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Abstract

Optimization of smooth reward functions under
bandit feedback is a long-standing problem in
online learning. This paper approaches this prob-
lem by studying the convergence under smooth-
ness and Kurdyka-Lojasiewicz conditions. We
design a search-based algorithm that achieves an
improved rate compared to the standard gradient-
based method. In conjunction with a match-
ing lower bound, this algorithm shows optimal-
ity in the dependence on precision for the low-
dimension regime.

1 Introduction

Zeroth-order optimization with bandit feedback pertains
to a class of optimization problems in which one aims at
searching over a set of candidate alternatives to minimize
(or maximize) an unknown objective function, while only
accessible to (noisy) values of the objective function at sev-
eral one-point queries. This setting corresponds to a wide
range of real-world applications, such as in healthcare (Yu
et al., 2020), robotics (Kober et al., 2014), and education
(Kizilcec et al., 2020), where the analytic forms of neither
the objective function nor the directive at given points are
available. Considering the cost of conducting experiments
or trials in such applications, it is often desirable to amor-
tize the sample cost (number of queries) by exploiting the
geometry of the objective function.

In the past decades, this problem has attracted extensive
research in both optimization community (Flaxman et al.,
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2005; Nesterov and Spokoiny, 2017; Lan, 2019) and ma-
chine learning community (Abernethy et al., 2008; Agarwal
et al., 2011a; 2013; Hazan and Levy, 2014b; Lattimore
and György, 2021). For various special cases, such as the
noiseless feedback setting (Nesterov and Spokoiny, 2017),
multi-arm bandits (Auer, 2002), linear bandits (Dani et al.,
2008; Abbasi-Yadkori et al., 2011), and bandit optimiza-
tion for quadratic functions (Shamir, 2013), the complexity
of this problem has been well understood and matching
upper and lower bounds have been established. However,
little is known for zeroth-order optimization with bandit
feedback for non-convex objective functions. In this pa-
per, we consider the class of smooth functions that satisfy
the Kurdyka-Lojasiewicz (KL) condition (Kurdyka, 1998).
This class thus includes strongly convex functions and many
other non-convex functions. Formally, we assume that the
Lojasiewicz inequality holds for all points where the func-
tion values are sufficiently close to the global minimum (see
condition A1). This property naturally extends the well-
studied Polyak-Lojasiewicz condition, which is satisfied in
cases of interest, such as support vector machines (Karimi
et al., 2016) and tabular reinforcement learning (Agarwal
et al., 2021). For this class of objective functions, we study
the following fundamental question: Can we design algo-
rithms for zeroth-order optimization with bandit feedback
whose sample cost depends favorably on the the exponent
of KL conditions?

Motivated by this fundamental question, we develop a prov-
ably sample efficient algorithm and establish information-
theoretic lower bounds. Our main contributions are summa-
rized as follows: We develop the first set of sample efficient
algorithms where the convergence rates depend favorably
on α. In the low dimension regime (d ≤ 5), our algorithm
achieves ε simple regret with the sample complexity of

Õ

(
ε−2−

d(d+3)(α− 1
2
)

d+5

)
. We further prove a matching lower

bound under the assumption of Gaussian noise, showing

that Θ̃

(
ε−2−

d(d+3)(α− 1
2
)

d+5

)
is indeed the optimal rate.
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Finding sample-efficient algorithms in the low dimensional
regime has been of interest for various reasons. On one
hand, both the optimal sample complexity and the required
achievability algorithm could differ significantly (Chewi
et al., 2022). On the other hand, algorithmic techniques
developed for low dimensional regimes could potentially
serve as building blocks to improve results in high dimen-
sion (Bubeck and Mikulincer, 2020). For the framework
considered in this paper, our result implies that in high-
dimensional regimes (d > 5) the minimax exponent of ε
become independent of d modulo a constant factor, which
is bounded between −4α and −(6α− 1).

Related works on linear and convex bandit. It is known
from classical optimization literature (Karimi et al., 2016)
that gradient descent-type algorithms are able to find the
global optimum of smooth and strongly convex functions in
the noiseless feedback setting, in linear convergence rates.
However, optimization under zeroth-order bandit feedback
faces more challenges due to the restriction of available
information of the objective function and the existence of
noise in the signal. For linear bandit problems, the attainable
simple regret is well-known as exactlyO(

√
d/T ) (See refer-

ence therein [(Auer, 2002; Dani et al., 2008; Rusmevichien-
tong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Chu
et al., 2011; Audibert et al., 2009). Here d is the dimension
and T is the number of queries. For bandit optimization of
smooth and strongly-convex functions, which corresponds
to the KL condition with exponent 1/2, the optimal simple
regret is known to be O(

√
d2/T ) (Shamir, 2013). For more

general convex settings, the dependence on d is less clear
but it has been established the optimal dependence on T is
O(1/

√
T ) (Shamir, 2013; Lattimore and Szepesvári, 2020;

Duchi et al., 2015; Bubeck et al., 2017; Hazan and Levy,
2014a; Agarwal et al., 2011b; Wang et al., 2018).

Related works on non-convex bandit optimization.
Finding optimal bandit under non-convex reward function
is in general intractable. Prior work on non-convex stochas-
tic (zeroth-order) optimization mainly focuses on finding
ε-stationary point instead of ε-optimal reward (see e.g., (Lar-
son et al., 2019) for a review). Exceptions occur in very
specific settings like homogeneous quadratic (Lattimore
and Hao, 2021) or high-order polynomials (Huang et al.,
2021), sum of univariate functions (Zhang et al., 2015) or
non-parametric settings (Zhao and Lai, 2021; Moulines and
Bach, 2011).

Our work resembles the setting of zeroth-order stochastic
optimization with the form: minx : EζF (x, ζ). A flurry of
work ((Fang et al., 2018; Zhou et al., 2018; Wang et al.,
2019b; Cutkosky and Orabona, 2019; Balasubramanian
and Ghadimi, 2018)) studies zeroth or first-order stochas-
tic optimization and their variance reduced variants (Liu
et al., 2018b; Ji et al., 2019; Liu et al., 2018a), with a best
known rate to be O(1/T 1/3). However, these problems are

strictly easier than our considered setting, with “multi-point”
queries of the function values for the same random seed,
i.e., at {F (x1, ζ), F (x2, ζ), · · · , F (xn, ζ)} with the same
ζ. A more detailed discussion and separation results on its
distinction to our setting can be found in (Arjevani et al.,
2019).

