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Abstract

Finite element simulations of physical systems
governed by partial differential equations (PDE)
crucially depend on adaptive mesh refinement
(AMR) to allocate computational budget to re-
gions where higher resolution is required. Exist-
ing scalable AMR methods make heuristic refine-
ment decisions based on instantaneous error esti-
mation and thus do not aim for long-term optimal-
ity over an entire simulation. We propose a novel
formulation of AMR as a Markov decision pro-
cess and apply deep reinforcement learning (RL)
to train refinement policies directly from simula-
tion. AMR poses a challenge for RL as both the
state dimension and available action set changes
at every step, which we solve by proposing new
policy architectures with differing generality and
inductive bias. The model sizes of these policy
architectures are independent of the mesh size
and hence can be deployed on larger simulations
than those used at training time. We demonstrate
in comprehensive experiments on static function
estimation and time-dependent equations that RL
policies can be trained on problems without us-
ing ground truth solutions, are competitive with
a widely-used error estimator, and generalize to
larger and unseen test problems.
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1 INTRODUCTION

Numerical simulation of PDEs via the finite element method
(FEM) (Brenner and Scottl 2007) plays an integral role in
computational science and engineering (Reddy and Gartling,
2010; Monk et al.l 2003). Given a fixed set of basis func-
tions, the resolution of the finite element mesh determines
the trade-off between solution accuracy and computational
cost. For problems with large variations in local solution
characteristics, uniform meshes can be computationally in-
efficient due to their suboptimal distribution of mesh density,
under-resolving regions with complex features such as dis-
continuities or large gradients and over-resolving regions
with smoothly varying solutions. For systems with multi-
scale properties, attempting to resolve these features with
uniform meshes can be challenging even on the largest super-
computers. To achieve more efficient numerical simulations,
adaptive mesh refinement (AMR), a class of methods that
dynamically adjust the mesh resolution during a simulation
to maintain equidistribution of error, is used to significantly
increase accuracy relative to computational cost.

Existing methods for AMR share the iterative process of
computing a solution on the current mesh, estimating refine-
ment indicators, marking element(s) to refine, and generat-
ing a new mesh by refining marked elements (Bangerth and
Rannacher, [2013; Cerven}’l et al.}2019). The optimal algo-
rithms for error estimation and marking in many problems,
especially evolutionary PDEs, are not known (Bohn and
Feischl, 2021)), and deriving them is difficult for complex
refinement schemes such as hp-refinement (Zienkiewicz
et al.,|1989). As such, the current state-of-the-art is guided
largely by heuristic principles that are derived by intuition
and expert knowledge (Zienkiewicz and Zhu, |1992), such as
using an instantaneous error estimator with greedy element
marking, but choosing the best combination of heuristics is
complex and not well understood. Whether and how opti-
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Figure 1: AMR viewed as a Markov decision process.

mal AMR strategies can be found by directly optimizing a
long-term performance objective are open questions.

We advance the novel notion that adaptive mesh refinement
is fundamentally a sequential decision-making problem:
making an optimal sequence of refinement decisions to opti-
mize cumulative or terminal accuracy, subject to a compu-
tational budget. We hypothesize that a sequence of greedy
decisions based on instantaneous error indicators does not
constitute an optimal sequence of decisions. This is because
the optimality of a current refinement decision depends on
complex interactions between solution dynamics, budget
consumption, and the propagation of numerical error from
the current decision throughout the system, all of which
impact solution accuracy many steps into the future and
are not revealed by instantaneous error. In time-dependent
problems for example, an error estimator by itself cannot
preemptively refine elements which would encounter com-
plex features in the next time step.

Given this perspective, we formulate AMR as a Markov
decision process (MDP) (Puterman) 2014) (Figurem) and
propose a reinforcement learning (RL) (Sutton and Bartol,
2018)) approach to train a mesh refinement policy to op-
timize a performance metric, such as final solution error.
AMR poses a challenge for RL as the sizes of the state and
set of available actions depend on the current number of
mesh elements, which changes with each refinement action
at every MDP time step. One may define a fixed bounded
state and action space given a finite refinement budget, but
this is inefficient as the policy’s input-output dimensions
must accommodate the full exponentially large space—e.g.,
input dimensions on the order of millions of degrees of free-
dom in large applications—whereas only subspaces (with
increasing size) are encountered. This motivates us to de-
sign efficient policy architectures that leverage the known
correspondence between each mesh state and valid actions.

Our paper contributes a proof of feasibility for an entirely
novel way of learning AMR strategies using deep RL. In
particular: 1) We formally define an MDP with effective
variable-size state and action spaces for AMR (Section [3.2);
2) We propose three policy architectures—with differing
generality and inductive bias for modeling interaction—that
operate on such variable-size spaces (Section [)); 3) Toward
the eventual goal of deploying on large and complex prob-
lems on which RL cannot tractably be trained, we propose

to train on small representative features with known ana-
lytic solutions and using a novel reward formulation that
applies to problems without known solutions (Section [3));
4) Our experiments demonstrate for the first time that RL
can outperform a greedy refinement strategy based on the
widely-used Zienkiewicz-Zhu-type error estimator; more-
over, we show that an RL refinement policy can generalize
to higher refinement budgets and larger meshes, transfer
effectively from static to time-dependent problems, and can
be effectively trained on more complex problems without
readily-available ground truth solutions (Section [6).

2 RELATED WORK

To the best of our knowledge, our work is the first to formu-
late AMR as a global sequential decision-making problem
and show the feasibility of an RL approach. A contempo-
raneous single-agent local approach centers the decision-
making on each individual element (Foucart et al.,[2022),
requiring different definitions of the environment transition
between training and test time for scalability. Brevis et al.
(2020) apply supervised learning to find an optimal parame-
terized test space without modifying the degrees of freedom.
Bohn and Feischl (2021)) show theoretically that the esti-
mation and marking steps of AMR for an elliptic PDE can
be represented optimally by a recurrent neural network, but
model optimization was not addressed.

