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Abstract

In this paper we propose a class of randomized
primal-dual methods incorporating line search
to contend with large-scale saddle point (SP)
problems defined by a convex-concave function
L(x, y) ,

∑M
i=1fi(xi)+Φ(x, y)−h(y). We ana-

lyze the convergence rate of the proposed method
under mere convexity and strong convexity as-
sumptions of L in x-variable. In particular, as-
suming ∇yΦ(·, ·) is Lipschitz and ∇xΦ(·, y) is
coordinate-wise Lipschitz for any fixed y, the
ergodic sequence generated by the algorithm
achieves the O(M/k) convergence rate in the
expected primal-dual gap. Furthermore, assum-
ing that L(·, y) is strongly convex for any y, and
that Φ(x, ·) is affine for any x, the scheme en-
joys a faster rate of O(M/k2) in terms of primal
solution suboptimality. We implemented the pro-
posed algorithmic framework to solve kernel ma-
trix learning problem, and tested it against other
state-of-the-art first-order methods.

1 Introduction

Let (Xi, ‖·‖Xi) for i ∈ M , {1, 2, . . . ,M} and (Y, ‖·‖Y)
be finite dimensional, normed vector spaces such that Xi =
Rmi for i ∈ M. Let x = [xi]i∈M ∈ Πi∈MXi , X =
Rm where m ,

∑
i∈Mmi. In this paper, we study the

following saddle point (SP) problem:

(P ) : min
x∈X

max
y∈Y

L(x, y),

L(x, y) ,
∑
i∈M

fi(xi) + Φ(x, y)− h(y),
(1)

where h : Y → R ∪ {+∞} and fi : Xi → R ∪ {+∞}
for all i ∈ M are (possibly nonsmooth) closed µi-convex
functions with respect to ‖·‖Xi for some µi ≥ 0, and the
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coupling function Φ : X × Y → R is convex in x and
concave in y and, it satisfies certain differentiability assump-
tions – see Assumption 1.

Our study is motivated by large-scale problems with a
coordinate-friendly structure Peng et al. (2016), i.e., for any
i ∈M, the amount of work to compute the partial-gradient
∇xiΦ(x, y) is mi/m ≈1/M fraction of the work required
for the full-gradient ∇xΦ(x, y) computation. Our objec-
tive is to design an efficient first-order randomized block-
coordinate primal-dual method to compute a saddle point
of the structured convex-concave function L in (1), and to
investigate its convergence properties under mere and strong
convexity settings. Typically, the first-order methods rely
on the knowledge of global Lipschitz constants to select an
appropriate step-size with a convergence guarantee. In prac-
tical settings, such constants may not be readily available
or it can be difficult to compute them; hence, one may need
to consider line-search methods. Since exact line-search
methods are often difficult to implement, one practical av-
enue is to adopt backtracking to estimate the local Lipschitz
constants, which usually leads to larger steps. Hence, in this
paper, we propose a randomized block-coordinate primal-
dual algorithm with backtracking to efficiently solve the SP
problem in (1).

Before we discuss important applications, it should be em-
phasized that (1) covers regularized convex optimization
problems with nonlinear constraints as a special case1, i.e.,

min
x
ρ(x) , ϕ(x) +

∑
i∈M

fi(xi) s.t. g(x) ∈ −K, (2)

where K ⊆ Y∗ is a closed convex cone in the dual space
Y∗; fi : Xi → R∪{+∞} is a convex (possibly nonsmooth)
regularizer function for i ∈ M; ϕ : X → R is a smooth
convex function having a coordinate-wise Lipschitz con-
tinuous gradient; and g : X → Y∗ is a smooth K-convex,
coordinate-wise Lipschitz function with a coordinate-wise
Lipschitz Jacobian. This problem can be written as a spe-
cial case of (1) by setting Φ(x, y) = ϕ(x) + 〈g(x), y〉 and

1We can show that Assumption 1 is satisfied for this example
through arguing that the dual iterate sequence of the proposed
method is almost surely bounded. Thus, one does not need the
boundedness of dual domain to argue for the existence of global
constants {Lxixi}i∈M, instead bounded dual sequence is suffi-
cient for our proof arguments.
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h(y) = IK∗(y), where K∗ ⊆ Y denotes the dual cone of K
and IK∗(·) is the indicator function of K∗. An advantage
of such formulation lies in utilizing the corresponding dual
variables in order to boost the primal convergence through
appropriately controlling the constraint violations.

Application. Many interesting problems arising in machine
learning (ML), signal and image processing, finance, etc.,
can be formulated as a special case of (1). Some instances of
such problems include: i) distributionally robust optimiza-
tion Namkoong and Duchi (2016); ii) kernel matrix learning
Lanckriet et al. (2004); Gönen and Alpaydın (2011); iii)
distance metric learning Xing et al. (2003); (iv) training
ellipsoidal machines Shivaswamy and Jebara (2007); (v)
two-player zero-sum game with nonlinear payoff (Boyd and
Vandenberghe, 2004; Chen et al., 2017). In the following,
we will briefly discuss some of these problem instances and
their formulations as a special case of (1).

Distributionally robust optimization (DRO): Let
(Ω,F ,P) be a probability space where Ω = {ζ1, . . . , ζm},
` : X × Ω → R is a convex loss function over a convex
bounded set X ⊂ X , and we define `i(u) , `(u; ζi). The
aim of DRO is to optimize the worst case performance
under uncertainty and to compute solutions with some
confidence level Namkoong and Duchi (2016). This class
of problems can be formulated as

min
u∈X

max
p∈P

Eζ∼P[`(u; ζ)] =

m∑
i=1

pi`i(u), (3)

where P represents an uncertainty set over the proba-
bility distributions. For instance, P = {y ∈ ∆m :
V (p, 1

m1m) ≤ ρ} is an uncertainty set considered
in Namkoong and Duchi (2016), where ∆m is an m-
dimensional probability simplex, and V (Q,P ) denotes a
divergence measure for probability measures Q and P . As-
suming V (p, 1

m1m) =
∑m
i=1 Vi(pi,

1
m ) and introducing

variables λ ∈ R+ and η ∈ R, we can dualize the divergence
constraint in (3) to obtain the following equivalent problem:

min
u∈X
λ≥0
η∈R

max
p∈Rm+

m∑
i=1

pi`i(u)− λ
m

(
Vi(pi,

1
m

)− ρ
m

)
+ η(pi − 1

m
).

Let y = [u> λ η]> and x = p, then multiplying the above
problem by -1 we can reformulate the problem as (1) by
defining fi(xi) = IR+

(xi) and h(y) = IX×R+×R(y) as
indicator functions.

Learning a kernel matrix: Suppose we are given a training
set consisting of feature vectors {ai}mi=1 ⊂ Rn, and the
corresponding labels {bi}mi=1 ⊂ {−1,+1}. Consider q ∈
Z+ different embedding of the data and let Ki ∈ Sm+ be the
corresponding kernel matrix for i = 1, . . . , q. The objective
is to learn a kernel matrix K belonging to a class of kernel
matrices K ⊂ Sm+ such that it minimizes the training error
of an `2-norm soft-margin nonlinear SVM over K ∈ K –
see Lanckriet et al. (2004) for more details. In this setting,
it is assumed that the class K is described as a convex set

generated by {Ki}qi=1, e.g.,

K ,
{ q∑
i=1

yiKi : yi ≥ 0, i = 1, . . . , q
}
⊂ Sm+ . (4)

Then, learning over the class K in (4) is formulated as

min
y∈Rq+:

〈r,y〉=c,

max
x: 0≤x≤C1m,
〈b,x〉=0

2x>1m −
q∑
i=1

yix
>H(Ki)x− λ ‖x‖22 ,

(5)

where c, C>0 and λ ≥ 0 are model parameters, y =
[yi]

q
i=1, r = [trace(Ki)]

q
i=1, b = [bi]

m
i=1 and H(Ki) ,

diag(b)Ki diag(b). Multiplying the objective function by
-1, this problem can be formulated as a special case of (1).

Problems in the aforementioned applications are typically
large-scale, and standard primal-dual methods do not scale
well with the problem dimension and their iterations are
memory expensive; therefore, in terms of the efficiency
of work required per-iteration, the advantages of random-
ized block-coordinate schemes will be evident as problem
dimension increases.

1.1 Related Work

Saddle point problems have received a significant attention
recently due to their vast applicability and modeling flexibil-
ity. Here, we briefly review some recent work that is closely
related to ours –see also Table 1 for a detailed comparison.

Bilinear SP: There have been several work proposing effi-
cient algorithms to solve convex-concave SP problems with
a bilinear coupling function, i.e., Φ(x, y) = 〈Ax, y〉 for
some linear map A : X → Y∗, e.g., Chambolle and Pock
(2011); Chen et al. (2014); Chambolle and Pock (2016); He
and Monteiro (2016); Li and Yan (2021); Alacaoglu et al.
(2022b,a). Chambolle and Pock (2016) considered an SP
problem with a composite structure and a convergence rate
of O(1/K) for convex-concave and O(1/K2) for strongly
convex-affine settings are shown. Later Malitsky and Pock
(2018) proposed a primal-dual method with linesearch with
the same rate results as in Chambolle and Pock (2016).

Non-bilinear SP: There has been a vast body of research,
e.g., Juditsky et al. (2011); He et al. (2015); Kolossoski
and Monteiro (2017); Malitsky (2018); Malitsky and Tam
(2020); Hamedani and Aybat (2021); Zhang et al. (2021,
2022), studying SP problems with non-bilinear coupling
functions. Indeed, non-bilinear SP problems can be viewed
as a special case of Variational Inequality (VI) problems.
In an important work by Nemirovski (2004), a prox-type
extra-gradient based method (known as Mirror-prox)
is proposed. Assuming that the monotone operator is L-
Lipschitz continuous and the constraint set is compact, it
is shown that the ergodic iterate sequence converges with
O(L/K) rate –also see He et al. (2015) for extension of
Mirror-prox to SP problems with a composite struc-
ture. Later Mirror-prox has been extended to exploit
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Table 1: Comparison of different methods in Merely Convex (MC) and Strongly Convex (SC) settings. In convergence rates,
k denotes the iteration counter. The work-per-iteration for Juditsky et al. (2011); Malitsky (2018); Hamedani and Aybat
(2021) is O(M) while it is O(1) for the others.

Properties Iteration complexity
Paper Non-bilinear Φ Random blocks Line search C-C SC-C

Chambolle et al. (2017) 7 X 7 O(M/k) O(M/k2)
Xu (2021) 7 X X O(M/(M + k)) −

Dang and Lan (2014) 7 X 7 O(M/k) O(M/k2)
Tran-Dinh and Liu (2020) 7 X 7 O(M/k) O(M2/k2)
Alacaoglu et al. (2022b) 7 X 7 O(M/k) −
Alacaoglu et al. (2022a) 7 X 7 O(M/k) −

Juditsky et al. (2011) X 7 7 O(1/k) O(1/k2)
Malitsky (2018) X 7 X O(1/k) −

Hamedani and Aybat (2021) X 7 X O(1/k) O(1/k2)

This paper X X X O(M/k) O(M/k2)

SP problems for strongly convex-affine setting; in particular,
a multi-stage method that repeatedly calls Mirror-prox
is proposed by Juditsky et al. (2011), and O(1/K2) rate is
shown for the strongly convex-affine setting when Y is a
compact set. Later, Malitsky (2018) also considered a mono-
tone VI problem involving a non-smooth function with an
easy-to-compute proximal map. The author proposed a prox-
imal extrapolated gradient method, PEGM, with an ergodic
convergence rate of O(1/K). The proposed method enjoys
a backtracking scheme to estimate the local Lipschitz con-
stants of the monotone map –for a backtracking line-search
method tailored to SP problems, see Hamedani and Aybat
(2021) and for a more general setting of monotone inclusion
problems, see Malitsky and Tam (2020).

Block coordinate: As we indicated earlier, none of these
methods mentioned above exploits the block-coordinate
structure of (1). However, in a large-scale setting, the com-
putation of full-gradient and/or prox operator might be pro-
hibitively expensive; hence, presenting a strong motivation
for using the partial-gradient and/or separable structure of
the problem at each iteration of the algorithm. Therefore,
the computation may be broken into smaller pieces; thereby,
inducing tractability per iteration, at the cost of possibly
slower convergence in terms of overall iteration complex-
ity. There has been a vast body of work on randomized
block-coordinate descent schemes for primal optimization
problems by Nesterov (2012); Luo and Tseng (1992); Xu
and Yin (2013); Richtárik and Takáč (2014); Jalilzadeh et al.
(2018); but, there are far fewer studies on randomization of
block coordinates for SP algorithms. For some papers moti-
vated by the regularized empirical risk minimization (ERM)
of linear predictors arising in ML, see Zhu and Storkey
(2015); Yu et al. (2015); Zhang and Xiao (2017); Chambolle
et al. (2017).

Furthermore, there are some related recent work by Zhong
and Kwok (2014); Gao et al. (2016) on block-coordinate
ADMM-type algorithms to solve convex optimization prob-
lem with linear constraints. Assuming coordinate-wise

Lipschitz differentiability of g and q, O(1/(1 + γk)) con-
vergence rate is shown under mere convexity assumption,
where γ = M ′

M = N ′

N and M ′ (N ′) denotes the number of
xi (yi) coordinates updated at each iteration.

Majority of the previous work on block-coordinate algo-
rithms for SP problems require a bilinear coupling term in
the problem formulation (Dang and Lan, 2014; Fercoq and
Bianchi, 2015; Valkonen, 2016). However, to the best of
our knowledge, none of the existing methods can handle
the framework discussed in this paper – the closest one to
ours is Xu (2021) which can exploit the block-coordinate
structure and does not assume the knowledge of Lipschitz
constants via employing line-search; though, it is for con-
strained optimization problems, not for more general SP
problems considered in this paper.

Xu (2021), which is closely related to our work, consid-
ered a convex minimization problem with functional con-
straints, min {f(x) + g(x) : Ax = b, G(x) ≤ 0}, where
g and component functions of G are Lipschitz differentiable
convex functions, and f is a proper closed convex function
(possibly nonsmooth). When the function f(x) has a separa-
ble structure,

∑
i∈M fi(xi), a randomized block-coordinate

linearized augmented Lagrangian method, BLALM, with
a convergence rate of O(1/(1 + k

M )) is proposed. Note
BLALM cannot deal with (1) when Φ is not linear in y.

Finally, in a recent paper by Tran-Dinh and Liu (2020), a ran-
domized block-coordinate primal-dual algorithm for solving
convex composite optimization problem with linear con-
straints is proposed. It is shown that the algorithm achieves
a last-iterate convergence of O(M/k) and O(M2/k2) for
convex and strongly convex objective functions.

Notation and Definitions. Throughout the paper ‖·‖
denotes the Euclidean norm, i.e., ‖·‖2. Define µ̄ ,
maxi∈M µi and µ , mini∈M µi. Let F : X → R∪{+∞}
such that F (x) , supy∈Y L(x, y) for x ∈ X . Under
strongly convex-concave setting, i.e., µ > 0, we assume that
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Lyy = 0 which implies that Φ(x, ·) is affine. In this scenario
one can assume that Φ(x, y) = 〈g(x), y〉 for some contin-
uously differentiable vector-valued function g : X → Y∗.
Therefore, the problem in (1) can be equivalently repre-
sented as minx∈X F (x), where

F (x) = f(x) + h∗(g(x)), ∀x ∈ X , (6)

and h∗ denotes the conjugate function of h.