2 Optimal Bandit Optimization under
Kurdyka-Lojasiewicz Conditions

We give a rigorous formulation of the stochastic zeroth-order
optimization problem studied in this paper. Given a fixed
dimension parameter d, let f : Rd → R be an unknown
objective function defined on the entire Euclidean space Rd,
satisfying certain regularity conditions to be imposed later.
At a time period t, an optimization algorithm A produces a
query point xt ∈ Rd and receives feedback

yt = f(xt) + wt,

where {wt}Tt=1 are independently distributed random vari-
ables satisfying E[wt|xt] = 0 and the distributions of
wt are sub-Gaussian with parameter one1. The query
points {xt}Tt=1 produced by an optimization algorithm
A can be adaptively chosen. More specifically, A
can be parameterized as A = (φ1, · · · , φT ), where
φt(·|x1, y1, · · · ,xt−1, yt−1) is a conditional distribution
measurable with respect to historical data {xτ , yτ}τ<t and
xt ∼ φt(·|x1, y1, · · · ,xt−1, yt−1).

We assume that the unknown objective function f is differ-
entiable. Furthermore, we impose the following technical
conditions.

(A1) (KL-inequality). There exist constants α ∈ (0.5, 1)
and C1 < ∞ such that for all x ∈ Rd with f(x) ≤
f(0), it holds that ‖∇f(x)‖2 ≥ C1|f(x) − f∗|α,
where f∗ is the infimum of f ;

(A2) (Smoothness). There exists a constant C2 < ∞ such
that for any x,x′ ∈ Rd with f(x), f(x′) ≤ f(0), it
holds that f(x′)−f(x) ≤ (x′−x)·∇f(x)+C2‖x′−
x‖22

The KL-inequality (A1) is an important technical condition
that generalizes classical strongly convexity of the objective
functions.2 The (strong) smoothness condition (A2) pre-
vents the objective function (more precisely, the gradients of

1The sub-Gaussiananity assumption can be relaxed to allow for
general noise distributions with bounded variances, and the same
sample complexity can be achieved by applying the truncation
method in (Yu et al., 2023).

2The KL-inequality in Condition A1 implies that all local ex-
tremum points with function values no greater than f(0) are global
minimum. This may not hold true if the validity of Lojasiewicz
inequality is restricted to smaller subsets.
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the objective function) from changing too rapidly for neigh-
boring sample points. It is a conventional condition imposed
in many first-order and zeroth-order stochastic optimization
problems (Nemirovskij and Yudin, 1983; Agarwal et al.,
2010; Wang et al., 2019a).

Throughout the rest of the paper we use F(α,C1, C2) to
denote all differentiable functions f : Rd → R satisfying
assumptions (A1) and (A2) with parameters α, C1 and C2.
For simplicity, we define X = {x ∈ Rd | f(x) ≤ f(0)}.
We adopt the Õ notation, i.e., g = Õ(f) implies that
g = O(f logc f) for some universal constant c, where the
multiplicative factor could depend α, and polynomially on
the logarithms of C1, C2.

We are interested in the minimax simple regret over function
classes F , where the simple regret of an algorithm A is sim-
ply defined as f(xT )− f∗, with xT ∈ Rd being the query
point selected at the last time period and f∗ the infimum of
f . More specifically, for any α ∈ (0.5, 1) and C1, C2 <∞,
the minimax regret function R is defined as

R(T ;α,C1, C2) , inf
A

sup
f∈F(α,C1,C2)

E [f(xT )− f∗] .

We formulate our results in terms of the smallest T such
that R(T ;α,C1, C2) ≤ ε for sufficiently small accuracy
parameters ε > 0. Our main results can be summarized into
the following theorems.

Theorem 1. For any d ≤ 5, there is an algorithm that
achieves an expected simple regret of E [f(xT )− f∗] ≤ ε
for all f ∈ F(α,C1, C2), with a sample complexity of

T = Õ

((
C2

C2
1

) d(d+3)
2(d+5)

ε−2−
d(d+3)(α− 1

2
)

d+5

)
.

Remark 2.1. As a comparison, stochastic gradient based
methods can achieve a sample complexitiy with an ε-
dependency of Õ

(
ε−(6α−1)

)
(see Appendix A). Theorem

1 strictly improves this sample complexity for all d ≤ 5.
Furthermore, a direct application of the algorithm pre-
sented in Section 3.3 also provides a strict improvement
in d = 6, achieving an ε-dependency of Õ

(
ε−(5α− 1

2 )
)

. In
Remark 3.2, we provide a detailed discussion on how the
low-dimension requirement emerges in the analysis.

The above theorem is proved by showing the following
high-probability bound.

Theorem 2. For any d ≤ 5 and sufficiently small δ, there is
an algorithm that achieves an error of f(xT )− f∗ ≤ ε w.p.
1 − δ for all f ∈ F(α,C1, C2), with a sample complexity

of T = Õ

((
C2

C2
1

) d(d+3)
2(d+5)

ε−2−
d(d+3)(α− 1

2
)

d+5 log(1/δ)

)
.

We present the related algorithms in Section 3.1, 3.2 and 3.3.
We also show a matching lower bound, stated as follows
and proved in Section 4.

Theorem 3. If d ≤ 5 and the distributions of wt are i.i.d.
standard Gaussian, then any algorithm that achieves an ex-
pected error of ε for all f ∈ F(α,C1, C2) requires a sample

complexity of T = Ω

((
C2

C2
1

) d(d+3)
2(d+5)

ε−2−
d(d+3)(α− 1

2
)

d+5

)
.

Remark 2.2. The optimal sample complexity for any fixed
ε is non-decreasing in d (see Appendix B). Hence, the lower
bound stated in Theorem 3 for d = 5 also applies to any
d > 5 cases, implying a lower bound of Ω

(
ε−4α

)
.

Remark 2.3. For completeness, we have presented a full
characterization of sample complexities in our main theo-
rems to include dependencies on all parameters. However,
one should note that to obtain such a full characterization, it
suffices to obtain the near optimal ε dependency and apply
dimensional analysis. Specifically, if we know the optimal
sample complexity is Θ̃(ε−θ) for some θ > 0 for any fixed
α, d, C1 and C2, then the full characterization has to be in

the form of Θ̃

((
C2

C2
1

) θ−2
2α−1

ε−θ
)

asymptotically.

3 Proofs for Bandit Optimization under
Kurdyka-Lojasiewicz conditions

3.1 A Gentle Example: The 1D Algorithm

The proposed algorithm operates alternatively in two phases,
a global search phase and a local search phase. We presented
an illustration using the d = 1 case, where the optimal
complexity can be achieved using a simpler routine.

