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Abstract

We study the problem of crowdsourced PAC
learning of threshold functions. This is a chal-
lenging problem and only recently have query-
efficient algorithms been established under the
assumption that a noticeable fraction of the work-
ers are perfect. In this work, we investigate a
more challenging case where the majority may
behave adversarially and the rest behave as the
Massart noise – a significant generalization of
the perfectness assumption. We show that under
the semi-verified model of Charikar et al. (2017),
where we have (limited) access to a trusted ora-
cle who always returns correct annotations, it is
possible to PAC learn the underlying hypothesis
class with a manageable amount of label queries.
Moreover, we show that the labeling cost can be
drastically mitigated via the more easily obtained
comparison queries. Orthogonal to recent devel-
opments in semi-verified or list-decodable learn-
ing that crucially rely on data distributional as-
sumptions, our PAC guarantee holds by explor-
ing the wisdom of the crowd.

1 INTRODUCTION

Efficient and robust learning of threshold functions is ar-
guably one of the most important problems in machine
learning, and has been broadly investigated under differ-
ent label noise models, such as the random classification
noise (Angluin and Laird, 1987), Massart noise (Sloan,
1988; Massart and Nédélec, 2006), Tsybakov noise (Tsy-
bakov, 2004), and agnostic noise (Haussler, 1992; Kearns
et al., 1992). In recent years, under certain distributional
assumptions on the unlabeled data, a variety of computa-
tionally efficient algorithms have been established (Awasthi
et al., 2017a; Zhang et al., 2020; Diakonikolas et al.,
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2020c,b) under the standard probably approximately cor-
rect (PAC) learning model of Valiant (1984), where there is
a single adversary who generates all the noisy labels.1

However, the standard PAC learning model of Valiant
(1984) does not fully characterize the process of data col-
lection and learning in modern machine learning applica-
tions. In fact, when constructing a large-scale data set, re-
searchers often appeal to a crowdsourcing platform to hire
multiple crowd workers for annotation, with the hope of
obtaining a set of high-quality labels. To be more con-
crete, a crucial feature of crowdsourced learning is that for
each instance x, the learner has a discretion to collect a set
of k labels, denoted by yi(x), i = 1, . . . , k, from a large
pool of heterogeneous crowd workers. Here, each single
worker in the pool may behave as a certain type of label
noise models in the standard PAC model, and some work-
ers can even collude with others to decide which instances
to corrupt among those assigned to them. A common prac-
tice to address such noisy annotations is to aggregate the
labels via majority vote, which turns out to be a successful
remedy provided that the majority are correct (Dekel and
Shamir, 2009; Vaughan, 2017; Awasthi et al., 2017b; Zeng
and Shen, 2022a).

In this paper, nevertheless, we consider learning from an
extremely noisy pool of workers, where the majority might
be adversarial, under which using majority voting will
make the result even noisier, and more seriously, render-
ing PAC learning impossible. This problem, in addition to
being theoretically interesting and has been broadly stud-
ied under the non-crowdsourcing setting (Charikar et al.,
2017), also finds a variety of real-world applications (Stein-
hardt et al., 2016; Prelec et al., 2017; Meister and Valiant,
2018). For example, it is observed that when confronted
with the question “is Philadelphia the capital of Pennsylva-
nia”, more than 60% of the respondents endorse the incor-
rect answer with high confidence (Prelec et al., 2017). This
raises a pressing question:

If the majority of the crowd might be malicious,
can we still achieve the PAC guarantees? If the
answer is positive, what is the price for it?

1In the standard PAC learning model, the label of an instance
is always persistent.
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1.1 Warmup: Reduction to Standard PAC Learning

We begin our exploration by considering a quite fundamen-
tal problem setup: the underlying hypothesis class is the
one of homogeneous halfspaces among which there exists
a hypothesis that correctly classifies all instances (Rosen-
blatt, 1958; Valiant, 1984). For each instance we assign one
worker for labeling.

Formally, let X ⊂ Rd be the instance space, Y = {−1, 1}
be the label space, and D be the marginal distribution
on X . The class of homogeneous halfspaces is given by
Hhs = {h : x 7→ sign (w · x) , w ∈ Rd}, and the true
label of x is given by h∗(x) for some h∗ ∈ Hhs. The
error rate of any hypothesis h is defined as errD(h) =
Prx∼D

(
h(x) 6= h∗(x)

)
. The learner has access to a large

pool of crowd workers who provide labels, and we denote
by PL the uniform distribution on it. Given x ∈ X , the
quantity ηt(x) := Pr(ht(x) 6= h∗(x) | x) characterizes
how likely the learner gets an incorrect label when having
worker t annotate the instance x, where the probability is
taken over the internal random bits of the worker.

To further simplify the problem, we assume that a (1−α)-
fraction of workers may be adversarial but the remaining
α-fraction are perfect in the sense that they always provide
correct labels across the domain.
Assumption 1. With probability 1 − α over the draw of
a worker t, t is adversarial, i.e. ηt(x) can be an arbitrary
function; otherwise, t is perfect, i.e. ηt(x) ≡ 0,∀x ∈ X .

We aim to approach the problem by reducing it to some
well-studied standard PAC learning model, such that there
exists a learner with non-trivial PAC guarantees. One
promising solution is the agnostic learner, which works un-
der the scenario where an adversary can corrupt an arbitrary
fraction of the labels in an adversarial manner (Haussler,
1992; Kearns et al., 1992; Kalai et al., 2008; Diakonikolas
et al., 2021). We give the following theorem using results
from Kalai et al. (2008); Diakonikolas et al. (2021).
Theorem 1. Suppose Assumption 1 is satisfied, and further
assume the maginal distribution D is standard Gaussian.
Given a set of Θ

(
dpoly(1/ε)

)
independent instances from

D, each of which is labeled by one worker, there exists an
algorithm that runs in time O

(
(d/ε)poly(1/ε)

)
and learns

Hhs by returning a hypothesis with error rate≤ (1−α)+ε.
Remark 1. There are a few limitations of such method.
First, the error rate is non-vanishing (as α < 1/2), though
this is the best one can hope for without extra informa-
tion. Second, such reduction scheme only works for the
very special case of learning homogeneous halfspaces with
respect to Gaussian marginals, and with quite high compu-
tational complexity and sample complexity. Last, the suc-
cess of the reduction hinges on the strong assumption that
an α fraction of the workers are perfect.

In this paper, we show that it is possible to break all of the

above barriers by leveraging the wisdom of the crowd and
by querying a trusted oracle with a small number of times.

1.2 Main Results

Observe that using a single worker to annotate an instance
is not a common practice. Thus, from now on, we consider
the more realistic scenario where the learner would assign
an instance to multiple workers. An immediate caveat in
our setting is that, the majority vote becomes even noisier.
As a remedy, we follow a recent research line of Stein-
hardt et al. (2016); Awasthi et al. (2017b); Meister and
Valiant (2018) and assume that there exists a trusted or-
acle OT who always provides the correct annotation for
any instance that we query on, and we call a query to OT
as a verified query. To make it practical, we must restrict
the number of verified queries the learner can make. We
now consider a more general hypothesis classH of thresh-
old functions, i.e. H = {h : x 7→ sign

(
f(x)

)
, f ∈ F}

where F = {f : X → R}; e.g. f(x) = w · x recovers the
class of linear functions and hence H is the class of half-
spaces. Note that the target classifier h∗ can be written as
h∗(x) = sign

(
f∗(x)

)
for some f∗ ∈ F . We also drop As-

sumption 1 on the existence of perfect workers, and instead
assume the following:
Assumption 2. With probability 1 − α over the draw of
a worker t, t is adversarial, i.e. ηt(x) can be an arbitrary
function; otherwise, t is Massart, i.e. ηt(x) ≤ η,∀x ∈ X
for some noise rate η ∈ [0, 1/2).

The non-adversarial workers now act as the Massart noise
(Sloan, 1988; Massart and Nédélec, 2006) which is a chal-
lenging semi-random model that has attracted a surge of re-
cent research interests under the standard PAC model; see
e.g. Diakonikolas et al. (2019); Zhang et al. (2020); Di-
akonikolas et al. (2020c). Our model on the crowd workers
is thus a mixture of adversarial and semi-random, with the
adversarial consisting of the majority. The model itself is
already new and challenging; to the best of our knowledge,
no known results have been established under neither stan-
dard nor crowdsourced setting.

Now the principle of our algorithmic design is three-fold:
1) offering a PAC guarantee, i.e. finding a hypothesis h
such that errD(h) ≤ ε; 2) the number of verified queries,
mV , is few; and 3) the number of queries to the crowd,mL,
is moderate. In particular, we hope that the overhead of the
algorithm, ΛL, defined as the averaged number of crowd
queries on a given instance, behaves as a constant.

We note that the last (implicit) condition is that the hypoth-
esis class H has finite VC-dimension d, which is a mini-
mum requirement for PAC learnability even without noise
(Kearns and Vazirani, 1994; Anthony and Bartlett, 1999).
Assumption 3. There exists a computationally efficient al-
gorithm AH satisfying the following: for any ε, δ ∈ (0, 1),
AH drawsmε,δ correctly labeled instances and learnsH by



Shiwei Zeng, Jie Shen

returning a hypothesis h such that with probability 1 − δ,
errD(h) ≤ ε. We call AH a realizable PAC learner.

Remark 2. It is known that for many interesting hypothe-
sis classes, such as the one of polynomial threshold func-
tions, such a realizable PAC learner does exist. In our al-
gorithm and analysis, we will make use of the well-known
fact that it suffices to pick

mε,δ = K · 1

ε
·
(
d log

1

ε
+ log

1

δ

)
, (1.1)

where K ≥ 1 is some absolute constant and d is the VC-
dimension of the class H (Kearns and Vazirani, 1994; An-
thony and Bartlett, 1999).

Theorem 2 (Theorem 4, informal). Suppose that Assump-
tions 2 and 3 are satisfied, and η < α

16 . There exists a
polynomial-time algorithm (Algorithm 1) that PAC learns
H. In addition, ΛL = Oα(1) and mV = Oα(1).