Previous work have trained neural networks to predict static
(non-adaptive) mesh densities and sizes for use by down-
stream mesh generators (Dyck ef al.| [1992; |(Chedid and Naj+
jarl [1996; |Zhang et al., [2020; |Pfaff et al.| [2020; (Chen and
Fidkowskil, [2020). More recently, neural network policies
have been trained via RL to generate a mesh incrementally
from initial boundary vertices |Pan et al.| (2023). Recent
studies have used graph neural networks (GNN) (Sperduti
and Starital, {1997} |Gor1 et al.| 2005 Scarselli et al.| [2008))
to predict PDE dynamics on general unstructured and non-
uniform meshes (Alet et all 2019; [Belbute-Peres et al.l
20205 [Pfatt et al., 2020). Other work use neural networks
as function approximators in numerical solvers to achieve
faster convergence, generalization, and higher resolution of
coarse simulations (Hsieh et al.,[2018;|Luz et al.| 2020; [Bar{
Sinai et al.l2019). Our work focuses on optimizing a finite
element space via training a policy that changes the mesh,
rather than predicting dynamics or learning components of
a solver.

Adjoint-based methods for goal-oriented AMR can opti-
mize a cost such as terminal solution accuracy (Offermans
et al.,[2017; Rannacher, 2014} |Apel et al.|,[2014), but they
incur significant complexity such as a forward-backward
solve and a checkpointing system for the backwards-in-time
solution (Becker and Rannacher, 2001)), which limits their
scalability to coarse grids (Davis and LeVeque, [2020).

Both state and action space sizes change at every time step
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within an episode in AMR, whereas RL has been typically
applied to environments with fixed-size observation and
small bounded action spaces in almost all benchmark prob-
lems (Mnih et al.| 20155 [Brockman et al., 2016; |Osband
et al., 2019). Applications where the available action set
varies with state (Berner et al.[2019; [Vinyals et al.,|2019)
do not face the challenge of potentially millions of possible
actions that arises in large-scale AMR. Applications of RL
to graph-structured problems handle states with increasing
size, but the action space does not grow with the size of the
graph (You et al.| [2018}; Trivedi et al., [2020).

3 BACKGROUND AND FORMULATION

3.1 Finite Element Method

Our mesh adaptation strategy is implemented in a FEM-
based framework (Brenner and Scott, 2007). In FEM, the
domain  C RP is modeled with a mesh that is a union of
E nonoverlapping subsets (elements) such that  := | Q
where k € N: k < E (e.g., see Figure . The solution on
these elements is represented using polynomials (basis func-
tions) which are used to transform the governing equations
into a system of algebraic equations via the weak formula-
tion. AMR is a commonly used approach to improve the
trade-off between the solution accuracy, which depends on
the shape and sizes of elements, and the computational cost,
which depends on the number of elements. The most ubiq-
uitous method for AMR is h-refinement, whereby elements
are split into smaller elements (refinement) or multiple ele-
ments coalesce to form a single element (derefinement).

3.2 AMR as a Markov Decision Process

We formulate AMR with spatial h-reﬁnemeniﬂ as a Markov
decision process M := (O, Nnax, A, R, P,) with each
component defined as follows. Each episode consists of
T RL time steps: for time-dependent PDEs, T" spans the
entire simulation and there may be multiple underlying PDE
evolution steps per RL step; for static problems, 7" is an
arbitrary number of steps at which RL can act. Consider
a time step ¢ when the current mesh has Ny < Nyx € N
elements. Each element ¢ is associated with an observation
ol € O and the global state is s; := [o},...,0] € ONe.
We define O := R? such that each element’s observation is
a tensor of shape d := | x w X c that includes the values
and refinement depths of a local window centered on itself
(see Appendix [A.T.T)). For brevity, let S; denote the current
global state space OVt. We denote an action by a; € A; :=
{0,1,...,N;} € A:={0,1,..., Nyax}, where 0 means
“do-nothing” and ¢ # 0 means refine element i. Given the
current state and action, the MDP transition P consists of:

"Polynomial p-refinement can be formulated in a similar way.
r-refinement (Huang and Russelll |2010; |Dobrev ef al.,2019) can
be formulated as an RL problem but is not treated in this work.

1) refining the selected element into multiple finer elements
(which increases [V;) if a refinement budget B is not ex-
ceeded and the selected element is not at the maximum
refinement depth dp,y;

2) stepping the finite element simulation forward in time
(for time-dependent PDEs only);

3) computing a solution on the new finite element space.

Steps 1-3 are standard procedures in FEM (Anderson et al.|
2021)), knowledge of which is not used in our proposed
model-free RL approach. Although the size of the state vec-
tor and set of valid actions changes with each time step due
to the varying Vy, this MDP is well-defined since one can de-
fine the global state space as the union of all ON. N < Npas
and likewise for the action space. An agent moves through
subspaces of increasing size during an episode.

When a true solution is available at training time, the reward
at step ¢ is defined as the change in error from the previ-
ous step, normalized by the initial error to reduce variation
across function classes:

e := ([lee—1ll2 — lletll2)/[leoll2 » (1)

where error e is computed relative to the true solution. With
abuse of notation, we shall use e to indicate the error norm.
The ground truth is not needed to deploy a trained policy
on test problems. When the true solution is not readily
available, as is the case for most non-trivial PDEs, one may
run a reference simulation on a highly-resolved mesh to
compute equation[I] but this approach can be prohibitively
expensive for training on large-scale simulations. Instead,
we propose the use of a surrogate reward ry = ||t refine —
Ut no-refine|| 2> the normed difference between the estimated
solution u with and without executing the chosen refinement
action. This surrogate, which is an upper bound on the
true reward and effectively acts as an estimate of the error
reduction, is only used at training time, whereas at test time,
the effectiveness of trained policies is evaluated using the
error with respect to a highly-resolved reference simulation.

Our objective to find a stochastic policy m: S — A(A) to
maximize the objective

T
J(m) = Eann(ls),sip1~P(lasse) [Z 7T

t=1

@)

Aside from v € (0, 1), the dense and shaped reward (Ng
et al., [1999)) defined in equation E] implies that maximiz-
ing this objective is equivalent to maximizing total error
reduction: eg — efna1. We work with the class of policy opti-
mization methods as they naturally admit stochastic policies
that could benefit AMR at test time: a stochastic refine-
ment action could reveal the need for further refinement
in a region that appears flat on a coarse mesh. We build
on REINFORCE and PPO (Sutton et al., 2000; |Schulman
et al.|[2017) to train a policy 7y (parameterized by ) using
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batches of trajectories {7y, := {(s¢, as, 7¢)x } 1}, gen-
erated by the current policy. By virtue of RL, 7y is trained
not merely to act greedily but to account for dependence of
future rewards on current actions.

