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Abstract
The existence of spurious correlations such as

image backgrounds in the training environment

can make empirical risk minimization (ERM)

perform badly in the test environment. To ad-

dress this problem, Kirichenko et al. (2022) em-

pirically found that the core features that are re-

lated to the outcome can still be learned well even

with the presence of spurious correlations. This

opens a promising strategy to first train a fea-

ture learner rather than a classifier, and then per-

form linear probing (last layer retraining) in the

test environment. However, a theoretical under-

standing of when and why this approach works

is lacking. In this paper, we find that core fea-

tures are only learned well when their associated

non-realizable noise is smaller than that of spu-

rious features, which is not necessarily true in

practice. We provide both theories and exper-

iments to support this finding and to illustrate

the importance of non-realizable noise. More-

over, we propose an algorithm called Freeze then

Train (FTT), that first freezes certain salient fea-

tures and then trains the rest of the features us-

ing ERM. We theoretically show that FTT pre-

serves features that are more beneficial to test

time probing. Across two commonly used spuri-

ous correlation datasets, FTT outperforms ERM,

IRM, JTT and CVaR-DRO, with substantial im-

provement in accuracy (by 4.5%) when the fea-

ture noise is large. FTT also performs better on

general distribution shift benchmarks.

1 Introduction

Real-world datasets are riddled with features that are “right

for wrong reasons” (Zhou et al., 2021). For instance, in Wa-
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Figure 1: The improvement of last layer retraining ac-

curacy (%) before v.s. after ERM training on Dominoes

dataset (Shah et al., 2020). The model is initialized with

ImageNet pretrained parameters. The x-axis and y-axis

represent noise levels of the spurious and core features,

respectively. ERM training helps/harms the performance

when the non-realizable noise of core features is smaller/-

greater than that of the spurious features. Experiment set-

tings are in Section 5.

terbirds (Sagawa et al., 2019), the bird type can be highly

correlated with the spurious feature image backgrounds,

and in CelebA (Liu et al., 2015) the hair color can be rel-

evant to the gender. These features are referred to as spu-
rious features (Hovy and Søgaard, 2015; Blodgett et al.,

2016; Hashimoto et al., 2018), being predictive for most of

the training examples, but are not truly correlated with the

intrinsic labeling function. Machine learning models that

minimize the average loss on a training set (ERM) rely on

these spurious features and will suffer high errors in en-

vironments where the spurious correlation changes. Most

previous works seek to avoid learning spurious features by

minimizing subpopulation group loss (Duchi et al., 2019),

by up-weighting samples that are misclassified (Liu et al.,

2021), by selectively mixing samples Yao et al. (2022), and

so on. The general goal is to recover the core features under

spurious correlations.

Recently, Kirichenko et al. (2022) empirically found that

ERM can still learn the core features well even with the

presence of spurious correlations. They show that by sim-

ply retraining the last layer using a small set of data with

little spurious correlation, one can reweight on core fea-
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Figure 2: An illustration of our method, Freeze then Train (FTT). We start with a pretrained feature extractor (e.g. CNN)

and find dataset-specific salient features using any unsupervised method like contrastive learning or PCA (the orange part).

We then freeze these features and learn the rest of the features using any supervised method like ERM or a robust training

algorithm (the blue part). In the test environment, the last layer is retrained. The pseudo-code can be found in Appendix A.

tures and achieves state-of-the-art performance on popular

benchmark datasets. This method is called Deep Feature

Reweighting (DFR), and it points to a new promising strat-

egy to overcome spurious correlation: learn a feature ex-

tractor rather than a classifier, and then perform linear prob-

ing on the test environment data. This strategy is also used

in many real-world applications in NLP, where the pipeline

is to learn a large pretrained model and conduct linear prob-

ing in downstream tasks (Brown et al., 2020). It simply re-

quires a CPU-based logistic regression on a few amount of

samples from the deployed environment.

However, several problems regarding this strategy remain

open. First, it is unclear when and why the core features can
and cannot be learned during training and be recovered in
test-time probing. Moreover, in the setting where the DFR

strategy does not work well, is there an alternative strategy
to learn the core features and make the test-time probing
strategy work again?

In this paper, we first present a theoretical framework to

quantify this phenomenon in a two-layer linear network

and give both upper and lower control of the probing accu-

racy in Theorems 1 and 2. Our theories analyze the effect of

training and retraining, which is highly nontrivial due to the

non-convex nature of the problem. Our theories point out

an essential factor of this strategy: the feature-dependent
non-realizable noise (abbreviated as non-realizable noise).

Noise is common and inevitable in real-world (Frénay and

Verleysen, 2013). For example, labels can have intrinsic

variance and are imperfect, and human experts may also

assign incorrect labels; in addition, noise is often hetero-

geneous and feature-dependent Zhang et al. (2021), and

spurious features can be better correlated with labels in the

training environment (Yan et al., 2014; Veit et al., 2017).

Our theories show that in order to learn core features, ERM

requires the non-realizable noise of core features to be

much smaller than that of spurious features. As illustrated

in Figure 1, when this condition is violated, the features

learned by ERM perform even worse than the pretrained

features. The intuition is that models typically learn a mix-

ture of different features, where the proportion depends on

the trade-off between information and noise: features with

larger noise are used less. During the last-layer probing,

when the proportion of the core feature is small, we suffer

more to amplify this feature. Our theories and experiments

suggest that the scenario in Kirichenko et al. (2022) is in-

complete, and the strategy can sometimes be ineffective.

Inspired by this understanding, we propose an algorithm,

called Freeze then Train (FTT), which first learns salient

features in an unsupervised way and freezes them, and then

trains the rest of the features via supervised learning. We

illustrate it in Figure 2. Based on our finding that lin-

ear probing fails when the non-realizable noise of spuri-

ous features is smaller (since labels incentivize ERM to fo-

cus more on features with smaller noise), we propose to

learn features both with and without the guidance of labels.

This exploits the information provided in labels, while still

preserving useful features that might not be learned in su-

pervised training. We show in Theorem 3 that FTT at-

tains near-optimal performance in our theoretical frame-

work, providing initial proof of its effectiveness.

We conduct extensive experiments to show that: (1) In

real-world datasets the phenomenon matches our theories

well. (2) On three spurious correlation datasets, FTT out-

performs other algorithms by 1.4%, 0.3%, 4.1% on aver-

age, and 4.5%, 0.4%, 9% at most. (3) On more general

OOD tasks such as three distribution shift datasets, FTT

outperforms other OOD algorithms by 1.1%, 0.8%, 2.1%
on average. (4) We also conduct fine-grained ablations ex-

periments to study FTT under different unsupervised fea-

ture fractions, and a different number of learned features.

Together, we give a theoretical understanding of the prob-

ing strategy, propose FTT that is more suitable for test-

time probing and outperforms existing algorithms in vari-

ous benchmarks. Even under spurious correlation and non-

realizable noises, by combining ERM with unsupervised

methods, we can still perform well in the test environment.
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Related Works on rbustness to spurious correlations.
Recent works aim to develop methods that are robust to

spurious correlations, including learning invariant repre-

sentations (Arjovsky et al., 2019; Guo et al., 2021; Khezeli

et al., 2021; Koyama and Yamaguchi, 2020; Krueger et al.,

2021; Yao et al., 2022), weighting/sampling (Shimodaira,

2000; Japkowicz and Stephen, 2002; Buda et al., 2018; Cui

et al., 2019; Sagawa et al., 2020), and distributionally ro-

bust optimization (DRO) (Ben-Tal et al., 2013; Namkoong

and Duchi, 2017; Oren et al., 2019). Rather than learn a

“one-shot model”, we take a different strategy proposed in

Kirichenko et al. (2022) that conducts regression on the test

environment.

Related Works on representation learning. Learning a

good representation is essential for the success of deep

learning models Bengio et al. (2013). The representation

learning has been studied in the settings of autoencoders He

et al. (2021), transfer learning Du et al. (2020); Tripuraneni

et al. (2020, 2021); Deng et al. (2021); Yao et al. (2021);

Yang et al. (2022), topic modeling Arora et al. (2016); Ke

and Wang (2022); Wu et al. (2022), algorithmic fairness

Zemel et al. (2013); Madras et al. (2018); Burhanpurkar

et al. (2021) and self-supervised learning Lee et al. (2020);

Ji et al. (2021); Tian et al. (2021); Nakada et al. (2023).

2 Preliminary

Throughout the paper, we consider the classification task

X → Y , where X ⊂ R
d and Y = [K]. Here we use [N ] to

denote the set {1, · · · , N}. We denote all possible distri-

butions over a set E as Δ(E). Assume that the distribution

of (x, y) is Etr in the training environment and Ete in the

test environment.

Spurious correlation. Learning under spurious correla-

tion is a special kind of Out-Of-Distribution (OOD) learn-

ing where Dtr �= Dte. We denote the term feature as a

mapping φ(·) : X �→ R
m that captures some property of

X . We say φ is core (robust) if y | φ(x) has the same

distribution across Etr and Ete. Otherwise, it is spurious.

Non-realizable noise. Learning under noise has been

widely explored in machine learning literature, but is barely

considered when spurious correlations exist. Following

Bühlmann (2020); Arjovsky et al. (2019), we consider non-

realizable noise as the randomness along a generating pro-

cess (can be either on features or on labels). Specifically,

in the causal path φ(x)core → y, we treat the label noise

on y as the non-realizable noise, and call it “core noise”

as it is relevant to the core features; in the causal path

y → φspu(x), we treat the feature noise on φspu(x) as

the non-realizable noise, and call it “spurious noise” as it is

relevant to the spurious features. As we will show, the non-

realizable noise influences the model learning preference.