Remark 3. The above result addresses all the shortcom-
ings of the naive reduction approach (see Remark 1). More-
over, when the fraction of adversarial workers is a large
constant, say 80%, our algorithm still succeeds, and more
importantly, only makes a constant number of verified
queries to the trusted oracle as well as a constant over-
head – as to be clear later, a constant overhead means the
total number of label queries to the crowd is only a constant
multiple of the one needed in the noise-free PAC model of
Assumption 3. Roughly speaking, we give an algorithm
that almost does not suffer any performance loss from the
extremely noisy crowd.

Remark 4. The most relevant prior work is Awasthi et al.
(2017b), where they also studied crowdsourced PAC learn-
ing in the presence of large fraction of adversarial work-
ers. Yet, their analysis crucially relies on the existence of
an α fraction perfect workers (i.e. Assumption 1). When
α > 1/2, it is possible to relax their perfectness assump-
tion to the Massart noise model as we have done. However,
the case α ≤ 1/2 is more subtle and requires additional
treatments (and this is one of our technical contributions).

On top of Theorem 2, we address the problem of learning
with pairwise comparisons, where a worker is asked ques-
tions of the form “given two instances, which one is more
likely to be positive”. The motivation is that on a crowd-
sourcing platform, experimenters often make a same pay-
ment per annotation, and pairwise comparison queries are
relatively easier to respond than label queries in many ap-
plications, thus may ease the process of data acquisition.
For example, there are restaurants that people feel neither
like or dislike, but comparing the preference to two restau-
rants might be easy. Another example is about medical
diagnosis: determining whether a patient needs intensive
care requires evaluation from specialists, but comparing the
health status of two patients may be carried out by medical
residents (Park et al., 2015; Kane et al., 2017; Xu et al.,
2017).

Formally, we consider the class H of threshold functions.
For any (x, x′) ∈ X ×X , the underlying comparison func-
tion is given by Z∗(x, x′) = sign

(
f∗(x)− f∗(x′)

)
. De-

note by PC the uniform distribution over the pool of work-
ers who will provide comparison tags, and a worker t is
defined by a comparison function Zt : X × X → {−1, 1}.
Assumption 4. When providing comparison tags, a (1 −
β) fraction of the workers may behave adversarially, and
the rest β ≤ 1/2 fraction are such that Pr(Zt(x, x

′) 6=
Z∗(x, x′) | (x, x′)) ≤ η for some η ∈ [0, 1/2).

Let mC be the total number of comparison queries to the
crowd, ΛC the comparison overhead, and mV be the to-
tal number of verified label and comparison queries. Our
second set of main results is a label-efficient crowdsourced
PAC algorithm.

Theorem 3 (Theorem 11, informal). Suppose that Assump-
tions 2, 3, and 4 are satisfied, and η < min(α,β)

16 . Given any
ε, δ ∈ (0, 1), there exists a polynomial-time algorithm (Al-
gorithm 3) that PAC learns H. In addition, ΛL = oα,β(1),
ΛC = Oα,β(1), and mV = Oα,β(1).

Remark 5. This is the first label-efficient algorithm that
works in the semi-verified crowdsourced learning setting
where adversarial workers can form a strong majority.
Moreover, both the overheads and the number of verified
data are independent of the sample size, meaning that the
algorithm is query-efficient even for large-scale learning
problems. The label efficiency follows from that ΛL may
tend to zero; alternatively, it also follows from the fact that
mL = Õ(log d

ε ), where in label-only learning, this quantity
scales as Õ(dε ) (Theorem 4). We note that a label-efficient
crowdsourced PAC algorithm was obtained in Zeng and
Shen (2022a), but their analysis only works for α, β > 1

2 .

Remark 6. The merit of comparison-based PAC learn-
ing algorithms is to tradeoff the labeling and compari-
son complexity (Xu et al., 2017), rather than obtaining
a lower overall query complexity. Indeed, the latter is
information-theoretically impossible in general: a lower
bound of Ω(d+ 1/ε) was shown in Kane et al. (2017).

1.3 Overview of Techniques

Win-win pruning of adversarial workers. When the ad-
versarial workers form a majority in the crowd, a natural
idea is to query the trusted oracle so as to identify and prune
them. The main question here lies in how to select appro-
priate instances as testing cases such that a significant frac-
tion of the adversarial workers can be pruned every time
the trusted oracle is called. Our main contribution here is a
win-win argument even when no perfect worker is present:
the adversarial workers can either collude and provide in-
correct annotations, for which the algorithm can identify
and prune a noticeable fraction of them; or they are forced
to provide correct annotations, for which we can be sure
that the majority are correct. The key insight lies in a nat-
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ural threshold of the majority size (the fraction of workers
that agree with majority) being (1 − (1 − η)α), as on all
accounts the adversarial workers cannot form a majority
larger than that. This is also our condition for selecting the
instances as testing cases, which generalizes the analysis in
Awasthi et al. (2017b). See Section 3.1.

Query and label-efficient semi-verified filtering. To ob-
tain an algorithm that is both label and query-efficient (The-
orem 3), we need to resolve a more serious issue of major-
ity voting over a constant number of workers: if the sample
size increases, this majority voting can be incorrect with
high probability. If we were to increase the constant num-
ber, the query complexity grows beyond what we can af-
ford. To this end, we introduce a new testing stage to the
comparison-equipped algorithm which draws a moderate
set of informative samples and then queries comparison
tags. This stage would give us enough information about
how likely the crowd workers would form a strong major-
ity, i.e. the majority size ≥ 1 − (1 − η)β such that the
majority vote is faithful. We show that this technique suf-
fices for us to develop a label and query-efficient algorithm.
Readers may refer to Section 3.2 for details.

1.4 Additional Notations and Definitions

We will need the following quantity when designing
comparison-based algorithms:

nε,δ := K · 1

ε
·
(
d log

1

ε
+
(1

δ

)1/1000)
. (1.2)

The additive term
(
1
δ

)1/1000
is due to the fact that the fail-

ure probability of randomized quicksort only decays to zero
in a rate inversely polynomial in the sample size. There is
nothing magic on the exponent 1

1000 ; it can be made to be
an arbitrarily small constant in the price of a constant factor
of more samples. We note that we can also use merge sort
in place of the quicksort to obtain a log(1/δ) dependence.
However, since the latter is broadly deployed in practice,
we choose to bring it upfront and leave the analysis with
merge sort to interested readers.

Query complexity, overhead. The query complexity of
a crowdsourced PAC learner is measured in three aspects:
the total number of label queries from the crowd which we
denote by mL, that of comparison queries from the crowd
which is denoted by mC , and that of verified queries from
the trusted expert which is denoted by mV . Closely related
to mL and mC are the following quantities:

ΛL :=
mL

mε,δ
, ΛC :=

mC

mε,δ
, (1.3)

termed labeling overhead and comparison overhead, re-
spectively. These two quantities measure the query com-
plexity of a crowdsourced PAC learner compared to the one
needed in the noise-free standard PAC model. We say a

crowdsourced PAC learner is query-efficient if ΛL + ΛC +
mV = O(1), meaning that the overall query complexity is
of the same order of the standard PAC model even facing
an overwhelming fraction of adversarial workers. We say a
crowdsourced PAC learner is label-efficient if ΛL = o(1).
Our goal is to design a polynomial-time PAC learning algo-
rithm that is both query-efficient and label-efficient; in ad-
dition, we aim to control the number of calls to the trusted
expert as otherwise the problem is trivial.

Given an input z and a set of workers W , we define
MajW(z) to be the majority vote over the annotations from
the workers in W , where z can either be an instance or a
pair of instances. We denote by Maj-sizeW(z) the frac-
tion of the workers inW that agree with MajW(z), which
is referred to as the empirical majority size. Similarly,
we can consider the population version Maj-sizeP(z) =
max{Prt∼P(ht(z) = 1),Prt∼P(ht(z) = −1)}. Specif-
ically, let h1, h2 and h3 be three classifiers. The func-
tion Maj(h1, h2, h3) maps any instance x to the label y =
Maj{h1,h2,h3}(x). Given a distribution P over workers and
an annotated set S (either a set with labels or one with
comparison tags), denote by P|S the distribution P con-
ditioned on workers that agreed with the annotations in S;
this will be useful to prune the adversarial workers. Given
any regionR ⊆ X , denote byD[R] the density of instances
x ∈ R under distribution D.

2 RELATED WORKS

Crowdsourcing has been broadly utilized as a tool for
data annotation with provable algorithms (Vaughan, 2017).
More in line with this work is crowdsourcing in the pres-
ence of highly noisy workers, i.e. the majority can be
adversarial. Steinhardt et al. (2016); Meister and Valiant
(2018) considered recovery of true values of a finite data
set and Awasthi et al. (2017b) examined PAC learnabil-
ity which aligns more closely with our work. Our algo-
rithm shares the merits with Awasthi et al. (2017b) but
we develop a novel analysis to address the label corrup-
tion from Massart workers, and we carefully leverage com-
parison queries to achieve label efficiency. We emphasize
that crowdsourced PAC learning was also investigated in
Zeng and Shen (2022a), but their algorithm fails immedi-
ately when the majority are incorrect.

The semi-verified learning model was recently proposed
in Charikar et al. (2017). This model is also known as
list-decodable learning where a learner is allowed to out-
put a finite list of hypotheses among which at least one is
guaranteed to be close to the true hypothesis. Such model
has been broadly studied under the non-crowdsourcing set-
ting for various problems such as mean estimation (Kothari
and Steinhardt, 2017; Diakonikolas et al., 2020a; Zeng
and Shen, 2022b), learning mixtures of Gaussian (Di-
akonikolas et al., 2018), linear regression (Karmalkar et al.,
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2019; Raghavendra and Yau, 2020a), and subspace re-
covery (Bakshi and Kothari, 2020; Raghavendra and Yau,
2020b). We note, however, these works consider a setting
where both instances and labels can be corrupted adversar-
ially, while our work assumes that only the labels are noisy
(since in crowdsourcing, the data curator often has control
on the instances).