1.2 Our Contributions

In this paper we studied large-scale SP problems with a gen-
eral structure: the coupling function is neither bilinear nor
separable. To efficiently handle large-scale SP problems,
we propose a randomized block-coordinate primal-dual al-
gorithm with backtracking. The proposed algorithm uses
momentum acceleration and is equipped with Bregman dis-
tance functions that can generalize previous methods such
as Chambolle et al. (2017). These type of schemes are the
method of choice for the SP problems with a coordinate-
friendly structure so that the computational tasks performed
on each block coordinate at each iteration are significantly
cheaper compared to full-gradient computations.

Let G : Z → R ∪ {+∞} denote the primal-dual gap func-
tion defined as follows:

G(x̄, ȳ) , sup
(x,y)∈X×Y

{L(x̄, y)− L(x, ȳ)}, (7)

where Z = X × Y . Whenever a saddle point of (1) exists,
under Lipschitz continuity of∇yΦ(·, ·) and coordinate-wise
Lipschitz continuity of ∇xΦ(·, y) for any fixed y, we prove
that the iterate sequence converges to a saddle point (x∗, y∗)
in a.s. sense, and we also show convergence rate guarantee
in terms of the expected gap E[G(x̄k, ȳk)] when µ = 0,
and in the solution error using both E[

∥∥xk − x∗
∥∥2

] and
E[F (x̄K)− F (x∗)] when µ > 0, where {(x̄k, ȳk)}k is an
ergodic average sequence of the iterates.

Main Result 1. Suppose global Lipschitz constants are
available. Under convex-concave setting, for any ε > 0,
zε = (xε, yε) such that E[G(zε)] ≤ ε can be computed
within O(M/ε) primal-dual oracle calls. Moreover, when
Φ is strongly convex in x and linear in y, an ε-optimal pri-
mal solution xε, i.e., E[‖xε − x∗‖2] ≤ ε and E[F (xε) −
F (x∗)] ≤ ε, can be obtained within O(

√
M/
√
ε) primal-

dual oracle calls. Each call to primal and dual oracles
require evaluating∇xiΦ for some i ∈M and∇yΦ, respec-
tively. See Theorem 2 for details.

To the best of our knowledge, our proposed method is the
only randomized block-coordinate primal-dual algorithm
that can handle general SP problems as in (1), and our rate
results achieve the lower complexity bounds (Chen et al.,
2014) for our setting; hence, they are unimprovable, i.e.,
optimal.

Another contribution that immensely increases the algo-
rithmic applicability is the novel backtracking linesearch
scheme adopted within the proposed randomized block-
coordinate primal-dual method. The step-size selection for
each block is closely related to the coordinatewise Lipschitz
constant of the partial gradient corresponding to that block;
however, in practice, these constants are largely unknown –
one needs to know a constant for each block and the num-
ber of blocks could be very large. Moreover, even if they
can be estimated correctly – which is not the case in many
settings, these estimates lead to very conservative step-size
selections due to their being global constants. Our tech-
nique not only alleviates the burden of estimating largely
unknown constants; but, also make the convergence much
faster in practice as it corresponds to using local Lipschitz
constants which leads to larger step-sizes while retaining
the theoretical convergence rate guarantees of primal-dual
methods using the global constants.

Main Result 2. Suppose that the global Lipschitz constants
are not available. The iterates generated by our method
with backtracking line search converges to a saddle point
point almost surely with the same oracle complexity as in
Main Result 1 for both convex and strongly convex settings
up to O(1) constants. See Theorem 1 for details.

2 Preliminaries

In this section, we state the main definitions and assumptions
that we need for our convergence analysis.

Definition 1. Let f(x) ,
∑
i∈M fi(xi) and M =

{1, . . . ,M}, and define Ui ∈ Rm×mi for i ∈M such that
Im = [U1, . . . , UM ], where Im denotes the m×m identity
matrix. Let ϕY : Y → R be a differentiable function on
an open set containing domh. Suppose ϕY is 1-strongly
convex with respect to ‖·‖Y . Let DY : Y × Y → R+

be a Bregman distance function corresponding to ϕY , i.e.,
DY(y, ȳ) , ϕY(y)−ϕY(ȳ)−〈∇ϕY(ȳ), y − ȳ〉. The dual
space of Y is denoted by Y∗, and ‖·‖Y∗ : Y∗ → R such that
‖y′‖Y∗ , max{〈y′, y〉 : ‖y‖Y ≤ 1} denotes the dual norm.
Similarly, for each i ∈ M, given an arbitrary norm ‖·‖Xi
on Xi, define ‖·‖X∗i : X ∗i → R and DXi : Xi × Xi → R
for some ϕXi that is differentiable and 1-strongly convex
with respect to ‖·‖Xi .
Definition 2. Given a diagonal matrix C = diag([ci]i∈M)
for some ci ≥ 0 for i ∈M, define ‖·‖C : X → R such that

‖x‖C ,
√∑

i∈M ci‖xi‖2Xi; furthermore, DC
X (x, x̄) ,∑

i∈M ciDXi(xi, x̄i) for all x, x̄ ∈ X .

Next, we state our assumptions on f , h and Φ.

Assumption 1. Suppose fi : Xi → R ∪ {+∞} is a closed
convex function and its convexity modulus w.r.t. ‖·‖Xi is
µi ≥ 0 for all i ∈M and h : Y → R ∪ {+∞} is a closed
convex function. Moreover, suppose that {fi}i∈M, h and
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Φ : X × Y → R satisfy the following assumptions:
(i) for any fixed y ∈ domh, Φ(·, y) is convex on dom f ,
and coordinate-wise Lipschitz differentiable on an open
set containing dom f , and for all i ∈ M, there exists
Lxixi ≥ 0 such that for any x̄ ∈ dom f and v ∈ Xi
satisfying x̄ + Uiv ∈ dom f , and ȳ ∈ domh,

‖∇xiΦ(x̄ + Uiv, ȳ)−∇xiΦ(x̄, ȳ)‖X∗i ≤ Lxixi ‖v‖Xi ;

(8)
(ii) for any fixed x̄ ∈ dom f , Φ(x̄, ·) is concave on domh,
and differentiable on an open set containing domh, and
there exists Lyy ≥ 0 and Lyxi > 0 for all i ∈ M such
that for any y, ȳ ∈ domh, v ∈ Xi and i ∈ M satisfying
x̄ + Uiv ∈ dom f ,

‖∇yΦ(x̄ + Uiv, ȳ)−∇yΦ(x̄, y)‖Y∗
≤ Lyy ‖y − ȳ‖Y + Lyxi ‖v‖Xi ; (9)

(iii) for any i ∈ M, argminxi∈Xi
{
tfi(xi) + 〈s, xi〉 +

DXi(xi, x̄i)
}

can be computed efficiently for any x̄i ∈
dom fi, s ∈ X ∗i and t > 0. Similarly, argminy∈Y{th(y) +
〈s, y〉+ DY(y, ȳ)} is easy to compute for any ȳ ∈ domh,
s ∈ Y∗ and t > 0.

We also define some diagonal matrices to simplify the nota-
tion in the rest of the paper:

M , diag([µi]i∈M), Lxx,diag([Lxixi ]i∈M),

Lyx,diag([Lyxi ]i∈M). (10)

Moreover, we define the largest coordinate-wise Lipschitz
constants as follows:

Lxx , max
i∈M

Lxixi , Lyx , max
i∈M

Lyxi . (11)

3 Randomized Accelerated Primal-dual
Algorithm

In this section, we state our proposed algorithm to solve (1)
for some given arbitrary norm ‖·‖Xi on Xi and some Breg-
man function DXi as in Definition 1 for all i ∈M. We pro-
pose a randomized block-coordinate accelerated primal-dual
(RB-APD) method (see Algorithm 1) consists of a single
loop primal-dual steps. After the initialization of parame-
ters, a dual ascent step is taken in the direction of∇yΦ with
a momentum term in terms of ∇yΦ to gain acceleration for
general convex-concave problems. This can be viewed as a
generalization of the approach proposed by Hamedani and
Aybat (2021) withM = 1 (it also generalizes the commonly
used extrapolation step when the function Φ is bilinear2).
Then, a primal block-coordinate descent step is taken using
∇xiΦ for a uniformly chosen random block coordinate.

2Majority of the existing methods use past iterates to gain
momentum, e.g., Chambolle and Pock (2011, 2016); Chambolle
et al. (2017); Alacaoglu et al. (2022b,a) use the momentum term
(1 + θk)xk − θkxk−1. This iteration can be recovered by our
method when Φ is bilinear.

Algorithm 1 Randomized Block-coordinate Accelerated
Primal-Dual (RB-APD) Algorithm

1: Input: (x0, y0) ∈ dom f × domh, {µi}i∈M ⊆ R+,
γ0 > 0, τ̄ ∈

(
0, 1

µ̄(M−1)

)
, where µ̄ , maxi∈M µi

2: (x−1, y−1)← (x0, y0), µ← mini∈M µi
3: τ̃0 ← τ̄ , σ−1 ← γ0τ̄
4: for k ≥ 0 do
5: σk ← γk τ̃k, θk ← σk−1

σk

6: qk ←M(∇yΦ(xk, yk)−∇yΦ(xk−1, yk−1))
7: sk ← ∇yΦ(xk, yk) + θkqk

8: yk+1 ← argminy∈Y h(y)−
〈
sk, y

〉
+ 1

σk
DY(y, yk)

9: Choose ik ∈M uniformly at random
10: τkik ←

(
1
M (µik + 1

τ̃k
)− µik

)−1

11: xk+1 ← xk

12: xk+1
ik
← argminx∈Xik

fik(x)

+
〈
∇xikΦ(xk, yk+1), x

〉
+ 1

τkik
DXik (x, xkik)

13: γk+1 ← γk(1 + µτ̃k)

14: τ̃k+1 ← τ̃k
√

γk

γk+1 , k ← k + 1

15: end for

In many practical settings, typically finding the Lipschitz
constants to select an appropriate step-size can be diffi-
cult. Therefore, we propose a novel backtracking linesearch
that can be combined with RB-APD (called RB-APD-B)
to adaptively select primal and dual step-sizes without the
knowledge of Lipschitz constants. To this end, we will
define a test function Ck∗ that implicitly estimates local Lip-
schitz constants in order to accept or reject the tested primal-
dual step-sizes at each bactracking iteration. In fact, at
iteration k ≥ 0 such a test function can be calculated using
only the information related to coordinate ik, i.e., check-
ing the test function does not involve computing ∇xiΦ for
i ∈ M \ {ik}. Starting from an initial arbitrary step-size,
at each iteration we reduce the step-sizes by a factor of η
until Ck∗ falls below a certain threshold. The details of our
method is displayed in Algorithm 2. Next, we formally
define our test function.
Definition 3. For any k ≥ 0, given τ̃k, σk, θk > 0, define
Tk , diag

([
1
τki

]
i∈M

)
where τki ,

(
1
M (µi+

1
τ̃k

)−µi
)−1

for i ∈M. We define the test function for the backtracking
line-search as follows:

Ck∗ ,M
(

Φ(xk+1, yk+1)− Φ(xk, yk+1)

−
〈
∇xΦ(xk, yk+1), xk+1 − xk

〉)
+
Mσk

2cα

∥∥∥∇yΦ(xk+1, yk+1)−∇yΦ(xk, yk+1)
∥∥∥2
Y∗

+
Mσk

2cβ

∥∥∥∇yΦ(xk, yk+1)−∇yΦ(xk, yk)
∥∥∥2
Y∗

−MDTk

X (xk+1,xk)

−
(1−M(cα + cβ)

σk

)
DY(yk+1, yk). (12)
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Remark 3.1. One can also consider an alternative test
function involving only partial gradients:

C̃k∗ ,M
〈
∇xikΦ(xk+1, yk+1)−∇xikΦ(xk, yk+1), xk+1

ik
− xkik

〉
+
Mσk

2cα

∥∥∥∇yΦ(xk+1, yk+1)−∇yΦ(xk, yk+1)
∥∥∥2
Y∗

+
Mσk

2cβ

∥∥∥∇yΦ(xk, yk+1)−∇yΦ(xk, yk)
∥∥∥2
Y∗

− M

τkik
DXi(x

k+1
ik

, xkik )

−
(1−M(cα + cβ)

σk

)
DY(yk+1, yk).

Note that convexity of Φ(·, y) implies that C̃k∗ upper bounds
Ck∗ . It is worth highlighting that both Ck∗ and C̃k∗ only use
the partial gradient information of ∇xikΦ and step-size τkik
related to the randomly picked coordinate ik ∈ M, and
does not involve computing∇xiΦ for i ∈M \ {ik}.

Algorithm 2 Randomized Block-coordinate Accelerated
Primal-Dual algorithm with Backtracking (RB-APD-B)

1: Input: (x0, y0) ∈ dom f × domh, {µi}i∈M ⊆ R+,
cα, cβ , δ ≥ 0, η ∈ (0, 1), γ0 > 0, τ̄ ∈

(
0, 1

µ̄(M−1)

)
,

where µ̄ , maxi∈M µi
2: (x−1, y−1)← (x0, y0), µ← mini∈M µi
3: τ̃0 ← τ̄ , σ−1 ← γ0τ̄ ,
4: for k ≥ 0 do
5: Choose ik ∈M uniformly at random
6: loop
7: σk ← γk τ̃k, θk ← σk−1

σk

8: αk+1 ← cα/σ
k, βk+1 ← cβ/σ

k

9: qk ←M(∇yΦ(xk, yk)−∇yΦ(xk−1, yk−1))
10: sk ← ∇yΦ(xk, yk) + θkqk

11: yk+1 ← argminy∈Y h(y) −
〈
sk, y

〉
+

1
σk

DY(y, yk)

12: τkik ←
(

1
M (µik + 1

τ̃k
)− µik

)−1

13: xk+1 ← xk

14: xk+1
ik
← argminx∈Xik

fik(x)

+〈∇xikΦ(xk, yk+1), x〉+ 1
τkik

DXik (x, xkik)

15: if Ck∗ ≤ −δ
[
M
τkik

DXi(x
k+1
ik

, xkik)

+ 1
σk

DY(yk+1, yk)
]

then
16: go to line 21
17: else
18: τ̃k ← ητ̃k

19: end if
20: end loop
21: γk+1 ← γk(1 + µτ̃k)

22: τ̃k+1 ← τ̃k
√

γk

γk+1 , k ← k + 1

23: end for

4 Convergence Analysis

In this section, we discuss the convergence properties of
RB-APD-B and RB-APD algorithms in Theorems 1 and 2,
respectively, which are the main results of this paper. All
related proofs are provided in the appendix. In the rest, E[·]
denotes the expectation operation.
Assumption 2. For the case µ > 0, we assume that the
Bregman distance generating function ϕXi(xi) = 1

2 ‖xi‖
2
Xi

for ‖xi‖Xi =
√
〈xi, xi〉 for all i ∈ M, which leads to

DX (x,x′) = 1
2 ‖x− x′‖2. On the other hand, for the case

µ = 0, a more general distance generating function ϕXi(xi)
can be chosen as defined in Definition 1 assuming that it
has a LϕX -Lipschitz continuous gradient for all i ∈ M,
after setting M = 0M×M without loss of generality, i.e.,
treating µi = 0 for all i ∈M. For the case µ = 0, one can
still work with the original M without setting it to 0M×M if
one uses quadratic Bregman as in the case µ > 0 case, i.e.,
setting DX (x,x′) = 1

2 ‖x− x′‖2.