4 POLICY ARCHITECTURES FOR
VARIABLE STATE-ACTION SPACES

The exact 1:1 correspondence between the number of ob-
servation components and the number of valid actions calls
for dedicated policy architectures for AMR. Different in-
ductive biases expressed by different model architectures
can have significant impact on performance even when used
in the same learning algorithm (Battaglia et al.| 2018)). As
such, we investigate three policy architectures that address
the challenge of variable size state vector s € RYN+*? and
action set {0,1,..., N;}, where number of elements NV,
changes during each episode. These architectures are com-
patible with any stochastic policy gradient algorithm. We
focus on the special case of 1:1 correspondence between the
number of observations that compose each global state and
the number of available actions at that state. Although not
treated in this work, these policy architectures can be easily
extended to the general case of 1:k correspondenc

4.1 Independent Policy Network

The Independent Policy Network (IPN) handles the 1:1 cor-
respondence by mapping each observation to a probability
for the corresponding action. Let f5: R? — R be a func-
tion parameterized by 6. Given a matrix of observations
s:=[o',...,0"] € RN*4 we define the policy as

7(-|s) = softmax (fo(0'),..., fo(o™)) . (3

For example, using a neural network with hidden layer
W ¢ R%" with h nodes, output layer H € RM*1,
and activation function o, the discrete probability distri-
bution over N actions conditioned on s is defined by
softmax (o(sW)H). IPN is illustrated in Figure [2a]

IPN applies to meshes of variable size since the set of train-
able parameters 6 is independent of IV, but it has two main
limitations. Firstly, it makes a strong assumption of local-
ity as the action probability at an element does not depend
on the observations at other elements. This assumption
also appears in existing AMR methods that estimate error
independently at each element; in fact, the output probabil-
ities of IPN may be viewed as normalized error estimates.
Secondly, the permutation equivariance of this architecture—
ie., m(a*@|(o*V) ... oMN))) = 1(a’|s) for any permu-
tation operator y: [N] — [IN]—means that one cannot use

To include de-refinement actions (k = 2), the only change
is to map each element’s observation to two output logits, one
interpreted as refinement and the other de-refinement, and include
both in the global softmax over all elements.

the ordering of inputs to represent spatial relations among
elements, which would be necessary for refining an element
based on neighboring conditions. We mitigate this prob-
lem by defining each observation as an image that includes
neighborhood information and using a convolutional layer,
but this may face difficulties on unstructured meshes with
non-quadrilateral elements (Cerven}’/ et al.,2019).

4.2 Hypernetwork Policy

The hypernetwork policy captures higher-order interaction
among inputs via the function form (illustrated in Figure [2b)

ﬂ—('|s) = softmax (fg¢(s) (01)7 sy fg¢(s)(ON)) )

The main policy network weights 6 are now the output of
a hypernetwork (Ha et al.,2017) gg: RN>*? s RIM(O) pa.
rameterized by ¢, which produces mixing among the inputs
s € RV*4_ Continuing with the example in IPN, where the
policy network’s first layer is W € R%*" a hypernetwork

with two layers can be instantiated as [Zf\il (sU);, } V =

W where U € R¥™M and V' e R"1*(@%") are the train-
able parameters ¢, and M, . denotes the i-th row of matrix
M. The output W is then used as part of 6 in equation[3]

This increased generality comes with more difficulty in the
choice of g4, which affects the extent to which it captures
interaction among inputs. It does not contain an inductive
bias for the local nature of interactions in physical PDEs. In
fact, the use of a summation from ¢ = 1 to N in the example
above means that complete global information affects each
local refinement decision, which is a strong inductive bias.

4.3 Graph Network Policy

We build on graph networks (Scarselli ef al.| 2008} Battaglia
et al.| 2018) to address both the issue of interaction terms
and spatial relation among elements. Specifically, we con-
struct a policy based on Interaction Networks (Battaglia
et al.| 2016), illustrated in Figure which is a special
case without global attributesﬂ At each step, the mesh
is represented as a graph G = (V, E). Each vertex v’ in
V = {v'};=1.n corresponds to element i and is initialized
to be the observation o’. E = {(e*,r¥, s*)}1—1.n¢ is a set
of edges with attributes ¢ between sender vertex s* and
receiver vertex 7°. An edge exists between two vertices
if and only if they are spatially adjacent. We define the
initial edge attribute e* as a one-hot vector indicator of the
difference in refinement depth between r* and s*.

Graph networks capture the relations between nodes and
edges via the inductive bias of its update rules. The model
we use consists of a learned edge network ¢° and a node

3While not demonstrated in this work, one may define a global
graph attribute containing the PDE coefficients or initial/boundary
conditions and apply variants of Graph Networks that use global
attributes in their update rules to improve generalization.
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Figure 2: RL policy architectures for adaptive mesh refinement. (a) Independent Policy Network (IPN) applies the same
function fj to map each element’s observation o’ independently to logits, which are then mapped to action probabilities via
a global softmax. (b) The Hypernetwork policy generates the parameters 6 of the main network via a hypernetwork g
that receives global state s. (c) The Graph Network policy conducts multiple rounds of message passing, using learned edge
network ¢° and node network ¢" to update edge and node features individually and in parallel for all edges and nodes. Final
node features are mapped to logits, on which a global softmax is applied.

network ¢, which are applied individually and in paral-
lel to all edges and nodes. A single forward pass through
the graph policy involves multiple rounds of message pass-
ing (see Algorithm [I). Each round is defined by the fol-
lowing operations: 1) Each edge attribute e is updated
by learned function (° using local node information via
ek« ¢ (e¥, o , Usk); 2) For each node 7, we denote by
E' = {(éF,r¥, s%)},_; the set of all edges with node i
as the receiver, and all updated edge attributes are aggre-
gated into a single feature & + p°~¥(E*) by aggregation
function p¢~Y (e.g., element-wise sum); 3) Then, each node
attribute is updated by 9% + v (&!,v*) using learned func-
tion ¢". Each round increases the size of the neighborhood
that determines node attributes. Finally, we map each node
attribute to a scalar using learned function 1, apply a global
softmax over all nodes, and interpret the value at each node
1 as the probability of choosing element ¢ for refinement.

The graphnet policy addresses both limitations of the IPN
and the hypernetwork policy. Cross terms arise in the for-
ward pass due to mutual updates of edge and node attributes
using local information. The order of cross terms increases
with each message-passing round. Local spatial relations
between mesh elements are included by construction in the
adjacency matrix and initial edge attributes, so there is no
need to include global spatial information in each element’s
observation vector.