Learning with comparison queries has been extensively in-
vestigated in ranking (Jamieson and Nowak, 2011; Shah
et al., 2016; Shah and Wainwright, 2017; Falahatgar et al.,
2017; Shah et al., 2019; Agarwal et al., 2020), best-k item
selection (Falahatgar et al., 2017; Ren et al., 2020), and rec-
ommendation systems (Fürnkranz and Hüllermeier, 2010;
Falahatgar et al., 2018). PAC learning with pairwise com-
parisons is investigated recently (Kane et al., 2017; Xu
et al., 2017; Hopkins et al., 2020); yet, the way that we
utilize comparison queries is quite different from these
works and their guarantees were established under the non-
crowdsourcing model.

3 MAIN ALGORITHMS AND
GUARANTEES

In this section, we present our main algorithms, one that
uses label-only queries (Algorithm 1) and the other that
combines label and comparison queries (Algorithm 3). In
the label-only learning model, we will build upon the algo-
rithm of Awasthi et al. (2017b) and show how a new prun-
ing method (specifically, a new pruning threshold) can be
leveraged into their algorithm to obtain Theorem 2. In the
comparison-based learning model, we will extend the algo-
rithm of Zeng and Shen (2022a) by presenting an ensem-
ble of new algorithmic subroutines that delicately combine
verified queries, label queries, and comparison queries.

First of all, we introduce the core idea of these algorithms,
assuming for now that the adversarial workers only consist-
ing a minority. We emphasize that obtaining distribution-
free PAC guarantees under label noise in the standard PAC
model is highly nontrivial, and among prevalent noise mod-
els, the only known computationally efficient PAC learner
works for the very basic random classification noise (Blum
et al., 1996), while for Massart noise or adversarial noise,
hardness results have been established (Diakonikolas and
Kane, 2022; Guruswami and Raghavendra, 2006). Yet, it
turns out that as far as the majority is correct, by using
majority vote, it is possible to PAC learn the underlying
hypothesis class without distributional assumptions, where
a key step is to gather sufficient labels for each instance
so that with overwhelming probability, all the aggregated
labels are correct, for which one can apply the realizable
learner stated in Assumption 3. However, a naive label-
and-train approach, as observed in Awasthi et al. (2017b),
leads to a labeling overhead that grows with the sample
size. Therefore, they proposed an elegant algorithm that in-

terleaves data annotation and learning. In particular, there
are three phases in the main algorithm: in phase 1, it aims
to learn a hypothesis h1 with errD(h1) ≤ 1

2

√
ε; in phase 2,

it identifies a distribution D2 where the performance of h1
is almost comparable to random guess, and learns another
h2 with errD2

(h2) ≤ 1
2

√
ε; in phase 3, it concentrates on

a distribution D3 where h1 and h2 disagree, and learns the
last hypothesis h3 with errD3(h3) ≤ 1

2

√
ε. The final out-

put of the algorithm, ĥ, is a majority voting function over
these three hypotheses. This is essentially the boosting al-
gorithm of Schapire (1990) which enjoys a guarantee that
errD(ĥ) ≤ ε.

Our algorithm in the semi-verified setting will be built upon
the above, and the primary idea is to design query-efficient
pruning methods to remove most adversarial workers, such
that the Massart ones form the majority. To be more de-
tailed, we will incorporate new pruning methods in all three
phases to learn the desired hypotheses, while in some cases,
additional technical efforts are needed to ensure the correct-
ness of our results. We remark that the difference to obtain
Theorem 3 compared to Theorem 2 is on how to use la-
bel queries in an economic way through the introduction of
comparison queries.

3.1 Label-Only Algorithm: Algorithm 1

Now let us consider that the majority are adversarial. A
similar semi-verified crowdsourcing model is also studied
in Awasthi et al. (2017b) but their analysis, in particular,
the success of their paradigm to prune adversarial workers,
crucially relies on Assumption 1 to ensure that the perfect
workers will always be retained during pruning, and thus
eventually form the majority. This is because perfect work-
ers make no mistake, so that none of them will be removed
during the pruning step and hence the fraction of the per-
fect ones will increase and eventually form the majority.
We here leverage a key observation that, even when some
perfect workers are removed, it is still possible to increase
the fraction α, so long as the fraction of the adversarial
workers being removed is always strictly larger than that of
the perfect workers. Hence, we can relax the assumption of
perfect workers to Massart workers (Assumption 2).

The main algorithm is given in Algorithm 1, which con-
tains three phases corresponding to our previous discus-
sion. The most important component of the main algorithm
is PRUNE-AND-LABEL (Algorithm 2). For each given in-
stance xt, in Step 3 of PRUNE-AND-LABEL, we check
whether the current fraction of Massart workers, α, has
formed the majority (note that we will update α, thus it
has potential to increase), or the size of workers that agree
with the majority vote is greater than a threshold. If either
condition is satisfied, we take the majority vote as the label
of xt. What is subtle here is our condition on the majority
size, which is essentially our pruning rule. To see why it
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makes sense, observe that at the beginning, the adversarial
workers form a (1−α) fraction, while the Massart workers
form the α fraction among which, in expectation, at most
αη will return incorrect labels. Therefore, the maximum
number of incorrect labels will be 1−α+αη = 1−(1−η)α.
So in expectation, if we see that the majority size is greater,
it must be the case that the Massart workers who are com-
mitted to providing correct labels contribute to the voting,
hence the majority vote is correct. It is easy to see that
there is a constant factor difference in our algorithm, which
is due to the conversion from expected value to high prob-
ability argument. When Step 3 of PRUNE-AND-LABEL is
not satisfied, it is likely the case that majority vote gives in-
correct label. This is a good chance to query the trusted or-
acle which guarantees elimination of a noticeable fraction
of adversarial workers (and a few Massart workers). From
these discussions, we can see that it is possible to achieve
a win-win scenario: either adversarial workers give incor-
rect labels so that they can be eliminated using the verified
queries, or they have to provide the correct label in order to
stay in the pool until the end of the algorithm. Lastly, we
show that in the presence of the Massart workers, we have
to restart the main algorithm with O(Tα,η) times (see The-
orem 4). Note that for FILTER algorithm at Step 5 of Algo-
rithm 1, we can reuse the one from Awasthi et al. (2017b),
and we omit it due to space limit.

Massart noise rate η. Next, we demonstrate why the Mas-
sart noise rate η cannot be too large. In our model, since
roughly ηα fraction of the Massart workers will provide
incorrect labels, they will likely be pruned away. Hence,
denote by αi the fraction of Massart workers in the pool
after i restartings of the main algorithm, then a necessary
condition on the success of pruning is that the fraction of
Massart workers is increased, i.e.

(1− η)αi

1− (1−η)αi
8

> αi,

which is equivalent to η < (1−η)αi
8 ,∀i ≥ 0. Assume the

algorithm works properly and αi ≥ αi−1,∀i. Then, we re-
quire that η < α

16 by telescoping, where α is the fraction of
Massart workers in the crowd before running the algorithm.

Restarting times. Note that each time the main algorithm
restarts, it removes at least (1−η)α

8 fraction of the workers,
with at most an ηα fraction being Massart. Therefore, de-
note by Ni the total number of workers in the pool after i
restartings of the main algorithm

αi ≥
α0N0 · (1− η)

i

N0 − (1−η)α0

8 ·N0 − · · · − (1−η)αi−1

8 ·Ni−1
.

By simple deductions on the above inquality, we can show
that after O

(
log 1

1−η
(α−αηα−η )

)
= O(Tα,η) updates, αi

would surpass any given constant C ∈ [0.7, 1]. In other
words, the main algorithm is restarted at most O(Tα,η)

Algorithm 1 Main Algorithm (label only)
Require: Parameters α, distributions PL, target error rate

ε, confidence δ, noise rate η of Massart workers, a re-
alizable PAC learner AH.

Ensure: Hypothesis ĥ : X → Y such that with probability
1− δ, errD(ĥ) ≤ ε.

1: Tα,η ← log 1
1−η

(α−αηα−η ), τ ← 8Tα,η , δ′ ← δ
τ .

Phase 0:
2: S0 ← PRUNE-AND-LABEL(S0, α, δ

′) for an instance
set S0 of size 1

ε log 1
δ′ from D.

Phase 1:
3: S1 ← PRUNE-AND-LABEL(S1, α,

δ′

6 ), for an instance
set S1 of size n√ε/2,δ′/6 from D.

4: h1 ← AH(S1,
√
ε

2 ,
δ′

6 ).

Phase 2:
5: SI ← FILTER(S2, h1, α,

δ′

12 ), for an instance set S2 of
size Θ(nε,δ′/12) drawn from D.

6: Let SC be an instance set of size Θ(n√ε,δ′/12) drawn
from D.

7: SAll ← PRUNE-AND-LABEL(SI ∪ SC , α, δ′/12).
8: WI ← {(x, y) ∈ SAll | y 6= h1(x)}, WC ← SAll\WI .
9: Draw a sample set W of size Θ(n√ε/2,δ′/12) from the

distribution 1
2WI + 1

2WC .
10: h2 ← AH(W,

√
ε

2 ,
δ′

6 ).

Phase 3:
11: S3 ← PRUNE-AND-LABEL(S3, α, δ

′/6), for an in-
stance set S3 of size n√ε/2,δ′/6 drawn from D con-
ditioned on h1(x) 6= h2(x).

12: h3 ← AH(S3,
√
ε

2 ,
δ′

6 ).
return ĥ← Maj(h1, h2, h3).

times, using one verified label in each restart. Hence, the
number of verified labels required from the trusted oracle
OT is also bounded by O(Tα,η).

Our main result for Algorithm 1 is summarized in the fol-
lowing; the proof is deferred to Appendix B.

Theorem 4. Suppose that Assumptions 2 and 3 are satis-
fied, and η < α

16 . Denote Tα,η = log 1
1−η

(α−αηα−η ). The
following holds with probability 1−δ. There exists an algo-
rithm that runs in O(poly(d, 1ε , Tα,η,

1
α )) time and learns

H by returning a hypothesis h : X → Y with errD(h) ≤ ε.
In addition, mL = Õ

(d·Tα,η
εα2 · log 1

δ

)
, and mV = O(Tα,η),

where Õ hides the logarithmic factors. Therefore, ΛL =
O
(Tα,η
α2 · log2(Tα,η)

)
when ε ∈

(
0, log−2 d

)
. In particular,

when α is constant, ΛL = O(1) and mV = O(1).