In RB-APD, stated in Algorithm 1, we considered a particu-
lar step size sequence. However, RB-APD can be shown to
work for a larger class of step sizes. We next describe such
step-size conditions to ensure the convergence guarantee
for Algorithm 1. Indeed, we provide (i) a set of conditions
that provide upper bounds on τkik and σk depending on the
Lipschitz constants, for any k ≥ 0 (see (13a) and (13b));
(ii) a set of recursive inequalities that connect primal and
dual step-sizes (see (13c) and (13d)).
Assumption 3. There exists {[τki ]i∈M, σ

k, θk}k≥0 such
that θ0 = 1, and

1− δ
τkik

≥ Lxikxik +
L2
yxik

αk+1
, (13a)

1− δ
σk

≥Mθk(αk + βk) +
ML2

yy

βk+1
, (13b)

tk(Tk + M) � tk+1
(
Tk+1 + (1− 1

M
)M
)
, (13c)

tk

σk
≥ tk+1

σk+1
, tk+1θk+1 = tk, (13d)

where Tk , [ 1
τki

Imi ]i∈M, for some positive {tk, αk}k≥0

such that t0 = 1, nonnegative {βk}k≥0 and δ ∈ [0, 1).
Remark 4.1. Stepsize update rule in Algorithm 1 implies
that for all k ≥ 0,

θk+1 =
1√

1 + µτ̃k
, τ̃k+1 = θk+1τ̃k, σk+1 = σk/θk+1.

Suppose the parameters are initialized such that θ0 = 1 and
[τ0
i ]i∈M, σ

0 > 0 such that(
(1− δ)T0 − Lxx

) 1

σ0
� 1

cα
L2
yx, (14a)

1−
(
δ +M(cα + cβ)

)
≥
ML2

yy

cβ
(σ0)2, (14b)
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for any δ, cα, cβ ∈ R+ such thatM(cα+cβ)+δ ≤ 1 satis-
fying cα, cβ > 0 when Lyy > 0, and cα > 0, cβ = 0 when
Lyy = 0. Then {[τki ]i∈M, σ

k, θk}k≥0 satisfies Assumption
3 by selecting tk = σk/σ0.

As it is apparent from the remark above, for the convex-
concave setting, i.e., µ = 0, with M = 0, a constant step
size sequence can be selected for the RB-APD, i.e., τ̃k = τ̃0,
σk = σ0, and θk = 1 for all k ≥ 0 such that (τ̃0, σ0) satisfy
(14). We show that this choice implies O(1/K) rate for the
expected gap function; hence, O(1/K) rate for the primal
suboptimality. On the other hand, in strongly convex setting,
i.e., M � 0, an accelerated convergence rate of O(1/K2)
for the primal suboptimality can be obtained by decreasing
the primal step-size τki and increasing the dual step-size σk.

Next, we consider the scenario where the Lipschitz con-
stants are not available. We show that RB-APD-B stated
in Algorithm 2 is well-defined, i.e., the condition in Line
15 holds in finite number of backtracking steps, and the
generated step-size sequence {[τki ]i∈M, σ

k, θk} satisfy the
conditions in (13c) and (13d)).

Lemma 1. Under Assumptions 1 and 2, consider
RB-APD-B displayed in Algorithm 2 for any given δ ∈
[0, 1) and cα, cβ ≥ 0 such that M(cα + cβ) + δ ≤ 1. When
Lyy > 0, set cα, cβ > 0; otherwise, when Lyy = 0, set
cα > 0 and cβ = 0. The RB-APD-B iterate and step-size
sequences, i.e., {xk, yk}k≥0 and {[τki ]i∈M, σ

k, θk}k≥0,
are well-defined; more precisely, for any k ≥ 0,

Ck∗ ≤ −δ
[
MDTk

X (xk+1,xk) +
1

σk
DY(yk+1, yk)

]
, (15)

holds after finite number of backtracking iterations, where
Ck∗ is defined in (12) using {σk,Tk}k and cα, cβ as above.
Furthermore, {[τki ]i∈M, σ

k, θk}k≥0 satisfy (13c) and (13d)
for {tk}k≥0 such that tk = σk/σ0 for k ≥ 0.

We are now ready to state the convergence rate of
RB-APD-B, stated in Algorithm 2.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let
δ ∈ [0, 1), cα > 0 and cβ ≥ 0 are chosen as stated be-
low. For any given (x0, y0) ∈ dom f × domh, γ0 > 0
and τ̄ ∈

(
0, 1

µ̄(M−1)

)
, RB-APD-B, stated in Algorithm 2,

is well-defined, i.e., the number of inner iterations is finite
and bounded by 1+log1/η( τ̄Ψ ) uniformly for k ≥ 0 for some
Ψ > 03. Let {xk, yk}k≥0 denote the iterate sequence gener-
ated by RB-APD-B. ForK ≥ 1, let TK,

∑K−1
k=0 tk, x̄K =

M
TK+M−1

(∑K−2
k=0

(
tk − (1− 1

M )tk+1
)
xk+1 + tK−1xK

)
and ȳK = 1

TK

∑K−1
k=0 tkyk+1 for {tk}k≥0 such that tk =

σk/σ0 for k ≥ 0.
(Part I.) Suppose µ = 0 and dom f × domh is compact.

3Ψ is a function of the problem and algorithm parameters, and
its exact form is provided in the appendix.

Assume M(cα + cβ) + δ≤ 1 holds for some cα, cβ > 0 if
Lyy > 0; and cβ = 0, and Mcα + δ≤ 1 for some cα > 0
otherwise. If a saddle point for (1) exists and δ > 0, then
{(xk, yk)}k≥0 converges to a saddle point almost surely.
Moreover, for all K ≥ 1, the following bound holds:

E
[
G(x̄K , ȳK)

]
(16)

≤ 1

TK

(
B̄ + sup

x∈dom f
B1(x) + sup

y∈domh
B2(y)

)
B1(x) ,MD

(1+ 1
M )T0+M

X (x,x0),

B2(y) ,
(

1
σ0 + θ0(M − 1)Lyy

)
DY(y, y0),

for some constant4 B̄ ∈ R+, and TK = Ω(K), implying
O(1/K) sublinear rate for E

[
G(x̄K , ȳK)

]
.

(Part II.) Suppose µ > 0 and Lyy = 0. Assume Mcα + δ ∈
(0, 1] and cβ = 0. If a saddle point (x∗, y∗) for (1) exists,
then {(xk, yk)}k≥0 converges to x∗ and {yk} has a limit
point almost surely. Moreover, if δ > 0, then any limit point
of {xk, yk} is a saddle point almost surely, and

E
[
γK

2

∥∥x∗ − xK
∥∥2

X + (1−Mcα)DY(y∗, yK)
]

≤ γ0

2

∥∥x∗ − x0
∥∥2

X + DY(y∗, y0)

+ σ0(M − 1)
(
L(x0, y∗)− L(x∗, y∗)

)
, (17)

E
[
F (x̄K)− F (x∗)

]
≤ 1

TK

(
γ0

2σ0

∥∥x∗ − x0
∥∥2

X + 1
σ0 sup

y∈domh
DY(y, y0)

+ (M − 1)
(
F (x0)− F (x∗)

))
(18)

for all K ≥ 1. Furthermore, both γK = Ω(K2) and
TK = Ω(K2); hence, E

[ ∥∥xK − x∗
∥∥2

X

]
= O(1/K2) and

0 ≤ E
[
F (x̄K)− F (x∗)

]
≤ O(1/K2).

Note that the term L(x0, y∗) − L(x∗, y∗) in (17) can be
bounded above by F (x0)− F (x∗).

Now we are ready to state convergence rate of Algorithm 1.

Theorem 2. Suppose Assumptions 1 and 2 hold, and given
arbitrary (x0, y0) ∈ dom f × domh, γ0 > 0 and τ̄ ∈(
0, 1

µ̄(M−1)

)
such that (14) holds for some cα, cβ ≥ 0 and

δ ∈ [0, 1) as described in Theorem 1, let {xk, yk}k≥0 be
the iterate sequence generated by RB-APD. Suppose z̄K =
(x̄K , ȳK) and TK are defined for K ≥ 1 as in Theorem 1.

(Part I.) Suppose µ = 0 and dom f × domh is compact.
The stepsize rule in Algorithm 1 implies τ̃k = τ̃0, σk = σ0

and θk = 1 for all k ≥ 0; hence, tk = 1 for k ≥ 0, implying
TK = K. If a saddle point for (1) exists and δ > 0, then
{(xk, yk)}k≥0 almost surely converges to a saddle point
(x∗, y∗). Moreover, (16) holds for all K ≥ 1, which implies
E[G(z̄K)] ≤ O(1/K).

4See appendix for its dependence on algorithm and problem
parameters.
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(Part II.) Suppose µ > 0 and Lyy = 0. If a sad-
dle point for (1) exists, then {xk}k≥0 converges to x∗

and {yk} has a limit point almost surely.5 Moreover, if
δ > 0, then any limit point (x∗, y∗) is a saddle point
almost surely satisfying (17) and (18) for all K ≥ 1.
Furthermore, as in Theorem 1, both γK = Ω(K2) and
TK = Ω(K2); hence, E

[ ∥∥xK − x∗
∥∥2

X

]
= O(1/K2) and

0 ≤ E
[
F (x̄K)− F (x∗)

]
≤ O(1/K2).

5 Numerical Experiment
In this section, we implement our scheme on a kernel matrix
learning problem described in section 1, and benchmark
with Mirror-prox by He et al. (2015), proximal extra
gradient method (PEGM) by Malitsky and Pock (2018), and
accelerated primal-dual (APDB) by Hamedani and Aybat
(2021). The experiments are performed on a machine run-
ning 64-bit Windows 10 with Intel i7-8650U @2.11GHz
and 16GB RAM.

5.1 Learning a Kernel Matrix

We consider the formulation in (5) for the kernel class K
in (4), and we use a similar setup as in (Lanckriet et al.,
2004). In particular, we consider three kernel functions
(q = 3); polynomial kernel function φ1(a, ā) = (1 +
a>ā)2, Gaussian kernel function φ2(a, ā) = exp(−0.5(a−
ā)>(a − ā)/0.1), and linear kernel function φ3(a, ā) =
a>ā to compute K1,K2,K3∈ Sm+ , respectively, where m
denotes the number data points. We set λ = 1, c =

∑3
`=1 r`,

where r` = trace(K`) for ` = 1, 2, 3. The kernel ma-
trices are normalized as in (Lanckriet et al., 2004); thus,
diag(K`) = 1m and r` = m for each `. We consider two
different datasets: a subset of svmguide1 (m = 3000,
n = 4) and a subset of MNIST to classify digits of 4 and 9
(m = 7500, n = 784) from (Chang and Lin, 2011), where
n denotes the number of features. We use 80% of data
points as the training set and the rest as the test set.

The algorithms are compared in terms of relative error for
the solution (‖xk − x∗‖2/‖x∗‖2), where (x∗, y∗) denotes a
saddle point for the considered problem. The purpose of this
experiment is to benchmark our method against other meth-
ods in terms of convergence behavior observed in practice.
To this end, the optimal primal solution x∗ to the prob-
lem in (5) is computed calling the commercial optimization
solver MOSEK through CVX (Grant et al., 2008).

Effect of number of blocks. In Figure 1, we com-
pare the performance of RB-APD-B for different num-
bers of primal blocks, M ∈ {1, 10, 50, 100, 800} for
svmguide1 and M ∈ {1, 10, 50, 100, 1000} for MNIST
datasets. RB-APD-B with M = 100 primal blocks has the
best performance compared to other block partition strate-

5Since µ > 0, x∗ denotes the unique solution to
minx∈X F (x).

gies. The main reason is that partitioning minimization
variable into blocks reduces per iteration complexity and
allows more iterations to be performed in a given time in-
terval. That said, employing an excessive number of blocks,
e.g., M = 1000 for MNIST dataset, degrades the overall
performance measured by the total number of primal and
dual oracle calls, compared to adopting a moderate number
of blocks, e.g., M = 100 for MNIST. Thus, one may con-
clude that there is a trade-off between the number of blocks
and convergence behavior in terms of oracle complexity.

(a) svmguide1 dataset (b) MNIST dataset

Figure 1: Performance of RB-APD-B for various number
of primal blocks.

Comparison with other methods. The comparison of our
method against others is demonstrated in Figure 2. In this
experiment, we select the step-size of (He et al., 2015) con-
stant while other methods enjoy a backtracking linesearch.
All the methods use the same initial step-size of τ = 10−2

and parameter η = 0.7. We observe that our algorithm
RB-APD-B is competitive against the state-of-the-art meth-
ods we compare. The reason is that our method potentially
benefits from low per-iteration complexity due to using a
block-coordinate approach as well as larger block-specific
step-sizes due to exploring local coordinate-wise Lipschitz
constant via backtracking method. Mirror-prox by He
et al. (2015) uses constant step-size depending on the global
Lipschitz parameter and employs full gradient ∇xΦ to up-
date x while both APDB by Hamedani and Aybat (2021) and
PEGM by Malitsky and Pock (2018) employ backtracking
line search, but similarly use full gradient ∇xΦ to update x.

(a) svmguide1 dataset (b) MNIST dataset

Figure 2: Comparing the performance of RB-APD-B with
other methods for different datasets.
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5.2 Quadratic constrained quadratic programming
(QCQP)

In this subsection, we compare our method against APDB
by Hamedani and Aybat (2021) and BLALM by Xu (2021)
on randomly generated QCQP problems with various dimen-
sions. In fact, we consider the following QCQP problem

min
x∈X

f(x) ,
1

2
x>A0x + b>0 x

s.t. g(x) ,
1

2
x>A1x + b>1 x− c1 ≤ 0,

where X = [−1, 1]m, {Aj}1j=0 ⊂ Rm×m are positive
semidefinite matrices generated randomly with a block diag-
onal structure, {bj}1j=0 ⊂ Rm are generated randomly with
elements drawn from standard Gaussian distribution, and
c1 ∈ R is generated randomly with elements drawn from
uniform distribution over [0, 1].

The goal of this experiment is to examine the effect of
the dimension of the primal-variable (m) on the runtime
of the proposed method and compare it with existing al-
gorithms. To this end, we fix the termination criteria as
max{|f(xk)− f(x∗)| , [g(xk)]+}/m ≤ ε and increase pa-
rameter m to compare the running time of algorithms.
In particular, we let ε = 10−6 and m = 103i for i ∈
{1, 3, 5, 7, 9}. The plot is shown in Figure 3 and we observe
that RB-APD-B outperforms the other two methods and
their gap increases as m increases.

Figure 3: Comparing the effect of m on the running time.

6 Concluding Remarks

The step-sizes for a typical first-order method are selected
based on the global Lipschitz constant of the gradient map
to guarantee convergence. However, these constants may
not be readily available in practice; and even if they are
known, they pottentially lead to conservative step-sizes. We
developed a novel randomized block coordinate primal-dual
method equipped with backtracking line-search to solve
large-scale SP problems. The method can contend with non-
bilinear, non-separable coupling functions Φ(x, y) possibly
with multiple primal blocks. At each iteration, a primal
block is randomly selected and updated, following a dual
update with a momentum term involving∇yΦ.

We showed that for convex-concave setting, the proposed
method achieves O(M/k) convergence rate in the ex-
pected primal-dual gap. Furthermore, assuming Φ(x, y)
is strongly convex in x and affine in y, our method enjoys
a faster rate of O(M/k2) in terms of E[‖xk − x∗‖2] and
E[F (xk)−F (x∗)], where F (·) denotes the primal function.
To the best of our knowledge, our proposed method is the
only randomized block-coordinate primal-dual algorithm
that can handle the general SP problems as in (1) and our
rate results are optimal for this class. Furthermore, our
method avoids step-size selection issues related to the use of
global Lipschitz constants through employing backtracking
line-search scheme we developed. Indeed, the proposed
line-search scheme tailored for RB-APD help us alleviate
the burden of knowing the global Lipschitz constants by
estimating them locally.
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A SUPPORTING LEMMAS AND DEFINITIONS

Notation: In the rest, E[·] denotes the expectation operation and the conditional expectation is denoted by Ek[·] , E [· | Fk],
where Fk , σ

(
{i0, . . . , ik−1}

)
is the σ-algebra generated by {i0, . . . , ik−1} for k ≥ 1. Moreover, given a diagonal matrix

A = diag([ai]i∈M) for some {ai}i∈M ⊂ R++, for any x ∈ X and x̄ ∈ dom f , we define

DAX (x, x̄) ,
∑
i∈M

aiDXi(xi, x̄i).