Proposition 1. For d = 1 and sufficiently small δ, there is
an algorithm that achieves an error of f(xT )− f∗ ≤ ε w.p.
1− δ for all f ∈ F(α,C1, C2) with a sample complexity of

Õ

((
C2

C2
1

) 1
3

ε−
2α+5

3 log(1/δ)

)
.

Proof. As described in Algorithm 1, the proposed routine
maintains a variable xc over T iterations. We ensure that the
gap between f(xc) and f∗ is upper bounded by a quantity
g with high probability, so that if g is reduced by a constant
factor each iteration, then the stated learning error ε can be
achieved within logarithmic number of iterations.

Each iteration starts with a global search phase, where the
algorithm maintains an interval [xc − L, xc + L], of which
the length is to be reduced by a factor of 1

2 through each
search step. The main idea of the algorithm is to ensure that
the minimum of f within the interval approximates f∗ with
high probability, so that once L is small enough, one can
switch to a local search phase, and the approximated minim
can be found using a grid search. The transition threshold
Lth is selected to minimize the overall sampling cost (see
the analysis at the end of the proof).

The design and the choice of parameter values in the algo-
rithm are based on the following building blocks. First, a
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Algorithm 1 1D Search

Initialize xc = 0, g =
(

4C2

C2
1

) 1
2α−1

Let T = d2log2(g/ε)e.
for t← 1 to T do

Global Search Phase:

Let C0 = 1
2C1(1− α)(g/2)α, Lth =

(
1
C2

0

√
g5

C2

) 1
3

Let δt = δ
2T−t

. Initialize L = g
C0

.
while L > Lth do

Let ∆C = C0 (Lth/2L)
2
3 , εL = 1

8∆C · L
Let δL = δt · Lth

24L , S = {xc − L
2 , xc, xc + L

2 }
Let xc = argminy∈S(C0 + ∆C) · |y − xc|

+Sample(y, εL, δL)
Let L = 1

2L.
end while
Local Search Phase:
Let N = 2

⌈
L/
√

g
C2

⌉
, εs = g

16 , δs = δt · 1
2(N+1)

Let D = {xc − L, xc − L+ 2L
N , ..., xc + L}

Let xc = argminy∈D Sample(y, εs, δs)
−2εs · 1(y = xc)

Let g = g
2 .

end for
return xc

procedure SAMPLE(x, εs, δs)
return the average of d2ε−2

s ln 1
δs
e samples of f at

xt = x.
end procedure

subroutine Sample is to be used throughout this work, which
repetitively samples f at the same point to provide an accu-
rate estimation. Formally, we have the following guarantee,
which directly follows from the Hoeffding inequality of
sub-Gaussian random variables.

Proposition 2. The Sample function returns a value that is
within (f(x)− εs, f(x) + εs) w.p. 1− δs.

We shall always consider the high-probability regime where
all sampled results fall into the intervals (f(x)− εs, f(x) +
εs). The overall error probability is controlled by the union
bound.

Besides, we use the following property to set the initializa-
tion of g, so that we have f(xc)−f∗ ≤ g at the beginning of
the first iteration. The proof of Proposition 3 can be found
in appendix C.

Proposition 3 (Boundedness). For any differentiable func-
tion f that satisfies smoothness and KL inequality for all
x ∈ X , i.e., f(x) ≤ f(0), we have

f(0)− f∗ ≤
(

4C2

C2
1

) 1
2α−1

.

Moreover, for any x ∈ X there is a global minimum of
f within an L2-distance of Lx , (f(x)−f∗)1−α

C1(1−α) . For any
x ∈ X and L ≤ Lx, let B be the L2-ball centered at x with
a radius of L. If Ly > Lx − L for all y ∈ ∂B, then there
is a global minimum of f within B.

Given these facts, our algorithm is designed to ensure that
for any fixed iteration, if f(xc) − f∗ ≤ g holds at the
beginning, the same inequality holds with high probability
at the end. To avoid confusion, we denote the value of g at
the beginning of the iteration by gt, so at the end of of the
iteration we have f(xc)− f∗ ≤ gt/2.

The gist of the global search phase is to ensure that through-
out the entire process, either we have f(xc) − f∗ ≤ gt/2,
or a global minimum of f exists in (xc − L, xc + L). By
the second and third statements of Proposition 3, this con-
dition can be implied if xc ∈ X and both f(xc − L) and
f(xc +L) are greater than f(xc)−2C0 ·L. In the ideal case
where the function value of f can be exactly obtained, one
can apply a binary search to maintain the above property
while decreasing the interval length L. However, due to the
stochastic nature of the optimization problem, we need to
consider an alternative list of gradually relaxed constraints
to reduce the sample complexity. Hence, we instead ensure
the following stronger condition to hold at the end of each
search step (i.e., each inner iteration).

f(xc ± L) ≥ f(xc)− (C0 + ∆C)L. (1)

As shown in the detailed analysis in Appendix D, the pre-
sented global search guarantees the above condition, with
the number of samples required for each search step being
inversely proportional to the square of the increment of ∆C

times L. Therefore, we design the relaxation parameter ∆C

to be exponentially dependent on the number of inner itera-
tions to compensate the exponential decay of L, to minimize
the overall sample complexity.

Note that in both global search and local search phases, xc
is only updated when f(xc) is known to be decreased with
high probability. Hence, we have xc ∈ X throughout the
entire process, which ensures the correctly of the global
search algorithm.

Now we consider the local search phase. Because f(xc) is
non-increasing with high probability. It remains to focus
on the case where xc > gt/2. According to the earlier con-
clusion, a global minimum exists within (xc − L, xc + L).
From the smoothness condition, any point within a distance
of O

(√
gt
C2

)
to this global minimum has a function value

no greater than f∗ +O(gt). Based on this observation, we
perform the grid search by letting adjacent sample points
having the same distance, i.e., setting the number of sample
points N to be Θ

(⌈
Lth/

√
gt
C2

⌉)
. Formally, let D denote

the set of all N + 1 sample points in the local search and
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f∗disc denote the minimum of f within this discrete set. The
smoothness property at x∗ implies the following quantiza-
tion error bound.

f∗disc − f∗ ≤ C2

(
L

N

)2

≤ gt
4
.

Therefore, by Proposition 2, xc is updated to a different
point with high probability due to f(xc)− f∗disc > 4εs, and
the updated function value is upper bounded by f∗disc +2εs <
f∗ + gt

2 .

