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Abstract

One common approach to detecting change-
points is minimizing a cost function over
possible numbers and locations of change-
points. The framework includes several well-
established procedures, such as the penalized
likelihood and minimum description length.
Such an approach requires finding the cost
value repeatedly over different segments of the
data set, which can be time-consuming when
(i) the data sequence is long and (ii) obtain-
ing the cost value involves solving a non-trivial
optimization problem. This paper introduces a
new sequential updating method (SE) to find
the cost value effectively. The core idea is
to update the cost value using the information
from previous steps without re-optimizing the
objective function. The new method is applied
to change-point detection in generalized linear
models and penalized regression. Numerical
studies show that the new approach can be or-
ders of magnitude faster than the Pruned Exact
Linear Time (PELT) method without sacrific-
ing estimation accuracy.
Keywords. Change-point analysis, Dynamic
programming, Stochastic gradient descent.

1 INTRODUCTION

Change-point analysis is concerned with detecting and
locating structure breaks in the underlying model of a
data sequence ordered by time (space or other variables).
The first work on change point analysis goes back to the
1950s, where the goal was to locate a shift in the mean
of an independent and identically distributed Gaussian
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sequence for industrial quality control purposes (Page,
1954, 1955). Since then, change-point analysis has gen-
erated important activity in statistics and various appli-
cation settings such as signal processing, climate sci-
ence, economics, financial analysis, medical science, and
bioinformatics. We refer the readers to Brodsky and
Darkhovsky (1993); Csörgö et al. (1997); Tartakovsky
et al. (2014) for book-length treatments and Aue and
Horváth (2013); Niu et al. (2016); Aminikhanghahi and
Cook (2017); Truong et al. (2020); Liu et al. (2021) for
reviews on this subject.

There are two main branches of change-point detection
methods: online methods that aim to detect changes as
early as they occur in an online setting and offline meth-
ods that retrospectively detect changes when all sam-
ples have been observed. The focus of this paper is on
the offline setting. A typical offline change-point detec-
tion method involves three major components: the cost
function, the search method, and the penalty/constraint
(Truong et al., 2020). The choice of the cost function
and search method has a crucial impact on the method’s
computational complexity. As increasingly larger data
sets are being collected in modern applications, there is
an urgent need to develop more efficient algorithms to
handle such big data sets. Examples include testing the
structure breaks for genetics data and detecting changes
in the volatility of big financial data.

One popular way to tackle the change-point detection
problem is to cast it into a model-selection problem
by solving a penalized optimization problem over pos-
sible numbers and locations of change-points. The
framework includes several well-established procedures,
such as the penalized likelihood and minimum descrip-
tion length. The corresponding optimization can be
solved exactly using dynamic programming (Auger and
Lawrence, 1989; Jackson et al., 2005) whose compu-
tational cost is

∑T
t=1

∑t
s=1 q(s), where T is the num-

ber of data points and q(s) denotes the time complexity
for calculating the cost function value based on s data
points. Killick et al. (2012) introduced the pruned exact
linear time (PELT) algorithm with a pruning step in dy-



namic programming. PELT reduces the computational
cost without affecting the exactness of the resulting seg-
mentation. Rigaill (2010) proposed an alternative pruned
dynamic programming algorithm with the aim of reduc-
ing the computational effort. However, in the worst case
scenario, the computational cost of dynamic program-
ming coupled with the above pruning strategies remains
the order of O(

∑T
t=1

∑t
s=1 q(s)).

Unlike the pruning strategy, this paper aims to improve
the computational efficiency of dynamic programming
from a different perspective. We focus on the class of
problems where computing the cost function involves
solving a non-trivial optimization problem without a
closed-form solution. Dynamic programming requires
repeatedly solving the optimization over different data
sequence segments, which can be very time-consuming
for big data. We make the following contributions to ad-
dress the issue.
(i) A new sequential method (SE) that can be coupled
with the gradient descent (SeGD) and Newton’s method
(SeN) is proposed to update the parameter estimate and
the cost value in dynamic programming. The new strat-
egy avoids repeatedly optimizing the objective function
based on each data segment. It thus significantly im-
proves the computational efficiency of the vanilla PELT,
especially when computing the cost function involves
solving a non-trivial optimization problem without a
closed-form solution (see Table 1). Though our algo-
rithm is no longer exact, numerical studies suggest that
the new method achieves almost the same estimation ac-
curacy as PELT does.
(ii) SeGD is related to the stochastic gradient descent
(SGD) without-replacement sampling (Shamir, 2016;
Nagaraj et al., 2019; Rajput et al., 2020). The main dif-
ference is that our update is along the time order of the
data points, and hence no sampling or additional random-
ness is introduced. Using some techniques from SGD
and transductive learning theory, we obtain the conver-
gence rate of the approximate cost value derived from
the algorithm to the true cost value.
(iii) The proposed method applies to a broad class of sta-
tistical models, such as parametric/nonparametric likeli-
hood models, generalized linear models, and penalized
regression.