S EXPERIMENTAL SETUP

Our experiments assess the ability of RL, using the pro-
posed policy architectures, to find AMR strategies that gen-
eralize to test functionf] classes that differ from the train-
ing class, generalize to variable mesh sizes and refinement
budgets, and extend to more complex problems without
readily-available ground truth solutions. We define the FEM
environment in Section 5.1} the train-test procedure in Sec-
tion[5.2] and the implementation of our method and base-
lines in Section 3.3

5.1 AMR Environment

MFEM. We use MFEM (Anderson et al.l, [2021; MFEM,
2020), a modular open-source C++ library for FEM, to im-
plement the MDP for AMR. We ran experiments on two
classes of AMR problems: static and time-dependent. In the
static case, the objective of mesh refinement is to minimize
the L? error norm of projecting a variety of test functions
onto a two-dimensional H' finite element space. In the
time-dependent case, the functions are projected onto a two-
dimensional L? finite element space, and a PDE of the form
%1; + V-F(u) = 0 is solved on a periodic domain using the
finite element framework. Unlike the static case, the numer-

“In the sense of testing a policy’s performance after training,
not in the sense of the weak formulation of PDEs.
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ical error accumulated at each time step propagates with
the physical dynamics and determines future error. Two
types of PDEs were used: the linear advection equation,
where F(u) = cu with ¢ = [1, 0], and the nonlinear Burg-
ers equation, where F(u) = cu? with ¢ = [1,0.3]. The
advection equation is used as there is an analytic solution
to provide a ground truth, whereas the Burgers equation is
used as a representative of more complex physical systems,
including shock and rarefaction waves, without a readily-
available analytic solution. The solution is represented using
continuous (or discontinuous) second-order Bernstein poly-
nomials for the static (or time-dependent) case, and the
initial mesh is partitioned into n, X n, quadrilateral ele-
ments. Appendix contains further on the FEM and
MDP implementations.

True solutions. We defined a collection of parameterized
function classes, each exhibiting features such as sharp dis-
continuities and smooth variations, from which we randomly
sample ground truth functions f: [0, 1]? ~ R to initialize
each episode. The collection, shown in Figure [3] and de-
fined precisely in Appendix[A.1.2] includes: bumps, circles,
steps, and steps2 (a combination of two steps). These func-
tions with closed form allow us to compute the error and
reward at train time for static and advection problems. In
the case of Burgers equation where the exact solution is not
readily-available, we either use reference simulations on a
highly-resolved mesh to act as a “ground truth” or employ
the surrogate reward (defined in Section [3.2) to compute the
reward for training.

In the static case, the true solution is fixed and each simula-
tion time step is an RL step. For the time-dependent PDE
cases, the initial solution is transported through the periodic
domain and the ratio of simulation time steps to RL steps is
set such that a feature advecting at unit velocity returns to its
original position after 10 RL steps. We set episode length at
training time to equal the refinement budget B, with B = 10
for static problems, B = 20 for advection, and B = 50 for
Burgers. Larger budget (i.e., longer episode) was chosen
for the time-dependent problems to test the ability of RL to
find long-term refinement strategies that outperform greedy
baselines. All methods were subject to the same budget con-
straint. Due to the Gibbs phenomena in FEM, using smooth
polynomial approximations to solve hyperbolic systems con-
taining discontinuities can introduce spurious oscillations
which, in turn, can cause the simulation to become unstable.
Therefore, we limit the true solutions to smooth functions
(e.g., bumps, circles) for the advection and Burgers cases.
Due to the nonlinearity of Burgers equation, initially smooth
solutions can develop discontinuities in finite time. This be-
havior is resolved using the flux-corrected transport (FCT)
approach (Boris and Bookl, (1997).

(a) Bumps (b) Circles

(c) Steps (d) Steps2

Figure 3: Examples from each true solution function class.
5.2 Experiments and Performance Metric

We conducted the following experiments to compare RL
policies with baselines:

In-distribution: Train and test on true solutions sampled
from the same function class. Training and testing on differ-
ent function classes is unlikely in applications, since expert
knowledge of solution features is almost always available
and one can train on similar functions, but we include ex-
perimental results in Appendix B}

Out-of-distribution: For problems such as Burgers equa-
tion where training on multiple initial conditions (ICs) may
be expensive, we show the effectiveness of policies trained
on a single initial condition (IC) when tested on multiple
random ICs, either with or without fine-tuning.

Generalization: 1) Static—advection: Policies trained on
static functions are tested on advection. 2) Budget{: Poli-
cies trained with a small refinement budget B (20 on static
and 10 on advection) are test with B = 50, 100. 3) Size1:
Policies trained on an 8 x 8 mesh are tested on meshes up
to size 200 x 200 (360k solution nodes), a 625x increase in
element number, with and without preserving the relative
solution and mesh length scales.

We define the performance of a given refinement policy
in an episode in the static case as (€initial — Efinal )/ Einitials
where éjpitia1 (OF €fina1) 1S the error norm at the beginning
(or end) of an episode, to remove the variation in the er-
ror due to different true solution classes and random func-
tion initialization within each class. In the time-dependent
case, without any refinement, the error may increase over
the course of the simulation due to the accumulation of
discretization error. Hence, we define performance as
(eno-reﬁne, final — 6ﬁnal)/einitial, where €no-refine, final is the final
error without any refinement.

For every experiment and every policy architecture, we
trained four independent policies with different random
seeds. For each test case, we report the mean and standard
error—over the four independent policies and with different
simulator seeds —of the mean performance metric over 100
test episodes. At each test episode, all methods faced the
same initial condition (which differs across episodes).

5.3 Implementation and Baselines

We describe the high-level implementation here and provide
complete details in Appendix All policy architectures
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Figure 4: In-distribution and Static—advection. Performance of IPN, Graphnet and Hypernetwork policies versus
baselines. Higher values are better. (a,b) RL policies were trained and tested on the same function class, for static and
advection cases independently. (c) Static-trained policies on a function class are tested on advection of the same class.

use a convolutional neural network with the same architec-
ture as the input layer. The IPN has two fully-connected
hidden layers with h; and ho nodes and ReLU activation,
followed by a softmax output layer. Its action on input
states is described in Section[d.1} The Graphnet policy is
implemented with the Graph Nets library (Battaglia ef al.|
2018). Each input state consists of node observation tensors,
all edge vectors, and the adjacency matrix. Node tensors
are first passed through an Independent block, after which
multiple Interaction networks (Battaglia et al.| 2016) act on
both node and edge embeddings to produce a probability
at each node (see Section [4.3). The Hypernet policy is
parameterized by matrices U € R**1 |V ¢ Rhx(dxh),
and Y € R4 where h; and h are design choices. U and
V act on input state s to produce the main policy weights
W € R%*" while Y acts on s to produce a bias b € R", so
that the main policy’s first hidden layer is ReLU(sW + b).
Output probabilities are computed in the same way as IPN.