As mentioned earlier, the overall error probability can be
controlled by the union bound. For each iteration t, any
global search step calls the sample function three times,
incurring an error probability of at most 3δL = δt · Lth

8L .
Recall that L decays exponentially and is lower bounded
by 1

2Lth. The total error probability due to global search
within this iteration is at most 1

2δt. Then for the local search,
the sample function is called N + 1 times, and the overall
error probability is bounded by (N + 1)δs = 1

2δt as well.
Taking all iterations into account, the algorithm returns an
xc with f(xc)− f∗ ≤ ε with an error probability of at most∑T
t=1 δt < δ.

The sample complexity bound can be analyzed similarly.
Consider any iteration t. The sampling cost of any global
search step is at most O(ε−2

L log(1/δL)), and the total cost

within the iteration is at most O
(
C−2

0 L−2
th log

(
1
δt

))
=

O

((
C2

C2
1

) 1
3

g
− 2α+5

3
t log

(
1
δt

))
for sufficiently small δ.

Then for the local search, the same Sample function
is called O(N) times, each requiring O(ε−2

s log(1/δs))
samples. Hence, the total sampling cost for local
search is upper bounded by O

(
Ng−2

t log
(

1
gtδt

))
=

Õ

((
C2

C2
1

) 1
3

g
− 2α+5

3
t log

(
1
δt

))
. Using the fact that gt ex-

ponentially depends on t, the overall sample complexity is

bounded by Õ
((

C2

C2
1

) 1
3

ε−
2α+5

3 log(1/δ)

)
.

3.2 Dominant Point and Iterative Reduction

To present the general search algorithm, we first state some
useful concepts and procedures. For brevity, we shall reuse
the Sample function defined in Algorithm 1. We will also
use Proposition 2 and Proposition 3, which hold for any d.

Definition 1 (Dominant Point). Given any set B, function
f , and fixed C > 0, we say x ∈ B is a dominant point of B
if for any y ∈ ∂B we have

f(x) < f(y) + C||y − x||2.

We prove the following property (see Appendix E), which
ensures that any dominant point x on a set B imposes guar-

antees on either the location of a global minimum of f , or
the function value of x.

Proposition 4. For any given f ∈ F and C > 0, if x ∈ X
is a dominant point of a closed set B, then either a global
minimum of f can be found within B, or f(x) − f∗ ≤(

C
C1(1−α)

) 1
α

.

A key building block of the proposed algorithm is a function
that runs iteratively and each time returns a dominant point
from a smaller set (see Algorithm 2). More specifically,
given any hypercuboid B and a dominant point x, they
returns a dominant point for a smaller hypercuboid, where
the length of the longest edge is reduced by at least a factor
of 4/5.

Algorithm 2

procedure REDUCE(B =
∏d
j=1[aj , bj ], x =

(x1, ..., xd), C0, ∆, δr)
Let k = argmaxj(bj − aj), εr = ∆(bk − ak)/20
Let (p, q) = Balanced Partition(ak, bk, xk)
Sp = {y = (y1, ..., yd) ∈ B | yk = p}
Sq = {y = (y1, ..., yd) ∈ B | yk = q}

Let Snet,p, Snet,q be
√
εr/C2-nets of Sp and Sq, re-

spectively, and S = Snet,p ∪ Snet,q ∪ {x}
Let y∗ = argminy∈S(C0 + ∆)||y − x||2

+ Sample(y, εr,
δr
|S| )

if y∗ /∈ Sp then
ak = p

end if
if y∗ /∈ Sq then

bk = q
end if
return (B∗ =

∏d
j=1[aj , bj ],y

∗).
end procedure

procedure BALANCED PARTITION(a, b, x)
return (p, q) =

( 2x+b
3 , x+2b

3 ) if x ∈ [a, 3a+2b
5 )

(a+x
2 , x+b

2 ) if x ∈ [ 3a+2b
5 , 2a+3b

5 )

( 2a+x
3 , a+2x

3 ) if x ∈ [ 2a+3b
5 , b]

end procedure

Formally, we have the following guarantees on the reduce
function, which is proved in Appendix F.

Proposition 5. For any input x ∈ X being a dominant
point of the input hypercuboid B with parameter C = C0,
if f satisfies the smoothness condition on B ∩ X and C0 +
2∆ ≤ 2

5C2(bk − ak), then w.p. 1− δr, the Reduce function
returns a pair such that y∗ is a dominant point of B∗ with
parameter C = C0 + 2∆. Moreover, if bj−aj

bk−ak = Θ(1)

for each j ∈ [d] and ∆ = O(bk − ak) = O(1), then for
any sufficiently small δ, the overall sample complexity is
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O

(
C
d−1
2

2 (bk−ak)
d−5
2

∆
d+3
2

log(C2(bk−ak)
∆δ )

)
for any fixed d.

Remark 3.1. In the Reduce function, the choice of using
ε-nets to construct the set of sample points is merely for
brevity. In practice, one can exploit the fact that the sets Sp
and Sq to be sampled are always hypercuboid. Thus, any
ε-net used in the algorithm can be replaced by a uniform
grid with an interval length of ε/

√
d while still ensuring the

correctness of Proposition 5. This replacement also ensures
that the required computational complexity is at most linear
with respect to the sample complexity.

3.3 Proof of Achievability Theorems

Similar to the 1D case, an expected simple regret of O(ε)
is guaranteed once it can be achieved with high probability,
i.e., with δ = O(ε).3 Therefore, we focus on the algorithm
needed for Theorem 2, which is presented as Algorithm 3.

Algorithm 3 General Search Algorithm

procedure KL SEARCH(ε, δ)

Initialize x = 0, g =
(

4C2

C2
1

) 1
2α−1

Let T1 =
⌈
2log 3

2
(g/ε)

⌉
for t← 1 to T1 do

Initialize L = 3g1−α

C1(1−α) , B = [−L,L]d

Initialize C = C0 = g
L

Let Lth = g
d+4
d+5 /

(
C2

1
d+5C

d+3
d+5

0

)
Let T2 = d

⌈
log 5

4
(L/Lth)

⌉+

Let ∆ = C0

2T2
, δr = δ

2T1T2
.

while L ≥ Lth do
(B,x) =Reduce(B,x, C,∆, δr).
Let L be the longest edge length in B
Let C = C + 2∆

end while
x =Uniform search(B,x, g3 ,

δ
2T1

), g = ( 2
3 )αg

end for
return x

end procedure

procedure UNIFORM SEARCH(B, x, εu, δu)
Let Y be an

√
εu/C2-net of B

return y∗ = argminy∈Y∪{x}

Sample
(
y, εu

4 ,
δu
|Y|+1

)
− 1

2εu · 1(y = x)

end procedure

3Rigorously, although f could be unbounded, one can reserve
O(ε−2) samples at the end of the algorithm to compare the func-
tion value at the returned point and f(0). The needed simple
regret can be achieved in expectation by choosing the point with
the lower estimated function value.