Goal. Our goal is to minimize the prediction error in Ete,

where spurious correlations are different from Etr. In this

paper, we consider the new strategy proposed in Kirichenko

et al. (2022) that trains a feature learner on Etr and linearly

probes the learned features on Ete, which we call test-time
probing (or last layer retraining). No knowledge about

Ete is obtained during the first training stage. When de-

ploying the model to Ete, we are given a small test datasets

{xi, yi}ni=1 sampled from Dte, and we are allowed to con-

duct logistic/linear regression on φ(x) and y to obtain our

final prediction function. The goal is that after probing on

the learned features, the model can perform well in Ete, un-
der various possible feature noise settings.

3 Theory: Understand Learned Features
under Spurious Correlation

In this section, we theoretically show why core features can

still be learned by ERM in spite of spurious correlations,

and why non-realizable noises are crucial. Roughly speak-

ing, only when core noise is smaller than spurious noise,

features learned by ERM can guarantee the downstream

probing performance. All proofs are in Appendix D.

3.1 Problem Setup

Data generation mechanism. To capture the spurious cor-

relations and non-realizable noises, we assume the data(
x, y

)
is generated from the following mechanism:

x1 ∼ P ∈ Δ(R1×d1), y = x1β + εcore,

x2 =

{
yγ� + εspu Etr
εspu Ete

∈ R
1×d2 ,x = (x1,x2) ∈ R

1×d.

Here x1 is the core feature with an invertible covariance

matrix Σ � E[x�
1 x1]. x2 is the spurious feature that is

differently distributed in Etr and Ete. εcore ∈ R, εspu ∈
R

1×d2 are independent core and spurious noises with mean

zero and variance (covariance matrix) η2core and η2spuI re-

spectively. β ∈ R
d1×1, γ ∈ R

d2×1 are normalized coeffi-

cients with unit �2 norm. We assume that there exists some

k ∈ N such that the top-k eigenvalues are larger than the

noise variance η2spu, η
2
core, and β lies in the span of top-k

eigenvectors of Σ. This is to ensure that the signal along

β is salient enough to be learned. For technical simplicity,

we also assume that all eigenvalues of Σ are distinct.

Our data generation mechanism is motivated by Arjovsky

et al. (2019) (Figure 3), where we extend their data model.

We allow core features to be drawn from any distribution P

so long as Σ is invertible, while Arjovsky et al. (2019) only

consider a specific form of P. In addition, in our mecha-

nism, labels depend on core features and spurious features

depend on labels. However, our theorems and algorithms

can be easily applied to another setting where both core and

spurious features depend on labels. This is because the dif-

ference between the two settings can be summarized as the
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difference on Σ, while the techniques we use do not rely

on the concrete form of Σ.

Models. To capture the property of features and retrain-

ing, we consider a regression task using a two-layer linear

network f(x) = xWb, where W ∈ R
d×m is the feature

learner and b ∈ R
m×1 is the last layer that will be retrained

in Ete. We assume that the model learns a low-dimensional

representation (m � d), but is able to capture the ground

truth signal (m 	 k). Notice that the optimization over

(W , b) is non-convex, and there is no closed-form solution.

This two-layer network model has been commonly used in

machine learning theory literature (Arora et al., 2018; Gidel

et al., 2019; Kumar et al., 2022). The major technical dif-

ficulty in our setting is how to analyze the learned features

and control probing performance under this non-convexity

with spurious correlations. We assume the parameters are

initialized according to Xavier uniform distribution1.

Optimization. During the training stage, we minimize

the l2-loss �tr(W , b) = 1
2n‖f(X) − Y ‖2 where X =

(x�
1 , · · · ,x�

n )
� and Y = (y1, · · · , yn)�. For the clarity

of analysis, we consider two extremes that can help sim-

plify the optimization while still maintaining our key intu-

ition. First, we take an infinitely small learning rate such

that the optimization process becomes a gradient flow (Gu-

nasekar et al., 2017; Du et al., 2018). Denote the param-

eters W , b at training time t as W (t), b(t), and v(t) =
W (t)b(t). Second, we consider the infinite data setting

(n → ∞). This is a widely used simplification to avoid the

influence of sample randomness Kim et al. (2019); Ghor-

bani et al. (2021). The parameters are updated as

∂tW (t) = −∇W �tr(W (t), b(t))

= −
(
X�X

n
W (t)b(t)− X�Y

n

)
b(t)�

=
(
E[x�y]− E[x�x]v(t)

)
b(t)�

∂tb(t) = −∇b�tr(W (t), b(t))

= −W (t)�
(
X�X

n
W (t)b(t)− X�Y

n

)
= W (t)�

(
E[x�y]− E[x�x]v(t)

)
.

In the test stage, we retrain the last layer b to minimize the

test loss, i.e.

�te(W ) = min
b

EEte

1

2
‖xWb− y‖2.

In the test stage, the spurious correlation is broken, i.e.

x2 = εspu. The minimum error in the test stage is err∗te =
η2core/2 when v = (β�,0)�.

3.2 Theoretical Analysis: Noises Matter

We are now ready to introduce our theoretical results when

the core features can and cannot be learned by ERM with

1Our theorems can be easily applied to various initializations.

different levels of non-realizable noises. One important in-

tuition on why core features can still be learned well de-

spite the (possibly more easily learned) spurious features is

that, the loss can be further reduced by using both core and

spurious features simultaneously.

Lemma 1 For all W ∈ R
d×m, b ∈ R

m, we have

�tr(W , b) ≥ 1

2
E‖xv∗

tr − y‖22 =
η2coreη

2
spu

2(η2core + η2spu)
� err∗tr,

where v∗
tr = (αβ�, (1− α)γ�)� is the optimal coefficient

for training, and α =
η2
spu

η2
core+η2

spu
.

Lemma 1 shows that by assigning α fraction of weight to

the core feature β and the rest to γ, the loss is minimized.

This implies that the model will learn a mixture of both

features even with large spurious correlations. More impor-

tantly, the magnitude of α will largely influence the probing

performance. During the test stage, x2 become useless,

and the trained W (t)b(t) can only recover α fraction of

y, which induces a large approximation error. To this end,

during the retraining the last layer coefficients should scale

up in order to predict y well. Meanwhile, this also scales

up the weight on x2, which is merely a harmful noise, re-

sulting in a trade-off between learning accurate core fea-

tures and removing spurious features. When the core noise

is small, i.e., α ≈ 1, the noise on x2 will not be scaled

up much. The Waterbirds dataset considered in Kirichenko

et al. (2022) has ηcore = 0% < ηspu = 5%, falling into

this region. The following theorem tells how well the ERM

with last-layer probing works in this region.

Theorem 1 (Upper Bound) Assume that v(t) is bounded
away from 0 throughout the whole optimization2, i.e.
‖v(t)‖2 > c0 > 0. Then, for any 0 < ηcore < ηspu,
any time t, we have

�te(W (t)) ≤
(
1 +

η2core
η2spu

)
err∗te +O(t−1). (1)

Here err∗te = η2core/2 is the optimal testing error and O
hides the dependency on ηcore, ηtspu, c0 and the initialized
parameters. When ηcore

ηspu
→ 0, this theorem suggests test-

time probing achieves near optimal error.

Theorem 1 gives a theoretical explanation of the last layer

retraining phenomenon. It shows that the test error after

retraining can be close to err∗te over time. However, this

guarantee holds only when ηcore < ηspu. The following

theorem shows that when the core features have large noise,

the representation learned by ERM would produce a down-

graded performance after linear probing.

2This is to guarantee that our gradient flow will not fail to con-
verge to an minimum, in which case the theorem is meaningless.
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Figure 3: A toy example illustrating when and why ERM

can perform well after retraining in Ete (d = 2,m = 1).

Assume the core feature β is vertical and the spurious fea-

ture γ is horizontal. Both features can predict y in Etr,

while γ is useless in Ete since x2 = εspu. We initialize our

single feature W (0), and obtain W (t) after training on Etr.

We then retrain the last layer (probing) on Ete, i.e. rescale

W (t) and obtain vtest. When ηcore < ηspu, W (t) will use

β more (the blue flow); after probing, vtest can recover β
(small approximation error) without suffering much from

the spurious ε2 on the direction or γ (small spurious noise

error). On the contrary, when ηcore is large, W (t) will fol-

low the red flow; this leads to a trade-off between two error

terms. In this case, ERM performs much worse. Notice

that flows in the figure are just for illustration. In practice,

probing can either lengthen or shorten W (t), depending on

the concrete form of two error terms.

Theorem 2 (Lower Bound) Assume that in the infinity,
W1(∞) � limt→∞ W1(t) has full column rank, which
almost surely holds when m < d. Then for any ηcore >
ηspu > 0, we have

lim
t→∞

�te(W (t))

err∗te

≥ 1 +
η2core
2η2spu

(
1 ∧ 1

2η2spu ‖Σ−1‖2
∥∥∥W †

1 (∞)
∥∥∥2

2

)
. (2)

Here A† is the Moore-Penrose inverse of A, and a∧b takes
the minimum over a, b. When ηspu

ηcore
→ 0, the last layer

retraining error is much larger than the optimal error.

Theorem 2 implies that the error can be
η2
core

η2
spu

times larger

than err∗te when ηcore > ηspu, showing that ERM with

last layer retraining does not work in this scenario, and the

features learned by ERM are insufficient to recover near-

optimal performance. In summary, we prove that test-time

probing performance largely relies on the non-realizable

noises, and it only works when the core noise is relatively

smaller. We illustrate two theorems in Figure 3.

4 Method: Improving Test-Time Probing

Our theories raise a natural question: can we improve the
learned features and make the test-time probing strategy
effective under various noise conditions? A feature can

be better correlated with labels in Etr than others, but the

correlation may be spurious and even disappears in Ete.