Baselines. The ZZ policy uses a Zienkiewicz-Zhu-type
recovery-based error estimator (Zienkiewicz and Zhul |1992)
and refines the element with the largest estimated error. The
TrueError policy refines the element where the error of the
numerical solution with respect to the true solution is largest.
It is effectively an upper bound on the performance of any
state-of-the-art method based on instantaneous error estima-
tor, but it is not the theoretical upper bound on performance
because refining the element with largest current error does
not necessarily result in smallest final error. It cannot be
deployed without known solutions. The GreedyOptimal
policy performs one-step lookahead by checking all possible
outcomes of refining each element individually and chooses
the element whose refinement would result in the lowest
error. It is intractable even for simple time-dependent PDEs
on relatively coarse meshes. TrueError and GreedyOptimal
are strong oracles that cannot be used in real applications.

6 RESULTS

We find that the proposed methods achieve performance that
is competitive with baselines, outperforming or matching
77 on 20 out of 24 cases while being competitive with (even

sometimes outperforming) the oracle TrueError strategy.
More importantly, RL policies generalize well to larger
refinement budgets and mesh sizes, and transfer effectively
from a static problem to a time-dependent problem. Almost
always, all methods produced the same number of mesh
elements at each simulation time step, which means that
differences in performance are solely due to differences in
refinement strategies. Appendix [A.3]provides information
on the cost of training and decision times. Videos of policies
on advection and Burgers can be viewed at https://
sites.google.com/view/rl-for—amr.

6.1 In-distribution

Static functions (Figure [da). RL policies either meet or
significantly exceed the performance of ZZ on all function
classes. Notably, both IPN and Graphnet outperform ZZ
significantly on steps by spending the limited refinement
budget only on regions with discontinuities (Figure[3c). On
the smoother function classes such as bumps where ZZ is
known to perform well, all three policy architectures have
comparable performance to ZZ. Overall, IPN outperforms
both Graphnet and Hypernet. This suggests that captur-
ing higher-order interaction among observations, each of
which already contains local neighborhood information, is
unnecessary for estimation of static functions as they only
have a local domain of influence. Hypernetwork policies
converged to the behavior of making no refinements on at
least one out of four independent runs on all classes except
bumps. This could be attributed to the inherent difficulty of
choosing and training a highly nonlinear model.

Advection (Figure ib). As explained above, we limit the
true solutions to smooth functions (bumps and circles) in
the advection case. Graphnet significantly outperformed ZZ
on circles and is comparable to TrueError on bumps, while
IPN is comparable to ZZ on both functions. Hypernet is
comparable to ZZ on circles but has high variance across
independent runs. Graphnet’s higher performance than other
methods indicates that its inductive bias can better represent
the local geometric relations between neighboring mesh
elements along the circle.

Burgers equation. In experiments with a single bump func-
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Figure 5: Burgers equation and surrogate reward. Solid bars/ER denote exact reward, striped bars/SR denote surrogate
reward. (a) IPN trained and fested on a fixed IC. (b) IPN tested on random ICs using policies trained on a fixed IC (from
Figure 5a)), policies pretrained on fixed IC and fine-tuned on random ICs, and policies only trained on random ICs. (c/d)
Visualization of resulting meshes for Burgers equation with a fixed bump IC at T" = 50.

tion (visualized in Figure [5c) as the fixed initial condition
(IC) in both train and test, IPN trained with both the ex-
act and surrogate rewards outperformed all baselines (Fig-
ure[5a). Surprisingly, the policy trained using the surrogate
reward slightly outperformed the policy trained with the
exact reward, indicating that: 1) the surrogate reward can
be effectively used to train policies without the need for a
ground truth solution, as is necessary for general random
ICs; 2) because the surrogate reward provides a positive
reward whenever a refinement action causes a change in
the solution, it effectively acts as an “exploration bonus”,
which has been observed in the RL literature to improve
performance (Tang et al,[2017). Significantly, Figure [5d|
and the linked videos show the learned policy generates
a moving refinement “front” that anticipates and tracks a
moving region that requires refinement.

6.2 Out-of-distribution (OOD)

Figure [5b| shows the performance of IPN RL policies and
baselines on Burgers equation with random ICs. Policies
trained on a fixed IC using either the exact or surrogate
reward (“Fixed IC, ER” and “Fixed IC, SR”) generalize
well to random unseen ICs and still outperform baselines.
Moreover, policies that were pretrained with the surrogate
reward on the fixed IC for 2k episodes and fine-tuned with
the surrogate reward on random ICs for another 2k episodes
performed the best (“pretrained, SR”). Policies trained only
on random ICs with the surrogate reward were not as perfor-
mant, indicating that the training time was not sufficient and
that pretraining on a fixed IC is a more efficient approach.

6.3 Generalization

The proposed architectures enable a trained policy to gener-
alize well on a test mesh of different sizes and with different
budget constraints, because they map from local element
features to element selection probabilities. As long as local
features on the test mesh continue to resemble those seen in
training, the trained policy continues to perform even when

the global test function was previously unseen.

Static—advection (Figure [4c). All static-trained policies
demonstrated comparable performance to ZZ and TrueError
when tested on advection-bumps, while both IPN and Graph-
net significantly outperformed ZZ on advection-circles.
Surprisingly, static-trained IPN significantly outperforms
advection-trained IPN when tested on advection-circles, and
the static-trained Hypernet does so as well on advection-
bumps, while static-trained Graphnet maintains comparable
performance to its advection-trained counterpart (Figure 4b]
vs. Figure fic). Figure [I4] shows that a static-trained pol-
icy on bumps with B = 10 correctly refines the region of
propagation on advection-bumps with B = 50.