Moreover, for any δ ∈ X ∗, we define ‖δ‖∗,A ,
√∑

i∈M ai ‖δi‖2X∗i .

Note that for any y ∈ domh, x̄ ∈ dom f and i ∈M, (8) implies that

0 ≤ Φ(x̄ + Uiv, y)− Φ(x̄, y)− 〈∇xiΦ(x̄, y), v〉 ≤ 1
2Lxixi ‖v‖

2
Xi , (19)

for all v ∈ Xi such that x̄ + Uiv ∈ dom f . Similarly (9) and concavity of Φ(x, ·) imply that for any x ∈ dom f , the
following inequality holds for all y, ȳ ∈ domh:

0 ≥ Φ(x, y)− Φ(x, ȳ)− 〈∇yΦ(x, ȳ), y − ȳ〉 ≥ − 1
2Lyy ‖y − ȳ‖

2
Y . (20)

Next, we define a test function Ck(x,y) for the iteration k ≥ 0 to accept or reject the given point (x, y).

Definition 4. For any k ≥ 0, given τ̃k, σk, θk > 0, Tk = diag
([

1
τki

]
i∈M

)
such that τki ,

(
1
M (µi + 1

τ̃k
) − µi

)−1
for

i ∈M. We define

Ck(x, y) ,M
(

Φ(x, y)− Φ(xk, y)−
〈
∇xΦ(xk, y), x− xk

〉)
+

M

2αk+1

∥∥∥∇yΦ(x, y)−∇yΦ(xk, y)
∥∥∥2
Y∗

+
M

2βk+1

∥∥∥∇yΦ(xk, y)−∇yΦ(xk, yk)
∥∥∥2
Y∗
−MDTk

X (x,xk)−
( 1

σk
− θkM(αk + βk)

)
DY(y, yk) (21)

for some positive sequence {αk, βk}.

Indeed, one can easily verify that Ck∗ = Ck(xk+1, yk+1) for {αk, βk} sequence defined as in RB-APD-B algorithm.

Lemma 2. Let X be a finite dimensional normed vector space with norm ‖.‖X , f : X → R ∪ {+∞} be a closed convex
function with convexity modulus µ ≥ 0 with respect to ‖.‖X , and D : X × X → R+ be a Bregman distance function
corresponding to a strictly convex function φ : X → R that is differentiable on an open set containing dom f . Given
x̄ ∈ dom f and t > 0, let

x+ = argmin
x∈X

f(x) + tD(x, x̄). (22)

Then for all x ∈ X , the following inequality holds:

f(x) + tD(x, x̄) ≥ f(x+) + tD(x+, x̄) + tD(x, x+) +
µ

2

∥∥x− x+
∥∥2

X . (23)

Proof. This result is a trivial extension of Property 1 in Tseng (2008). The first-order optimality condition for (22) implies
that 0 ∈ ∂f(x+) + t∇xD(x+, x̄) – where∇xD denotes the partial gradient with respect to the first argument. Note that for
any x ∈ dom f , we have ∇xD(x, x̄) = ∇φ(x)−∇φ(x̄). Hence, t(∇φ(x̄)−∇φ(x+)) ∈ ∂f(x+). Using the convexity
inequality for f , we get

f(x) ≥ f(x+) + t
〈
∇φ(x̄)−∇φ(x+), x− x+

〉
+
µ

2

∥∥x− x+
∥∥2

X .

The result in (23) immediately follows from this inequality.

Lemma 3. Robbins and Siegmund (1971) Let (Ω,F ,P) be a probability space, and for each k ≥ 0 suppose ak and bk

are finite nonnegative Fk-measurable random variables where {Fk}k≥0 is a sequence sub-σ-algebras of F such that
Fk ⊂ Fk+1 for k ≥ 0. If E[ak+1|Fk] ≤ ak − bk, then then a = limk→∞ ak exists almost surely, and

∑∞
k=0 b

k <∞.
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Lemma 4. Given a diagonal matrixA = diag([ai]i∈M) for some {ai}i∈M ⊂ R++, and an arbitrary sequence {δk}k≥0 ⊂
X∗, let {vk}k≥0 ⊂ X be such that vk+1 , argminx∈X {−

〈
δk,x

〉
+ DAX (x,vk)}. Then for all k ≥ 0 and x ∈ X ,

〈
δk,x− vk

〉
≤ DAX (x,vk)−DAX (x,vk+1) +

1

2

∥∥∥δk∥∥∥2

∗,A−1
.

Proof. Since vk+1 computation is separable in i ∈M, one can apply Lemma 2 for each coordinate to obtain a bound for〈
δk,x− vk+1

〉
. Then we have that

〈
δk,x− vk

〉
=
〈
δk,x− vk+1

〉
+
〈
δk,vk+1 − vk

〉
≤ DAX (x,vk)−DAX (x,vk+1)−DAX (vk+1,vk) +

〈
δk,vk+1 − vk

〉
≤ DAX (x,vk)−DAX (x,vk+1) +

1

2

∥∥∥δk∥∥∥2
∗,A−1

,

where in the last inequity we used
〈
δki , v

k+1
i − vki

〉
≤ ai

2

∥∥vk+1
i − vki

∥∥2

Xi
+ 1

2ai

∥∥δki ∥∥2

X∗i
for i ∈ M together with

DAX (vk+1 − vk) ≥ 1
2

∥∥vk+1 − vk
∥∥2

A.

B Proof of Convergence

Before proving the asymptotic convergence of the iterate sequence and related rate results, we restate the theorems with
more details here for completeness. We divide the proof of theorems in three parts: (i) In section B.1, we analyze the
proposed backtracking method to derive some key inequalities; (ii) in section B.2, we show asymptotic convergence of the
iterate sequence generated by RB-APD and RB-APD-B; (iii) finally, in section B.3 we establish the convergence rate of the
proposed methods.

Remark B.1. Note that when the problem is strongly convex, we assume that Lyy = 0 which means that Φ(x, ·) is affine
for any x ∈ X . In this scenario, let x∗ be the unique solution to min{F (x) : x ∈ X} for F defined in (6), it is desirable to
provide convergence guarantees for computing an ε-optimal point xε. In this context, ε-optimality can be defined either in
function values, i.e., E[F (xε)− F (x∗)] ≤ ε, or in the solution space, i.e., E[‖xε − x∗‖2X ] ≤ ε.

We begin by restating the results for RB-APD-B, stated in Algorithm 2, under merely convex and strongly convex settings
separately.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let δ ∈ [0, 1), cα > 0 and cβ ≥ 0 are chosen as stated below, and define
µ = mini∈M µi, µ̄ , maxi∈M µi, Lxx = maxi∈M Lxixi , Lyx = maxi∈M Lyxi , and

Ψ1 ,
cαb̄

2γ0L
2

yx

ζ, Ψ2 ,

√
cβ(1− (M(cα + cβ) + δ))

γ0

√
MLyy

, (24)

ζ , −1 +

√
1 +

4(1− δ)γ0

Mcα

L
2

yx

b̄2
, b̄ , Lxx +

(1− δ)(M − 1)µ̄

M
. (25)

For any given (x0, y0) ∈ dom f × domh and arbitrary γ0 > 0, τ̄ ∈
(

0, 1
µ̄(M−1)

)
, RB-APD-B, stated in Algorithm 2, is

well-defined, i.e., the number of backtracking iterations is finite and bounded by 1 + log1/η( τ̄Ψ ) uniformly for k ≥ 0 for some

Ψ > 0. Let {xk, yk}k≥0 denote the iterate sequence generated by RB-APD-B. For all K ≥ 1, let TK,
∑K−1
k=0 tk and

x̄K =
1

TK +M − 1

(K−2∑
k=0

(Mtk − (M − 1)tk+1)xk+1 +MtK−1xK
)
, ȳK =

1

TK

K−1∑
k=0

tkyk+1

for {tk}k≥0 such that tk = σk/σ0 for k ≥ 0.
(Part I.) Suppose µ = 0 and dom f×domh is compact. AssumeM(cα+cβ)+δ≤ 1 holds for some cα, cβ > 0 if Lyy > 0;
and cβ = 0, and Mcα + δ≤ 1 for some cα > 0 otherwise. For this setting, Ψ = Ψ1 if Lyy = 0 and Ψ = min{Ψ1,Ψ2} if
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Lyy > 0; moreover, if a saddle point for (1) exists and δ > 0 is chosen, then {(xk, yk)}k≥0 converges to a saddle point
almost surely. Finally, for all K ≥ 1, the following bounds holds:

E
[
G(x̄K , ȳK)

]
≤ 1

TK

(
B̄1 + B̄2 + sup

x∈dom f
B1(x) + sup

y∈domh
B2(y)

)
(26a)

B̄1 ,
(M − 1)L2

ϕX

2
E
[ +∞∑
k=0

tk
∥∥x̃k+1 − xk

∥∥2

Tk+M

]
< +∞, (26b)

B̄2 , (M − 1) sup{L(x0, y)− L(x, y) : (x, y) ∈ dom f × domh} < +∞, (26c)

B1(x) ,MD
(1+ 1

M )T0+M

X (x,x0), (26d)

B2(y) ,
(

1
σ0 + θ0(M − 1)Lyy

)
DY(y, y0), (26e)

and TK = Ω(K), implying O(1/K) sublinear rate for E
[
G(x̄K , ȳK)

]
.

(Part II.) Suppose µ > 0 and Lyy = 0; hence, Φ has the following form: Φ(x, y) = 〈g(x), y〉 for some g : X → Y∗ such
that Φ is convex in x on dom f for any y ∈ domh. Let F (x) = argmaxy∈Y L(x, y); thus, F (x) = f(x) + h∗(g(x)) for
x ∈ X .

Assume Mcα+δ ∈ (0, 1] and cβ = 0. For this setting, Ψ = Ψ1. If a saddle point (x∗, y∗) for (1) exists, then {(xk, yk)}k≥0

converges to x∗ and {yk} has a limit point almost surely. Moreover, if δ > 0, then any limit point (x∗, y∗) is a saddle point
almost surely satisfying

E
[
γK

2

∥∥x∗ − xK
∥∥2
X + (1−Mcα)DY(y∗, yK)

]
≤ γ

0

2

∥∥x∗ − x0
∥∥2
X + DY(y∗, y0)

+ σ0(M − 1)
(
L(x0, y∗)− L(x∗, y∗)

)
, (27)

E
[
F (x̄K)− F (x∗)

]
≤ 1

TK

(
γ0

2σ0

∥∥x∗ − x0
∥∥2
X + 1

σ0 sup
y∈domh

DY(y, y0) + (M − 1)
(
F (x0)− F (x∗)

))
, (28)

for all K ≥ 1. Furthermore, both γK = Ω(K2) and TK = Ω(K2); hence, E
[ ∥∥xK − x∗

∥∥2

X

]
= O(1/K2) and

0 ≤ E
[
F (x̄K)− F (x∗)

]
≤ O(1/K2).

Next, we state the convergence rate result for RB-APD, displayed in Algorithm 1, in detail.

Theorem 2. Suppose Assumptions 1 and 2 hold, and let µ = mini∈M µi, µ̄ , maxi∈M µi. Given some γ0 > 0 and
τ̄ ∈

(
0, 1

µ̄(M−1)

)
such that (14) holds for some cα, cβ ≥ 0 and δ ∈ [0, 1) as described in Theorem 1, let {xk, yk}k≥0 be

the iterate sequence generated by RB-APD. Suppose (x̄K , ȳK) and TK are defined for K ≥ 1 as in Theorem 1.

(Part I.) Suppose µ = 0 and dom f × domh is compact. The stepsize rule in Algorithm 1 implies that τ̃k = τ̃0, σk = σ0

and θk = 1 for all k ≥ 0; hence, tk = 1 for k ≥ 0, implying TK = K. Moreover, (26) holds for all K ≥ 1. Finally, if a
saddle point for (1) exists and δ > 0, then {(xk, yk)}k≥0 almost surely converges to a saddle point (x∗, y∗).

(Part II.) Suppose µ > 0 and Lyy = 0. If a saddle point for (1) exists, then {xk}k≥0 converges to x∗ and {yk} has a limit
point almost surely,6 where x∗ denotes the unique solution to min{F (x) : x ∈ X}. Moreover, if δ > 0, then any limit
point (x∗, y∗) is a saddle point almost surely satisfying (27) and (28) for all K ≥ 1. Furthermore, as in Theorem 1, both
γK = Ω(K2) and TK = Ω(K2); hence, E

[ ∥∥xK − x∗
∥∥2

X

]
= O(1/K2) and 0 ≤ E

[
F (x̄K)− F (x∗)

]
≤ O(1/K2).

To prove the results of Theorems 1 and 2, we first provide a one-step analysis in Lemma 5 to provide a bound on the progress
of iterates in terms of the coupling function L. This is the main building block of our convergence analysis.

6Since µ > 0, x∗ must be the unique x-coordinate of any saddle point.
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Lemma 5. Suppose Assumption 1 holds, let {xk, yk}k≥0 be generated by the following recursion:

qk ←M(∇yΦ(xk, yk)−∇yΦ(xk−1, yk−1)) (29a)

sk ← ∇yΦ(xk, yk) + θkqk (29b)

yk+1 ← argmin
y

h(y)−
〈
sk, y

〉
+

1

σk
DY(y, yk) (29c)

x̃k+1
i ← argmin

x
fi(x) +

〈
∇xiΦ(xk, yk+1), x

〉
+

1

τki
DXi(x, x

k
i ), ∀ i ∈M (29d)

xk+1 ← xk

Choose ik ∈M uniformly at random

xk+1
ik
← x̃k+1

ik
,

for some positive parameters {τki }i∈M, σk and θk for k ≥ 0.7 Then for any (x, y) ∈ dom f × domh,

L(xk+1, y)− L(x, yk+1) ≤ Qk(z)−Rk+1(z) + (M − 1)(θkHk(z)−Hk+1(z)),

+ (M − 1)
(

(1− θk)
(
L(xk, y)− L(x, y)

)
+ (1− θk)+LyyDY(y, yk)

)
+ Ck(xk+1, yk+1) + Ek(x), (30)

holds for all k ≥ 0 for any {αk} ⊂ R++, and for any {βk} ⊂ R++ when Lyy > 0 (and βk = 0 for all k ≥ 0 when
Lyy = 0, defining 02/0 = 0), where (·)+ = max{·, 0}, Qk(·), Rk+1(·), Hk(·), and Ek(x) are defined as follows:

Qk(z) ,MDTk

X (x,xk) +
M − 1

2

∥∥∥x− xk
∥∥∥2
M

+
1

σk
DY(y, yk) + θk

〈
rk, yk − y

〉
+
Mθk

2αk

∥∥∥∇yΦ(xk, yk)−∇yΦ(xk−1, yk)
∥∥∥2
Y∗

+
Mθk

2βk

∥∥∥∇yΦ(xk−1, yk)−∇yΦ(xk−1, yk−1)
∥∥∥2
Y∗
, (31a)

Rk+1(z) ,MDTk

X (x,xk+1) +
M

2

∥∥∥x− xk+1
∥∥∥2
M

+
1

σk
DY(y, yk+1) +

〈
rk+1, yk+1 − y

〉
+

M

2αk+1

∥∥∥∇yΦ(xk+1, yk+1)−∇yΦ(xk, yk+1)
∥∥∥2
Y∗

+
M

2βk+1

∥∥∥∇yΦ(xk, yk+1)−∇yΦ(xk, yk)
∥∥∥2
Y∗
, (31b)

Hk(z) , f(xk)− f(x) + Φ(xk, yk)− Φ(x, y), (31c)

Ek(x) ,Mf(xk+1)− f(x̃k+1)− (M − 1)f(xk)−
〈
∇xΦ(xk, yk+1), x̃k+1 −Mxk+1 + (M − 1)xk

〉
+MDTk

X (x,xk+1)− (M − 1)DTk

X (x,xk)−DTk

X (x, x̃k+1) +MDTk

X (xk+1,xk)

−DTk

X (x̃k+1,xk) +
M

2

∥∥∥x− xk+1
∥∥∥2
M
− 1

2

∥∥∥x− x̃k+1
∥∥∥2
M
− M − 1

2

∥∥∥x− xk
∥∥∥2
M
, (31d)

where Ck(·, ·) defined in (21) and rk , ∇yΦ(xk, yk)−M∇yΦ(xk−1, yk−1).