Within each iteration of the outer loop, the algorithm first
executes a global search using the Reduce function to locate
a dominant point within a hypercuboid. Formally, recall
that the Reduce function reduces the longest edge length of
B by a factor of at least 4

5 . The inner loop halts within T2

iterations. By Proposition 5, the end result of the inner loop
is a dominant point of the returned set B with parameter
C = 2C0 w.p. 1− δ

2T1
, if x is initially a dominant point of

[−L,L]d with C = C0. From proposition 3, this condition
is satisfied if f(x)− f∗ ≤ g.

A local search follows the inner loop to return a point that
is close to the global minimum.

Proposition 6. Given any inputs B, x, the function Uniform
Search returns a point y∗ satisfying the following conditions
w.p. 1− δu. If B contains a global minimum of f , we have
f(y∗)− f∗ ≤ 2εu; otherwise, we have f(y∗)− f(x) ≤ 0.

Combining Proposition 4 and Proposition 6, the point x
returned from the Uniform Search satisfies f(x)− f∗ ≤ g
for the updated g, w.p. 1 − δ

2T1
. Therefore, by induction,

we always have f(x) − f∗ ≤ g at the beginning of each
outer-loop iteration, and the initial condition is provided
by the boundedness of f . After T1 iterations, we have

f(x)−f∗ ≤
(

2
3

)αT1
(

4C2

C2
1

) 1
2α−1 ≤ ε, and the overall error

probability from the union bound is at most δ.

The overall sample complexity can be bounded by count-
ing the costs from the Reduce and Uniform Search
functions. Within each outer loop, the sample com-
plexity of each call of the Reduce function almost ex-
ponentially depends on the number of inner-loop itera-
tions. Hence the total cost from the reduce function for

each outer-loop iteration is Õ

(
C
d−1
2

2 L
d−5
2

th

∆
d+3
2

log(C2Lth
∆δr

)

)
for d ≤ 5.4 On the other hand, each uniform search

costs Õ

(
C
d
2
2 L

d
th

g
d+4
2

log
(

2T1

δ

))
. Both can be written as

Õ

((
C2

C2
1

) d(d+3)
2(d+5)

g−2−d (d+3)(α−1/2)
d+5 log

(
2T1

δ

))
. As a con-

sequence, the overall sample complexity is given by

Õ

((
C2

C2
1

) d(d+3)
2(d+5)

ε−2−d (d+3)(α−1/2)
d+5

)
.

Remark 3.2. The requirement of d ≤ 5 in the above anal-
ysis is introduced when taking the summation of individ-
ual costs from Reduce functions. Although the complexity
bound in Proposition 5 holds for any d, the dominating term
for d > 5 is instead from the first Reduce call, which has

4Here we presented a straightforward version of the search algo-
rithm for readability. The polylog factor can be improved by letting
∆ to be a function of L, which brings in exponential dependency
on the number of inner loop iterations. Similar improvements can
be achieved for the uniform search.



Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason D. Lee

the largest bk − ak. This leads to an upper bound in a

different form: Õ
((

C2

C2
1

) d−1
2

g−2−(d−1)(α− 1
2 ) log

(
2T1

δ

))
.

Since the proposed algorithm and the remaining analysis
remain valid, one can simply take Lth =

√
g
dC2

and achieve

an overall complexity of Õ
((

C2

C2
1

) 5
2

g−5α+ 1
2 log

(
1
δ

))
for

d = 6, which matches the bound stated in Remark 2.1.

4 Lower Bounds for Optimization Under
KL Conditions

The proof is based on the following framework, which can
be derived from a standard Kullback–Leibler (KL) diver-
gence argument (see Appendix G for a proof). For any
function class FH and any distribution p defined on FH, we
define the uniform sampling error to be

Pε , inf
x

Pf∼p[f(x)− inf f ≥ ε].

We also define the maximum local variance to be

V , sup
x

Varf∼p[f(x)].

Proposition 7. For any sampling algorithm to achieve an
expected learning error of ε > 0 over a function class Fε, if
P2ε/c ≥ c for some universal constant c ∈ (0, 1), and the
observation noises are standard Gaussian, then the required
sample complexity to achieve a minimax regret of ε is at
least

T ≥ Ω(1/V ).

To apply the above proposition, we construct a subclass of
F using the following functions. For any fixed C1, C2, and
α ∈ ( 1

2 , 1), let

f(x) =



2C2x

if |x| ∈
(

0, 2
√

ε
C2

]
2C2

(
4
√

ε
C2
· sign(x)− x

)
if |x| ∈

(
2
√

ε
C2
, 4
√

ε
C2
− C1(6ε)α

2C2

]
C1(6ε)α · sign(x)

otherwise

and F (x) =
∫ x

0
f(y)dy.5 We define

fr(x) ,F (||r||2 − x · er)− F (||r||2)

+ C2

(
||x||22 − (x · er)

2
)

5The function f is well defined for sufficiently small ε.

for all x ∈ Rd, where er , r
||r||2 . Then we construct the

hard instances by letting

Fr(x) ,


fr(x)

if fr(x) ≤ 0(
1− exp

(
−fr(x)C2

C2
1
ε−2α

))
· C

2
1

C2
ε2α

otherwise.

The above hard instance function is illustrated in Figure 1.
The construction idea is to ensure that the values of the hard
instance functions is only close to f∗ within a small region,
but bounded away from the origin with any sufficiently large
r. This property is enabled by the definition of fr . Then the
function Fr is obtained by essentially “clipping” the values
of fr at approximately 0 while maintaining differentiability.
So that measuring Fr at those clipped region only provides
a limited amount of information.

Figure 1: Illustration of a hard instance function, with α =
2
3 , d = 2, C1 = C2 = 1, and ε = 10−6.

We restrict the length of r to be within a constant factor of

R0 = C
− d+3
d+5

1 C
− 1
d+5

2 ε
1
2−

d+3
d+5 (α− 1

2 ). Formally, let

FH = {Fr | r ∈ Rd, ||r||2 ∈ [R0, 2R0]}.

One can verify that FH ⊆ F(α,C1, C2) for any ε suffi-
ciently small. Then we let p be defined with r having
the uniform distribution within the hyperspherical shell
||r||2 ∈ [R0, 2R0]. One can verify that for sufficiently
small ε we have P4ε >

1
2 . Therefore it remains to derive an

upper bound of the maximum local variance V .