Budget? (Figure [6). RL policies trained with low refine-
ment budget generalize to test cases with higher budget. In
the static case, comparing Figure fa] (B = 10) with Fig-
ure [6a] (B = 50) shows that the performance of RL policies
relative to ZZ is generally preserved by the increase in re-
finement budget. Figures [6]and [show that an IPN trained
with B = 10 makes qualitatively correct refinement deci-
sions when allowed B = 100 during test. In the advection
case (Figure |3_5|), Graphnet trained with B = 20 signifi-
cantly outperforms both ZZ and TrueError when tested with
B = 50 on bumps and comes within the margin of error of
TrueError on circles. Figure 8 shows that an IPN trained
with B = 20 correctly allocates a higher budget B = 100
to the limited region of propagation.

Sizet (Figure[7). In the static case, the relative performance
of RL policies that were trained with an 8 x 8 mesh (Fig-
ure[4a)) is generally preserved when deployed on a 16 x 16
mesh (Figure[7a). All policy architectures outperform ZZ on
bumps, while IPN and Graphnet still outperform ZZ on steps.
IPN and Graphnet were comparable to ZZ on 8 x 8 but un-
derperformed on 16 x 16 on circles. Nonetheless, Figure [I1]
shows that IPN makes qualitatively correct refinements. On
advection, relative performance is preserved on circles while
IPN and Graphnet deproved slightly on bumps (Figure[db]vs.
Figure[7b). Without preserving the solution-to-mesh length
scales, the prior tests emulate deploying a policy trained on
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coarser versions of the simulations. When tested on 64 x 64
and 200 x 200 meshes (64 and 625-fold increase in number
of mesh elements, respectively, e.g. Figure[7c) that preserve
the solution-to-mesh length scales, Figures[/d|and|10|show
that IPN is competitive with baselines on bumps and even
outperforms TrueError on circles. This emulates training a
policy on a small subset of a highly-resolved simulation and
deploying it on the full simulation.

6.4 Choice of Architecture

For a given test problem, one can choose among the three
proposed architectures based on the type of local features
that are anticipated to arise. Such prior knowledge is avail-
able for many practical classes of problems that have a long
history of instances that were solved by traditional methods.
Comparing overall performance across architectures, Fig-
ures [4a] [6a] and [7a] show that the IPN is the best candidate
for problems whose local features are stationary or slowly-
propagating (as in the Burgers experiments), whereas Fig-
ures [4b] [6b] and [7b] show that the Graphnet policy is the best
candidate for advection problems with smooth features.

7 LIMITATIONS

Our current approach is limited to refinement of one ele-
ment per MDP time step. For practical applications, one
can define a “refinement step” to consist of multiple MDP
time steps, so that multiple elements are refined before the
solution is updated and the PDE advances in simulation

time. De-refinement was not included as it requires a multi-
objective optimization treatment (error versus cost) that
detracts from the main purpose of this work. Although our
results show the RL can outperform greedy baselines, we
only conjecture that this is due to anticipatory refinement
and leave a deeper investigation to future work. The scale
and complexity of experiments in this work were chosen for
agile demonstration of feasibility and generalization, and
we hope these promising results serve as a milestone for
future application to more complex problems.

8 CONCLUSION

We contributed a proof of feasibility for scalable applica-
tion of reinforcement learning for adaptive mesh refinement.
Our experiments on static and time-dependent problems
demonstrate that RL policies can outperform the widely-
used ZZ-type error estimator, outperform an oracle based
on true error, generalize to different refinement budgets and
larger meshes, transfer from static to time-dependent set-
tings, and generalize to more complex problems even when
trained without ground truth rewards. Our finding that RL
policies sometimes outperform the true error baseline sup-
ports the hypothesis that instantaneous error-based strategies
are not optimal due to their inability to refine preemptively.
Future work can extend our methods to include derefine-
ment actions, take a multi-agent perspective, and tackle the
unification of h—, p—, and r— refinement.
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Algorithm 1 Graphnet policy forward pass

1: for each message-passing round do
2. forke{l,...,N°}do
3 A Cal o vsk) # Update edge attribute
4:  end for

5. forie{l,...,N}do
6: Ei = {(&F,r*, s%)},x_; # Edge set for v’
7 &'« pev(E") # Aggregation for v’

8 0 < @¥(e',v") # Update vertex attribute
9:  end for

10: e « é*,Vk € [N, v* + o7, ¥i € [N]

11: end for

12: R > 2% + (v?),Vi € [N]

13: w(a’|s) is the i-th entry of softmax(z?, ..., z")

A Experimental setup

A.1 Environment details

A.1l.1 MFEMCtrl

To interface between the MFEM framework and the RL environment, we developed MFEMCtrl, a C++/Python wrapper
for the AMR and FEM capabilities in MFEM. MFEMC:trl is used to convert solutions to observations, apply refinement
decisions, and calculate errors.

The initial mesh is partitioned into n, x n, = 8 x 8 elements for static and advection experiments and 10 x 10 for Burgers
equation. Generalization experiments on larger initial mesh used 7, X n, = 16 x 16 or 64 x 64. The true solution is projected
onto the finite element space by interpolation to the nodes of the Bernstein basis functions. After each refinement action, the
solution is projected again onto the refined mesh (for the static case) or integrated in time until the next refinement action (for
the time-dependent case). The maximum refinement depth is fixed by the parameter dy,,x such that the maximally-refined
mesh consists of 2dmp,, x 2dmx n, elements. dyax Was set to 3 for static experiments, whereas dmax = 2 for advection and
dmax = 1 for Burgers equation due to the time step restrictions imposed by the Courant-Friedrichs-Lewy (CFL) condition of
the finest elements.

Observation. The observation consisted of the solution and the depth of each element. Since the gradients of the solution
are, by definition, a function of the solution, the observation does not include the gradients as they can be implicitly
learned. The solution/depth of each element was observed by interpolating the functions to a local equispaced mesh (image)
centered around each element, shown by the white box in Figure[I] Each element’s observation is a [ X w x ¢ tensor where
Il = w = lejement + 2lcontext 18 the spatial observation window with leiemens = 16 sampled points inside the element and
lcontext = 4 sampled points in a coordinate direction outside the element. We chose ¢ = 2 channels so that estimated function
values and element depths are observed, while gradients are omitted since the policy network can in principle estimate
gradients from the value channel. To impose a 1:1 map between each observation and possible action, we append a dummy
0° to state s corresponding to action 0. At most one refinement is allowed per MDP step.
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Table 1: Parameterized true solutions

Parameter [min, max]