Finally, we mention two other routes to reduce the com-
putational complexity in change-point analysis. The first
one is to relax the l0 penalty on the number of parameters
to an l1 penalty (such as the total variation penalty) on the
parameters to encourage a piece-wise constant solution.
The resulting convex optimization problem can be solved
in nearly linear time (Harchaoui and Lévy-Leduc, 2010).
In contrast, our method directly tackles the problem with
the l0 penalty. The second approach includes different

Time complexity
Dynamic programming

∑T
t=1

∑t
s=1 q(s)

PELT
∑T

t=1

∑
s∈Rt

q(s)

SE q0
∑T

t=1|Rt|

Table 1: Comparison of the computational complexity.
Here Rt is defined in Section 2.2 and q(s) denotes the
time complexity for calculating the cost value based on s
data points and q0 is the time complexity for performing
the one-step update described in Section 3.

approximation schemes, including window-based meth-
ods, binary segmentation and its variants (Vostrikova,
1981; Fryzlewicz, 2014), and bottom-up segmentation
(Keogh et al., 2001). These methods are usually quite
efficient and can be combined with various test statis-
tics though they only provide approximate solutions. Our
method can be regarded as a new approximation scheme
for the l0 penalization problem.

The rest of the paper is organized as follows. In Section
2, we briefly review the dynamic programming and the
pruning scheme in change-point analysis. We describe
the details of the SE algorithms in Section 3, including
the motivation, its application in generalized linear mod-
els, and an extension to handle the case where computing
the cost value involves solving a penalized optimization.
We study the convergence property of the algorithm in
Section 4. Sections 5 presents numerical results for syn-
thesized and real data. Section 6 concludes.

2 DYNAMIC PROGRAMMING AND
PRUNING

2.1 Dynamic programming

Change-point analysis concerns the partition of a data set
ordered by time (space or other variables) into piece-wise
homogeneous segments such that each piece shares the
same behavior. Specifically, we denote the dataset by
z = (z1, . . . , zT ). For 1 ≤ s ≤ t ≤ T , let zs:t =
(zs, . . . , zt). If we assume that there are k change-points
in the data, then we can split the data into k + 1 distinct
segments. We let the location of the jth change-point be
τj for j = 1, 2, . . . , k, and set τ0 = 0 and τk+1 = T. The
(j + 1)th segment contains the data zτj+1, . . . , zτj+1

for
j = 0, 1, . . . , k. We let τ = (τ1, . . . , τk) be the set of
change-point locations. The problem we aim to address
is to infer both the number of change points and their
locations.

Throughout the discussions, we let C(zs+1:t) for s < t
denote the cost for a segment consisting of the data points
zs+1, . . . , zt. Of particular interest is the cost function
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defined as

C(zs+1:t) = min
θ∈Θ

t∑
i=s+1

l(zi, θ) (1)

where l(·, θ) is the individual cost parameterized by θ
that belongs to a compact parameter space Θ ⊂ Rd. Ex-
amples include (i) l(·, θ) is the negative log-likelihood
of zi; (2) l(zi, θ) = L(f(xi, θ), yi) with zi = (xi, yi),
where L is a loss function and f(·, θ) is an unknown re-
gression function parameterized by θ. See more details
and discussions in Section 3.2.

In this paper, we consider segmenting data by solving a
penalized optimization problem. For 0 ≤ k ≤ T − 1,
define

Ck,T = min
τ

k∑
j=0

C(zτj+1:τj+1
).

We estimate the number of change-points by minimiz-
ing a linear combination of the cost value and a penalty
function f , i.e., mink{Ck,T + f(k, T )}. If the penalty
function is linear in k with f(k, T ) = βT (k + 1) for
some βT > 0, then we can write the objective function
as

min
k

{Ck,T + f(k, T )} = min
k,τ

k∑
j=0

{
C(zτj+1:τj+1

) + βT

}
.

One way to solve the penalized optimization problem
is through the dynamic programming approach (Killick
et al., 2012; Jackson et al., 2005). Consider segmenting
the data z1:t. Denote F (t) to be the minimum value of
the penalized cost mink {Ck,T + f(k, T )} for segment-
ing such data. We derive a recursion for F (t) by condi-
tioning on the last change-point location,

F (t) := min
k,τ

k∑
j=0

{
C(zτj+1:τj+1) + βT

}
=min

k,τ

[
k−1∑
j=0

{
C(zτj+1:τj+1) + βT

}
+ C(zτk+1:t) + βT

]

=min
τ

min
k̃,τ

k̃∑
j=0

{
C(zτj+1:τj+1) + βT

}
+ C(zτ+1:t) + βT


=min

τ
{F (τ) + C(zτ+1:t) + βT } , (2)

where τk+1 = t in the first equation and τk̃+1 = τ in
the third equation. The segmentations can be recovered
by taking the argument τ which minimizes (2), i.e.,

τ∗ = argmin
0≤τ<t

{F (τ) + C(zτ+1:t) + βT } , (3)

which gives the optimal location of the last change-point
in the segmentation of z1:t. The procedure is repeated
until all the change-point locations are identified.

