details of our experiments. Our code is adapted from the publicly released repo: https:
//github.com/kekmodel/FixMatch-pytorch.

Dataset: Our training dataset is derived from CIFAR-100, where the original dataset contains 50,000 training samples of
100 different classes. Out of the original 50,000 samples, we randomly select 10,000 labeled data as training set (i.e., 100
labeled samples per class). To see the impact of different training samples, we also trained our model with dataset that
contains 1,000 and 20,000 samples. Evaluations are done on standard test set of CIFAR-100, which contains 10,000 testing
samples.

Data Augmentation: During the training time, given a training batch, we generate corresponding augmented samples by
RandAugment (Cubuk et al., 2020). We set the number of augmentations per sample to 7, unless otherwise mentioned.

To generate an augmented image, the RandAugment draws n transformations uniformaly at random from 14 different
augmentations, namely {identity, autoContrast, equalize, rotate, solarize, color, posterize, contrast, brightness, sharpness,
shear-x, shear-y, translate-x, translate-y}. The RandAugment provides each transformation with a single scalar (1 to 10)
to control the strength of each of them, which we always set to 10 for all transformations. By default, we set n = 2 (i.e.,
using 2 random transformations to generate an augmented sample). To see the impact of different augmentation strength,
we choose n ∈ {1, 2, 5, 10}. Examples of augmented samples are shown in Figure 4.

Parameter Setting: The batch size is set to 64 and the entire training process takes 215 steps. During the training, we
adopt the SGD optimizer with momentum set to 0.9, with learning rate for step i being 0.03× cos

(
i×7π

215×16

)
.

Additional Settings for the semi-supervised learning results: For the results on semi-supervised learning, besides the
10,000 labeled samples, we also draw additionally samples (ranging from 5,000 to 20,000) from the training set of the
original CIFAR-100. We remove the labels of those additionally sampled images, as they serve as “unlabeled" samples
in the semi-supervised learning setting. The FixMatch implementation follows the publicly available on in https:
//github.com/kekmodel/FixMatch-pytorch.

https://github.com/kekmodel/FixMatch-pytorch
https://github.com/kekmodel/FixMatch-pytorch
https://github.com/kekmodel/FixMatch-pytorch
https://github.com/kekmodel/FixMatch-pytorch
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