Co [0.2,0.9]
. Cy [0.2,0.9]
Bumps (static) w [0.05. 0.2]
n {1,...,6}
Co [0.3, 0.7]
. Cy [0.3, 0.7]
Bumps (advection) w [0.005, 0.05]
n {1,...,4}
Ca 0.5
Bumps (Burgers) Cy 0.5
single IC w 0.05
n 1
Cx [0.3,0.7]
Bumps (Burgers) Cy [0.3,0.7]
random IC w [0.005, 0.05]
n {1,...,4}
Cx [0.2, 0.8]
Cy [0.2, 0.8]
Circles (static) r [0.05,0.2]
w [0.1, 1.0]
n {1,...,6}
Cx [0.3,0.7]
Cy [0.3, 0.7]
Circles (advection) r [0.05,0.2]
w [0.03, 0.05]
n {1,...,4}
0 [0, 1.0]
Steps and Steps2 0 [0, 7/2]

3

{1,...,6}

A.1.2 Ground truth functions

Bumps

n ~ Uniform[nyin, Wmax]

¢y, ~ Uniform

[

Ca,i ™~ Unifom[cac min, Cz max] 1=1,...,n
[C mimcymax], t=1,...,n
[

w; ~ Uniform[wmin, Wmax), ¢=1,...,n

n
= Zexp ( x — i)’ + (y - Cy,i)2)
i=1 Wi

Circles
n ~ Uniform[nmin, max)
Ca,is Cy,i ~ Uniform|[cmin, Cmax|, ¢=1,...,1
r; ~ Uniform[rmin, max), = 1,...,n
w; ~ Uniform[wpin, Wmax], 2=1,...,n

z,y) =Y exp(
i=1
(W@ = cei)? + (Y —cyi)? — 1)

wj

Steps

n ~ Uniform[nyin, Mmax)
6 ~ Uniform[Omin, Omax]

0; ~ Uniform[omin, Omax], ¢=1,...,n

flzy) = Z 1+ tanh [100(0; — ( + ytan 6))]

i=1
Steps2
n ~ Uniform[nmin, Nmax)

[
0; ~ Uniform[fpin, Omax], 2=1,...,n
0; ~ Uniform[omin, Omax), =1,...,n
s; = (z — 0.5) cosb; — (y — 0.5) cos §;

f(z,y) Z 1 + tanh [100(s; — 0;)]
=1
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A.1.3 Reward

Let u; denote the true solution at time ¢, let @i, denote the estimated solution on the mesh at time ¢. For a given mesh at time
t — 1, a given time evolution of the true solution from ¢ — 1 to ¢, and a refinement action a; (which may be “do-nothing”),
let i refine denote the estimated solution on the mesh at time ¢ that has undergone refinement action a;, and let @ no-refine
denote the estimated solution on the mesh at time ¢ without that refinement. We have two reward definitions:

1. Delta norm reward with true solution

Tt = (Bt—1 - 6t)/eo (5)
e = [Jup — U2 (6)

2. Surrogate reward
Ty = Hﬂt,reﬁne - at,no—reﬁneHZ (7

We used the first reward definition for static and advection experiments where analytic true solutions are available, and for
Burgers experiments involving a single initial condition and pre-computed reference data that acts as the true solution. We
used the second reward definition for all other Burgers experiments.

A.2 Implementation

We used standard policy gradient (Sutton et al., 2000) for all experiments except for experiments on Burgers equation and
generalization of 8x8-trained advection policies to 64x64 test meshes. We used PPO (Schulman et al.| 2017)) for the latter
two cases. We trained for 20k episodes on static problems, 10k episodes on advection problems, 2k episodes on Burgers
equation with a single IC, and 4k episodes on Burgers equation with random ICs. The Burgers experiment with pretraining
used 2k episodes on a single IC and a further 2k on random ICs. Each episode is initialized with refinement budget B, where
B = 10 for static problems, B = 20 for advection, and B = 50 for Burgers.

IPN. For efficient computation on a batch of B trajectories, where each trajectory b consists of 7" environment steps and
each step ¢, consists of a variable-sized global state s € R™#*<, we merge the variable dimension with the batch and
time dimension to form an input matrix whose dimensions are [Zle Z;‘FZI Ny, , d]. The output is reshaped into a “ragged”
matrix of logits with dimensions [B x T, Ny, |, where the row lengths vary for each batch and time step. A softmax operation
over each row produces the final action probabilities at each step.

Graphnet policy. The first graph layer is an Independent recurrent block that passes the input node tensors through a
convolutional layer followed by a fully-connected layer, to arrive at node embeddings. This is followed by two recurrent
passes through an InterationNetwork (Battaglia et al.||2016) where fully-connected layers are used for edge and node update
functions. A final InteractionNetwork output layer followed by a global softmax over the graph produces a scalar at each
node, which is interpreted as the probability of selecting the corresponding element for refinement. Except for the input
node feature v* € R? and output node scalar, all internal node (edge) embeddings have the same size, denoted as dim(v)
(dim(e)). We fixed dim(e) = 16 for both static and advection and tuned dim(v) (Table .

Hypernet policy. We fixed the main network’s hidden layer dimension at i = 64 and tuned the hypernetwork’s hidden
layer dimension h4 (Table[2).

A.3 Hyperparameters

For both static and advection problems, we tuned a subset of all hyperparameters for all methods by the following procedure
to handle the large set of policy architectures and ground truth functions. Chosen values of tuned hyperparameters are
given in Table[2} all other hyperparameters have the same values for all methods and are listed below. We conducted tuning
in a multi-task setup, where we train a single policy on functions randomly sampled from all ground truth classes, with
randomly sampled parameters according to Appendix [A.1.2] This is done separately on static and advection problems.
The tuning process is coordinate descent where the best parameter from one sweep is used for the next sweep. We start
with exploration decay eg, € {100,500,1000,5000} (a lower bound on exploration was enforced by using behavioral
policy 7(a¢|st) = (1 — €)m(a¢|s:) + €/Ny with € decaying linearly from €y to €eng by €qiv episodes). Next we tune the
size of hidden layers in the policy network (over (hi, ho) € {(128,64), (256, 64), (128, 128), (256, 256)} for IPN, node
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representation dimension dim(v) € {32, 64,128,256} for Graphnet, and hy € {16, 32,64, 128} for Hypernet). Lastly, we
tune the learning rate o € {5-1075,107%,5-107%,1073,5 - 1073}. For Graphnet and Hypernet, we inherit the best ey
from IPN because optimal exploration depends in large part on the complexity of the environment, which is the same across
all policy architectures.