Without concrete knowledge about Ete and spurious cor-

relations, it is impossible to determine whether or not a

learned feature is informative only in Etr, especially given

that there are innumerable amount of features. This prob-

lem comes from treating the label as an absolute oracle and

is unlikely to be addressed by switching to other supervised

robust training methods that still depend on labels. We ex-

perimentally verify this in Section 5.2.

In order to perform well in test-time probing under different

noise conditions, we should also learn salient features that

are selected without relying on labels. This helps preserve

features that are useful in the testing stage, but are ruled out

because they are less informative than other features w.r.t.

labels. By learning features both with and without the help

of labels, we can extract informative features and simulta-

neously maximize diversity. To this end, we propose the

Freeze then Train (FTT) algorithm, which first freezes cer-

tain salient features unsupervisedly and then trains the rest

of the features supervisedly. The algorithm is illustrated in

Figure 2, and we describe the details below.

4.1 Method: Freeze then Train

Algorithm 1 Freeze Then Train

Input: Dataset S = {xi, yi}ni=1, initialized feature extrac-

tor M : X �→ R
m, unsupervised fraction p, n class K.

1: Conduct PCA on {M(xi)}ni=1 with dimension pm,

obtain transform matrix Wul ∈ R
m×pm

2: Set unsupervised model Mul(x) = M(x)Wul, and

freeze its parameters (including Wul)

3: set Msl(x) = M(x)Wsl, initialize linear head h :
R

m �→ R
K .

4: Supervisedly train the model MFTT (x) =
h((Mul(x),Msl(x)) on S using ERM, update

Msl,Wsl, h until converge.

Output: MFTT

Step 1. Unsupervised freeze stage. FTT starts with a

model Minit pretrained in large datasets like ImageNet

or language corpus. Given a training set Str ∼ Dtr, we

use an unsupervised method like Contrastive Learning or

Principal Component Analysis (PCA) to learn pm features,

where m is the number of total features, and p ∈ [0, 1] is a
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hyper-parameter denoting the fraction of unsupervised fea-

tures. This stage gives a submodel Mul : X �→ R
pm,

where ul stands for “unsupervised learning”.

Step 2. Supervised train stage. Then, we freeze Mul and

train the other (1 − p)m dimensional features as well as a

linear head together using a supervised method. Specifi-

cally, we copy the initial pretrained checkpoint Minit, i.e.

we set Msl = Minit. We set its output dimension to (1−
p)m, and add a linear head h upon (Mul,Msl) with input

dimension pm+ (1− p)m = m. In this way, the complete

network output is MFTT (x) = h((Mul(x),Msl(x)).
We supervisedly train MFTT where only the parameters

in h and Msl is optimized (with Mul being frozen).

4.2 Theoretical Guarantees of FTT

We now show that in our two-layer network setting, FTT

can guarantee a better probing performance than ERM un-

der different non-realizable noises. Suppose in the freeze

stage, the representation learned by PCA is W̃ul ∈ R
d×pm.

We similarly initialize Wsl(t) ∈ R
d×(1−p)m, b(t) =(

bul(t)
bsl(t)

)
∈ R

m×1, and train WFTT (t) = (Wul,Wsl(t))

and b(t). Notice that Wul will not be updated.

Theorem 3 (FTT Bound) Suppose p > k
m . We

still assume that throughout the whole optimization,
‖Wsl(t)bsl(t)‖2 > c0 > 0. Then, for any time t, any
η2core �= −η2spuβ

(
η2spuI −Σ

)−1
Σβ (which is true a.s.),

�te(WFTT (t)) ≤ err∗te +O(t−1). (3)

Theorem 3 suggests that when we preserve enough unsu-

pervised features, FTT can converge to the optimum in Ete
for most of ηcore and ηspu. It can circumvent the lower

bound in Theorem 2 where one only uses ERM (p = 0);

it can also outperform the pure unsupervised method, since

pure PCA features cannot attain err∗tr either. It is by com-

bining both features in Wul and Wsl that FTT can surpris-

ingly reach the optimum. This effectiveness will be further

verified by thorough experiments in the next section.

4.3 Discussions on FTT

Selection of training algorithms. Notice that FTT is a

meta-algorithm, since it can be built on any supervised and

unsupervised method. To illustrate the effectiveness of our

method, in this paper we simply use PCA in the “freeze”

stage and ERM in the “train” stage. This ensures that the

effectiveness of FTT does not take advantage of other algo-

rithms that are carefully designed for these tasks.

Selection of p. The unsupervised fraction p is the only

hyper-parameter. In terms of expressiveness, FTT is strictly

stronger than a supervisedly trained model with features

(1− p)m. We verify in Section 5.3.1 that FTT works well

with various selection of p, e.g. between [0.25, 0.75].

Computational cost. Although FTT is twice as large as the

base model Minit, in the supervised training stage the size

of parameters to be optimized remains unchanged, since

Mul is frozen. In practice, we find that the computation

time and the GPU memory cost are indeed unchanged in

each epoch. For the “freeze” stage, we only conduct a

PCA, which can be quickly done even in CPU. For more

discussions, please refer to Appendix A.

5 Experiments

In this section, we experimentally verify our theories in

real-world datasets, compare FTT with other algorithms,

and conduct ablations.3 An overview of our experimental

setup is provided below; see Appendix B for more details.

Noise generation. To systematically study the influence of

noise, we follow Zhang et al. (2021) and explicitly generate

noise by flipping labels. Notice that labels are noisy for all

data we obtain, no matter what the training set Str ∼ Etr
and the test-time probing set Ste ∼ Ete are. Nevertheless,

our goal is to recover the ground truth. To accurately evalu-

ate the method, we further divide Ste into a validation split

Sval and a testing split Ste. The labels are noisy in Str and

Sval, but are noiseless in Ste. We retrain the last layer us-

ing only the validation split, and report performance on the

testing split that is never seen.

Datasets. We consider Waterbirds (Sagawa et al., 2019)

and CelebA (Liu et al., 2015), as well as Dominoes used in

Shah et al. (2020); Pagliardini et al. (2022).

• Dominoes is a synthesis dataset based on CIFAR10

and MNIST. The top half of the image shows CI-

FAR10 images (core features) and the bottom half

shows MNIST images (spurious features). Digits are

spuriously correlated to labels in Etr, but are inde-

pendent with labels in Ete. Given a target core noise

ηcore and spurious noise ηspu, we first randomly flip

ηcore fraction of the ground truth in CIFAR to obtain

ycore and ηspu fraction of the ground truth in MNIST

to obtain yspu. For Etr, we concatenate CIFAR and

MNIST images with the same label, i.e. ycore = yspu.

For Ete, digits are randomly concatenated with CIFAR

images. We select the ηcore and ηspu separately from

{0, 5, 10, 15, 20} (%), resulting in 25 settings of noise.

• Waterbirds is a typical spurious correlation bench-

mark. The label is the type of bird (water-bird = 0 or

ground-bird = 1), which is spuriously correlated with

the background (water = 0 or ground = 1). In the

3Our code can be found at https://github.com/
YWolfeee/Freeze-Then-Train.
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training split Str, the spurious noise ηspu is 5%, while

in Sval and Ste we have ηspu = 50%. Given ηcore,

we flip the label of the dataset according to Table 1.

For example, we select p
2ηcore fraction of data from

(0, 0) and flip labels to 1. This will increase ηcore
and ηspu by p

2ηcore. We also select p
2ηcore fraction

of data from (0, 1) and flip labels to 1. This will in-

crease ηcore but decrease ηspu by p
2ηcore. Similarly,

we flip 1−p
2 ηcore fraction of data with label 1. Af-

ter flipping, the spurious noise is kept unchanged, but

the core noise increases from 0 to ηcore. We select

ηcore from {0, 2, 4, 6, 8, 10} in percentage. The spuri-

ous noise in the Str, Sval, Ste is 5%, 50%, 50%.

(Core, Spurious)
Origin
fraction

Flip fraction

(0, 0) p0s − p0
2
ηcore+

p1
2
ηcore

(0, 1) p0(1− s) − p0
2
ηcore+

p1
2
ηcore

(1, 0) p1(1− s) + p0
2
ηcore− p1

2
ηcore

(1, 1) p1s + p0
2
ηcore− p1

2
ηcore

Table 1: The fraction of data to be flipped to generate core

noise ηcore in Waterbirds and CelebA. The (Core, Spuri-

ous) column represents the label of the core feature and the

spurious feature. p0, p1 is the fraction of data with label

0, 1, and s is the spurious correlation.

• CelebA is a binary classification dataset, where the

label is the color of hair (non-blond = 0 or blond = 1),

and is spuriously correlated with the gender (female =
0 or male = 1). The major difference between CelebA

and Waterbirds is that the spurious noise in CelebA is

large (42%). To better study the probing performance

under different noises, we drop a fraction of data with

(color, gender) = (0, 0) such that ηspu in Str is kept

to 6% within data groups with label 0 and 1. The label

flipping process is the same as in Waterbirds.

Models. For Dominoes we use ResNet18 (He et al., 2016),

and for Waterbirds and CelebA we use ResNet50. We load

ImageNet pretrained weights (Tanaka et al., 2018) from

torchvision.models (Paszke et al., 2017).

Methods. We compare FTT with ERM, IRM (Arjovsky

et al., 2019), CVaR-DRO (Duchi et al., 2019) and JTT

(Liu et al., 2021). IRM is a widely used OOD general-

ization algorithm, and CVaR-DRO and JTT are competi-

tive robust training methods that perform well in several

benchmark datasets for studying spurious correlations. For

IRM, we use hyperparameters in We use hyperparame-

ters in Gulrajani and Lopez-Paz (2020). For CVaR-DRO

and JTT, we use hyperparameters searched in Liu et al.