We first show that the information that can be learned at any
point x with Fr(x) ≥ 0 is bounded by a negligible quantity.
Formally,

V ≤ sup
x∈Rd

EFr∼p[Fr(x)2]

≤
(
C2

1

C2

)2

ε4α + sup
x∈Rd

EFr∼p[min{Fr(x), 0}2].
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The above bound implies that by replacing Fr with
min{Fr, 0}, the resulting difference in V is at most

O

((
C2

1

C2

)2

ε4α
)

. Therefore, we can focus on bounding

the second term above.

Conditioned on any fixed ||r||2 = r ∈ [R0, 2R0], through a
direct estimation, the expectation contained in the second
term is given by

E[ min{Fr(x), 0}2 | ||r||2 = r]

=



O

((
C2

1

C2

)2

ε4α
)

if ||x||2 ∈
(

0, C1ε
α

C2

]
O

(
C2

1ε
2α||x||22

(√
C1εα||x||2/C2

||x||2

)d−1
)

if ||x||2 ∈
(
C1ε

α

C2
, r − 4

√
ε
C2

]
O

(
ε2
(√

ε/C2

r

)d−1
)

if ||x||2 ∈
(
r − 4

√
ε
C2
, r + 5

√
ε
C2

]
O

(
C2

1ε
2αr2

(√
C1εαr/C2

r

)d−1
)

otherwise

By taking the supremum over all possible values of ||x||2 in
each regime, we obtain the following upper bound for the
same quantity.

E[ min{Fr(x), 0}2 | ||r||2 = r]

=



O

((
C2

1

C2

)2

ε4α
)

if ||x||2 ∈
(

0, C1ε
α

C2

]
O

(
ε2
(√

ε/C2

R0

)d−1
)

if ||x||2 ∈
(
r − 4

√
ε
C2
, r + 5

√
ε
C2

]
O

(
C2

1ε
2αR2

0

(√
C1εαR0/C2

R0

)d−1
)

otherwise

=



O

((
C2

1

C2

) d(d+3)
2(d+5)

ε2+
d(d+3)
(d+5) (α− 1

2 ) · R0√
ε/C2

)
if ||x||2 ∈

(
r − 4

√
ε
C2
, r + 5

√
ε
C2

]
O

((
C2

1

C2

) d(d+3)
2(d+5)

ε2+
d(d+3)
(d+5) (α− 1

2 )

)
otherwise

Then we take the expectation of the above upper bound over
||r||2, to obtain an upper bound of V . Specifically, note that

EFr∼p[min{Fr(x), 0}2] =

Er[E[min{Fr(x), 0}2 | ||r||2 = r]],

where r takes a distribution on [R0, 2R0] with a density
proportional to (r/R0)d−1. One can integrate the above
bound by considering the two possible cases separately.
The first scenario ||x||2 ∈

(
r − 4

√
ε
C2
, r + 5

√
ε
C2

]
oc-

curs with a probability of at most O
(√

ε/C2

R0

)
. There-

fore, it contributes to the local variance V by at most

O

((
C2

1

C2

) d(d+3)
2(d+5)

ε2+
d(d+3)
(d+5) (α− 1

2 )

)
. Note that this is iden-

tical to the contribution from the second scenario, which
occurs with at most a probability of 1.6 We can conclude

that V = O

((
C2

1

C2

) d(d+3)
2(d+5)

ε2+
d(d+3)
(d+5) (α− 1

2 )

)
, and Proposi-

tion 7 leads to the needed statement.
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A Gradient Based Method for Optimization under KL conditions

The main intuition of gradient-based method is as follows. Starting from any point x ∈ R, if one can measure an
approximated gradient of f at the same point, then due to the smoothness condition, the function value for the updated point
x′ = x− 1

2C2
∇f(x) satisfies f(x′) ≤ f(x)− 1

4C2
||∇f(x)||22.

More specifically, when using zero-th order measurements, one can measure the partial gradient fu = u · ∇f for any
unit vector u and achieve a decent of 1

4C2
||u · ∇f(x)||22. In expectation, we have E[|fu|2] = 1

d ||∇f(x)||22 for uniformly
random u. Hence, we can measure min{fu, 0} up to an error of O( 1√

d
||∇f(x)||2) with high probability by sampling

at x and x + z
2C2

√
d
u for any lower bound z ∈ (0, ||∇f(x)||2]. It takes O(log 1

δ ) random samples of u to observe

fu ≥ 1√
d
||∇f(x)||2 with probability 1− δ, and the sample complexity for each fixed u is Õ(

C2
2d

2

z4 log 1
δ ).

Recall the KL condition. It takes O
(
C2

C2
1
dg1−2α

)
such decent steps to reduce f(x) − f∗ by half when f(x) − f∗ ≤ g,

and it is achieved by choosing z = Θ(C1g
α). Hence, the overall sample complexity is Õ

(
C3

2

C6
1
d3ε1−6α log2 1

δ

)
to achieve

a simple regret ε with error probability δ. This implies a complexity upper bound of O
(
C3

2

C6
1
d3ε1−6α

)
for achieving an

expected simple regret of ε.

For clarity, we state a simplified procedure in Algorithm 4, which achieves the same Õ
(
C3

2

C6
1
d3ε1−6α log2 1

δ

)
complexity

guarantee.

Algorithm 4 Gradient-Based Method

Initialize x = 0, g =
(

4C2

C2
1

) 1
2α−1

. Let T1 =
⌈
2log 3

2
(g/ε)

⌉
.

for t1 ← 1 to T1 do
Let z = C1( 2

3g)α, r = z
8C2

√
d

, δt = δ
2·2T1−t , T2 =

⌈
4g

3C2r2

⌉
·
⌈
log 10

9
( 1
δ )
⌉+

.
for t2 ← 1 to T2 do

Let u be uniformly random from the unit hypersphere
Let D = Sample

(
x, C2r

2

4 , δt
4T2

)
− Sample

(
x + ru, C2r

2

4 , δt
4T2

)
if D ≥ C2r

2

2 then
x = x + ru

end if
end for
g = ( 2

3 )αg
end for

return x

B Monotonicity of Optimal Sample Complexity in d for Optimization under KL conditions

This can be proved by the fact that optimizing over the function class F(α,C1, C2) for any smaller d is equivalent to
optimizing over functions defined on any higher dimensional space, but each only depends on a certain fraction of input
entries. The latter set belongs to F(α,C1, C2) for larger d, so any algorithm stated for a higher dimensional space can be
applied to lower dimensional spaces though a direct projection.