Remark 7. Recall that Awasthi et al. (2017b) studied the
problem with the existence of perfect workers. Their work
requires a number ofO( 1

α ) verified label fromOT , while in
our analysis, the amount is O(Tα,η) = O(log 1

1−η
(α−αηα−η )).

It is not hard to show that limη→0 Tα,η = 1
α . Thus, our re-
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Algorithm 2 PRUNE-AND-LABEL

Require: An instance set S, parameters α, δ1.
Ensure: A labeled set S.

1: k0 ← 1
2(1−η)2α2 · log 1000m

δ1
.

2: Draw a set of k0 workersWL from PL.
3: if α ≥ 0.7 or Maj-sizeWL(xt) ≥ 1− (1−η)α

4 then
4: ŷt ← MajWL(xt).
5: else
6: Get a verified label y∗t ← h∗(xt). Restart Al-

goirthm 1 with PL ← PL|(xt,y∗t ) and α← (1−η)α
1− (1−η)α

8

.

7: end if
return S.

sult is a new analysis on the structure of the Massart work-
ers which guides an algorithmic refinement and derives a
generalization of Awasthi et al. (2017b).

3.2 Comparison-Equipped Algorithm: Algorithm 3

In this section, the goal is to largely reduce the labeling
cost using noisy pairwise comparisons from the crowd. We
note that there exists a label-efficient algorithm in Zeng
and Shen (2022a) that achieves the above tradeoff, but only
works with α, β > 1

2 . We will use their algorithm as the
starting point and we elaborate on the technical challenges
and our design details.

First, since there exists 1 − β ≥ 1
2 fraction of adversar-

ial workers in the crowd, a natural idea is to add a prun-
ing step when collecting comparison tags from the crowd.
Similar to the analysis in Section 3.1, it is easy to show
that if a condition η < β

16 is satisfied, the win-win prun-
ing scheme can also apply to PC and increase the frac-
tion of Massart workers who provide pairwise compar-
isons, i.e. β. Furthermore, it requires at most O(Tβ,η) =

O
(

log 1
1−η

(β−βηβ−η )
)

verified comparison tags from OT to
increase β to any specified constant C ∈ [0.7, 1]. This
leads to our design of algorithm PRUNE-COMPARE-AND-
LABEL (see Section 3.2.1).

A more serious issue with β < 1
2 roots in the filtering

process of Zeng and Shen (2022a), which roughly speak-
ing, will perform majority voting over a constant number
of workers. In this regard, an empirical majority size may
deviate far from the population one, thus the pruning fails.
We also note that if we were to increase this constant num-
ber, we would suffer high query complexity. We thus de-
velop a new testing stage that samples a large enough set
of test cases and query the crowd for their majority size. If
less than an ε fraction of the test cases have a small ma-
jority vote size, we can show that the total fraction of such
test cases in the underlying distribution D is smaller than
ε, hence the filtering process correctly filters all the desired
instances except for an ε fraction; this is sufficient to es-
tablish a robust version of the performance guarantee. This

Algorithm 3 Main Algorithm (comparison-equipped)
Require: Parameters α, β, distributions PL and PC , tar-

get error rate ε, confidence δ, noise rate η of Massart
workers, a realizable PAC learner AH.

Ensure: Hypothesis ĥ : X → Y such that with probability
1− δ, errD(ĥ) ≤ ε.

1: Tα,η ← log 1
1−η

(α−αηα−η ), Tβ,η ← log 1
1−η

(β−βηβ−η ), τ ←
8(Tα,η + Tβ,η), δ′ ← δ

τ .

Phase 1:
2: S1 ← PRUNE-COMPARE-AND-LABEL(S1, α, β,

δ′

6 ),
for an instance set S1 of size n√ε/2,δ′/6 from D.

3: h1 ← AH(S1,
√
ε

2 ,
δ′

6 ).

Phase 2:
4: SI ← SEMI-VERIFIED-FILTER(S2, h1, α, β,

δ′

12 ), for
an instance set S2 of size Θ(nε,δ′/12) drawn from D.

5: Let SC be an instance set of size Θ(n√ε,δ′/12) drawn
from D.

6: SAll ← PRUNE-COMPARE-AND-LABEL(SI ∪
SC , α, β, δ

′/12).
7: WI ← {(x, y) ∈ SAll | y 6= h1(x)}, WC ← SAll\WI .
8: Draw a sample set W of size Θ(n√ε/2,δ′/12) from the

distribution 1
2WI + 1

2WC .
9: h2 ← AH(W,

√
ε

2 ,
δ′

6 ).

Phase 3:
10: S3 ← PRUNE-COMPARE-AND-LABEL(S3, α, β, δ

′/6),
for an instance set S3 of size n√ε/2,δ′/6 drawn from D
conditioned on h1(x) 6= h2(x).

11: h3 ← AH(S3,
√
ε

2 ,
δ′

6 ).
return ĥ← Maj(h1, h2, h3).

algorithmic design is presented in SEMI-VERIFIED-FILTER
(see Section 3.2.2).

As a result, we obtain a label-efficient semi-verified crowd-
sourced learning algorithm as presented in Algorithm 3.

3.2.1 PRUNE-COMPARE-AND-LABEL

The comparison-based PAC learning algorithms of Xu et al.
(2017); Zeng and Shen (2022a) aid label efficiency with a
“compare-and-label” approach, which first sorts all the in-
stances in a set S and then query the label of the instances
during binary search. We fortify such method by adding
certain check points for both the “compare” and “label”
steps to ensure that the majority vote is always correct (with
high probability). We summarize the performance guaran-
tees of Algorithms 5 and 6 below.

Lemma 5. Consider Algorithm 5. Given any set of in-
stances S, with probability 1 − 2δ1

3 , the algorithm ei-
ther increases the fraction of Massart workers from β to
(1−η)β

1− (1−η)β
8

, or correctly sorts S.

Lemma 6. Consider Algorithm 6. Assume Ŝ is correctly
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Algorithm 4 PRUNE-COMPARE-AND-LABEL

Require: An instance set S, parameters α, β, δ1.
Ensure: A sorted and labeled set S.

1: Ŝ ← SEMI-VERIFIED-QUICKSORT(S, β, δ1).
2: S ← SEMI-VERIFIED-BINARYSEARCH(Ŝ, α, δ1).

return S.

Algorithm 5 SEMI-VERIFIED-QUICKSORT

Require: An instance set S = {xi}ni=1, β, δ1.
Ensure: A sorted list Ŝ.

1: k1 ← 1
2(1−η)2β2 · log 3006n·logn

δ1
.

2: Apply randomized Quicksort to S: for each pair (x, x′)
being compared, draw a set of k1 workers WC from
PC and do the following:

3: if β ≥ 0.7 or Maj-sizeWC (x, x′) ≥ 1− (1−η)β
4 then

4: Use MajWC (x, x′) as the comparison tag.
5: else
6: Get a verified comparison tag z∗ ← Z∗(x, x′).

Restart Algorithm 1 with PC ← PC|(x,x′,z∗) and

β ← (1−η)β
1− (1−η)β

8

.

7: end if
return Ŝ.

sorted. With probability 1 − δ1
3 , the algorithm either in-

creases the fraction of Massart workers to (1−η)α
1− (1−η)α

8

, or

correctly labels Ŝ, namely, for all (x, y) ∈ S, y = h∗(x).

We further note that comparing to the non-robust algo-
rithm in Zeng and Shen (2022a), PRUNE-COMPARE-AND-
LABEL does not require extra crowd labels or comparison
tags to label S, because once it decides to query the verified
data, it will end up restarting the main algorithm. Thus, the
label and comparison complexity of PRUNE-COMPARE-
AND-LABEL matches that of Zeng and Shen (2022a).

Proposition 7. Consider Algorithm 4. If it does not restart
and |S| ≥ ( 1

δ1
)1/1000 , then with probability 1 − δ1,

it correctly sorts and labels all the instances in S with
O( log|S|

α2 · log log|S|) label queries and O( 1
β2 ·|S| · log2|S|)

comparison tags.

In light of Theorem 23 (i.e. boosting (Schapire, 1990)), the
two weak hypothese h1 and h3 are trained on distributions
D and D3 which are not hard to construct if h2 is given:
D is the original marginal distribution, and D3 can be ob-
tained by rejection sampling. By Assumption 3, drawing a
set of Θ(n√ε,δ′) instances on each distribution respectively
and feeding them to AH gives the following corollary.

Corollary 8. With probability 1− δ′

3 , errD(h1) ≤
√
ε

2 . With
probability 1− δ′

3 , errD3(h3) ≤
√
ε

2 .

3.2.2 SEMI-VERIFIED-FILTER

Algorithm 6 SEMI-VERIFIED-BINARYSEARCH

Require: A sorted instance set Ŝ = {x̂i}ni=1, α, δ1.
Ensure: A labeled set S.

1: tmin ← 1, tmax ← n, k2 ← 32
(1−η)2α2 log 6 logn

δ1
.

2: while tmin < tmax do
3: t← (tmin + tmax)/2. Draw a set of k2 workersWL

from PL.
4: if α ≥ 0.7 or Maj-sizeWL(xt) ≥ 1− (1−η)α

4 then
5: ŷt ← MajWL(xt). If ŷt = 1, then tmax ← t− 1;

else tmin ← t+ 1.
6: else
7: Get a verified label y∗t ← h∗(xt). Restart

Algoirthm 1 with PL ← PL|(xt,y∗t ) and α ←
(1−η)α

1− (1−η)α
8

.

8: end if
9: end while

10: For all t′ > t, ŷt′ ← +1. For all t′ < t, ŷt′ ← −1.
return S = {(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂m, ŷm)}.