(2021). For ERM and test-time probing, we use parame-

ters in Kirichenko et al. (2022). For FTT, we set p = 0.25.

Test-time Probing. After we train a model in Str, we need

to retrain the last layer in Sval. We follow Kirichenko et al.

(2022) and divide Sval into two subsets, where the first sub-

Figure 4: Test-time probing accuracy gap between trained

model Merm and initialized model Minit on Waterbirds

and CelebA. The x-axis is the core noise and the y-axis

is the improvement of accuracy. In both datasets, the im-

provement of both worst group accuracy and average ac-

curacy decrease when ηcore increases. In Waterbirds, large

ηcore can even make ERM training harmful.

set is used to retrain the last layer, and the second is to se-

lect hyperparameters. Specifically, We sub-sample the first

subset using the group information such that the data pop-

ulation from each of the two groups are identical4. We then

perform logistic regression on this sub-sampled dataset.

This process is repeated for 10 times, and we average these

learned linear weights and obtain the final last layer weight

and bias. We then use the second group to select the hy-

perparameters, i.e. the regularization term C according to

the worst spurious group accuracy. After probing, we save

the model and evaluate the worst group accuracy and the

average accuracy in the test split where the label is noise-

less. For Dominoes, each setting is repeated for 5 times; for

Waterbirds and CelebA 10 times. Each reported number is

averaged across these runs.

5.1 Examine Non-realizable Noise Theories

Noise matters in Dominoes. We compare the test-time

probing accuracy gap between the ERM-trained model

Merm and initialized model Minit under different noises

in Figure 1. When ηcore < ηspu (the upper-triangle

part), the probing accuracy improved by 6.7% (both for the

worst group and in average). However, as ηcore increases

or ηspu decreases, this accuracy improvement diminishes

from 6.7% to −12%. The trends are clear if we consider

any certain row or column, where ηcore (ηspu) is fixed and

ηspu (ηcore) alters. Despite ERM learns core features when

ηcore < ηspu, it cannot preserve them when ηcore > ηspu.

4Previous works divide binary datasets into 4 groups accord-
ing to both labels and spurious features. However, under non-
realizable noises, manually splitting groups according to possi-
bly incorrect labels become meaningless. We only consider two
groups defined across spurious features. This setting is kept for
all experiments and methods to make sure the comparison is fair.



Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise

Dataset ηcore (%)
Worst Group Accuracy (%) Average Accuracy (%)

ERM IRM CVaR-DRO JTT Ours ERM IRM CVaR-DRO JTT Ours

Waterbirds

0 95.0 95.3 94.3 93.3 94.5 95.3 95.5 94.6 94.1 94.9
2 93.6 94.1 93.8 89.7 93.6 94.2 94.3 94.0 90.7 94.2
4 92.8 92.8 92.8 85.3 92.9 93.2 93.5 93.2 85.9 93.5
6 90.8 91.5 77.8 86.8 92.8 91.3 91.8 77.8 87.1 92.9
8 88.5 88.8 77.8 82.0 92.7 89.9 90.1 77.8 82.7 93.0
10 87.6 87.9 77.8 78.6 92.4 89.4 89.4 77.8 78.9 92.9

Mean 91.4 91.7 85.7 86.0 93.1 92.2 92.4 85.9 86.6 93.6

CelebA

0 95.0 95.2 92.9 94.4 95.3 97.2 97.2 96.0 96.7 97.2
2 95.2 95.2 92.4 91.6 95.2 97.2 97.2 95.9 96.0 97.2
4 94.5 94.2 91.9 92.7 94.9 97.1 97.0 95.5 96.4 97.2
6 94.3 94.3 91.5 92.0 94.4 96.9 96.9 95.5 96.0 97.0
8 93.7 93.8 91.4 91.4 94.0 96.7 96.7 95.4 95.7 96.7
10 92.4 92.8 91.1 80.5 93.1 96.2 96.2 95.4 92.1 96.3

Mean 94.2 94.2 91.9 90.4 94.5 96.9 96.9 95.6 95.5 96.9

Table 2: Test-time probing accuracy (%) for four methods on Waterbirds and CelebA, under different core noises ηcore.

Bold means the best accuracy across four methods. The “Mean” row stands for the average accuracy across ηcore. We

repeat all settings 10 times and average the numbers. For worst group accuracy, FTT (ours) can be competitive when ηcore
is small and outperform other algorithms by at most 4.5% when ηcore increases. It can increase accuracy by 1.4% and

0.3% on Waterbirds and CelebA on average.

Noise matters in Waterbirds and CelebA. We now turn

to Waterbirds and CelebA. We similarly save Merm as

well as Minit, calculate their probing accuracies, and show

the gap in Figure 4. In both datasets, test-time probing ac-

curacy decreases when ηcore increases. For instance, for

worst group accuracy, the improvement is 1.81% for Wa-

terbirds and 2.5% for CelebA when ηcore = 0, but be-

comes −5.5% for Waterbirds and 0.5% for CelebA when

ηcore = 10%. In Waterbirds, ERM becomes detrimental

even when ηcore = 6% is slightly larger than ηspu = 5%.

5.2 Effectiveness of FTT

5.2.1 Spurious Correlation Benchmarks

We now compare FTT with other algorithms, and show re-

sults in Section 5. For the worst group accuracy, FTT at-

tains 93.1% in Waterbirds and 94.5% in CelebA on aver-

age, outperforming ERM and other robust training algo-

rithms by 1.4% and 0.3%. When ηcore is small, purely

supervised methods can perform quite well, and FTT can

match their performance. When ηcore increases, purely su-

pervised based algorithms are biased to learn more spurious

features, while FTT can resist non-realizable noises during

training. In waterbirds, it can recover accuracy by 4.5%.

An interesting observation is the performance of CVaR-

DRO and JTT. They are robust training algorithms that in-

tuitively emphasize the importance of samples that are in-

correctly classified. It turns out that this focus could be mis-

leading where there exist non-realizable noises, since the

emphasized samples can be classified wrong because of the

noise. In Waterbirds, they perform nearly 10% worse than

ERM, suggesting that relying too much on labels might

backfire in situations where we do not know if features can

be noisy. On the contrary, FTT overcomes this problem by

finding features in an unsupervised way.

We also compare FTT with ERM in Dominoes, and show

results in Appendix C. Averaged across 25 noise settings,

FTT attains 78.1% (worst group) and 78.8% (average), out-

performing ERM by 4.1% and 4.0%. Together, FTT shows

the ability under different noises, overcoming the drawback

of ERM when ηcore is large.

5.2.2 General Distribution Shift Benchmarks

To further illustrate the effectiveness of FTT, we consider

more general distribution shift benchmarks, where there is

no explicit spurious correlation and explicit noise between

features and labels. Specifically, we consider three OOD

multi-class classification datasets: PACS with 7 classes (Li

et al., 2017), Office-Home with 65 classes (Venkateswara

et al., 2017), and VLCS with 5 classes (Torralba and Efros,

2011). Each dataset has four domains, and images in dif-

ferent domains have different styles, e.g. sketching, paint-

ing, or photography. The task is to train a model on three

domains, and perform well in the unseen test domain. Fol-

lowing the last layer retraining setting, we also allow the

model to retrain the last linear layer on the unseen test do-

main, i.e. we still consider the retraining accuracy.

We compare FTT with ERM, IRM, as well as Group-

DRO(Sagawa et al., 2019), and we use the implementation

and hyperparameters in Gulrajani and Lopez-Paz (2020).

Specifically, for each dataset and each domain as the test

domain, we use the default settings (for FTT, p = 0.25)

to train a model using each algorithm on the rest three do-

mains, retrain the last layer on the test domain using linear

regression, and report the accuracy. Notice that GroupDRO

is different from CVaR-DRO where the latter does not rely

on group information. We report all numbers in Table 3.
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PACS

Domain A C P S Mean
ERM 89.2 93.2 95.8 88.4 91.7
IRM 61.1 67.5 81.7 79.1 72.4
DRO 91.9 92.7 95.8 91.3 93.0
Ours 92.7 94.9 97.9 90.8 94.1

Office-
Home

Domain A C P R Mean
ERM 69.9 69.9 87.8 78.8 76.6
IRM 25.2 44.9 69.3 54.0 48.3
DRO 72.8 73.1 88.5 79.9 78.6
Ours 73.8 73.7 87.1 83.1 79.4

VLCS

Domain C L S V Mean
ERM 99.3 75.0 77.3 81.5 83.3
IRM 75.3 62.5 59.5 60.4 64.4
DRO 99.6 74.0 78.5 81.8 83.5
Ours 100.0 76.6 81.1 84.6 85.6

Table 3: Test-time probing accuracy (%) for 4 methods

on PACS, Office-Home, and VLCS. Rows “Domain” spec-

ify which domain among 4 domains is unseen during the

training stage, therefore used to retrain the last layer. The

“Mean” column stands for the average accuracy across dif-

ferent test domain selections, and we bold the highest accu-

racy among 4 methods in each setting. FTT (ours) consis-

tently outperforms other methods by 1.1% on PACS, 0.8%

on Office-Home, and 2.1% on VLCS.

Across three datasets, 12 test domain settings, FTT consis-

tently outperforms all other methods by 1.3% on average.

Importantly, FTT is initially designed to remove spurious

correlations, which is a special type of OOD generaliza-

tion. However, we find that it also works well in general

OOD settings such as in distribution shift datasets, show-

ing that FTT is robust and effective.