C Proof of Proposition 3

Proof. We first prove the upper bound on f(0)− f∗. By the stated assumptions, f is differentiable at 0. Hence, we can let
x′ , − 1

2C2
∇f(0), and the smoothness condition implies that

f(0)− f∗ ≥ f(0)− f(x′) ≥ ||∇f(0)||22
4C2

. (2)
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Recall the KL inequality, the RHS of above is lower bounded by C2
1 |f(0)−f∗|2α

4C2
. Therefore, we obtain a single-variate

inequality on f(0)− f∗. For α ∈ [ 1
2 , 1), the solution is given by

0 ≤ f(0)− f∗ ≤
(

4C2

C2
1

) 1
2α−1

.

Now we prove the rest of the statements. For any g ∈ [0, f(x)− f∗], let R(g) , inf{R ∈ [0,+∞] | ∃ r ∈ X , ||r − x||2 ≤
R, f(r)− f∗ ≤ g}. By definition, R(g) is non-increasing and R(f(x)− f∗) = 0. It suffices to prove that R(0) ≤ Lx, and
R(0) < L holds under the additional conditions.

We first show that R(g) is right-continuous under the natural topology of domain [0,+∞]. By monotonicity, the right limit
of R(g) exists for any g, and we denote it by R+(g). It suffices to show that R(g) ≤ R+(g). Consider the non-trivial case
where R+(g) < +∞. There is a sequence of points x1,x2... in X with limk→∞ ||xk − x||2 = R+(g), such that

lim sup
k→∞

f(xk) ≤ f∗ + g. (3)

By compactness, a subsequence of the above points converges, and we denote their limit by x∗g. Then by differentiability,
the value of f(x∗g) is identical to the limit of function values of the subsequence, which is no greater than f∗ + g. Hence,
we have proved a stronger statement showing that R(g) can be defined as a minimum instead of infimum, and x∗g serves as
an instance for the upper bound R(g) ≤ R+(g).

Now consider the left neighbourhood of any g. We prove that

lim sup
g′→g−

R(g′)−R(g)

g − g′
≤ 1

C1gα
. (4)

Let x∗g be defined as in the above steps.7 If f(x∗g) < f∗ + g, we have that R(g′) = R(g) for any g′ ∈ [f(x∗g)− f∗, g], and
inequality (4) clearly holds. Hence, we can assume that f(x∗g) = f∗ + g, and KL inequality implies that ||∇f(x∗g)||2 ≥
C1g

α. This bound implies that

lim sup
g′→g−

R(g′)−R(g)

g − g′

≤ lim sup
φ→0+

||x∗g − φ∇f(x∗g)||2 −R(g)

f(x∗g)− f(x∗g − φ∇f(x∗g))

≤ 1

||∇f(x∗g)||2
≤ 1

C1gα
.

Combine the above two facts, we have that R(g) + g1−α

C1(1−α) is non-decreasing. Consequently,

R(g) ≤ R(f(x)− f∗) +
(f(x)− f∗)1−α

C1(1− α)
− g1−α

C1(1− α)

= Lx −
g1−α

C1(1− α)
(5)

for any g. Taking g = 0, we have R(0) ≤ Lx, which proves the second statement.

Now that if Ly > Lx − L for any point y with ||y − x||2 = L for some L ≤ L0. We have f(y) > f∗ + (C1(1 −
α)(Lx − L))

1
1−α for any such y. By the fact that any R(g) is achieved as a minimum, we have R(g) 6= L for all

g ≤ gL , (C1(1− α)(Lx − L))
1

1−α . Further, we also have R(gL) ≤ L due to inequality (5). Note that the two facts we
proved earlier implies the continuity of R(g). Hence, R(0) < L, and the third statement is proved.

7When g = f(x) − f∗, let x∗
g , x.
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D Proof details on inequality (1)

Here we used the fact that the interval length L is reduced by a factor of 1
2 within each global search step. Therefore, we

always have 2L ≥ Lth within the loop, and then inequality (1) implies that f(xc ± L) ≥ f(xc)− 2C0 · L.

For the induction proof, we first check the initial condition. When L = L0,

f(xc ± L) ≥ f∗

≥ f(xc)− gt
= f(xc)− C0L0 ≥ f(xc)− (C0 + ∆C)L.

Hence, inequality (1) holds at the beginning of the global search, and it suffices to consider the case where L0 is large
enough to enter the global search loop.

Then assume inequality (1) holds at the beginning of any given search step, we prove that it holds at the end of the same
step. There are three possible cases. When xc is not updated, the interval is updated to [xc − L

2 , xc + L
2 ]. From Proposition

2 and the argmin condition, we have the following bounds with high probability,

f

(
xc ±

L

2

)
≥ f(xc)− (C0 + ∆C) · L

2
− 2εL

> f(xc)−
(
C0 + 2

2
3 ∆C

)
· L

2
,

which proves the induction statement. Among the other two cases, without loss of generality, we assume the updated interval
is given by [xc, xc + L] in terms of the initial parameters. From Proposition 2 and the induction assumption, we have

f

(
xc +

L

2

)
≤ f(xc)− (C0 + ∆C) · L

2
+ 2εL

≤ f(xc + L) + (C0 + ∆C) · L
2

+ 2εL

< f(xc + L) + (C0 + 2
2
3 ∆C) · 1

2
L.

We also have

f

(
xc +

L

2

)
≤ f (xc)

< f (xc) + (C0 + 2
2
3 ∆C) · 1

2
L.

Therefore, the induction statement for the updated interval also holds in these case and the proof for global search phase is
concluded.

E Proof of Proposition 4

Proof. We first generalize Proposition 3 by showing that for any x ∈ X and any set B that contains x, ifLy > Lx−||y−x||2
for any y ∈ ∂B, then a global minima of f exists within B. The proof can be obtained by including an additional constraint
r ∈ B to the definition of R(g), i.e., let R(g) , inf{R ∈ [0,+∞] | ∃ r ∈ B, ||r − x||2 ≤ R, f(r) − f∗ ≤ g}. By the
given assumptions on Lx, any R(g) can not be achieved at the boundary of B. Therefore, the proof of right continuity still
holds and R(g) can be achieved as a minimum with some point r in the interior of B. Then following the same arguments,
we have R(0) ≤ Lx < +∞. Hence, f∗ can be achieved by a point in the interior of B.

Going back to the Proposition, when f(x)− f∗ >
(

C
C1(1−α)

) 1
α

, we have

f(y) ≥ f(x)− C1(1− α) · (f(x)− f∗)α · ||x− y||2
for all y ∈ ∂B. By the convexity of Lx with respect to f(x)− f∗, we have Ly > Lx − ||y−x||2. Hence, the achievability
of f∗ in B is proved.
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F Proof of Proposition 5

Proof. Let f̂(y) denote the value returned for each call of the Sample function. By union bound and Proposition 2, we have
f̂(y) ∈ [f(y)− εr, f(y) + εr] for all sampled y w.p. 1− δr. We will focus on this event in the rest of the proof.