Separately for the static and advection cases, all three policy architectures have the same values for all other hyperparameters.
These are: policy gradient batch size 8, initial exploration lower bound ey, = 0.5, final exploration lower bound €.,q = 0.05,
discount factor v = 0.99, convolutional neural network layer with 6 filters of size (5,5) and stride (2, 2).

Table 2: Hyperparameters for IPN, Graphnet and Hypernet policies on static and advection AMR.

Static Advection
Parameter IPN  Graphnet Hypernet IPN  Graphnet Hypernet
Ediv 500 500 500 100 100 100
IPN (hq, hs) (128, 64) - - (256,256) - -
Graphnet dim(v) - 64 - - 256 -
Hypernet hq - - 128 - - 32
o 104 107* 5.107° 10— 1074 104

For Burgers experiments and advection experiments on generalization from 8 x 8 to 64 x 64 initial mesh sizes, we used
a more comprehensive population-based hyperparameter search with successive elimination for all methods. We start
with a batch of npaen tuples, where each tuple is a combination of hyperparameter values, with each value sampled either
log-uniformly from a continuous range or uniformly from a discrete set. We train independently with each tuple for nepisode
episodes, eliminate the lower half of the batch based on their final performance, then initialize the next set of nepisode €pisodes
with the current models for the remaining tuples. We use the hyperparameters of the last surviving model. Chosen values are
shown in Table[3l

The hyperparameter ranges are: discount factor in {0.1,0.5,0.99}, policy entropy coefficient in (1073, 1.0), GAE \ in
{0.85,0.90,0.95}, learning rate in (10=°,5 - 10~3, PPO € in (0.01, 0.5), value loss coefficient in {0.1,0.5,1.0}, IPN A4 in
{128,256}, and IPN hs in {64, 128, 256}.

Table 3: Hyperparameters for advection size 1 and Burgers experiments

Advection (IPN) Burgers (IPN)
Parameter Bumps Circles 1IC Random IC
Discount vy 0.99 0.99 0.1 0.5
Entropy coefficient 0.0133 0.0689 8.84-1073% 1.17-1073
GAE A 0.95 0.9 0.85 0.85
Learning rate 1.18-1072 4.8-107% 1.59-1073 2.11-107*
PPO ¢ 0.0113 0.195 0.128 0.169
Value loss coefficient 0.1 0.5 0.5 0.1
IPN h,y 128 256 256 128
IPN hso 128 128 128 256

A4 Scale of experiments

The scale and scope of our current experimental setup is comparable with previous work at the intersection of FEM/PDE
and machine learning, whose experimental settings are the following:

1. 2D Poisson equation with a 64x64 square train mesh [Hsieh et al.|(2018)
2. diffusion PDE on 2D triangular mesh with number of nodes ranging from 1024 to 400k (Luz ef al., [2020)

3. models of simulations with 1k-5k nodes (Pfaft er al.| 2020)
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t=0 t=32 t =68 t =100
Figure 8: Advection of a bump function. RL policy trained with budget B = 20 generalizes to B = 100.

4. Poisson equation on 7x7 mesh with square and sphere domains
5. airfoil with 6648 nodes on a fine mesh and 354 nodes on a coarse mesh (Belbute-Peres et al., 2020)

A.5 Computing infrastructure and runtime

Experiments were run on Intel 8-core Xeon E5-2670 CPUs, using one core for each independent policy training session.
Average training time with 20k episodes in the static case was approximately 6 hours for IPN and Hypernet, and 9 hours
for Graphnet. Average training time with 10k episodes in the advection case was approximately 14 hours for IPN and
Hypernet, and 18 hours for Graphnet. In general, the one-shot training time for RL is justified by considering that: 1) given a
high-performing trained policy, the time incurred in training is negligible when amortized over all future deployment of that
policy; 2) the end-to-end RL approach of optimizing policies directly with experience in simulation may provide a faster
path toward new refinement policies that can integrate h-, p-, and r-refinement into a unified strategy, whereas developing
new AMR techniques is very human-labor intensive, so the training time of RL policies would be a negligible expense.

Table [ shows that test runtimes for all practically-deployable methods are comparable and within the same order of
magnitude. We take the mean over (10 episodes) * (10 steps per episode), which accounts for the impact of variability of
different element refinements on the solver time. The total differences in runtime between the RL approach and the various
baselines manifest only through the differences in the runtime of evaluating the refinement indicator—the RL policy or the
baselines—which is reported in Table[d] This is because the time required for computing a solution in between refinement
actions is nearly identical between all approaches, as the meshes for all methods are of identical size at each step and there
are negligible differences in the computational cost required to solve the PDE on two meshes that differ by only the choice
of which elements are refined. Degrees of freedom (DoF) cost of RL and baselines were the same since all methods refine
one element per MDP step in our main experiments.

Table 4: Mean (standard error) time in milliseconds per
refinement decision on various initial mesh partitions.

8% 8 16 x 16 24 x 24 100 x 100

IPN 3.22(0.07) 5.85(0.05) 9.64(0.28) 158 (5)
Graphnet 7.74 (0.33) 13.9(0.43) 23.7(0.19) 1445 (6)
Hypernet  8.08 (0.08) 10.7 (0.05) 14.3 (0.17) 151 (9)
77 1.96 (0.01)  6.94(0.01) 15.5(0.05) 134 (3)

B Additional results

For time-dependent problems at training time, only
one element is refined for each step that the PDE ad-
vances in time. However, at test time, we can execute
the policy multiple times to refine multiple elements
before the PDE advances in time. Figure [T3] shows
that the policy makes appropriate choices of 20 ele-
ments per step.

Figure 13: Multiple refinements per solver step.
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Figure 14: Static—advection and Budget?: IPN trained on static bumps (B = 10) transfers to advection (B = 50).

OOD. In the static case (Figures [I54) to [T5c), IPN policies trained on circles transfer well to bumps (and vice versa).
Hypernet policies performed poorly overall even in the case of in-distribution, and consequently does not show comparable
performance when transferring across function classes. In the advection case (Figures[T5d]to[I51), both IPN and Graphnet
policies trained on bumps significantly outperformed ZZ when tested on circles (compare to ZZ in Figure [4b).
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Figure 15: All train-test combinations. Normalized error reduction of IPN, Graphnet and Hypernetwork policies on (a-c)
Static AMR and (d-f) Advection PDE. Higher values are better. Legend (colors) shows test classes. RL policies were trained
and tested on each combination of true solutions. Mean and standard error over four RNG seeds of mean final error over 100
test episodes per method.
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