5.3 Ablation Studies

5.3.1 Selection of p (unsupervised fraction)

ηcore (%)
unsupervised features fraction (p)

0.00 0.25 0.5 0.75 1.00
0 95.0 94.5 94.8 94.6 93.2
2 93.6 93.6 94.3 94.1 92.9
4 92.8 92.9 93.2 93.7 92.6
6 90.8 92.8 93.3 93.3 93.0
8 88.5 92.7 92.6 93.0 92.7
10 87.6 92.4 93.1 93.0 93.1

Mean 91.4 93.1 93.6 93.6 92.9

Table 4: Worst group accuracy on Waterbirds, under dif-

ferent p. The setting is the same as section 5. For all

p ∈ [0.25, 0.75], FTT outperforms ERM by at least 1.7%.

We find that the best p value increases as ηcore increases.

FTT is a simple but effective framework, where the only

hyperparameter is the fraction of unsupervised features p.

We now compare the worst group accuracy of FTT on Wa-

terbirds under different p values in Table 4. When p = 0,

FTT is the same as ERM; when p = 1, FTT is the same as

PCA. We find that FTT is relatively insensitive to p, with

that no matter p = 0.25, 0.5, 0.75, FTT can consistently

outperform ERM by at least 1.7%. On the other hand, we

do find that as the noise increases, a more “unsupervised”

method is favored, which matches our expectation. The ab-

lation on other datasets can be found in Appendix C.

5.3.2 Number of features

Figure 5: Worst group accuracy on Waterbirds and CelebA

for FTT. The x-axis is the feature dimension in log scale.

How many features do we actually need to make last layer

retraining work? This is important since in Ete the com-

putation resource is limited, and preserving too many fea-

tures is impractical. To this end, we use PCA to project

the features that are learned in Etr, and then retrain the last

layer on the low-dimensional features. Since PCA does not

require group information (not even labels), it can be ac-

complished in Etr. We consider the projection dimension

varying from 21 to 212, and show results in Figure 5. After

training on Etr, only a few features are enough to perform

well (or even better) in Ete. Averaged across different noise

settings, FTT attains 93.2% on Waterbirds and 94.2% on

CelebA when m = 64, matching 93.1% and 94.5% when

using all features, and speeding up the probing process 3.9
times. This suggests that FTT is computational friendly in

test-time probing, and the improvement is significant.

6 Conclusions
In this paper, we study the test-time probing strategy as

a way to overcome spurious correlations. We theoreti-

cally and empirically show that ERM recovers core features

only when the non-realizable noise of core features is much

smaller than the that of spurious features. We propose FTT

to overcome this problem and outperform other algorithms

under different settings. Our work suggests that by prop-

erly combining unsupervised and supervised methods, ma-

chine learning models can be more robust and accurate to

spurious correlations.



Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise

Acknowledgements

The research of Linjun Zhang is partially supported by NSF

DMS-2015378. The research of James Zou is partially

supported by funding from NSF CAREER and the Sloan

Fellowship. In addition, we sincerely thank Haowei Lin

and Ruichen Li at Peking University for providing valuable

suggestions on our work.

References
Ali, A., Kolter, J. Z., and Tibshirani, R. J. (2019). A

continuous-time view of early stopping for least squares

regression. In The 22nd international conference on
artificial intelligence and statistics, pages 1370–1378.

PMLR.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz,

D. (2019). Invariant risk minimization. arXiv preprint
arXiv:1907.02893.

Arora, S., Cohen, N., and Hazan, E. (2018). On the op-

timization of deep networks: Implicit acceleration by

overparameterization. In International Conference on
Machine Learning, pages 244–253. PMLR.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. (2016).

A latent variable model approach to pmi-based word em-

beddings. Transactions of the Association for Computa-
tional Linguistics, 4:385–399.

Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melen-

berg, B., and Rennen, G. (2013). Robust solutions of op-

timization problems affected by uncertain probabilities.

Management Science, 59(2):341–357.

Bengio, Y., Courville, A., and Vincent, P. (2013). Rep-

resentation learning: A review and new perspectives.

IEEE transactions on pattern analysis and machine in-
telligence, 35(8):1798–1828.

Blodgett, S. L., Green, L., and O’Connor, B. (2016).

Demographic dialectal variation in social media: A

case study of african-american english. arXiv preprint
arXiv:1608.08868.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,

G., Askell, A., et al. (2020). Language models are few-

shot learners. Advances in neural information processing
systems, 33:1877–1901.

Buda, M., Maki, A., and Mazurowski, M. A. (2018). A

systematic study of the class imbalance problem in con-

volutional neural networks. Neural networks, 106:249–

259.
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A More Discussion on FTT

In practice, for the unsupervised learning, we conduct PCA using sklearn.decomposition.PCA. When the popu-

lation of Str is too large, we can randomly sub-sample the dataset before PCA, which does not influence the quality of the

learned features. Notice that when the initialized model M is random (e.g. rather than an ImageNet pretrained model),

pure PCA will not work. In this case, we can consider any unsupervised training method, like the Contrastive Learning

algorithm (Zhang et al., 2022). However, if these unsupervised methods still fail to extract core features (such as when the

core features are too complex for any unsupervised methods to learn), FTT might degrade to simple ERM.

After the unsupervised training, we reinitialize a model Msl with (1 − p)m features. During the supervised training, we

concatenate pm unsupervised features and (1−p)m supervised features, apply a linear layer on the m features to obtain K
outputs where K is the number of classes, and compute the cross entropy loss with labels. We only update parameters in the

last linear layer and the supervised model (with (1−p)m features), while the unsupervised model Mul is kept unchanged.

As a result, the training time remains unchanged during the supervised training, since the number of parameters to be

optimized remains unchanged.

B Experimental Details

In this section, we give details on how we implement our experiments.

B.1 Benchmarks

As mentioned in the main paper, we consider Dominoes, Waterbirds and CelebA, which is the same as in Kirichenko

et al. (2022). For each dataset, the core feature and the spurious feature are different. In Dominoes, the core feature is

the CIFAR image (car = 0, truck = 1), and the spurious feature is the MNIST digits (zero = 0, one = 1).

In Waterbirds, the core feature is the type of bird (water-bird = 0, ground-bird = 1), and the spurious

feature is the background (water = 0, ground = 1). In CelebA, the core feature is the color of the hair of

the person in the image (Non-blond = 0, Blond = 1), while the spurious feature is the gender of the person

(Female = 0, Male = 1).

The number of data we use for each split is shown in Table 5. Notice that this table shows the dataset when no noise

is explicitly added. In Dominoes, the spurious correlation is perfect in Str but is complete broken in Sval and Ste. Tn

Waterbirds the spurious correlation in Str is 95% (ηspu = 5%), while in Sval, Ste it is random. In CelebA the situation

is different. The spurious correlation is almost maintained in Sval and Ste (only slightly different in decimal point). This

suggests that in terms of average accuracy in Ste, pure ERM should be able to work quite well, which is verified in section 5.

Notice that the original population for (0, 0) in Str is 71629, and we drop most of them to create a small spurious noise for

our study. Specifically, we calculate the spurious correlation within data with label 1, which is 94.3%. We then select data

from group (0, 0) sequentially until we get x data such that x/(x+ 66874) = 94.3%.

(Core,
Spurious)

Dominoes Waterbirds CelebA

Str Sval Ste Str Sval Ste Str Sval Ste

(0, 0) 5000 (50) 2500 (25) 500 (25) 3498 (73) 467 (39) 2255 (39) 4053 (4) 524 (4) 546 (2)
(0, 1) 0 (0) 2500 (25) 500 (25) 184 (4) 466 (39) 2255 (39) 66874 (70) 8276 (70) 7535 (2)
(1, 0) 0 (0) 2500 (25) 500 (25) 56 (1) 133 (11) 642 (11) 22880 (24) 2874 (24) 2480 (23)
(1, 1) 5000 (50) 2500 (25) 500 (25) 1057 (22) 133 (11) 642 (11) 1387 (2) 182 (2) 180 (2)

Table 5: The number of data for each (core feature, spurious feature) group in Dominoes, Waterbirds and CelebA. Each

cell shows the population and (the proportion in percentage).

B.2 Noise Generation

We now explain how we generate feature noise in detail. Dominoes is a synthesis dataset where we can manipulate the label

and concatenate features. While in Waterbirds and CelebA this is impossible. Therefore, their noise generation mechanism

is different.

Dominoes noise generation. Assume we are given the original CIFAR dataset SCIFAR and MNIST dataset SMNIST ,

and we want to generate a spurious correlation Dominoes dataset with core noise ηcore and ηspu. To this end, we first
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randomly flip ηcore fraction of labels in SCIFAR and ηspu fraction of labels in SMNIST . Then, we randomly concatenate

CIFAR and MNIST images so long as their (possibly incorrect labels) are the same.

Waterbirds and CelebA noise generation. In these two real-world datasets, we cannot randomly concatenate features.

To this end, we only tune the core noise and keep the spurious noise unchanged. When a sample from (0, 0) is flipped to

(1, 0), the noise of both the core feature and spurious feature increases; on the other hand, when a sample from (0, 1) is

flipped to (1, 1), the core noise increases while the spurious noise decreases. We leverage this property to maintain ηspu
while tuning ηcore, as shown in table 1.

B.3 Optimization

Our experiments consist of two stages, train a model, and retrain the last layer (test-time probing). In this section, we

specify the parameters in the training stage.

Dominoes. In Dominoes we only compare ERM and FTT. We start with the pretrained ResNet-18 model and follow

the training settings in Shah et al. (2020). We use SGD with weight_decay = 1e-3 and lr = 0.01 and train the

model for 200 epoch. We reduce lr to 0.002 after 50 epoch implemented by optim.lr_scheduler.LambdaLR.

The batch size is set to 256. We use the cross entropy loss implemented by F.cross_entropy.