A core component of Algorithm 3 is a correct filtering pro-
cess. Awasthi et al. (2017b) achieved this by executing
a Phase 0 that examines the crowd labels for a randomly
drawn instance set. However, this approach does not apply
in the comparison-equipped setting because it relies on two
support instances x−, x+ as reference to identify the infor-
mative instances. To be more concrete, the filtering scheme
incorporates a similar idea to that of “compare-and-label”
in order to achieve label efficiency. Given a large enough
sample set S, the goal is to identify two support instances
x−, x+ that are close enough to the “threshold” where the
labels in S shift. By spending a few label queries to in-
fer the labels of x−, x+, it help to filter a large number of
instances in S by querying pairwise comparisons. This is
because ∀x, [h∗(x−) = −1, x < x−] imply h∗(x) = −1
(similar holds for x+). The pairwise comparisons of any x
with respect to x−, x+ become exceptionally informative.

We hence build on the non-semi-verified filter of Zeng and
Shen (2022a) and integrate a new component, TEST, that
ensures to recover a distribution D′ that is close enough to
D2 even in presence of the adversarial workers. In particu-
lar, we are concerned with two regions, R1 and R2

R1 :=
{
x : Maj-sizePC (x, x−) ≤ 1− β

2

}
,

R2 :=
{
x : Maj-sizePC (x, x+) ≤ 1− β

2

}
, (3.1)

which include any instance x that would form a low-
confidence pair with either support instance x− or x+. Ob-
serve that both x−, x+ are fixed. If the probability mass of
R1 ∪ R2 under distribution D, denoted by D[R1 ∪ R2], is
smaller than ε, it means the filter uses x−, x+ to correctly
identify the instances except for the ε fraction in R1 ∪ R2.
Meanwhile, TEST works on a smaller set of instances than
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Algorithm 7 SEMI-VERIFIED-FILTER

Require: Set of instances S, classifier h with error
errD(h) ∈

[√ε
6 ,
√
ε

2

]
, confidence δ2, parameters α, β.

Ensure: A set SI whose instances are misclassified by h.
1: b← 4√

ε
log 16

δ2
+ ( 24

δ2
)1/1000.

2: Sample uniformly U ⊂ S of b instances. U ←
PRUNE-COMPARE-AND-LABEL(U,α, β, δ2/4).

3: x− ← the rightmost instance of those labeled as −1,
x+ ← the leftmost instance of those labeled as +1.

4: SI ← ∅, Sin ← ∅, N ← 1
β2 log 1

ε .
5: if β < 0.7 then
6: Run TEST (x−, β, δ2/8), TEST (x+, β, δ2/8).
7: end if
8: for x ∈ S\U do
9: ANS← YES.

10: for t = 1, . . . , N do
11: Draw a worker t ∼ PC to obtain the comparison

tag Zt(x, x−). If Zt(x, x−) = {x < x−}, then
Zt(x, x

+)← {x < x+}, else query Zt(x, x+).
12: If t is even, then continue to the next iteration.
13: Filtering: If

[
Maj(Z1:t(x, x

−)) = {x < x−} and
h(x) = −1

]
or
[
Maj(Z1:t(x, x

+)) = {x > x+}
and h(x) = 1

]
, then ANS← NO and break.

14: end for
15: If Maj

(
Z1:N (x, x−)

)
= {x > x−} and

Maj
(
Z1:N (x, x+)

)
= {x < x+} then ANS← NO

and Sin ← Sin ∪ {x}.
16: If ANS = YES, then SI ← SI ∪ {x}.
17: end for
18: Sin ← PRUNE-COMPARE-AND-LABEL(Sin, δ2/4, α, β).
19: SI ← SI ∪ {x : (x, y) ∈ U ∪ Sin and y 6= h(x)}.

return SI .

what SEMI-VERIFIED-FILTER is expected to work on. This
is a key design to guarantee that the total comparison com-
plexity does not blow up.

Lemma 9. If Algorithm 8 terminates without restarting Al-
gorithm 3, we have the probability mass D[R1 ∪ R2] ≤ ε

4

with probability 1 − δ2
4 . In addition, the comparison com-

plexity is O
(

1
εβ2 log

(
1
δ2

)
log
(

1
εδ2

))
.

SEMI-VERIFIED-FILTER ensures that in Phase 2, the
learner draws a set of Θ(n√ε,δ′) instances from a distri-
bution D′ that is a good simulation of D2, which suffices
to learn a good hypothesis h2.

Lemma 10. Consider Phase 2 of Algorithm 3. With prob-
ability 1− δ′

3 , errD2
(h2) ≤

√
ε

2 .

Now we have three hypotheses h1, h2, h3 that satisfy the
requirement for boosting; this suffices to produce a hypoth-
esis ĥ with the desired PAC guarantee. We further note
that each pruning step helps to remove a significant fraction
of the adversarial workers but only a small fraction of the
Massart workers. Hence, our main theorem, Theorem 11,

Algorithm 8 TEST

Require: An instance x′, parameter β, confidence δ2.
1: Draw a set Sr of 4

ε log 8
δ2

instances from D.

2: N ← 32
((1−η)β)2 · log( 32|Sr|

δ2
).

3: for x ∈ Sr do
4: Draw a set ofN workersW from PC and obtain the

comparison tags on (x, x′).
5: if Maj-sizeW(x, x′) < 1− (1−η)β

4 then
6: Get a verified comparison tag z∗ ← Z∗(x, x′).
7: Restart Algorithm 1 with PC ← PC|(x,x′,z∗) and

β ← (1−η)β
1− (1−η)β

8

.

8: end if
9: end for

follows. See Appendix C for the full proof.

Theorem 11 (Comparison-equipped learning). Suppose
that Assumptions 2, 3, and 4 are satisfied. Given any
α, β, ε, δ ∈ (0, 1), assume η < min(α,β)

16 . Denote Tα,η =

log 1
1−η

(α−αηα−η ) and Tβ,η = log 1
1−η

(β−βηβ−η ). The following
holds with probability 1 − δ. There exists an algorithm
(Algorithm 3) that runs in O(poly(d, 1ε , Tα,η, Tβ,η,

1
α ,

1
β ))

time and learns H by returning a hypothesis h : X → Y
with errD(h) ≤ ε. In addition, mL = T 2

α,η

(
Tα,η +

Tβ,η
)
· Õ
(

log
d+(Tα,η+Tβ,η)

1
δ

ε

)
, mC = T 2

β,η · Õδ
((
Tα,η +

Tβ,η
) 1001

1000 · dε
)
, and mV = Tα,η + Tβ,η . Therefore,

ΛL = õ
(
T 2
α,η(Tα,η + Tβ,η)

)
and ΛC = Õδ

(
T 2
β,η

(
Tα,η +

Tβ,η
) 1001

1000
)

when ε ∈
(
0, (log d)−4

)
. In particular, when α

and β are constants, we have ΛL = o(1), ΛC = O(1), and
mV = O(1).

4 CONCLUSION

In this paper, we studied the problem of semi-verified learn-
ing threshold functions from the crowd. We showed that
when the majority of the crowd workers are adversarial
and the rest behave as Massart noise, it is still possible
to achieve PAC guarantees without distributional assump-
tions. In addition, our algorithms enjoy both query and
label-efficiency, and run in polynomial time.
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Dražen Prelec, H Sebastian Seung, and John McCoy. A
solution to the single-question crowd wisdom problem.
Nature, 541(7638):532–535, 2017.

Prasad Raghavendra and Morris Yau. List decodable learn-
ing via sum of squares. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, pages 161–
180, 2020a.

Prasad Raghavendra and Morris Yau. List decodable sub-
space recovery. In Proceedings of the 33rd Annual Con-
ference on Learning Theory, pages 3206–3226, 2020b.

Wenbo Ren, Jia Liu, and Ness B. Shroff. The sample com-
plexity of best-k items selection from pairwise compar-
isons. CoRR, abs/2007.03133, 2020.

Frank Rosenblatt. The Perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6):386–408, 1958.

Robert E. Schapire. The strength of weak learnability. Ma-
chine Learning, 5:197–227, 1990.

Nihar B. Shah and Martin J. Wainwright. Simple, robust
and optimal ranking from pairwise comparisons. Journal
of Machine Learning Research, 18:199:1–199:38, 2017.

Nihar B. Shah, Sivaraman Balakrishnan, Aditya Guntuboy-
ina, and Martin J. Wainwright. Stochastically transitive
models for pairwise comparisons: Statistical and compu-
tational issues. In Proceedings of the 33nd International
Conference on Machine Learning, pages 11–20, 2016.

Nihar B. Shah, Sivaraman Balakrishnan, and Martin J.
Wainwright. Feeling the bern: Adaptive estimators for
bernoulli probabilities of pairwise comparisons. IEEE
Transactions on Information Theory, 65(8):4854–4874,
2019.

Robert H. Sloan. Types of noise in data for concept learn-
ing. In Proceedings of the First Annual Workshop on
Computational Learning Theory, pages 91–96, 1988.

Jacob Steinhardt, Gregory Valiant, and Moses Charikar.
Avoiding imposters and delinquents: Adversarial crowd-
sourcing and peer prediction. In Proceedings of the 30th
Annual Conference on Neural Information Processing
Systems, pages 4439–4447, 2016.

Alexander B. Tsybakov. Optimal aggregation of classifiers
in statistical learning. The Annals of Statistics, 32(1):
135–166, 2004.

Leslie G. Valiant. A theory of the learnable. Communica-
tions of the ACM, 27(11):1134–1142, 1984.

Jennifer Wortman Vaughan. Making better use of the
crowd: How crowdsourcing can advance machine learn-
ing research. Journal of Machine Learning Research,
18:193:1–193:46, 2017.

Yichong Xu, Hongyang Zhang, Aarti Singh, Artur
Dubrawski, and Kyle Miller. Noise-tolerant interactive
learning using pairwise comparisons. In Proceedings of
the 31st Annual Conference on Neural Information Pro-
cessing Systems, pages 2431–2440, 2017.

Shiwei Zeng and Jie Shen. Efficient PAC learning from
the crowd with pairwise comparisons. In Proceedings of
the 39th International Conference on Machine Learning,
pages 25973–25993, 2022a.

Shiwei Zeng and Jie Shen. List-decodable sparse mean
estimation. CoRR, abs/2205.14337, 2022b.

Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Effi-
cient active learning of sparse halfspaces with arbitrary
bounded noise. In Proceedings of the 34th Annual
Conference on Neural Information Processing Systems,
pages 7184–7197, 2020.