Depending on the value of y∗, we consider two possible cases. First, if y∗ = x, we let F (y) , (C0 +2∆)||y−y∗||2 +f(y)
and yF , argminy∈Sp∪SqF (y). To prove that y∗ is a dominant point on the new set, it suffices to show that F (yF ) > F (x).
We prove this statement by contradiction. Assume that F (yF ) ≤ F (x). By the dominant condition of x on B, the point yF
can not be on the boundary of B. Hence, we have∇F (yF ) is orthogonal to Sp and Sq . Therefore, the value of F (yF ) can
be bounded by the sampled results using the smoothness condition.

Without loss of generality, assume yF ∈ Sp. We rely on the following fact to show a smoothness condition of F .

Proposition 8. For any real numbers a < x < b, both the outputs p, q from Balanced Partition(a, b, x) belong to (a, b) and
the distance from any of them to any other 4 points belongs to [(b− a)/5, 4(b− a)/5].

The above proposition provides a lower bound of ||y − x||2 for any y ∈ Sp. Hence, by taking the derivatives, one can show
that

F (y)− F (yF ) ≤
(

5(C0 + 2∆)

2(bk − ak)
+ C2

)
||yF − y||22

≤ 2C2||yF − y||22.

We remind the reader the definition of ε-net.

Definition 2 (ε-net). Let Y be a subset of S and ε > 0 be a general parameter. We say Y is an ε-net of S, if the packing
radius of Y is no smaller than ε/2, and the covering radius is no greater than ε.

By the covering property, there is a sampled point ŷF on Sp with ||yF − y||2 ≤
√
εr/C2. Consequently,

F (ŷF )− F (yF ) < 2εr.

Recall that f(ŷF ) is sampled with an error of at most εr. We have

f̂(ŷF ) + (C0 + 2∆)||x− ŷF ||2 − F (yF ) < 3εr.

Now we use the fact that y∗ = x and f(x) is also sampled with an accuracy of εr.

f̂(ŷF ) + (C0 + ∆)||x− ŷF ||2 ≥ f̂(x̂) > F (x)− εr.

Combine the above two inequalities, we have F (yF ) − F (x) > ∆||x − ŷF ||2 − 4εr ≥ 0 from Proposition 8, which
contradicts the assumption on yF .

For the other case, we have y∗ ∈ Sp ∪ Sq . Then by the sampling guarantee and the definition of y∗, we have

f(x)− f(y∗) ≥ f̂(x)− f̂(y∗)− 2εr

≥ (C0 + ∆)||x− y∗||2 − 2εr.

Recall that ∆||x− y∗|| ≥ 2εr can be implied from Proposition 8. The above inequality shows that

f(x)− f(y∗) ≥ C0||x− y∗||2.

Using triangle inequality, y∗ is also a dominant point of B with C = C0. Obviously, the same holds for a larger parameter
C = C0 + 2∆.

Now without loss of generality, we can assume that y∗ ∈ Sp. It remains to show that F (y) > F (y∗) for any y ∈ Sq.
Similar to the first case, we assume the opposite and define yq , argminy∈SqF (y). Recall that y∗ dominates B. The
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point yq is not on the boundary of B. Following the same arguments used in the first case, one can show the existence of
ŷF ∈ Snet,q for the following inequalities to hold.

f̂(ŷF ) + (C0 + 2∆)||y∗ − ŷF ||2 − F (yF ) < 3εr

f̂(ŷF ) + (C0 + ∆)||x− ŷF ||2
> F (y∗) + (C0 + ∆)||x− ŷ∗||2 − εr.

Combine the above inequalities and use the triangle inequality, we can conclude that

F (yF )− F (y∗) > ∆||y∗ − ŷF ||2 − 4εr ≥ 0.

Finally, we prove the sample complexity. We use the following well know upper bound for the size of ε-nets.

Proposition 9. For any fixed d and any set B that belongs to Rd, an ε-net of B exists. If

V , Vol{x ∈ Rd | ∃ y ∈ B, ||x− y||2 ≤ ε/2}

is finite, then any ε-net is finite, with a size of O(V/εd).

The algorithm runs O(|S|) numbers of Sample calls. Given the stated assumptions and the above proposition, we have

|S| = O

(∏
j 6=k(bj − aj +

√
εr/C2)√

εr/C2
d−1

)

= O

(
(bk − ak)

d−1
2

(∆/C2)
d−1
2

)
.

Hence, the overall sample complexity is O
(
|S|
ε2r

log( |S|δ )
)

= O

(
C
d−1
2

2 (bk−ak)
d−5
2

∆
d+3
2

log(C2(bk−ak)
∆δ )

)
.

G Proof of Proposition 7

Consider any algorithm that achieves a minimax regret of ε with T samples. Let x̂f denote the returned estimator given any
fixed function f and let x̂p denote the estimator when the observation model at each point x is y = Ef∼p[f(x)] + w. We
have

ε ≥Ef∼p[Ex̂f [f(x̂f )− inf f ]]

≥Ef∼p[Px̂f [f(x̂f )− inf f ≥ 2ε/c]] · 2ε/c
≥Ef∼p[Px̂p [f(x̂p)− inf f ≥ 2ε/c]

− TV(x̂f , x̂p)] · 2ε/c, (6)

where TV(·) denotes the total variation distance between the distributions of the given variables. Let Of , Op denote the sets
of all T action-observation pairs under each model. Because x̂f and x̂p are determined from the same algorithm, we have

Ef∼p[TV(x̂f , x̂p)] ≤ Ef∼p[TV(Of ,Op)]

≤
√

1

2
Ef∼p[KL(Op||Of )],

where KL(·) denotes the KL distance. Let x1,x2, ...xT denote the T sample points in Op. By the additive Gaussian noise
assumption,

KL(Op||Of ) =
1

2

T∑
t=1

(f(xt)− Ef∼p[f(xt)])
2.
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Therefore, we have

Ef∼p[TV(x̂f , x̂p)] ≤
1

2

√√√√ T∑
t=1

Varf∼p[f(xt)]

≤ 1

2

√
V T .

Consequently, the condition P2ε/c ≥ c and inequality (6) implies that

ε ≥
(
c− 1

2

√
V T

)
· 2ε

c
,

which requires T ≥ c2/V .
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