Waterbirds and CelebA. For these two datasets, we follow the implementation in Kirichenko et al. (2022) for algo-

rithm ERM and FTT, and follow the implementation in Liu et al. (2021) for JTT and CVaR DRO in order to make

sure the model is trained well. For ERM and FTT, we use SGD with momentum_decay = 0.9, lr = 1e-3
to train ResNet-50 models. For waterbirds we use weight_decay = 1e-3, and for CelebA we use

weight_decay = 1e-4. We train the model for 100 epochs in Waterbirds and 50 epochs in CelebA,

and the batch size is set to 128. For JTT and CVaR DRO, we use the hyperparameters in Liu

et al. (2021). Both methods use momentum_decay = 0.9, weight_decay = 1.0 on Waterbirds and

momentum_decay = 0.9, weight_decay = 0.1 on CelebA. For CVaR DRO on Waterbirds, the learning rate

is set to 1e-4, and the alpha rate is set to 0.2; on CelebA the learning rate is 1e-5 and the alpha rate is 0.00852. For

JTT, according to their paper, an ERM model is trained for T epochs first, and some data samples are up-weighted. Then,

another ERM model will be trained using these data. All hyperparameters are inherited from their paper. For these two

algorithms, we use the best model according to their model selection method, i.e. the accuracy of a preserved validation

set.

Once the training is finished, we will obtain a learned model where the final linear layer has input dimension m and output

dimension 2. This layer will be removed and the Logistic Regression will be conducted on the m dimensional features, as

specified below.

B.4 Test-time Probing

We follow the deep feature reweighting algorithm to retrain the last layer. Specifically, assume we are given Sval that is

sampled from Ete (there is still noise). We will use this dataset to retrain the last layer. Specifically, we first down-sample a

balanced dataset, i.e. the population of groups with different spurious labels are the same. We then split this down-sampled

dataset into two parts. We train the last layer using the first part, and evaluate the performance on the second part. Using

the evaluated accuracy, we select the hyperparameter, i.e. the inverse regularization term C in LogisticRegression.

Finally, we fix the value of C, randomly sample 10 balanced sets from Sval, train the weight and the bias for each set, and

average across them. This will be our final last layer. We do NOT use solver = liblinear and penalty = ’l1’,

since we empirically found that this cannot improve the performance much, but will slow down the retraining a lot.

Once the probing is done, we evaluate the performance on Ste, where the label is noiseless such that the numbers can

accurately reflect the performance.

C Supplementary Experiments Results

FTT performs well on Dominoes. We first show the main comparison between ERM and FTT on Dominoes in Figure 6.

We find that, both methods perform well when ηcore < ηspu. On the contrary, FTT recovers accuracy when ηcore > ηspu
by 4% in average and 9% at most.
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Figure 6: ERM (left) and FTT (right) worst group accuracy (top) and average accuracy (down) on Dominoes dataset,

under different selection of ηcore and ηspu. The “Mean” row and column stand the average across core noise and spurious

noise separately.

Experiments on p. We next show the complete experiments on the unsupervised fraction p. For Waterbirds and CelebA,

the results are in Table 6. We can see that both for worst group accuracy and for average accuracy, both on Waterbirds

and on CelebA, FTT performs well under various selections of p. For Dominoes, the results are in fig. 6. Again, this plot

verifies the effectiveness of FTT, and show that FTT can perform well under different selections of p.

D Proof of Theorems

For simplicity, for all the proofs below, we rewrite εcore, εspu as ε1, ε2, ηcore, ηspu as η1, η2, and Wcore,Wspu as W1,W2.

Denote the covariance matrix of x as H = E[x�x] (notice that x ∈ R
d×1). By standard algebra, we have

H =

(
Σ Σβγ�

γβ�Σ η22I + (η21 + β�Σβ)γγ�

)
. (4)

Figure 7: Worst group accuracy (top) and average accuracy (down) on Dominoes for FTT with different p. The first and

the second column are the same as in fig. 6.
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Dataset
p 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

ηcore Worst Group Accuracy (%) Average Accuracy (%)

Waterbirds

0 95.0 94.5 94.8 94.6 93.2 95.3 94.9 95.2 95.0 93.7

2 93.6 93.6 94.3 94.1 92.9 94.2 94.2 94.5 94.6 93.5

4 92.8 92.9 93.2 93.7 92.6 93.2 93.5 93.6 94.0 93.0

6 90.8 92.8 93.3 93.3 93.0 91.3 92.9 93.3 93.4 93.4

8 88.5 92.7 92.6 93.0 92.7 89.9 93.0 92.9 93.3 93.1

10 87.6 92.4 93.1 93.0 93.1 89.4 92.9 93.5 93.3 93.4

Mean 91.4 93.1 93.6 93.6 92.9 92.2 93.6 93.8 93.9 93.4

CelebA

0 95.0 95.3 95.1 95.2 92.5 97.2 97.2 97.2 97.2 95.9

2 95.2 95.2 95.2 94.8 92.5 97.2 97.2 97.3 97.0 95.8

4 94.5 94.9 94.4 94.0 92.0 97.1 97.2 97.0 96.7 95.6

6 94.3 94.4 94.1 94.1 92.2 96.9 97.0 96.9 96.8 95.7

8 93.7 94.0 93.7 93.5 92.3 96.7 96.7 96.7 96.5 95.8

10 92.4 93.1 92.7 93.1 91.9 96.2 96.3 96.1 96.2 95.5

Mean 94.2 94.5 94.2 94.1 92.2 96.9 96.9 96.9 96.7 95.7

Table 6: FTT probing performance on Waterbirds and CelebA, under different unsupervised fraction p. This table is an

extension of table 4, which only contains the worst group accuracy on Waterbirds.

We denote the SVD decomposition of H = ΞDΞ�, where Ξ is an orthogonal matrix and D is a diagonal matrix in

descending order. We denote the SVD decomposition of Σ = QD1Q
�, where Q = (q1, · · · , qd1

) is an orthogonal

matrix and D1 = Diag (λ1, · · · , λd1
) is a descending diagonal matrix. We use A:n to denote the first n columns of A, and

span(A) to denote the linear space spanned by the column vectors of A. Denote g = β�Σβ as the variance of x1 along

the ground-truth direction β. Also recall that α =
η2
2

η2
1+η2

2
.

Notice that β lies in the top k eigenvectors spanned space, i.e. β ∈ span(Q:k). Without loss of generality, we assume that

k is the minimum integer that satisfies this condition, i.e. we assume that q�
k β �= 0. Otherwise, we decrease k until this is

true, while the condition p > k
m still holds.

D.1 Proof of theorem 1

Proof sketch. To upper bound �te(W (t)), we demonstrate that by a proper selection of b, we have �te(W (t)) ≤
1

(1−γ�W2(t)b(t))2
�tr(W (t), b(t)) (Lemma 2). Since ηcore < ηspu, we can prove that the weight assigned on x2 is up-

per bounded, which help control the magnitude of γ�W2(t)b(t). On the other hand, we follow the idea from Ali et al.

(2019) to control �tr(W (t), b(t)) using some differential equation techniques (Lemma 3). This helps circumvent the direct

analysis on the not-close form solution.

To upper bound test error, we first connect it with training error using the following lemma.

Lemma 2 For all W , b, we have

�te(W ) ≤ 1

(1− γ�W2b)2
�tr(W , b). (5)

Lemma 2 decomposes �te(W (t)) into a factor and the training error. For simplicity, we denote ct = γ�W2(t)b(t). Below

we separately bound both terms.

Bound �tr(t). Ali et al. (2019) has pointed out that continuous time linear regression (i.e. one layer network) gives an

analytical solution v(t). For a two layer model this remains unknown. However, since this optimization problem is convex

in terms of v (but not of (W , b)), in the infinity �tr(t) we can still bound the training error, which is specified by the

following lemma.

Lemma 3 Under the assumption in Theorem 1, for all time step t, the training error is bounded by

�tr(W (t), b(t)) ≤ err∗tr +O
(
1

t

)
.
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Bound ct. Notice that by standard decomposition, we have

�tr(W (t), b(t)) ≥ 1

2

(
(1− ct)

2η21 + η22‖v2(t)‖22
) ≥ 1

2

(
(1− ct)

2η21 + η22c
2
t

)
.

Therefore, for all time step t, we have

η21 −
√

2�tr(η21 + η22)− η21η
2
2

η21 + η22
≤ c ≤ η21 +

√
2�tr(η21 + η22)− η21η

2
2

η21 + η22
.

Together, we have

�te(W (t)) ≤ 1

(1− ct)2
�tr(W (t), b(t))

≤ 1

(1− ct)2

(
O(

1

4t
) + err∗tr

)

≤
(

η21 + η22

η22 −
√

2�tr(W (t), b(t))(η21 + η22)− η21η
2
2

)2 (
O(

1

4t
) + err∗tr

)

≤
(

η21 + η22
η22 −O(t−1/2)

)2

err∗tr +O(t−1)

=

(
1 +

η21
η22

)
err∗te +O(t−1).

D.2 Proof of Theorem 2

Proof sketch of Theorem 2. To prove the theorem, we first analyze the optimal selection of b given a feature matrix W .

We then convert the test error to a expression that depends on the norm of W in the infinity (Lemma 4). We then leverage

the fact that

∂t
(
W (t)�W (t)− b(t)b(t)�

)
= 0

to connect the parameters across different t, and control the matrix norm using the properties of initialization (Lemma 5).

We already know that limt→∞ W (t)b(t) = W (∞)b(∞) = v∗. Since W (∞) has full column rank, exists T0 such that

for all t > T0, W (t) has full rank and the mth singular value is simultaneously lower bounded by a positive constant λ0

that depends only on W (∞).