Semi-Verified PAC Learning from the Crowd

A OMITTED PROOF OF THEOREM 1

Proof. Recall that in the agnostic model, the adversary can flip an arbitrary (1− α)-fraction of the labels in an adversarial
manner while retaining the marginal distribution on X . It is shown in Kalai et al. (2008); Diakonikolas et al. (2021) that if
Hhs is the class of homogeneous halfspaces and D is the standard Gaussian, then there exists a learning algorithm which
takes as input θ(dpoly(1/ε)) samples generated in such a way, runs in time O((d/ε)poly(1/ε)), and returns a hypothesis with
error rate less than (1− α) + ε with overwhelming probability.

Now we note that in our crowdsourcing model, each instance is assigned one worker which is randomly chosen from the
pool and may be adversarial with probability 1− α, while otherwise he is perfect. Therefore, the labels gathered in such a
way satisfy the condition of agnostic noise model, and we apply the above results directly which gives Theorem 1.

B OMITTED PROOF FOR THEOREM 4

The key idea of the proof is the following: we show that with the carefully designed pruning approach, the adversarial
workers either corrupt the labels, under which a noticeable fraction of them will be pruned away and Algorithm 1 will
be restarted with the cleaner pool of workers, or they provide labels in such a way that the majority vote is correct and
Algorithm 1 is exactly mirroring the easier case where the majority is correct. Our goal here is to show that in the former
case, the algorithm must make significant progress such that it obtains a pool of workers with most of them, say 70%, are
Massart workers, for which we show that with high probability, a constant labeling overhead suffices to guarantee PAC
learnability. Therefore, at the technical level, our algorithm and analysis are different from Awasthi et al. (2017b) in two
aspects: first, we draw new analysis to handle Massart workers when bounding the restarting time, and second, we show
that a majority of Massart workers also suffices under the condition that the Massart noise rate η is not large.

Lemma 12. Consider the PRUNE-AND-LABEL subroutine in Algorithm 1. With probability 1 − δ1, the algorithm either
increases the fraction of Massart workers from α to (1−η)α

1− (1−η)α
8

, or correctly labels Ŝ, namely, for all (x, y) ∈ S, y = h∗(x).

Proof. Recall that Algorithm 2 queries a setWL of k0 = 1
2(1−η)2α2 · log 1000m

δ1
workers for labeling each instance. Since

1− η ∈ ( 1
2 , 1], by applying the Chernoff bound, we have

Pr
(∣∣Maj-sizePL(x)−Maj-sizeWL(x)

∣∣ ≥ (1− η)α

8

)
≤ 2 · e−2k0·(

α
16 )

2

≤ δ1
1000m

.

Taking the union bound over the labeling of log n instances, we have that with probability at least 1 − δ1, for all x ∈ S,∣∣Maj-sizePL(x)−Maj-sizeWL(x)
∣∣ ≤ (1−η)α

8 . Thus, if Maj-sizeWL(x) ≥ 1 − (1−η)α
4 , we have the population majority

size Maj-sizePL(x) ≥ 1 − 3(1−η)α
8 > 1 − (1 − η)α with high probability, indicating that the majority voting is correct,

i.e. MajWL(x) = h∗(x). As a result, if the algorithm finishes without restarting, we are sure that ∀(x, y) ∈ S, y = h∗(x).
On the flip side, if the algorithm prunes due to Maj-sizeWL(x) < 1− (1−η)α

4 , we have Maj-sizePL(x) < 1− (1−η)α
8 with

high probability, indicating that if we query a verified label for x, it is guaranteed that more than a (1−η)α
8 -fraction of the

workers can be pruned (among which only ηα could be Massart workers), and α← (1−η)α
1− (1−η)α

8

.

Proposition 13. Consider Algorithm 2. If it does not restart, then with probability 1 − δ1, it correctly labels all the
instances in S with O(m logm

α2 ) label queries.

Proof. Due to Lemma 12, for any input set S of size m, the total number of crowd labels is k0 · O(|S|) =

O

(
1
α2 log

(
m
δ1

)
·m
)

= O
(
m logm
α2

)
.

Lemma 14. Consider Algorithm 1. ∀α ∈ (0, 1], if η < α
16 , then with probability 1 − δ, Algorithm 1 will restart O(Tα,η)

times. In addition, the required number of verified labels from OT is mV = O(Tα,η).

Proof. By Lemma 12, each time we get a verified label y∗ from OT , we prune a (1−η)α
8 fraction of the workers with

high probability. Since it is not guaranteed that all Massart workers would give the correct labels, some of them would be
pruned. Given that the pool is large, with probability 1− δ/τ , at most an η fraction of the Massart workers will be pruned.
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Denote by αi the fraction of Massart workers and Ni the total number of workers in the pool after i prunings. Clearly, we
have α0 = α. Note that

αiNi ≥ αi−1Ni−1 · (1− η) ≥ · · · ≥ α0N0 · (1− η)i.

Then, we have

αK ≥
α0N0 · (1− η)

K

N0 − (1−η)α0

8 ·N0 − (1−η)α1

8 ·N1 − · · · − (1−η)αK−1

8 ·NK−1

=
α0N0 · (1− η)

K

N0 − (1−η)α0N0

8 ·
(
1 + (1− η) + · · ·+ (1− η)K

)
=

α0N0 · (1− η)
K

N0 − (1−η)α0N0

8 · 1−(1−η)
K+1

η

=
8η · α0 · (1− η)

K

8η − α0(1− η) + α0(1− η)K+2
(B.1)

Consider parameters αi and η. Obviously, it must be satisfied that

η <
(1− η)αi

8
∀i ≥ 0,

as otherwise, more fraction of Massart workers would be removed than that of the adversarial workers, i.e. the fraction of
Massart workers in the pool decreases. Since αi ≥ α0 for any i ≥ 0, and 1− η ∈ ( 1

2 , 1], it only requires η < α0

16 .

From Eq. (B.1), to pick a sufficient number of verified labels K that increases αK to any given constant C ∈ [0.7, 1], it
suffices to choose

K ≥ log(1−η)
Cα0(1− η)− 8Cη

Cα0(1− η)2 − 8ηα0
.

Due to C ∈ [0.7, 1], 1− η ∈ ( 1
2 , 1], α0 < 1, it requires at most

O

(
log 1

1−η

α0 − ηα0

α0 − η

)
= O

(
T (α0, η)

)
verified label from the trusted oracle OT for αK to surpass 0.7. By union bound, with probability at least 1− δ, it requires
at most O(Tα,η) verified labels to increase the fraction of Massart workers such that they form a strong majority, where
the algorithm no longer prunes and must return the desired hypothesis. Therefore, the main algorithm only restarts for
O(Tα,η) times.

Proof of Theorem 4. Given that in all three phases, Algorithm 1 gathers a sample of sizeO(m√ε,δ′) and is correctly labeled
with high probability. In addition, the algorithm is restarted at most O(Tα,η) times (Lemma 14). Then, by union bound,
Assumption 3, Lemma 24 and Theorem 23, we conclude that with probability at least 1 − δ, Algorithm 1 returns h such
that errD(h) ≤ ε.

The number of required verified labels from OT is mV = O(Tα,η) by Lemma 14. It remains to show the label complexity
and label overhead. From Lemma 4.9 of Awasthi et al. (2017b)and Proposition 13, it requires

mL = O

(
Tα,η ·mε,δ′ + Tα,η ·

1

ε
· log

1

δ′
· log

1

εδ′
+ Tα,η ·

m√ε,δ′ logm√ε,δ′

α2

)
(B.2)

label queries from the crowd, where we recall that δ′ = δ
8Tα,η

as defined in Algorithm 1. This combined with the definition

of mε,δ (see Eq. (1.1)) gives the announced label complexity of Õ(
dTα,η
εα2 · log 1

δ ).

Finally, the calculation of labeling overhead follows from the definition, i.e.

ΛL =
mL

mε,δ
= O

(
Tα,η log Tα,η + Tα,η log2 Tα,η + Tα,η ·

m√ε,δ′ logm√ε,δ′

α2 ·mε,δ

)

= O

(
Tα,η log2 Tα,η +

Tα,η
α2

√
ε log d · log2 Tα,η

)
.
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Thus, when ε < log−2 d, the labeling overhead reads as O(
Tα,η
α2 log2 Tα,η), which is upper bounded by a constant as far as

α is a small constant. The proof is complete.

C OMITTED PROOF FOR THEOREM 11

Lemma 15 (Restatement of Lemma 5). Consider Algorithm 5. Given any set of instances S, with probability 1− 2δ1
3 , the

algorithm either increases the fraction of Massart workers from β to (1−η)β
1− (1−η)β

8

, or correctly sorts S.

Proof. Given that k1 = 1
2β2 · log 3006n·logn

δ1
in Algorithm 5. By the guarantee of celebrated algorithm RANDOMIZED

QUICKSORT, with probability 1− 1
nc , the total number of pairs that needs to be compared is (c+ 2)n log n. By the sample

size of input set S and setting c = 1000, with probability 1− δ1
3 , (c+ 2)n log n = 1002n log n. In addition, similar to the

proof of 6, we have Maj-sizePC (x, x′) = E[Maj-sizeWC (x, x′)] for any (x, x′), and

Pr

1002n logn⋃
l=1

[∣∣Maj-sizePC (x, x′)l −Maj-sizeWC (x, x′)l
∣∣ ≤ (1− η)β

8

] ≤ δ1
3
.

In other words, with probability 1 − δ1
3 , the following is guaranteed. If Maj-sizeWC (x, x′) ≥ 1 − (1−η)β

4 , we have the
population majority size Maj-sizePC (x, x′) ≥ 1− 3(1−η)β

8 > 1− (1− η)β, indicating that the majority voting is correct,
i.e. MajWC (x, x′) = Z∗(x, x′). As a result, if the algorithm never restarts, Ŝ is correctly sorted according to Z∗. On the
other hand, if the algorithm prunes because Maj-sizeWC (x, x′) < 1− (1−η)β

4 , we have Maj-sizePC (x, x′) ≥ 1− (1−η)β
8

with high probability, meaning that by querying a verified comparison for (x, x′) we can remove at least a (1−η)β
8 -fraction

of the workers (with at most ηβ being Massart) and update β ← (1−η)β
1− (1−η)β

8

.