Proof. We define an auxiliary sequence {x̃k}k≥1 ⊆ X such that x̃k+1
i is defined as in (29d) for all k ≥ 0. The auxiliary

sequence {x̃k}k≥1 is never actually computed in the implementation of RB-APD or RB-APD-B, and it is defined for
analyzing the convergence behavior of {xk}k≥1 ⊆ X . For k ≥ 0, we apply Lemma 2 for both x̃i-subproblem in (29d) and
the y-subproblem in (29c) (see Line 9 of RB-APD and also Line 11 of RB-APD-B), we obtain two inequalities holding for
any y ∈ Y and x ∈ X :

h(yk+1)−
〈
sk, yk+1 − y

〉
≤ h(y) +

1

σk

[
DY(y, yk)−DY(y, yk+1)−DY(yk+1, yk)

]
, (32)

fi(x̃
k+1
i ) +

〈
∇xiΦ(xk, yk+1), x̃k+1

i − xi
〉

+
µi
2

∥∥xi − x̃k+1
i

∥∥2

Xi

≤ fi(x) +
1

τki

[
DXi(xi, x

k
i )−DXi(xi, x̃

k+1
i )−DXi(x̃

k+1
i , xki )

]
, ∀i ∈M, (33)

where qk and sk are defined in (29a) and (29b), respectively. Note that by invoking (19), we may bound the inner product in
(33) as follows:〈

∇xΦ(xk, yk+1), x̃k+1 − x
〉

=
〈
∇xΦ(xk, yk+1),xk − x

〉
+
〈
∇xΦ(xk, yk+1), x̃k+1 − xk

〉
≥ Φ(xk, yk+1)− Φ(x, yk+1) +

〈
∇xΦ(xk, yk+1), x̃k+1 − xk

〉
. (34)

7RB-APD and RB-APD-B, stated in Algorithm 1 and Algorithm 2, respectively, both satisfy this recursion for some primal-dual
stepsize sequences.
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Next, we define two auxiliary sequences for k ≥ 0:

Ak+1 ,
1

σk
DY(y, yk)− 1

σk
DY(y, yk+1)− 1

σk
DY(yk+1, yk), (35a)

Bk+1 , DTk

X (x,xk)−DTk

X (x, x̃k+1)− 1
2

∥∥x− x̃k+1
∥∥2

M
−DTk

X (x̃k+1,xk). (35b)

Summing (33) over i ∈M, and using (34) and (35b) leads to

f(x̃k+1) ≤ f(x) + Φ(x, yk+1)− Φ(xk, yk+1) +Bk+1 −
〈
∇xΦ(xk, yk+1), x̃k+1 − xk

〉
. (36)

For k ≥ 0, let
Λkx , Φ(xk+1, yk+1)− Φ(xk, yk+1)−

〈
∇xΦ(xk, yk+1),xk+1 − xk

〉
,

Ek , f(xk+1)− 1

M
f(x̃k+1)− (1− 1

M
)f(xk)− 1

M

〈
∇xΦ(xk, yk+1), x̃k+1 −Mxk+1 + (M − 1)xk

〉
,

then dividing both sides of (36) by M and rearranging the terms lead to

f(xk+1) + Φ(xk+1, yk+1)− f(x)− 1

M
Φ(x, yk+1) ≤ (37)(

1− 1

M

)(
f(xk)− f(x) + Φ(xk, yk+1)

)
+

1

M
Bk+1 + Λkx + Ek.

Next, multiplying (32) by 1
M and adding to (37), then adding Φ(xk+1, y)/M to both sides, and rearranging the terms we

obtain:

1

M

(
f(xk+1)− f(x) + Φ(xk+1, y)

)
+

1

M

(
h(yk+1)− h(y)− Φ(x, yk+1)

)
≤ 1

M

(
Φ(xk+1, y)− Φ(xk+1, yk+1)

)
+

(
1− 1

M

)(
f(xk)− f(x) + Φ(xk, yk+1)

)
−
(

1− 1

M

)(
f(xk+1)− f(x) + Φ(xk+1, yk+1)

)
+

1

M
Bk+1 +

1

M
Ak+1

+
1

M

〈
sk, yk+1 − y

〉
+ Λkx + Ek

≤ 1

M

〈
∇yΦ(xk+1, yk+1), y − yk+1

〉
+

(
1− 1

M

)(
f(xk)− f(x) + Φ(xk, yk+1)− Φ(x, y)

)
︸ ︷︷ ︸

(∗)

−
(

1− 1

M

)(
f(xk+1)− f(x) + Φ(xk+1, yk+1)− Φ(x, y)

)
+

1

M
Bk+1 +

1

M
Ak+1

+
1

M

〈
sk, yk+1 − y

〉
+ Λkx + Ek, (38)

where in the last inequality, we use the concavity of Φ(xk+1, ·). Note that for any real number a ∈ R, from (20) we have
that for any x ∈ X , ȳ, y ∈ Y

aΦ(x, ȳ) ≤ aΦ(x, y) + a 〈∇yΦ(x, ȳ), ȳ − y〉+ max{a, 0} · Lyy
2
‖y − ȳ‖2Y . (39)

Next, we provide an upper bound for (∗) in (38) as follows:

(∗)≤
(

1− 1

M

)(
f(xk)− f(x) + Φ(xk, yk)− Φ(x, y) +

〈
∇yΦ(xk, yk), yk+1 − yk

〉 )
≤
(

1− 1

M

)
θkHk(z) +

(
1− 1

M

)
(1− θk)

(
f(xk)− f(x) + Φ(xk, y)− Φ(x, y)

)
+
(

1− 1

M

)Lyy(1− θk)+

2

∥∥y − yk∥∥2

Y +
(

1− 1

M

)
θk
〈
∇yΦ(xk, yk), y − yk

〉
+
(

1− 1

M

) 〈
∇yΦ(xk, yk), yk+1 − y

〉
, (40)
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where (a)+ = max{a, 0} and Hk(z) = f(xk) − f(x) + Φ(xk, yk) − Φ(x, y); in the first inequality above we used the
concavity of Φ(xk, ·), and in the second inequality, we split the resulting bound into θk ≥ 0 and 1− θk fractions, and used
(39) for a = 1− θk, x = xk and ȳ = yk.

Now before combining (40) with (38), we first simplify the summation of all inner product terms coming from both
inequalities. Recall that sk = ∇yΦ(xk, yk) + θkqk where qk = M(∇yΦ(xk, yk) − ∇yΦ(xk−1, yk−1)) and we define
rk,qk − (M − 1)∇yΦ(xk, yk) for all k ≥ 0. Using these definitions, we can rearrange the sum of all inner products in
(40) and (38) as follows:

1

M

〈
∇yΦ(xk+1, yk+1), y − yk+1

〉
+
(

1− 1

M

)
θk
〈
∇yΦ(xk, yk), y − yk

〉
+
(

1− 1

M

) 〈
∇yΦ(xk, yk), yk+1 − y

〉
+

1

M

〈
sk, yk+1 − y

〉
=

〈
1

M
∇yΦ(xk+1, yk+1)−∇yΦ(xk, yk), y − yk+1

〉
+ (1− 1

M
)θk
〈
∇yΦ(xk, yk), y − yk

〉
+
θk

M

〈
qk, yk − y

〉
+
θk

M

〈
qk, yk+1 − yk

〉
= − 1

M

〈
rk+1, yk+1 − y

〉
+
θk

M

〈
rk, yk − y

〉
+
θk

M

〈
qk, yk+1 − yk

〉
. (41)

Hence, using (40) and (41) within (38), and the definition of L(·, ·) we obtain the following inequality:

1

M

(
L(xk+1, y)− L(x, yk+1)

)
≤

1

M

(
Bk+1 +Ak+1 −

〈
rk+1, yk+1 − y

〉
+ θk

〈
rk, yk − y

〉
+ θk

〈
qk, yk+1 − yk

〉︸ ︷︷ ︸
(∗∗)

)

+
(

1− 1

M

)(
(1− θk)

(
L(xk, y)− L(x, y)

)
+ (1− θk)+LyyDY(y, yk)

)
+
(

1− 1

M

)(
θkHk(z)−Hk+1(z)

)
+ Λkx + Ek, (42)

where we also used the fact that DY(y, ȳ) ≥ 1
2 ‖y − ȳ‖

2.

In order to provide a bound for term (∗∗), we provide a general bound for
〈
qk, y − yk

〉
for any y ∈ Y as follows. Let

pkx , ∇yΦ(xk, yk) − ∇yΦ(xk−1, yk) and pky , ∇yΦ(xk−1, yk) − ∇yΦ(xk−1, yk−1). Such definitions immediately
imply that qk = M(pkx + pky), for all k ≥ 0. Hence, using Young’s inequality twice, once for

〈
pkx, y − yk

〉
and once for〈

pky , y − yk
〉

and the fact that DY(y, ȳ) ≥ 1
2 ‖y − ȳ‖

2
Y , for any y, ȳ ∈ Y , we obtain that for all k ≥ 0,

∣∣〈qk, y − yk〉∣∣ ≤M(αk + βk)DY(y, yk) +
M

2αk
∥∥pkx∥∥2

Y∗ +
M

2βk
∥∥pky∥∥2

Y∗ , (43)

for any αk, βk > 0. Moreover, if Lyy = 0, then
∥∥pky∥∥Y∗ = 0; hence,

∣∣〈qk, y − yk〉∣∣ ≤ αkDY(y, yk) + 1
2αk

∥∥pkx∥∥2

Y∗ ,
for any αk > 0. Therefore, first using (43) within (42) for some αk, βk > 0 (with the exception of βk = 0 for
when Lyy = 0), then multiplying both sides of the resulting inequality by M ; and finally, adding and subtracting
MDTk

X (x,xk+1)−(M−1)DTk

X (x,xk)−DTk

X (x, x̃k+1)+MDTk

X (xk+1,xk)−DTk

X (x̃k+1,xk) and M
2

∥∥x− xk+1
∥∥2

M
−

1
2

∥∥x− x̃k+1
∥∥2

M
− M−1

2

∥∥x− xk
∥∥2

M
to the right-hand side, and rearranging the terms yield the desired result in (30).

B.1 Backtracking Step-size Analysis

Lemma 6. Suppose the sequence {[τki ]i∈M, σ
k, θk}k≥0 satisfy (13a) and (13b) for some positive {αk}k≥0, nonnegative

{βk}k≥0, and δ ∈ [0, 1). Let {xk, yk} be generated according to the recursion in (29) using the given parameter sequence
{[τki ]i∈M, σ

k, θk}. Then {xk, yk} and {[τki ]i∈M, σ
k, θk} satisfy (15) with the same {αk, βk} and δ.

Proof. The proof is similar to Lemma 3.4. in Hamedani and Aybat (2021).
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Lemma 7. Given arbitrary {τ̃k}k≥0 ⊂ R++, and τ̄, γ0 > 0, let σ−1 = γ0τ̄ , and for k ≥ 0, let σk = γk τ̃k, θk = σk−1/σk,
and γk+1 = γk(1 + µτ̃k). Moreover, for i ∈ M and k ≥ 0, let τki =

(
1
M (µi + 1

τ̃k
) − µi

)−1
. Then, {[τki ]i∈M, σ

k, θk}
satisfies (13c) and (13d) with tk = σk/σ0.

Proof. Since tk = σk/σ0 for k ≥ 0, we get

tk

σk
=

1

σ0
=
tk+1

σk+1
, tk+1θk =

σk+1

σ0

σk

σk+1
=
σk

σ0
= tk;

thus, the first condition in (13d) holds with equality and the second condition is also satisfied for the given choice of
parameters.

Furthermore, since tk = σk/σ0 and µi + 1
τki

= 1
M (µi + 1

τ̃k
) for all i ∈M, using these choice of parameters (13c) can be

equivalently written as follows:

1

M

( 1

τ̃k
+ µi

)
≥ σk+1

σk

( 1

M

( 1

τ̃k+1
+ µi

)
− µi
M

)
, ∀ i ∈M, (44)

which is equivalent to 1
τ̃k

+µi ≥ σk+1

σk
1

τ̃k+1 = γk+1τ̃k+1

γk τ̃k
1

τ̃k+1 = 1
τ̃k

(1+µτ̃k) = 1
τ̃k

+µ, which trivially holds for all i ∈M
as µi ≥ µ for i ∈M, where the first equality above follows from σk = γk τ̃k, the second equality uses γk+1 = γk(1+µτ̃k).
This completes the proof.

Lemma 8. Consider {τ̃k}k≥0 generated by RB-APD-B displayed in Algorithm 2 for some δ ∈ [0, 1) and cα, cβ ≥ 0 such
that M(cα + cβ) + δ ≤ 1. When Lyy > 0, set cα, cβ > 0; otherwise, when Lyy = 0, set cα > 0 and cβ = 0. There exists a
positive sequence {τ̂k}k≥0 such that τ̃k ≥ ητ̂k for all k ≥ 0. Furthermore, when Lyy > 0 and µ = 0, τ̂k ≥ min{Ψ1,Ψ2}
for k ≥ 0; when Lyy = 0 and µ = 0, τ̂k ≥ Ψ1 for k ≥ 0; and when Lyy = 0 and µ > 0, τ̂k ≥ Ψ1

√
γ0/γk for k ≥ 0,

where Ψ1 and Ψ2 are defined in (24).8

Proof. Let us fix arbitrary k ≥ 0 and ik ∈ M. Lemma 6 implies that if (13a) and (13b) hold then (15) holds as well.
First, to show that the backtracking condition is satisfied in a finite number of steps, we will show that there exists τ̂k > 0
such that (13a) and (13b) are true for all τ̃k ∈ (0, τ̂k]. Using σk = γk τ̃k, θk = σk−1/σk, Lxx = maxi∈M{Lxixi}, and
Lyx = maxi∈M{Lyxi} inequalities in (13a) and (13b) hold if

0 ≥ −(1− δ) + Lxxτ
k
ik

+
L

2

yx

cα
γk τ̃kτkik , 1− (δ +M(cα + cβ)) ≥

ML2
yy

cβ
(γk τ̃k)2. (45)

Recall that µ̄ = maxi∈M µi. Suppose Lyy > 0, then τki =
(

1
M (µi + 1

τ̃k
) − µi

)−1
for all i ∈ M implies that τkik ≤

M(1/τ̃k − (M − 1)µ̄)−1 = Mτ̃k/(1− (M − 1)µ̄τ̃k) implies that (45) holds for all τ̃k ∈ (0, τ̂k], where

τ̂k , min

−b̄+

√
b̄2 + 4(1− δ)L2

yxγk/(Mcα)

2L
2
yxγk/cα

,

√
cβ(1− (M(cα + cβ) + δ))

γk
√
MLyy

 , (46)

b̄ , Lxx +
(1− δ)(M − 1)µ̄

M
. (47)

Note that when Lyy = 0, the second inequality in (45) always holds due to our choice of δ ∈ [0, 1) and cα, cβ ≥ 0 satisfying
M(cα + cβ) + δ ≤ 1; hence, τ̂k is defined by the first term in (46), i.e., treating 1/0 in the second term as +∞. Since in
each step of backtracking, τ̃k is decreased by a factor of η ∈ (0, 1), when the backtracking terminates, τ̃k ≥ ητ̂k. Next, we
provide a lower bound on τ̂k by considering the following two cases: (Case I) µ > 0; and (Case II) µ = 0. In particular,
we will also use the following useful inequality: for any a ≥ 0 and b, c > 0, we have

√
a2 + cb2 ≥ a +

√
cbd where

d , − a
b
√
c̄

+
√

a2

b2c̄ + 1 holds for any c̄ ∈ (0, c].