For any fix W , and the test error for a given b is

Ex2=ε2

1

2
‖xWb− y‖2 =

1

2

(
E[x1W1b− y]2 + E[x2W2b]

2 + E[x1W1b · x2W2b]
)

(6)

=
1

2

(
η21 + E‖W1b− β‖2Σ + η22‖W2b‖22

)
. (7)

Since Equation (6) is convex w.r.t. b, it is minimized when

0 = ∇bEx2=ε2

1

2
‖xWb− y‖2 =

(
W�

1 ΣW1 + η22W
�
2 W2

)
b−W�

1 Σβ (8)

The quadratic form will not degenerate so long as t > T0 and W1(t)
�ΣW1(t) is positive definite. Together, the test error

is minimized in time t by setting

bmin(t) =
(
W�

1 (t)ΣW1(t) + η22W
�
2 (t)W2(t)

)−1
W�

1 (t)Σβ.

For all t > T0, bmin(t) is continuous in terms of t, i.e.

bmin(t) → bmin(∞) =
(
W�

1 (∞)ΣW1(∞) + η22W
�
2 (∞)W2(∞)

)−1
W�

1 (∞)Σβ.

Therefore, limt→∞ �te(W (t)) = �te(W (∞)), and the latter is minimized by setting b to bmin(∞). For simplicity, we

abbreviate W1(∞),W2(∞) as W1,W2. Lemma 4 below helps simplify the infinite error term, and Lemma 5 helps bound

the simplified error.
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Lemma 4 Under the condition in Theorem 2, we have

�te(W )

err∗te
= 1 +

η21
η22

γ�
(
I + η22W2

[
W�

1 ΣW1

]−1
W�

2

)−1

γ (9)

Lemma 5 Under the Xavier uniform initialization,

λ−1
max

(
I + η22W2

[
W�

1 ΣW1

]−1
W�

2

)
≥ 1

2
∧ 1

4η22‖Σ‖2‖W+
1 ‖22

. (10)

Combining Lemmas 4 and 5, we have

lim
t∞

�te(W (t)

err∗te
=

�te(W (∞))

err∗te

= 1 +
η21
η22

γ�
(
I + η22W2

[
W�

1 ΣW1

]−1
W�

2

)−1

γ

≥ 1 +
η21
η22

λ−1
max

(
I + η22W2

[
W�

1 ΣW1

]−1
W�

2

)
‖γ‖2

≥ 1 +
η21
η22

(
1

2
∧ 1

4η22‖Σ‖2‖W+
1 (∞)‖22

)
.

D.3 Proof of Theorem 3

Proof sketch. The key intuition is that Wul recovers important information about β, despite there is error in PCA that we

can never full recover β. In this case, we can combine the features learned in Wsl and Wul to obtain a asymptotically

optimal approximation of β without being disturbed by the spurious correlation γ. Specifically, we prove the following

lemma.

Lemma 6 Exists c1 �= 1−α
α , such that (

β
c1γ

)
∈ span (Ξ:k) . (11)

Since our unsupervised training features Wul takes the top pm eigenvectors of Ξ, lemma 6 implies that
(
β�, c1γ�)�

lies

in the span of Wul, i.e. ∃b̂ul ∈ R
pm×1, such that

(
β�, c1γ�)�

= Wulb̂ul. On the other hand, we alredy know from

the proof of theorem 1 in the infinity v(t) → (
αβ�, (1− α)γ�)�

. The following lemma, by combing these two crucial

feature, bounds the test time probing error of WFTT (t).

Lemma 7 By setting the retraining weight

b̂ =
c1

c1α− (1− α)
WFTT (t)b(t)− 1− α

c1α− (1− α)

(
b̂ul
0

)
,

we have (recall that ct = γ�W2(t)b(t), while c1 is fixed)

�te(WFTT (t))− err∗te ≤
(

c1
c1α− (1− α)

)2

O
(

‖Σ‖2‖H−1‖2
(
√

c20 + 1− 1)t

)
. (12)

Here O hides a universal constant.

Notice that the RHS decays with rate t−1. Together, the proof is finished.

E Proof of Lemmas

In this section we prove all lemmas.
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E.1 Proof of Lemma 1

According to the decomposition of the training error, for any v = Wb, we have

�tr(W , b) =
1

2

(
E‖x1v1 − (1− γ�v2)y‖2 + η22‖v2‖2

)
=

1

2

(
E‖x1v1 − (1− γ�v2)x1β‖2 + η21(1− γ�v2)

2 + η22‖v2‖2
)

≥ 1

2

(
η21(1− γ�v2)

2 + η22‖v2‖2
)

Denote x = γ�v2, we have

�tr(W , b) ≥ 1

2

(
η21(1− x)2 + η22x

2
) ≥ 1

2
· η21η

2
2

η21 + η22
.

Here the last inequality comes from Cauchy–Schwarz inequality. The proof is finished by verifying that v∗
tr can indeed

give the minimum.

E.2 Proof of Lemma 2

Given W , b, we can decompose the training error as (denote v = Wb)

�tr(W , b) =
1

2
E‖x1v1 + (yγ� + ε2)v2 − y‖22

=
1

2

(
E‖x1v1 − (1− γ�v2)y‖2 + η22‖v2‖2

)

On the other hand, by setting b̂ = 1
1−γ�v2

b, the test error is upper bounded by

�te(W ) ≤ 1

2
Ex2=ε2‖xWb̂− y‖2

=
1

2
Ex2=ε2‖

xv

1− γ�v2
− y‖2

=
1

2

(
E‖ x1v1

1− γ�v2
− y‖2 + η22

(1− γ�v2)2
‖v2‖2

)

Therefore, we have

�te(W ) ≤ 1

(1− γ�W2b)2
�tr(W , b).

E.3 Proof of Lemma 3

Denote M(t) = W (t)�W (t)− b(t)b(t)�. Since our parameters are initialized according to Xaiver uniform distribution,

‖M(0)‖2 ≤ ‖W (0)‖22 + ‖b(0)‖22 ≤ d‖W (0)‖2∞ + 1 ≤ 2.

Recall that M(t) is invariant throughout the whole optimization. We have

2‖b(t)‖22 ≥ b(t)�M(0)b(t) = b(t)�M(t)b(t) = ‖v(t)‖22 − ‖b(t)‖4,

which implies that ‖b(t)‖22 ≥
√

c20 + 1− 1.
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Convergence of v(t). The gradient of v(t) is

∂v(t) = ∂tW (t) · b(t) +W (t) · ∂tb(t)
=

(
W (t)W (t)� + ‖b(t)‖22I

) (
E[x�y]−Hv(t)

)
=

(
W (t)W (t)� + ‖b(t)‖22I

)
H (v∗

tr − v(t))

where the last equation uses the fact that H is invertible (since Σ is invertible) and v∗
tr = H−1

E[x�y]. By a standard

differential equation analysis, we have

v(t)− v∗
tr = exp

{
−H

∫ t

0

A(τ)dτ

}
(v(0)− v∗

tr), (13)

where A(t) � W (t)W (t)� + ‖b(t)‖22I and A(t) − (
√
c20 + 1 − 1)I is positive definite because the bound of ‖b(t)‖22.

This help us control the training error as

2�tr(W (t), b(t)) = E‖xv(t)− y‖22
= v(t)�Hv(t)− 2v(t)�E[x�y] + E[y�y]

= v(t)�Hv(t)− 2v(t)�Hv∗
tr + v∗�

tr Hv∗
tr

+
(
v∗�
tr Hv∗

tr − 2v∗�
tr HE[x�y] + E[y�y

)
= ‖v(t)− v∗

tr‖2H + E‖xv∗
tr − y‖22

= ‖v(t)− v∗
tr‖2H + 2err∗tr.

Plugging Equation (13) into the first term, we have

‖v(t)− v∗
tr‖2H = (v(0)− v∗

tr)
�
[
exp

{
−2H

∫ t

0

A(τ)dτ

}
H

]
(v(0)− v∗

tr)

≤ O
(∥∥∥∥exp

{
−2H

∫ t

0

A(τ)dτ

}
H

∥∥∥∥
2

)

≤ O
(∥∥∥∥exp

{
−2(

√
c20 + 1− 1)tHdτ

}
H

∥∥∥∥
2

)

≤ O
(

1

(
√
c20 + 1− 1)t

)
.

Here the first equation is because H and
∫ t

0
A(τ) are both positive definite, and can be diagonalized simultaneously. The

first inequality is because ‖v(0)−v∗
tr‖ is bounded, while the second is because A(t)− (

√
c20 + 1−1)I is positive definite

for all t.

E.4 Proof of Lemma 4

Plug in b = bmin(∞) into Equation (6), we obtain (denote Λ = W�
1 ΣW1)

�te(W1)− err∗te =
1

2

(
b�

[
Λ+ η22W

�
2 W2

]−1
b− 2β�ΣW1b+ β�Σβ

)
=

1

2

(
β�Σβ − β�ΣW1

[
Λ+ η22W

�
2 W2

]−1
W�

1 Σβ
)

=
1

2

(
β�Σβ − β�ΣW1

[
Λ−1 − η22Λ

−1W2

(
I + η22WΛ−1W�

2

)−1
W2Λ

−1
]
W�

1 Σβ
)

where the last equation is because for any invertible A,B,(
A+CBC�)−1

= A−1 −A−1C
(
B−1 +C�A−1C

)−1
C�A−1.

Notice that we have W1b(∞) = αβ,W2b(∞) = (1− α)γ. Multiplying W�
1 Σ on both side, we have

Λb(∞) = αW�
1 Σβ

b(∞) = αΛ−1W�
1 Σβ.
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This implies that

β�ΣW1Λ
−1W�

1 Σβ =
1

α
β�ΣW1b(∞) = β�Σβ,

W2Λ
−1W�

1 Σβ =
1

α
W2b(∞) =

1− α

α
γ.