Lemma 16 (Restatement of Lemma 6). Consider Algorithm 6. Assume Ŝ is correctly sorted. With probability 1− δ1
3 , the

algorithm either increases the fraction of Massart workers to (1−η)α
1− (1−η)α

8

, or correctly labels Ŝ, namely, for all (x, y) ∈ S,

y = h∗(x).

Proof. The proof follows the same pipeline as that of Lemma 12, with parameter k2 for SEMI-VERIFIED-BINARYSEARCH
algorithm and the fact that binary search only queries labels on at most log n instances.

Proposition 17 (Restatement of Proposition 7). Consider Algorithm 4. If it does not restart and |S| ≥ ( 1
δ1

)1/1000 , then
with probability 1 − δ1, it correctly sorts and labels all the instances in S with O( logn

α2 · log log n) label queries and
O( 1

β2 · n log2 n) comparison tags.

Proof. Due to Lemma 15 and 16, for any input set S of size n, the total number of crowd labels is

k2 ·O(log|S|) = O

(
1

α2
log

(
log n

δ1

)
· log n

)
= O

(
log n

α2
· log log n

)
,

and the total number of crowd comparison tags is

k1 ·O
(
|S| log|S|

)
= O

(
1

β2
· log

n · log n

δ1
· n log n

)
= O

(
1

β2
· n log2 n

)
.

Corollary 18 (Restatement of Corollary 8). With probability 1− δ′

3 , errD(h1) ≤
√
ε

2 . With probability 1− δ′

3 , errD3
(h3) ≤

√
ε

2 .

Proof. By drawing a sample S1 of n√ε/2,δ′/6 from D and labeling it by PRUNE-COMPARE-AND-LABEL, with probability
at least 1− δ′

6 , S1 is labeled correctly according to h∗ (Proposition 17). Furthermore, we note that n√ε/2,δ′/6 ≥ m√ε/2,δ′/6.

By Assumption 3, errD(h1) ≤
√
ε

2 with probability 1− δ′

3 .
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Similarly, in Phase 3 of Algorithm 3, by rejection sampling we can successfully sample a set S3 of n√ε/2,δ′/6 from D3.

Again by Proposition 7 and Assumption 3, errD3(h3) ≤
√
ε

2 with probability 1− δ′

3 .

Lemma 19. ∀α, β ∈ (0, 1], with probability 1−δ, Algorithm 3 will restartO
(
Tα,η+Tβ,η

)
times. In addition, the required

number of verified labels from OT is O(Tα,η) and that of the verified comparison tags is O(Tβ,η).

Proof. The deduction for removing adversarial workers from the pool of workers who provide comparison tags is similar
to the one who provide labels. By union bound, with probability at least 1− δ, it requires at most O(Tα,η) verified labels
and O(Tβ,η) verified comparison tags to increase the fraction of Massart workers such that they form a strong majority,
where the algorithm no longer prunes and must return the desired hypothesis. Therefore, the main algorithm only restarts
for O(Tα,η + Tβ,η) times.

C.1 Performance Guarantee of Phase 2

Lemma 20 (Restatement of Lemma 9). If Algorithm 8 terminates without restarting Algorithm 3, we have the probability
mass D[R1 ∪R2] ≤ ε

4 with probability 1− δ2
4 . In addition, the comparison complexity is O

(
1
εβ2 log

(
1
δ2

)
log
(

1
εδ2

))
.

Proof. Recall that by definition, R1 := {x : Maj-sizePC (x, x−) ≤ 1− β
2 } and R2 := {x : Maj-sizePC (x, x+) ≤ 1− β

2 }.
Without loss of generality, we prove the lemma for x−. We remark that the following guarantee holds for x+ as well.

For any instance x ∈ Sr, let

`i =

{
1, if worker i agrees with MajPC (x, x−),
0, otherwise.

(C.1)

Since we query a set W of N = 32
β2 · log

( 32|Sr|
δ2

)
workers from the crowd to compare (x, x−). Note that

Maj-sizePC (x, x−) = E[Maj-sizeW(x, x−)] = µ, which is also the probability that `i = 1. Therefore, by Hoeffding’s
inequality we have

Pr

[
Maj-sizeW(x, x−) ≥ 1− (1− η)β

4

]
≤ Pr

[∣∣∣Maj-sizeW(x, x−)−Maj-sizePC (x, x−)
∣∣∣ ≥ (1− η)β

8

]

= Pr


∣∣∣∣∣∣ 1

N

N∑
i=1

`i − µ

∣∣∣∣∣∣ ≥ (1− η)β

8


≤ 2 · e−

2N·( β16 )
2

(1−0)2

≤ 2 · e−2·
32
β2
·log

(
32|Sr|
δ2

)
·( β16 )

2

≤ δ2
16|Sr|

.

By union bound, with probability 1 − δ2
16 , if there exists some x ∈ R1 in set Sr, the algorithm detects and removes it. In

other words, if TEST terminates without restarting Algorithm 3, the probability mass D[R1] ≤ ε
8 with probability 1− δ2

8 .
Therefore, if Algorithm 7 reaches its Step 7, we have D[R1 ∪R2] ≤ ε

4 with probability at least 1− δ2
4 .

In addition, the total number of comparison tags in TEST is

8

ε
log

16

δ2
· 32

β2
· log

(8|Sr|
δ2

)
= O

( 1

εβ2
log

1

δ2
log
( 1

εδ2

))
. (C.2)

Lemma 21 (Restatement of Lemma 10). Consider Phase 2 of Algorithm 3, with probability 1− δ′

3 , errD2
(h2) ≤

√
ε

2 .

Proof. We acknowledge that some of the deductions in this proof follow directly from that of Awasthi et al. (2017b) and
are included for completeness.
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Let R := R1 ∪ R2. By Lemma 9 and δ2 = δ′

12 , with probability at least 1 − δ′

12 , D[R] ≤ ε
4 . We first argue that for any

x /∈ R, SEMI-VERIFIED-FILTER does a good job to simulate DI . Consider distribution D′ that has equal probability on
the distributions induced by W I and WC and let d′(x) denote the density of point x in this distribution. Likewise let d2(x)
be the density of points in D2. We want to show that for any x /∈ R, d′(x) = Θ(d2(x)).

Recall that errD(h1) = Θ(
√
ε

2 ). Let d(x), dC(x), and dI(x) be the density of instance x in distributions D, DC , and DI ,
respectively. Note that, for any x such that h1(x) = h∗(x), we have d(x) = dC(x)(1 − 1

2

√
ε). Similarly, for any x such

that h1(x) 6= h∗(x), we have d(x) = dI(x) 1
2

√
ε. NC(x), NI(x), MC(x) and MI(x) be the number of occurrences of x in

the sets SC , SI , WC and WI , respectively. For any x, there are two cases:

If h1(x) = h∗(x): Then, there exist absolute constants c1 and c2 according to Lemma 26, such that

d′(x) =
1

2
E

[
MC(x)

|WC |

]
≥ E[MC(x)]

c1 ·m√ε
≥ E[NC(x)]

c1 ·m√ε
=
|SC | · d(x)

c1 ·m√ε

=
|SC | · dC(x) · (1− 1

2

√
ε)

c1 ·m√ε
≥ c2dC(x) =

c2d2(x)

2
,

where the second and sixth transitions are by the sizes of WC and |SC | and the third transition is by the fact that if
h(x) = h∗(x), MC(x) > NC(x).

If h1(x) 6= h∗(x): Then, there exist absolute constants c′1 and c′2 according to Lemma 26, such that

d′(x) =
1

2
E

[
MI(x)

|WI |

]
≥ E[MI(x)]

c′1 ·m√ε
≥ E[NI(x)]

c′1 ·m√ε
≥

1
2 d(x)|S2|
c′1 ·m√ε

=
1
2 dI(x) 1

2

√
ε · |S2|

c′1 ·m√ε
≥ c′2dI(x) =

c′2d2(x)

2
,

where the second and sixth transitions are by the sizes ofWI and |S2|, the third transition is by the fact that if h(x) 6= h∗(x),
MI(x) > NI(x), and the fourth transition holds by Lemma 25.

For x ∈ R, we have D[R] ≤ ε
4 . Therefore, D2[R] ≤

√
ε

4 because D =
√
ε

2 DI + (1 −
√
ε

2 )DC and D2 = 1
2DI + 1

2DC .
As a result, except for a

√
ε

4 fraction under D2, ∀x d′(x) ≥ Θ(d2(x)), meaning that D′ is a good simulation of D2. By

Lemma 26, since
∣∣∣W ∣∣∣ = Θ(n√ε, δ′12

), applying the super-sampling lemma (Lemma 24) we know that errD2
(h2) ≤ O(

√
ε

2 )

with probability 1− δ′

3 .

Theorem 22 (Restatement of Theorem 11). Given any α, β, ε, δ ∈ (0, 1), assume η < min(α,β)
16 . Denote Tα,η =

log 1
1−η

(α−αηα−η ) and Tβ,η = log 1
1−η

(β−βηβ−η ). The following holds with probability 1 − δ. There exists an algorithm (Algo-

rithm 3) that runs in O(poly(d, Tα,η, Tβ,η,
1
ε )) time and returns a hypothesis h : X → Y with errD(h) ≤ ε. In addition,

mL =
Tα,η+Tβ,η

α2 · Õ
(

log
d+(Tα,η+Tβ,η)

1
δ

ε

)
, mC = 1

β2 · Õ
((
Tα,η + Tβ,η

) 1001
1000 · nε,δ

)
, and mV = O(Tα,η + Tβ,η). There-

fore, ΛL = õ
(Tα,η+Tβ,η

α2

)
and ΛC = Õδ

(
1
β2

(
Tα,η + Tβ,η

) 1001
1000
)

when ε ∈
(
0, (log d)−4

)
. In particular, when α and β are

constants, ΛL = o(1), ΛC = O(1), and mV = O(1).
Remark 8. The above theorem presents tighter bounds for mL,mC ,ΛL,ΛC than that in Theorem 11. Notice that
1
α = O(Tα,η) and 1

β = O(Tβ,η). Hence, Theorem 11 in our main paper is more general. In addition, the quantities
Tα,η, Tβ,η,

1
α ,

1
β , η are indepedent of the dimension d, the desired error rate ε, and the confidence parameter δ. Hence,

when consider mV and the overheads, our algorithm is query-efficient.