8µ = 0 implies γk = γ0 for k ≥ 0, while µ > 0 implies γk+1 > γk for k ≥ 0.
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For (Case I), from the assumption we know that Lyy = 0; therefore, τ̂k =
−b̄+

√
b̄2+4(1−δ)L2

yxγ
k/(Mcα)

2L
2
yxγ

k/cα
. Using the fact that

γk+1 ≥ γk ≥ γ0 > 0 for all k ≥ 0, and the above useful inequality for a = b̄, b = 2
√

1−δ
Mcα

Lyx, c = γk and c̄ = γ0 we

conclude that τ̂k ≥ Ψ1

√
γ0/γk.

For (Case II), when µ = 0, γk = γ0 for k ≥ 0. Hence, from (46), we have τ̂k = τ̂0 for k ≥ 0; thus, when Lyy = 0, we get
τ̂0 ≥ Ψ1, and when Lyy > 0, we get τ̂0 ≥ min{Ψ1,Ψ2}.

Lemma 9. Suppose µ > 0, and Lyy = 0. Stepsize sequences generated by both RB-APD and RB-APD-B, displayed in
Algorithms 1 and 2, respectively, satisfy σk = Ω(k), τ̃k = Ω(1/σk), and τ̃k/σk = O(1/k2) for k ≥ 0. Indeed, σk ≥ Γ2

3µk,
τ̃kσk ≥ Γ2/µ2 and (γk)−1 = τ̃k/σk ≤ 9/(Γ2k2) for k ≥ 0, where Γ = µτ̃0

√
γ0 for RB-APD and Γ = µηΨ1

√
γ0 for

RB-APD-B with Ψ1 as defined in (24). Furthermore, for all ε > 0, σk ≥ Γ2

(2+ε)µk and τ̃k/σk ≤ (2 + ε)2/(Γ2k2) for
k ≥ d 1

ε e.

Proof. The proof follows directly from Lemma 3.7. in Hamedani and Aybat (2021).

Next, we prove Lemma 1.

Proof of Lemma 1. Indeed, Lemma 7 implies that {[τki ]i∈M, σ
k, θk} generated by RB-APD-B satisfies (13c) and (13d)

for {tk} such that tk = σk/σ0 for k ≥ 0. Moreover, Lemma 8 shows that for any k ≥ 0, the backtracking condition in
Algorithm 2 holds after a finite number of inner iterations. Thus, the results of Lemma 1 clearly hold.

Before proceeding to the proof of our main results, we would like to remind the reader Assumption 2 stating our assumptions
on the Bregman distance generating function ϕXi(·) for i ∈M.

B.2 Asymptotic Convergence Analysis

To fix the notation, suppose F : Ω→ R is a random variable, F(ω) denotes a particular realization of F corresponding to
ω ∈ Ω where Ω denotes the sample space.

First, recall that Ui ∈ Rm×mi for i ∈M such that Im = [U1, . . . , UM ], where Im denotes the m×m identity matrix –see
Definition 1. Therefore, we can write xk+1 equivalently as follows:

xk+1 = xk + UikU
>
ik

(x̃k+1 − xk). (48)

Also recall that for all k ≥ 1, Ek[·] = E[· | Fk], where Fk = σ ({i0, . . . , ik−1}) is the σ-algebra generated by i.i.d. random
variables {i0, . . . , ik}. Thus,

Ek[xk+1] = xk + Ek[UikU
>
ik

](x̃k+1 − xk) =
1

M
x̃k+1 +

(
1− 1

M

)
xk. (49)

Furthermore, for any ψ : X → R such that ψ(x) =
∑
i∈M ψi(xi) for some ψi : Xi → R, we also have

Ek[ψ(xk+1)] =
1

M

∑
i∈M

(
ψ(xk) + ψi(x̃

k+1)− ψi(xki )
)

=
1

M
ψ(x̃k+1) +

(
1− 1

M

)
ψ(xk). (50)

Therefore, for Ek(·) defined in (31d), we can conclude that Ek[Ek(x)] = 0 for any fixed x and k ≥ 0.

Let z# = (x#, y#) be a saddle point of L in (1), and Bregman distance generating functions are selected according to
Assumption 2. Lemma 7 implies that {[τki ]i∈M, σ

k, θk} sequences generated by RB-APD and RB-APD-B, both satisfy
(13c) and (13d) for tk = σk

σ0 for k ≥ 0. Thus, we can conclude that for k ≥ 1,

tk−1Rk(z#) ≥ tkQk(z#). (51)

Finally, note that Ck∗ = Ck(xk+1, yk+1) for {αk, βk} sequence defined as αk = cα/σ
k−1 and βk = cβ/σ

k−1 for all k ≥ 1
for some cα, cβ ≥ 0 as stated in Theorems 1 and 2.
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Now multiplying inequality (30) by tk evaluated at (x, y) = (x#, y#) taking conditional expectation, and using the facts
that E[Ek(x#) | Fk] = 0, (1− θk)+Lyy=0 9, and Ck∗ ≤ −δ[MDTk

X (xk+1,xk) + 1
σk

DY(yk+1, yk)] combined with (51)
lead to

tkEk[L(xk+1, y#)− L(x#, yk+1)] + Ek[tkRk+1(z#) + (M − 1)tkHk+1(z#)]

≤ tk−1Rk(z#) + (M − 1)tk−1Hk(z#) + (M − 1)tk(1− θk)
(
L(xk, y#)− L(x#, y#)

)
− tkδEk[MDTk

X (xk+1,xk) + 1
σk

DY(yk+1, yk)]. (52)

Note when µ > 0 from the step-size rules we have that for any k ≥ 1,

θk =
σk−1

σk
=
γk−1τ̃k−1

γk τ̃k
≥ γk−1

γk
=

1

1 + µτ̃k−1
≥ 1

1 + µτ̃0
≥ M − 1

M
, (53)

=⇒ (M − 1)(1− θk)tk ≤ tk−1. (54)

On the other hand, when µ = 0, then θk ≥ 1 which immediately implies that (M − 1)(1− θk)tk ≤ tk−1. Therefore, we
can rewrite (52) as follows by noting that L(x#, y#)− L(x#, yk+1) ≥ 0,

Ek[ak+1] = E[ak+1 | Fk] ≤ ak − bk, (55)

where ak, bk ∈ Fk are defined as follows

ak = tk−1Rk(z#) + (M − 1)tk−1Hk(z#) + tk−1
(
L(xk, y#)− L(x#, y#)

)
, (56)

bk = tkδ
(
DTk

X (x̃k+1,xk) + 1
σk

DY(yk+1, yk)
)
≥ 0. (57)

Moreover, from concavity of Φ(x, ·) and the fact that L(xk, y#)− L(x#, y#) ≥ 0 we can provide a lower bound on ak as
follows:

ak ≥ tk−1
[
(M − 1)

(
L(xk, y#)− L(x#, y#)

)
+MDTk−1

X (x,xk) +
M

2

∥∥x# − xk
∥∥2

M
+

1

σk−1
DY(y#, yk)

+
〈
qk, yk − y#

〉
+

M

2αk
∥∥pkx∥∥2

Y∗ +
M

2βk
∥∥pky∥∥2

Y∗

]
,

≥ M

2

∥∥x# − xk
∥∥2

tk−1(Tk−1+M)
+ tk−1

(
1

σk−1 −M(αk + βk)
)
DY(y#, yk),

≥ M

2
tk
∥∥x# − xk

∥∥2

Tk+(1− 1
M )M

+ tk
(

1
σk
− θkM(αk + βk)

)
DY(y#, yk), (58)

where the second inequality follows from (43) and DXi(xi, x
′
i) ≥ 1

2 ‖xi − x
′
i‖

2
Xi for i ∈M, and the third one follows from

(13c) and (13d).

Note that for all i ∈M, we have

Mtk
( 1

τki
+
(
1− 1

M

)
µi

)
=
tk

τ̃k
=
σk

σ0

1

τ̃k
=
γk

γ0

1

τ̃0
≥ 1

τ̄
, ∀ k ≥ 0, (59)

where we used tk = σk

σ0 , σk = γk τ̃k, and γk ≥ γ0 for all k ≥ 0, and τ̃0 ≤ τ̄ . Moreover, for all k ≥ 0, setting
αk+1 = cα/σ

k and βk+1 = cβ/σ
k for cα, cβ ≥ 0 such that 1−M(cα + cβ) ≥ δ > 0, implies

tk
(

1
σk
− θkM(αk + βk)

)
=

1

σ0
−Mσk−1

σ0

cα + cβ
σk−1

≥ δ

σ0
≥ δ

γ0τ̄
, ∀ k ≥ 0, (60)

where we used tk = σk

σ0 and θk = σk−1/σk for all k ≥ 0, and σ0 = γ0τ̃0 ≤ γ0τ̄ . Finally, combining (58) with the lower
bounds given in (59) and (60), and using DY(y, y′) ≥ 1

2 ‖y − y
′‖2Y for any y ∈ Y and y′ ∈ domh, we get

ak ≥ δ′x
2

∥∥x# − xk
∥∥2

X +
δ′y
2

∥∥y# − yk
∥∥2

Y ≥ 0, ∀ k ≥ 0, (61)

9When µ = 0, for both RB-APD and RB-APD-B, θk ≥ 0 for k ≥ 0; thus, (1− θk)+ = 0, which leads to (1− θk)+Lyy = 0 for
k ≥ 0. On the other hand, for the case µ > 0, we assume that Lyy = 0, i.e., Φ(x, ·) is affine for every fixed x; hence, we again get
(1− θk)+Lyy = 0, even though θk < 1 for some k ≥ 0 is possible for this scenario.
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where δ′x = 1
τ̄ > 0 and δ′y = δ

γ0τ̄ > 0. Therefore, invoking Lemma 3, we can conclude that limk→+∞ ak ≥ 0 and∑∞
k=0 b

k ∈ R++ exist in a.s. sense, i.e.,

+∞∑
k=0

tkDTk

X (x̃k+1,xk) <∞ a.s. (62)

Since {ak} is an a.s. bounded sequence, (61) implies that {zk(ω)} is a bounded sequence for any ω ∈ Ω, where
zk = (xk, yk); hence, it has a convergent subsequence zkn(ω)→ z∗(ω) as n→∞ for some z∗(ω) ∈ X × Y – note that
kn also depends on ω which is omitted to simplify the notation. Define z∗ = (x∗, y∗) such that z∗ = [z∗(ω)]ω∈Ω.

Next, we argue that zkn±1 → z∗ almost surely as n→∞. To this aim, first we analyze {tkTk} sequence that appears in
the definition of bk in (57). Note that (59) implies that

tk

τki
=

1

M

γk

γ0τ̃0
− tk

(
1− 1

M

)
µi=

γk

γ0τ̃0

( 1

M
− τ̃k

(
1− 1

M

)
µi

)
, ∀ i ∈M, ∀ k ≥ 0, (63)

where we used tk = σk

σ0 = γk τ̃k

γ0τ̃0 for k ≥ 0. Since τ̄ ≥ τ̃k for k ≥ 0, choosing R++ 3 τ̄≤ δ̄
µ̄(M−1) for some δ̄ ∈ (0, 1) and

µ̄ = maxi∈M µi implies that for all k ≥ 0, we have

tk

τki
≥ γk

γ0τ̃0

( 1

M
− τ̄
(

1− 1

M

)
µi

)
≥ γk

γ0

1− δ̄
Mτ̄

≥ 1− δ̄
Mτ̄

> 0, ∀ i ∈M, (64)

which follows from γk ≥ γ0 for k ≥ 0; hence, tkTk � 1
τ̄

1−δ̄
M I for k ≥ 0. Finally, we also have tk

σk
= 1

σ0 ≥ 1
γ0τ̄ > 0

for k ≥ 0. Now, now combining these two results with
∑∞
k=0 b

k < ∞ (due to Lemma 3), we can conclude that bk → 0
implying

0 ≤
∥∥xk+1 − xk

∥∥2

X ≤
∥∥x̃k+1 − xk

∥∥2

X → 0,
∥∥yk+1 − yk

∥∥2

Y → 0, (65)

almost surely as k → ∞. Therefore, for any realization ω ∈ Ω and ζ > 0, there exists N1(ω) such that for any
n ≥ N1(ω), we have max{

∥∥zkn(ω)− zkn−1(ω)
∥∥ , ∥∥zkn(ω)− zkn+1(ω)

∥∥} < ζ
2 . Convergence of {zkn(ω)} sequence

also implies that there exists N2(ω) such that for any n ≥ N2(ω),
∥∥zkn(ω)− z∗(ω)

∥∥ < ζ
2 . Thus, for ω ∈ Ω, letting

N(ω) , max{N1(ω), N2(ω)}, we conclude that
∥∥zkn±1(ω)− z∗(ω)

∥∥ < ζ, i.e., zkn±1 → z∗ almost surely as n→∞.

Fix an arbitrary ω ∈ Ω and consider the subsequence {kn}n≥1. For all n ∈ Z+, x- and y-updates imply that

1

τknikn

(
∇ϕXikn

(
xkn(ω)

)
−∇ϕXikn

(
xkn+1(ω)

))
−∇xikn Φ(xkn(ω), ykn+1(ω)) ∈ ∂fikn

(
xkn+1
ikn

(ω)
)
, (66a)

1

σkn

(
∇ϕY

(
ykn(ω)

)
−∇ϕY

(
ykn+1(ω)

))
+ skn(ω) ∈ ∂h

(
ykn+1(ω)

)
, (66b)

where we define sk = ∇yΦ(xk, yk) + θkqk and qk = M(∇yΦ(xk, yk)−∇yΦ(xk−1, yk−1)) for k ≥ 0.

Note that the sequence of randomly chosen block coordinates in RB-APD or RB-APD-B, i.e., {ikn}n≥1, is a Markov chain
containing a single recurrent class. More specifically, the states are represented byM and starting from state i ∈M the
probability of eventually returning to state i is strictly positive for all i ∈ M. Therefore, for any i ∈ M, we can select a
further subsequence Ki ⊆ {kn}n∈Z+

such that i` = i for all ` ∈ Ki. Note that Ki is an infinite subsequence w.p. 1 and
{Ki}i∈M is a partition of {kn}n∈Z+ . For any i ∈M, one can conclude from (66b) and (66a) that for all ` ∈ Ki,

uki ,
1

τ `i

(
∇ϕXi

(
x`(ω)

)
−∇ϕXi

(
x`+1(ω)

))
−∇xiΦ(x`(ω), y`+1(ω)) ∈ ∂fi

(
x`+1
i (ω)

)
, (67a)

vk ,
1

σ`

(
∇ϕY

(
y`(ω)

)
−∇ϕY

(
y`+1(ω)

))
+ s`(ω) ∈ ∂h

(
y`+1(ω)

)
. (67b)

Since Ki ⊆ {kn}n∈Z+
, we have that lim`∈Ki z

`(ω) = lim`∈Ki z
`+1(ω) = z∗(ω).