Therefore, we have

�te(W1)− err∗te =
(1− α)2

2η22α
2

(
γ� [

I + η22WΛ−1W�
2

]−1
γ
)

=
η41
2η22

γ� [
I + η22WΛ−1W�

2

]−1
γ.

E.5 Proof of Lemma 5

We first upper bound ‖W2‖2. Recall an important property of our two layer linear model from Kumar et al. (2022):

∂t
[
W (t)�W (t)� − b(t)b(t)�

]
= 0. (14)

Applying this property with t = 0 and t → ∞, we have

W�
1 W1 +W�

2 W2 − b(∞)b(∞)� = W (0)�W (0)− b(0)b(0)�.

By multiplying W2 on the left and W�
2 on the right,

λmax

(
W2W

�
2 W2W

�
2 − (1− α)2γγ�) ≤ λmax

(
W2W (0)�W (0)W�

2

)
,

which implies that

‖W2‖42 − 1 ≤ ‖W2‖2‖W (0)‖22.
Since W (0) is initialized according to the Xavier uniform distribution, we have

‖W (0)‖ ≤
√
d‖W (0)‖∞ =

√
d · 1√

d
= 1.

This quickly implies that ‖W2‖22 < 2.

Together, we have

λmax

(
I + η22W2

[
W�

1 ΣW1

]−1
W�

2

)
≤ 1 + η22‖W2‖22λmax

([
W�

1 ΣW1

]−1
)

≤ 1 + 2η22λmax

([
W�

1 ΣW1

]−1
)

≤ 1 + 2η22‖Σ−1‖2‖W+
1 ‖22

≤ 2max
{
1, 2η22‖Σ−1‖2‖W+

1 ‖22
}

where the second last inequality comes from standard linear algebra. The proof is finished by taking the inverse.

E.6 Proof of Lemma 6

To study the span of Ξ:k, we first need to understand the property of the eigenvector of H . Notice that H is p.d. and all

eigenvalue is positive. The eigenvectors of H can be divided into the following three groups.

1. First, consider any normalized vector γ⊥ ∈ R
d2×1. In this case, we have

H

(
0
γ⊥

)
= η22

(
0
γ⊥

)
.

Since the space dimension of {γ⊥} is d2 − 1, we find d2 − 1 eigenvector of H with eigenvalue η22 . We denote them

as (0�, γ⊥
i )�, i ∈ [d2 − 1].
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2. Second, for j > k,

H

(
qj
0

)
=

(
Σqj

β�Σqj

)
= λj

(
qj
0

)

since β lies in the span of the top k eigenvectors of Σ. This implies that for j = k + 1, · · · , d1, (q�
i ,0

�)� is the

eigenvector of H with eigenvalue λi.

3. All the eigenvector left. We denote them as ui with eigenvector μi for i ∈ [k + 1]. Notice that qi(i ≤ k) is not an

eigenvector so long as β�qi �= 0.

The essential intuition is that for at least k vectors in group 3, their eigenvalue is strictly larger than all eigenvalues in group

1 (η22) and group 2 (λj , j > k). To see this, denote ui = (u�
i,1,u

�
i,2)

�. First, notice that ui,2 ⊥ γ⊥. Therefore, ui,2 must

be in the direction of γ, i.e. ui,2 = riγ, where ri can possibly be 0. Second, ui,1 ⊥ qj , ∀j > k. Therefore, we can further

denote ui,1 =
∑k

τ=1 ei,τqτ . In this case, since

μi

(
ui,1

riγ

)
= Hu =

(
Σui,1 + riΣβ

β�Σui,1 + ri(η1 + η2 + g)γ

)
,

which implies that for all i ∈ [k + 1],

ei,τμi = ei,τλτ + riλτ bτ , ∀τ ∈ [k] (15)

μiri =

k∑
τ=1

λτ bτ (ei,τ + ribτ ) + ri(η
2
1 + η22). (16)

Here β =
∑k

τ=1 bτqτ and bk �= 0. With this, we now specify all k + 1 eigenvalues, start from i = k + 1 to i = 1. We will

show that they separately fall in the interval [0, λk], [λk, λk−1], · · · , [λ2, λ1], [λ1,+∞).

First, given any i ∈ [k], When bi = 0, we can set ri = 0, ei = 1, μ = λi and ei′ = 0, ∀i′ �= i. In this case, eqs. (15)

and (16) are satisfied. We then find an eigenvector (q�
i ,0

�)� with eigenvalue λi.

On the other hand, when bi �= 0, there must be μ �= λi. We set

eτ =
rλτ bτ
μ− λτ

, ∀τ ∈ [k],

which satisfies eq. (15). Plugging into eq. (16), we have

μr =

k∑
τ=1

rμλτ b
2
τ

μ− λτ
+ r(η21 + η22), (17)

which implies (denote T = {i ∈ [k] : bi �= 0})

μ =
∑
τ∈T

μλτ b
2
τ

μ− λτ
+ (η21 + η22). (18)

Any positive solution μ of eq. (18) can generate an eigenvector with eigenvalue μ. On the other hand, in each interval

[λτ , λτ ′ ], the RHS decreases as μ increases, while the LHS increases as μ increases. In addition, the RHS goes to +∞
when μ → λ+

τ and goes to −∞ when μ → λ−
τ ′ . Therefore, there will be exactly one solution for all the intervals in [0,+∞)

divided by elements in T. Together, k + 1 eigenvalues are generated, which is exactly the number of eigenvectors that do

not belong to group 1 and 2. Since we have λk < λk−1 (strictly less), only μk+1 ≤ λk, while the rest μ is lower bounded

by λk. Finally, notice that λk > η21 + η22 and λk > λj , ∀j > k, we conclude that u1, · · · ,uk is the top k eigenvectors, i.e.

Ξ:k.

Important features in span(Ξ:k). Notice that both (β�,0�)� and (0�, γ�)� are orthogonal to eigenvectors in group

1 and 2. As a result, they must be in the span of u1, · · · ,uk+1, though they are not in the span of Ξ:k. Nevertheless,

since rank(Ξ:k) = rank (span{u1, · · · ,uk+1}) − 1, there must exist c1 such that (β�, c1γ�)� ∈ span(Ξ:k). Finally, can

c1 = 1−α
α ? If so, we have

(β�, c1γ�)
(
uk+1,1

rk+1γ

)
= 0,
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which implies that λk+1 = η22 . Plugging into eq. (18), we have

−η21 =

k∑
τ=1

η22λτ b
2
τ

η22 − λτ
,

which is contradictory to our regularization assumption in theorem 3.

E.7 Proof of Lemma 7

This lemma requires similar techniques in lemma 3, which we encourage to go over first.

Using FTT, the gradients of the parameters are

∂tWsl(t) =
(
E[x�y]−Hv(t)

)
bsl(t)

� (19)

∂tb(t) = W (t)�
(
E[x�y]−Hv(t)

)
. (20)

Together, the gradient of v(t) is

∂v(t) = = ∂tWsl(t) · bsl(t) +W (t) · ∂tb(t)
=

(
WulW

�
ul +Wsl(t)Wsl(t)

� + ‖bsl(t)‖22I
) (

E[x�y]−Hv(t)
)

=
(
WulW

�
ul +Wsl(t)Wsl(t)

� + ‖bsl(t)‖22I
)
H (v∗

tr − v(t)) .

We still denote A(t) =
(
WulW

�
ul +Wsl(t)Wsl(t)

� + ‖bsl(t)‖22I
)
. Using an analysis similar to lemma 3, since we still

have

∂t
[
W�

sl (t)Wsl(t)− bsl(t)bsl(t)
�]

= 0,

we can show that A(t)− (
√
c20 + 1− 1)I is positive definite. Using the same differential equation techniques, we have

v(t)− v∗
tr = exp

{
−H

∫ t

0

A(τ)dτ

}
(v(0)− v∗

tr) � δ(t). (21)

Eventually, we set

b̂ =
c1

c1α− (1− α)
WFTT (t)b(t)− 1− α

c1α− (1− α)

(
b̂ul
0

)
.

Since �te(WFTT (t)) ≤ 1
2Ex2=ε2

∥∥∥xWFTT (t)b̂− y
∥∥∥2

, we have

�te(WFTT (t)) ≤ 1

2
Ex2=ε2

∥∥∥xWFTT (t)b̂− y
∥∥∥2

≤ 1

2
Ex2=ε2

∥∥∥∥ c1
c1α− (1− α)

xv(t)− 1− α

c1α− (1− α)
xWulb̂ul − y

∥∥∥∥
2

≤ err∗te +
1

2
Ex2=ε2

∥∥∥∥ c1
c1α− (1− α)

x(v∗
tr + δ(t))− 1− α

c1α− (1− α)
x

(
β
c1γ

)
− xβ

∥∥∥∥
2

≤ err∗te +
1

2
Ex2=ε2

∥∥∥∥ c1
c1α− (1− α)

xδ(t))

∥∥∥∥
2

≤ err∗te +O
(
δ�(t)

(
Σ 0
0 η22I

)
δ(t)

)

≤ err∗te +
1

2
‖Σ‖2

(
c1

c1α− (1− α)

)2

‖δ(t)‖2

≤ err∗te +
1

2
‖Σ‖2‖H−1‖2

(
c1

c1α− (1− α)

)2

O
(
‖δ(t)‖2H

)

≤ err∗te +
1

2
‖Σ‖2‖H−1‖2

(
c1

c1α− (1− α)

)2

O
(
1

t

)
.