Proof. Following Corollary 18, Lemma 19 and 21, if the main algorithm outputs a hypothesis h without restarting, we
have the following guarantees with probability 1 − δ: (i) errD(h1) ≤

√
ε

2 ; errD2(h2) ≤
√
ε

2 ; errD3(h3) ≤
√
ε

2 hold
simultaneously; (ii) the algorithm queries at most O(Tα,η) verified labels and O(Tβ,η) verified comparison tags from OT .
Applying Theorem 23, the hypothesis ĥ returned by Algorithm 1 is such that errD(ĥ) ≤ ε with probability 1− δ.

In Lemma 19, we show that the success of our pruning scheme crucially relies on a condition that η < α
c and η < β

c

for some large enough constant c > 0. Set c = 16. We require η < min(α,β)
16 for the guarantees in Theorem 11 to hold.

Moreover, mV = O(Tα,η + Tβ,η).



Shiwei Zeng, Jie Shen

It remains to show the label and comparison compleixty, mL,mC , and corresponding overheads ΛL,ΛC . The label
complexity follows from Proposition 17 by setting n = n√ε,δ′ and the fact that main algorithm is only restarted by a total
of O(Tα,η + Tβ,η) times. Note that O( 1

δ1
) = O( 1

δ2
) = O( 1

δ′ ) = O((Tα,η + Tβ,η) · 1δ ). We have

mL = (Tα,η + Tβ,η) ·O
(

log n√ε,δ′

α2
· log log n√ε,δ′

)
=
Tα,η + Tβ,η

α2
· Õ
(

log
d+ (Tα,η + Tβ,η) 1

δ

ε

)
.

On the other hand, the comparison complexity is a summation of the results from Lemma 20 and that of Zeng and Shen
(2022a),

mC = (Tα,η + Tβ,η) ·O
(
n√ε,δ′

β2
· log2 n√ε,δ′ + nε,δ′ +

1

εβ2
log
( 1

δ′

)
log
( 1

εδ′

))

=
Tα,η + Tβ,η

β2
·O
(
d log 1

ε +
(
(Tα,η + Tβ,η) 1

δ

) 1
1000 + log

(
(Tα,η + Tβ,η) 1

δ

)
·
(

log 1
ε + log(Tα,η + Tβ,η) 1

δ

)
ε

)

=
1

β2
· Õ
(

(Tα,η + Tβ,η)
1001
1000 ·

d+
(
1
δ

) 1
1000

ε

)
=

1

β2
· Õ
((
Tα,η + Tβ,η

) 1001
1000 · nε,δ

)
These in allusion to mε,δ = K ·

(
1
ε (d log(1/ε) + log(1/δ)

)
immediately give the overheads as follows:

ΛL = O

(
Tα,η + Tβ,η

α2
·

log n√ε,δ′

mε,δ
· log log n√ε,δ′

)
≤ Tα,η + Tβ,η

α2
· ε

d+ log(1/δ)
· Õ
(

log
d+

(
Tα,η + Tβ,η

)
1
δ

ε

)
=
Tα,η + Tβ,η

α2
log
(
Tα,η + Tβ,η

)
· ε
d
· Õ
(

log
d

ε

)
,

and

ΛC =
Tα,η + Tβ,η

β2
·O

(
n√ε,δ′

mε,δ
· log2 n√ε,δ′ +

nε,δ′

mε,δ
+

1
ε log

(
1
δ′

)
log
(

1
εδ′

)
mε,δ

)

≤ Tα,η + Tβ,η
β2

·O

(
√
ε ·
d log 1

ε +
((
Tα,η + Tβ,η

)
1
δ

) 1
1000

d log 1
ε + log 1

δ

· log2

(
d+

(
Tα,η + Tβ,η

)
1
δ

ε

)

+
d log 1

ε +
((
Tα,η + Tβ,η

)
1
δ

) 1
1000

d log 1
ε + log( 1

δ )
+

log
((
Tα,η + Tβ,η

)
1
δ

)
log
((
Tα,η + Tβ,η

)
1
εδ

)
d log 1

ε + log 1
δ

)

≤ 1

β2

(
Tα,η + Tβ,η

) 1001
1000

log2
(
Tα,η + Tβ,η

)
·O

(
√
ε ·
d log 1

ε +
(
1
δ

) 1
1000

d log 1
ε + log 1

δ

· log2

(
d+ 1

δ

ε

)

+
d log 1

ε +
(
1
δ

) 1
1000

d log 1
ε + log( 1

δ )
+

log
(
1
δ

)(
log 1

ε + log 1
δ

)
d log 1

ε + log 1
δ

)
.

Recall that by the definition of nε,δ and mε,δ in Section 1.4, we have mε,δ = Θ(nε,δ) = Θ(dε log 1
ε ) when δ is a constant.

In this case, we can see that

ΛC ≤
1

β2

(
Tα,η + Tβ,η

) 1001
1000

log2
(
Tα,η + Tβ,η

)
·Oδ

(√
ε · log2 d

ε
+ 2
)
.

When ε ∈
(
0, (log d)−4

)
, ΛC = Õδ

(
1
β2

(
Tα,η +Tβ,η

) 1001
1000

)
. In addition, ΛL = o

(
Tα,η+Tβ,η

α2 · log(Tα,η +Tβ,η)
)

, because
ΛL goes to 0 when ε goes to 0.
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Theorem 23 (Boosting, Schapire (1990)). For any p < 1
2 and distributionD, consider three classifiers h1(x), h2(x), h3(x)

satisfying the following. 1) errD(h1) ≤ p; 2) errD2
(h2) ≤ p where D2 := 1

2DC + 1
2DI , DC denotes the distribution D

conditioned on {x : h1(x) = h∗(x)}, and DI denotes D conditioned on {x : h1(x) 6= h∗(x)}; 3) errD3
(h3) ≤ p where

D3 is D conditioned on {x : h1(x) 6= h2(x)}. Then errD(Maj(h1, h2, h3)) ≤ 3p2 − 2p3.

Lemma 24 (Robust Super-Sampling Lemma, Lemma 4.12 in Awasthi et al. (2017b)). Given a hypothesis classH consider
any two discrete distributions D and D′ over X such that except for an ε fraction of the mass under D, we have that for
all x, d′(x) ≥ c · d(x) for an absolute constant c > 0 and both distributions are labeled according to h∗ ∈ H. There exists
a constant c′ > 1 such that for any ε, δ, with probability 1 − δ over a labeled sample set S of size c′mε,δ drawn from D′,
AH(S) has error of at most 2ε with respect to D.

Lemma 25 (Lemma 14 in Zeng and Shen (2022a)). Consider Algorithm 7. Assume that the subset U is correctly labeled.
Consider any given instance x ∈ S2 except for an ε

2 -fraction, we have the following guarantee. If h(x) = h∗(x), it will be
added to SI with probability at most 1

4

√
ε; if h(x) 6= h∗(x), it goes to SI with probability at least 4

7 .

Proof. First, for any instance x ∈ Sin ∪ U , the guarantee follows from that of PRUNE-COMPARE-AND-LABEL.

Now consider any instance x ∈ S\{Sin ∪U}. Recall that Lemma 9 guarantees the probability mass D[R1 ∪R2] ≤ ε
4 with

probability 1− δ2
4 . Given that the input size of S is Θ(nε,δ2), with probabiltiy at least 1− δ2

12 , the fraction of the instances
x ∈ S2 that falls in regionR1∪R2 is less than ε

2 . Therefore, at least 1− ε
2 fraction of the instances in S falls outsideR1∪R2

such that Maj-sizePC (x, x−) ≥ 1− β
2 and Maj-sizePC (x, x+) ≥ 1− β

2 (Eq. (3.1)). For these instances, we can consider
that the majority is correct. Now if x is outside the interval [x−, x+], when β < 0.7, Maj-sizePC (x, x′) ≥ 1

2 +Θ(1) which
suffices for the filtering scheme from Awasthi et al. (2017b) to work; when β ≥ 0.7, lemma follows from that of Zeng and
Shen (2022a). If x falls into the interval [x−, x+], the probability that it will be added to SI but h(x) = h∗(x), or it will
not be added to SI but h(x) 6= h∗(x) are both less than 1

4

√
ε. The proof is complete.

Lemma 26 (Lemma 4.7 in Awasthi et al. (2017b)). Consider Algorithm 1. With probability at least 1−exp(−Ω(m√ε,δ′)),
W I , WC and SI all have size Θ(m√ε,δ′). Consider Algorithm 3. With probability at least 1 − exp(−Ω(n√ε,δ′)), W I ,
WC and SI all have size Θ(n√ε,δ′).

Proof. Notice that in both Algorithm 1 and 3, we have the input sample size mε,δ′ , nε,δ′ lower bounded by Ω(mε,δ′), the
lemma follows from Lemma 4.7 of Awasthi et al. (2017b).

Proposition 27 (Proposition 4 in Zeng and Shen (2022a)). Suppose α ≥ 0.7, β ≥ 0.7. Consider the PRUNE-COMPARE-
AND-LABEL algorithm, i.e. Algorithm 4. If |S| ≥ ( 3

δ )1/1000, then with probability at least 1 − δ, it correctly sorts and
labels all the instances in S. The label complexity is O

(
log|S| · log log|S|

)
, and the comparison complexity is given by

O
(
|S| · log2|S|

)
.

Theorem 28 (Theorem 8 in Zeng and Shen (2022a)). Suppose α ≥ 0.7, β ≥ 0.7. With probability 1 − δ, Algorithm 3
runs in time poly(d, 1ε ) and returns a classifier h ∈ H with error rate errD(h) ≤ ε. In addition, the label complexity is

O
(

log n√ε,δ · log log n√ε,δ

)
, and the comparison complexity is O

(
n√ε,δ log2 n√ε,δ + nε,δ

)
.
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