(Part I) of Theorems 2 and 1. Here we consider the case µ = 0. We first show that for any ω ∈ Ω, z∗(ω) is a saddle
point of (1) by considering the optimality conditions for the updates of xk+1 and yk+1 of the RB-APD and RB-APD-B
algorithms. Then, we argue that z∗ is indeed the unique limit point of {zk}, i.e., zk → z∗ as k →∞.
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Next, we argue that supk≥0
1
τki

< ∞ for i ∈ M and supk≥0 max{ 1
σk
, θk} < ∞. Once we have this result, using the

fact that for any i ∈ M, ∇ϕXi and ∇ϕY are continuously differentiable on dom fi and domh, respectively, it follows
from Theorem 24.4 in Rockafellar (2015) that by taking the limit of both sides of (67) we get 0 ∈ ∇xiΦ

(
x∗(ω), y∗(ω)

)
+

∂fi(x
∗
i (ω)), and 0 ∈ ∂h(y∗(ω))−∇yΦ(x∗(ω), y∗(ω)), which implies that z∗(ω) is a saddle point of (1) for any ω ∈ Ω.

Indeed, since µ = 0, for k ≥ 0, γk = γ0; hence, σk = γ0τ̃k. Moreover, from Lemma 8, we have ηΨ ≤ τ̃k ≤ τ̄ for k ≥ 0,
where Ψ = Ψ1 if Lyy = 0 and Ψ = min{Ψ1,Ψ2} if Lyy > 0. Note that these bounds on τ̃k hold for both RB-APD and
RB-APD-B. Next, using the τki update rule, σk = γ0τ̃k and θk = σk−1

σk
, we get the following uniform bounds holding for

all k ≥ 0:

0 <
1

τ0
i

≤ 1

τki
≤ 1

M

1

τ̃k
− M − 1

M
µi ≤

1

ηΨM
, ∀ i ∈M, (68)

1

γ0τ̄
≤ 1

σk
=

1

γ0τ̃k
≤ 1

ηΨγ0
, 0 ≤ θk =

σk−1

σk
=
τ̃k−1

τ̃k
≤ τ̄

ηΨ
. (69)

Next, we show that zk → z∗ almost surely as k →∞, and for this result we will use the following bound on {tk}:

0 ≤ tk =
σk

σ0
=
γ0τ̃k

σ0
≤ τ̄

τ̃0
≤ τ̄

ηΨ
. (70)

Since (52) is true for any saddle point z#, letting z# = z∗ and repeating the same arguments we used for showing (55), we
can conclude that

Ek[dk+1] ≤ dk − bk, (71)

where dk , tk−1[(M − 1)Hk(z∗) +Rk(z∗) +L(xk, y∗)−L(x∗, y∗)] and bk is defined in (57). Moreover, similar to (61),
we can show that

dk ≥ δ′x
2

∥∥x∗ − xk
∥∥2

X +
δ′y
2

∥∥y∗ − yk∥∥2

Y ≥ 0, ∀ k ≥ 0, (72)

where δ′x, δ
′
y are defined after inequality (61). Next, invoking Lemma 3 again for (71), one can conclude that d∗ ,

limk→∞ dk ≥ 0 exists almost surely. Now, we show that dk+1 → 0 as k → ∞. Let {zkn}n≥0 be the subsequence
we considered earlier such that zkn → z∗ a.s. as n → ∞. Using (65), it is trivial to check that Hkn+1(z∗) → 0 and
L(xkn+1, y∗)− L(x∗, y∗)→ 0 as k →∞. Thus, limn→∞ dkn+1 = limn→∞ tknRkn+1(z∗). Consider

Rkn+1(z∗) ,MDTkn
X (x∗,xkn+1) +

M

2

∥∥x∗ − xkn+1
∥∥2

M
+

1

σkn
DY(y∗, ykn+1)

+
〈
∇yΦ(xkn+1, ykn+1)−M∇yΦ(xkn , ykn), ykn+1 − y∗

〉
+

M

2cα
σkn

∥∥∇yΦ(xkn+1, ykn+1)−∇yΦ(xkn , ykn+1)
∥∥2

Y∗

+
M

2cβ
σkn

∥∥∇yΦ(xkn , ykn+1)−∇yΦ(xkn , ykn)
∥∥2

Y∗ ,

where we set αk+1 = cα/σ
k and βk+1 = cβ/σ

k for some cα, cβ ≥ 0 as described in Lemma 8. Using (68), (69) and (70)
together with the fact that zkn±1(ω)→ z∗(ω) for any ω ∈ Ω, we conclude that 0 = tknRkn+1(z∗(ω)) = limn→∞ dkn+1(ω)
for any ω ∈ Ω, where we also used the fact that {zkn} is a bounded sequence which implies {∇yΦ(xkn+1, ykn+1) −
M∇yΦ(xkn , ykn)}n≥0 is bounded as well due to continuity of ∇yΦ. Henceforth, limk→∞ dk = 0 almost surely which
together with (72) implies that zk → z∗ almost surely.

(Part II) of Theorems 2 and 1. Suppose µ > 0. Recall that in this case, for all i ∈ M, we set ϕXi(xi) = 1
2 ‖xi‖

2
Xi ,

where ‖xi‖Xi =
√
〈xi, xi〉. Indeed, since

∑∞
k=0 b

k < ∞, tkDTk

X (x̃k+1,xk) → 0 holds. Moreover, (64) shows that for

any i ∈M and k ≥ 0, t
k

τki
≥ γk

γ0
1−δ̄
Mτ̄ ; therefore, we have 0 ≤ γk

∥∥xk+1 − xk
∥∥2

X ≤ γ
k
∥∥x̃k+1 − xk

∥∥2

X → 0. Moreover, we

have that γk = σk/τ̃k ≥ (Γ/(µτ̃k))2 ≥ (MΓ/(µτki ))2 for all k ≥ 0, where the first inequality follows from Lemma 9 and
the last one uses (68). Therefore, one can easily conclude that

∥∥xk+1 − xk
∥∥
X /τ

k
i → 0 for any i ∈ M. Thus, invoking

invoking (Rockafellar, 2015, Theorem 24.4), (67a) implies that −∇xΦ(x∗, y∗) ∈ ∂f(x∗) assuming ∇ϕXi is Lipschitz.
Finally, it follows from (69) and (67b) that ∇yΦ(x∗, y∗) ∈ ∂h(y∗), where we used (Rockafellar, 2015, Theorem 24.4)
assuming∇ϕY is continuous. Therefore, we establish that any limit point of {zk} is a saddle point of (1).
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B.3 Convergence Rate Analysis

Next we use the one-step result shown in Lemma 5 to derive a useful bound for the ergodic sequence generated by either
RB-APD or RB-APD-B, which will help us establish the desired convergence rate results.

Lemma 10. Suppose Assumptions 1 and 2 hold. Given some γ0 > 0 and τ̄ ∈
(

0, 1
µ̄(M−1)

)
, let {xk, yk}k≥0 be the

iterate sequence generated by either RB-APD-B, stated in Algorithm 2, or by RB-APD, stated in Algorithm 1. If RB-APD
is used, we assume that (14) holds for some cα, cβ ≥ 0 and δ ∈ [0, 1) as described in Theorem 1. Then for any
(x, y) ∈ dom f × domh and K ≥ 1,

TK
(
L(x̄K , y)− L(x, ȳK)

)
(73)

≤MDT0

X (x,x0) +
M − 1

2

∥∥x− x0
∥∥2

M
+
( 1

σ0
+ θ0(M − 1)Lyy

)
DY(y, y0)

− tK
(
MDTK

X (x,xK) +
M − 1

2

∥∥x− xK
∥∥2

M
+
( 1

σK
−MθK(αK + βK)

)
DY(y, yK)

)
+ (M − 1)

(
L(x0, y)− L(x̄K , y) +

K−1∑
k=0

tk(1− θk)+LyyDY(y, yk)
)

+

K−1∑
k=0

tkEk(x),

where TK =
∑K−1
k=0 tk, x̄K = 1

TK+M−1

(∑K−2
k=0 (Mtk−(M−1)tk+1)xk+1+MtK−1xK

)
and ȳK = 1

TK

∑K−1
k=0 tkyk+1

for {tk}k≥0 ⊂ R++ such that tk = σk/σ0 for k ≥ 0.

Proof. By employing Lemma 5, we aim to provide a convergence rate analysis for both convex-concave setting, i.e., µ = 0,
and strongly convex-concave setting, i.e., µ = 0 and Lyy = 0. Suppose the Bregman distance generating functions are set
according to Assumption 2. Lemma 7 implies that {[τki ]i∈M, σ

k, θk} sequences generated by RB-APD and RB-APD-B,
both satisfy (13c) and (13d) for tk = σk

σ0 for k ≥ 0. Thus, one can easily verify that for any z ∈ dom f × domh, we have
tk+1Qk+1(z)− tkRk+1(z) ≤ 0 for all k ≥ 0.

Now, multiplying both sides of (30) by tk = σk/σ0 > 0, summing over k = 0 to K − 1, we obtain

K−1∑
k=0

tk
(
L(xk+1, y)− L(x, yk+1)

)
≤ Q0(z)− tK−1RK(z) + (M − 1)

(
θ0H0(z)− tK−1HK(z)

)
+

K−1∑
k=0

tk(M − 1)
(

(1− θk)(L(xk, y)− L(x, y)) + (1− θk)+LyyDY(y, yk)
)

+

K−1∑
k=0

tk(Ck∗ + Ek(x)), (74)

where we used t0 = 1 and tk+1θk+1 = tk for k ≥ 0. Due to initialization x−1 = x0, and y−1 = y0, the definitions of
Qk(·) and Hk(·) given in (31a) and (31c), respectively, imply that

Q0(z) = MDT0

X (x,x0) +
M − 1

2

∥∥x− x0
∥∥2

M
+

1

σ0
DY(y, y0) + θ0(M − 1)

〈
∇yΦ(x0, y0), y − y0)

〉
,

H0(z) = f(x0)− f(x) + Φ(x0, y0)− Φ(x, y).

Using the bound (20), we have that

H0(z) +
〈
∇yΦ(x0, y0), y − y0

〉
≤ f(x0)− f(x) + Φ(x0, y)− Φ(x, y) +

Lyy
2

∥∥y − y0
∥∥2

Y

≤ L(x0, y)− L(x, y) + LyyDY(y, y0). (75)

Moreover, using concavity of Φ(x, ·), for any x ∈ X , we can find a lower bound on HK(z),

HK(z) ≥ f(xK)− f(x) + Φ(xK , y)− Φ(x, y) +
〈
∇yΦ(xK , yK), yK − y

〉
= L(xK , y)− L(x, y) +

〈
∇yΦ(xK , yK), yK − y

〉
. (76)

Within RK(z), there is
〈
rK , yK − y

〉
term, where rK = ∇yΦ(xK , yK) −M∇yΦ(xK−1, yK−1), and in order to upper
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bound the right-hand-side of (74), we first provide an intermediate inequality:

(M − 1)HK(z) +
〈
rK , yK − y

〉
(77)

≥ (M − 1)
(
L(xK , y)− L(x, y)

)
+
〈
qK , yK − y

〉
≥ (M − 1)

(
L(xK , y)− L(x, y)

)
−M(αK + βK)DY(y, yK)

− M

2αK
∥∥∇yΦ(xK , yK)−∇yΦ(xK−1, yK)

∥∥2

Y∗ −
M

2βK
∥∥∇yΦ(xK−1, yK)−∇yΦ(xK−1, yK−1)

∥∥2

Y∗ ,

where the first inequality follows from (76) and qK = M
(
∇yΦ(xK , yK) − ∇yΦ(xK−1, yK−1)

)
and for the second

inequality we used (43) to lower bound
〈
qK , y − yK

〉
. Therefore, (74), (75) and (77) together imply that

K−1∑
k=0

tk
(
L(xk+1, y)− L(x, yk+1)

)
+

K−1∑
k=1

tk(M − 1)(θk − 1)
(
L(xk, y)− L(x, y)

)
+ (M − 1)tK−1

(
L(xK , y)− L(x, y)

)
≤MDT0

X (x,x0) +
M − 1

2

∥∥x− x0
∥∥2

M

+
( 1

σ0
+ θ0(M − 1)Lyy

)
DY(y, y0) + (M − 1)

(
L(x0, y)− L(x, y)

)
− tK

(
MDTK

X (x,xK) +
M − 1

2

∥∥x− xK
∥∥2

M
+
( 1

σK
−MθK(αK + βK)

)
DY(y, yK)

)
+

K−1∑
k=0

tk(M − 1)(1− θk)+LyyDY(y, yk) +

K−1∑
k=0

tk(Ck∗ + Ek(x)), (78)

where we used the fact that (13c) and (13d) hold for both RB-APD and RB-APD-B.

Note that the left hand side of (78) can be lower bounded using Jensen’s inequality twice:

K−1∑
k=0

tk
(
L(xk+1, y)− L(x, yk+1)

)
+

K−1∑
k=1

tk(M − 1)(θk − 1)
(
L(xk, y)− L(x, y)

)
+ (M − 1)tK−1

(
L(xK , y)− L(x, y)

)
≥

(TK +M − 1)
(
L(x̄K , y)− L(x, y)

)
+ TK

(
L(x, y)− L(x, ȳK)

)
, (79)

which follows from convexity of L(·, y) and −L(x, ·) for every fixed (x, y). In the above application of Jensen’s inequality
on −L(x, ·), the convex combination coefficients are {tk}K−1

k=0 , which satisfy tk = σk/σ0 ≥ 0 and TK =
∑K−1
k=0 tk, while

in the application of Jensen’s inequality on L(·, y), the convex combination coefficients are {Mtk − (M − 1)tk+1}K−1
k=0

and MtK−1 ≥ 0 –note that they sum to TK +M − 1, and Mtk − (M − 1)tk+1 ≥ 0 follows from θk+1 ≥ M−1
M for all

k ≥ 0; indeed, we have already argued that when µ = 0, θk ≥ 1 for k ≥ 0, and when µ > 0, (53) shows that θk+1 ≥ M−1
M

for all k ≥ 0.

Note that for RB-APD since the parameter choice satisfy (13a) and (13b) with some δ ∈ [0, 1), αk+1 = cα/σ
k and

αk+1 = cβ/σ
k for k ≥ 0; therefore, Lemma 6 implies that (15) holds with the same {αk, βk} and δ. Moreover, Lemma 8

implies that (15) always holds for RB-APD-B. Thus, we have that Ck∗ ≤ 0 for k ≥ 0; hence, combining (79) with (78)
leads to the desired result.

As we discussed before, we provide a uniform analysis of the rate results for RB-APD and RB-APD-B. Now we are ready
to provide the rate result for (Part I) and (Part II) of Theorem 1 and 2.

Indeed, Lemma 1 implies that the step-size sequence {[τki ]i∈M, σ
k, θk} selected in RB-APD-B algorithm is well-defined

satisfying (13c) and (13d) for {tk} such that tk = σk/σ0 for k ≥ 0, and Ck∗ ≤ 0 for k ≥ 0. Next, we show that
{[τki ]i∈M, σ

k, θk} selected in RB-APD algorithm satisfies Assumption 3. Indeed, since θk = σk−1/σk, for αk = cα/σ
k−1

and βk = cβ/σ
k−1, (13a) and (13b) can be written as

1− δ
τkik

≥ Lxikxik +
L2
yxik

cα
σk, 1− δ −M(cα + cβ) ≥

ML2
yy

cβ
(σk)2. (80)
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Clearly, the initial step-sizes selected as in Remark 4.1 implies that (80) holds for k = 0. When µ = 0, i.e., (Part I), we
have γk = γ0 and θk = 1 for k ≥ 0; hence, τ̃k = τ̃0 and σk = σ0 for k ≥ 0. Thus, (13a) and (13b) hold for all k ≥ 0
for {[τki ]i∈M, σ

k, θk} produced by RB-APD. For the case µ > 0, i.e., (Part II), we will use induction to show that (80)
holds. Recall that for this case, we assume Lyy = 0; hence, the second condition in (80) holds for any σk as long as
1 ≥ δ + M(cα + cβ). Now suppose the first condition in (80) holds for some k ≥ 0, using σk+1 = σk

√
γk+1/γk and

γk+1/γk ≥ 1, we get

1− δ
τk+1
i

=
1− δ
M

( 1

τ̃k+1
− µi

)
− (1− δ)µi =

1− δ
Mτ̃k

√
γk+1

γk
− (1− δ)

(
1− 1

M

)
µi,

=
1− δ
τ̃ki

√
γk+1

γk
+ (1− δ)

√γk+1

γk
− 1

(1− 1

M

)
µi,

≥
(
Lxixi +

L2
yxi

cα
σk
)√γk+1

γk
≥ Lxixi +

L2
yxi

cα
σk+1, ∀ i ∈M.

This completes the induction. Moreover, Lemma 7 implies that {[τki ]i∈M, σ
k, θk} generated by RB-APD satisfies (13c) and

(13d) for {tk} such that tk = σk/σ0 for k ≥ 0. Thus, Assumption 3 holds for {αk, βk, tk}k≥0 as in the algorithm.

Proof of Theorem 1 and 2 (Part I). Suppose the Bregman distance generating functions are set according to Assumption 2,
and for the results in (Part I), we assume that Z , dom f × domh is a compact set. In order to show the convergence
rate for the expected gap, we will use the result in Lemma 10 by taking the supremum over Z, and then computing the
expectation of an appropriate upper bound on the supremum with respect to randomness in coordinate selection.

Now, recall the bound (73) established in Lemma 10. Since µ = 0, we know that {θk}k≥0 generated by either RB-APD or
RB-APD-B both satisfy θk ≥ 1 for all k ≥ 0; thus, we have that (1− θk)+LyyDY(y, yk) = 0 for all k ≥ 0. Furthermore,
since αk+1 = cα/σ

k and βk+1 = cβ/σ
k for all k ≥ 0 for some cα, cβ ≥ 0 such that M(cα + cβ) < 1, we know that

1
σK
−MθK(αK + βK) ≥ 0. Thus, after dropping the nonpositive terms on the right-hand side of (73), taking supremum of

the resulting bound over z = (x, y) ∈ dom f × domh, we get

G(z̄K) ≤ 1

TK

(
sup

x∈dom f
BK1 (x) + sup

y∈domh
BK2 (y)

)
. (81)

BK1 (x) ,MD
T0+(1− 1

M )M

X (x,x0) +

K−1∑
k=0

tkEk(x), (82)

BK2 (y) , ( 1
σ0 + θ0(M − 1)Lyy)DY(y, y0) + (M − 1)

(
L(x0, y)− L(x̄K , y)

)
. (83)

Due to compactness of Z = dom f × domh and continuity of L(·, ·), there exists B̄2 < +∞ such that
(M − 1) supy∈domh

{
L(x0, y) − L(x̄K , y)

}
≤ B̄2 for all K ≥ 1. One can easily construct a crude bound:

B̄2 = (M − 1) sup{L(x0, y) − L(x, y) : (x, y) ∈ dom f × domh} < +∞. That said, in many practical situa-
tions a much tighter bound can be obtained, e.g., in case L(·, y) is Lipschitz with a uniform constant Lx > 0 for all
y ∈ domh, then B̄2 = (M − 1)LxDx, where Dx = supx,x′∈dom f ‖x− x′‖X denotes the diameter of dom f . For in-
stance, let f be the indicator function of a compact convex set X , then for every y ∈ domh, L(·, y) is indeed Lipschitz with
a uniform constant Lx = sup{‖∇xΦ(x, y)‖X∗ : x ∈ X, y ∈ domh} <∞ due to continuity of ∇xΦ and compactness
of X × domh. Thus,

∃B̄2 < +∞ : sup
y∈domh

BK2 (y) ≤ B̄2 +
(

1
σ0 + θ0(M − 1)Lyy

)
sup

y∈domh
DY(y, y0). (84)
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Next, we claim that E[supx∈dom f B
K
1 (x)] can be bounded as follows:

Claim 1: ∃ B̄1 < +∞ such that

E
[

sup
x∈dom f

BK1 (x)
]

≤ sup
x∈dom f

MD
(1+ 1

M )T0+M

X (x,x0) +
(M − 1)L2

ϕX

2
E
[K−1∑
k=0

tk
∥∥x̃k+1 − xk

∥∥2

Tk+M

]
≤ sup

x∈dom f
MD

(1+ 1
M )T0+M

X (x,x0) +
(M − 1)L2

ϕX

2
· B̄1 < +∞, ∀K ≥ 1.

It follows from (49) and (50) that

Ek
[
Mf(xk+1)− f(x̃k+1)− (M − 1)f(xk)

]
= 0, (85a)

Ek
[ 〈
∇xΦ(xk, yk+1), x̃k+1 −Mxk+1 + (M − 1)xk

〉 ]
= 0, (85b)

Ek
[
MDTk

X (xk+1,xk)−DTk

X (x̃k+1,xk)
]

= 0. (85c)

For k ≥ 0, we define

Ξk(x) ,MDTk+M
X (x,xk+1)− (M − 1)DTk+M

X (x,xk)−DTk+M
X (x, x̃k+1); (86)

hence, (85) implies that

E

[
sup

x∈dom f
BK1 (x)

]
= E

[
sup

x∈dom f

{
MD

T0+(1− 1
M )M

X (x,x0) +

K−1∑
k=0

tkΞk(x)
}]

. (87)

Furthermore, for all k ≥ 0, we also define

Γ̃k+1
1 , (Tk + M)(∇ϕX (x̃k+1)−∇ϕX (xk)), Γk+1

1 , (Tk + M)(∇ϕX (xk+1)−∇ϕX (xk)); (88)

hence, from the definition of Bregman distances, we get

DTk+M
X (x,xk)−DTk+M

X (x, x̃k+1)−DTk+M
X (x̃k+1,xk) =

〈
Γ̃k+1

1 , x− x̃k+1
〉
, ∀ x ∈ X , (89)

DTk+M
X (x,xk)−DTk+M

X (x,xk+1)−DTk+M
X (xk+1,xk) =

〈
Γk+1

1 , x− xk+1
〉
, ∀ x ∈ X . (90)

Therefore,

Ξk(x) = DTk+M
X (x̃k+1,xk) +

〈
Γ̃k+1

1 ,x− x̃k+1
〉
−M

(
DTk+M
X (xk+1,xk) +

〈
Γk+1

1 ,x− xk+1
〉 )

= MDTk+M
X (xk,xk+1)−DTk+M

X (xk, x̃k+1) +
〈

Γ̃k+1
1 −MΓk+1

1 ,x− xk
〉
, (91)

where we used
〈

Γ̃k+1
1 ,xk − x̃k+1

〉
= −DTk+M

X (xk, x̃k+1) − DTk+M
X (x̃k+1,xk) and

〈
Γk+1

1 ,xk − xk+1
〉

=

−DTk+M
X (xk,xk+1) −DTk+M

X (xk+1,xk). Next, we define an auxiliary sequence {vk}k≥0 by initializing v0 = x0 ∈
dom f , and invoking Lemma 4 with δk = Γ̃k+1

1 −MΓk+1
1 and A = Tk + M for all k ≥ 0. Therefore, (91) implies

Ξk(x) ≤MDTk+M
X (xk,xk+1)−DTk+M

X (xk, x̃k+1) + DTk+M
X (x,vk)−DTk+M

X (x,vk+1)

+
〈

Γ̃k+1
1 −MΓk+1

1 ,vk − xk
〉

+
1

2

∥∥∥Γ̃k+1 −MΓk+1
∥∥∥2

∗,(Tk+M)−1
. (92)

Thus, (92) immediately implies that

K−1∑
k=0

tkΞk(x) ≤DT0+M
X (x,x0) +

K−1∑
k=0

tk
(
MDTk+M

X (xk,xk+1)−DTk+M
X (xk, x̃k+1)

)
+

K−1∑
k=0

tk
(〈

Γ̃k+1
1 −MΓk+1

1 ,vk − xk
〉

+
1

2

∥∥∥Γ̃k+1 −MΓk+1
∥∥∥2

∗,(Tk+M)−1

)
, (93)
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which follows from tk(Tk + M) � tk+1(Tk+1 + M) for k ≥ 0 whenever µ = 010, and in the above inequality, we also
used t0DT0+M

X (x,v0) = DT0+M
X (x,x0), and tK−1DTK−1+M

X (x,vK) ≥ 0 for x ∈ X .

Next, similar to (85), one can easily verify that

Ek
[
MΓk+1

1

]
= Γ̃k+1

1 , Ek
[
‖MΓk+1

1 ‖2∗,(Tk+M)−1

]
= M‖Γ̃k+1

1 ‖2∗,(Tk+M)−1 , (94)

which implies that

Ek[‖Γ̃k+1
1 −MΓk+1

1 ‖2∗,(Tk+M)−1 ] = (M − 1)
∥∥∇ϕX (x̃k+1)−∇ϕX (xk)

∥∥2

∗,(Tk+M)

≤ (M − 1)L2
ϕX

∥∥x̃k+1 − xk
∥∥2

Tk+M
, (95)

where in the equality we used (94) and the identity E[‖X −E[X]‖22] = E[‖X‖22] − ‖E[X]‖22 holding for any random
variable X; and for the inequality above, we used the Lipschitz continuity of∇ϕX (·). Furthermore, for k ≥ 0, one also has

Ek[MDTk+M
X (xk,xk+1)−DTk+M

X (xk, x̃k+1)] = 0, (96a)

Ek[
〈

Γ̃k+1
1 −MΓk+1

1 ,vk − xk
〉

] = 0, (96b)

where the first one follows from the same arguments we used for showing (85c), and the second one follows from (94).

Finally, (87), (93), (95) and (96) together with the tower property of expectation imply that

E

[
sup

x∈dom f
BK1 (x)

]
≤ sup

x∈dom f
MD

(1+ 1
M )T0+M

X (x,x0) +
(M − 1)L2

ϕX

2
E

[
K−1∑
k=0

tk
∥∥x̃k+1 − xk

∥∥2

Tk+M

]
.

Note that (62), (68) and (70) imply that

K∑
k=0

tk
∥∥x̃k+1 − xk

∥∥2

Tk+M
→

+∞∑
k=0

tk
∥∥x̃k+1 − xk

∥∥2

Tk+M
< +∞ a.s. K → +∞.

Since we assume dom f is compact, Lebesgue’s dominated convergence theorem implies that

B̄1 ,
(M − 1)L2

ϕX

2
E

[
+∞∑
k=0

tk
∥∥x̃k+1 − xk

∥∥2

Tk+M

]
< +∞. (97)

Thus, the uniform bound in (87) implies that

E

[
sup

x∈dom f
BK1 (x)

]
≤ B̄1 + sup

x∈dom f
MD

(1+ 1
M )T0+M

X (x,x0), ∀K ≥ 1. (98)

This completes the proof of Claim 1. Therefore, the result in (26a) can be deduced from (81), (84), and Claim 1.
Furthermore, since σk = γ0τ̃k for k ≥ 0, we conclude that TK =

∑K−1
k=0 σk/σ0 ≥ ηΨ

τ̃0 K.

Proof of Theorem 1 and 2 (Part II). Let (x∗, y∗) be a sadde point of L. In strongly convex-concave setting, i.e., µ > 0,
we assume that Lyy = 0 and ϕX (·) = 1

2 ‖·‖
2. When Lyy = 0, defining 02/0 = 0, one-step result in Lemma 5 continues

to holds with βk = 0 for all k ≥ 0. Thus, consider setting αk = cα/σ
k−1 for k ≥ 0 for some cα > 0 and δ ∈ [0, 1) such

that Mcα + δ ≤ 1. Therefore, evaluating the result of Lemma 10 given in (73) at x = x∗, and substituting Lyy = 0 and
αk = cα/σ

k−1 for k ≥ 0, we get

TK
(
L(x̄K , y)− L(x∗, ȳK)

)
+ (M − 1)

(
L(x̄K , y)− L(x∗, y)

)
(99)

≤ M
2

∥∥x∗ − x0
∥∥2

T0+(1− 1
M )M

+ 1
σ0DY(y, y0) + (M − 1)

(
L(x0, y)− L(x∗, y)

)
+

K−1∑
k=0

tkEk(x∗)− tK
(
M
2

∥∥x∗ − xK
∥∥2

TK+(1− 1
M )M

+ 1
σK

(
1−Mcα

)
DY(y, yK)

)
.

10For i ∈ M and k ≥ 0, 1

τki
+ µi = 1

M

(
1
τ̃k

+ µi
)

; hence, tk( 1

τki
+ µi) ≥ tk+1( 1

τk+1
i

+ µi) is equivalent to 1
τ̃k

+ µi ≥
tk+1

tk

(
1

τ̃k+1 + µi
)

= γk+1

γk

(
1
τ̃k

+ µi
τ̃k+1

τ̃k

)
, which clearly holds because µ = 0 implies γk+1 = γk and we also have τ̃k+1 ≤ τ̃k, for

all k ≥ 0.
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Recall that (85) implies Ek[E(x∗)] = 0. Furthermore, since (x∗, y∗) is a saddle point, we have L(x∗, y∗) ≥ L(x∗, y) and
L(x, y∗) ≥ L(x∗, y∗) for any x ∈ X and y ∈ Y . Therefore, when we substitute y = y∗ in (99), the left-hand side is
non-negative, and we get the following inequality:

tKE
[
M
2

∥∥x∗ − xK
∥∥2

TK+(1− 1
M )M

+ 1
σK

(
1−Mcα

)
DY(y∗, yK)

]
(100)

≤ M
2

∥∥x∗ − x0
∥∥2

T0+(1− 1
M )M

+ 1
σ0DY(y∗, y0) + (M − 1)

(
L(x0, y∗)− L(x∗, y∗)

)
.

According to RB-APD and RB-APD-B, we have MTk + (M − 1)M = 1
τ̃k

Im for k ≥ 0; hence,

tk(MTk + (M − 1)M) =
σk

σ0

1

τ̃k
Im =

γk

σ0
Im, ∀ k ≥ 0,

which follows from σk = γk τ̃k for k ≥ 0. Thus, (100) leads to the desired result in (27).

Next, we will show the convergence rate in terms of the primal objective function value of the ergodic primal iterate sequence.
Let y∗(x) = argmaxy∈Y L(x, y) be the unique maximizer for any given x ∈ dom f . After dropping non-positive terms
from the right-hand side of (99), substituting y = y∗(x̄K) and taking the expectation of both sides, we get

TKE
[
L(x̄K , y∗(x̄K))− L(x∗, ȳK)

]
(101)

≤ γ0

2σ0

∥∥x∗ − x0
∥∥2

X + 1
σ0 sup

y∈domh
DY(y, y0) + (M − 1)E

[
L(x0, y∗(x̄K))− L(x̄k, y∗(x̄K))

]
,

where we used (MT0 + (M − 1)M) = γ0

σ0 Im. Note that L(x0, y∗(x̄K)) − L(x̄k, y∗(x̄K)) ≤ F (x0) − F (x̄k) ≤
F (x0)−F (x∗) and F (x̄K)−F (x∗) ≤ L(x̄K , y∗(x̄K))−L(x∗, ȳK) w.p. 1. Therefore, the result in (28) can be concluded
immediately.

Finally, O(1/K2) rate for both (27) and (28) follows from Lemma 9, which implies that γK = σK/τ̃K = Ω(K2) and
TK =

∑K
k=1 σ

k/σ0 = Ω(K2).
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