2.2 Pruning

A popular way to increase the efficiency of dynamic pro-
gramming is by pruning the candidate set for finding the
last change-point in each iteration. For the cost func-
tion in (1), we have for any τ < t < T , C(zτ+1:t) +
C(zt+1:T ) ≤ C(zτ+1:T ). Killick et al. (2012) showed
that for some t > τ if

F (τ) + C(zτ+1:t) > F (t),

then at any future point t′ > t, τ can never be the optimal
location of the most recent change-point prior to t′.
Define a sequence of sets {Rt}Tt=1 recursively as Rt =
{τ ∈ Rt−1 ∪ {t− 1} : F (τ) + C(zτ+1:t−1) ≤ F (t− 1)} .
Then F (t) can be computed as

F (t) = min
τ∈Rt

{F (τ) + C(zτ+1:t) + β}

and the minimizer τ∗ in (3) belongs to Rt. This prun-
ing technique forms the basis of the Pruned Exact Linear
Time (PELT) algorithm. Under suitable conditions that
allow the expected number of change-points to increase
linearly with T , Killick et al. (2012) showed that the ex-
pected computational cost for PELT is bounded by LT
for some constant L < ∞. In the worst case where no
pruning occurs, the computational cost of PELT is the
same as the vanilla dynamic programming.

3 METHODOLOGY

3.1 Sequential algorithms

For large-scale data, the computational cost of PELT can
still be prohibitive due to the burden of repeatedly solv-
ing the optimization problem (1). For many statistical
models, the time complexity for obtaining C(zs+1:t) is
linear in the number of observations t− s. Therefore, in
the worst-case scenario, the overall time complexity can
be as high as O(T 3). To alleviate the problem, we pro-
pose a fast algorithm by sequentially updating the cost
function using a gradient-type method to reduce the com-
putational cost while maintaining similar estimation ac-
curacy. Instead of repeatedly solving the optimization
problem to obtain the cost value for each data segment,
we propose to update the cost value using the parame-
ter estimates from the previous intervals. As the new
method sequentially updates the parameter, we name it
the sequential algorithm (SE).

We derive the algorithm here based on a heuristic argu-
3



ment. A rigorous justification for the convergence of
the algorithm is given in Section 4. Suppose we have
calculated θ̂τ+1:t−1, the approximation to θ̃τ+1:t−1 that
minimizes the cost function based on the data segment
zτ+1:t−1. We want to find the cost value for the next
data segment zτ+1:t,

C(zτ+1:t) =min
θ∈Θ

t∑
i=τ+1

l(zi, θ), (4)

where τ ≥ 0 and t ≤ T. Assume that l(z, θ) is
twice differentiable in θ. Let θ̃τ+1:t be the minimizer
of (4), which satisfies the first order condition (FOC)∑t

i=τ+1 ∇l(zi, θ̃τ+1:t) = 0. Taking a Taylor expansion
around θ̂τ+1:t−1 in the FOC, we obtain

0 =

t∑
i=τ+1

∇l(zi, θ̃τ+1:t)

≈
t∑

i=τ+1

∇l(zi, θ̂τ+1:t−1)

+

t−1∑
i=τ+1

∇2l(zi, θ̂τ+1:t−1)(θ̃τ+1:t − θ̂τ+1:t−1)

≈∇l(zt, θ̂τ+1:t−1)

+

t−1∑
i=τ+1

∇2l(zi, θ̂τ+1:t−1)(θ̃τ+1:t − θ̂τ+1:t−1),

where
∑t−1

i=τ+1 ∇l(zi, θ̂τ+1:t−1) ≈ 0 as θ̂τ+1:t−1 is an
approximate minimizer of

∑t−1
i=τ+1 l(zi, θ), and we drop

the term ∇2l(zt, θ̂τ+1:t−1). Rearranging the terms, we
get

θ̃τ+1:t ≈ θ̂τ+1:t−1

−

(
t−1∑

i=τ+1

∇2l(zi, θ̂τ+1:t−1)

)−1

∇l(zt, θ̂τ+1:t−1).

(5)

As the RHS of (5) does not necessarily fall into the pa-
rameter space Θ, we suggest a projection step. Specif-
ically, let PΘ(θ) be the projection of any θ ∈ Rd onto
Θ. The above observation motivates us to consider the
following update

θ̂τ+1:t = PΘ(θ̂τ+1:t−1 −H−1
τ+1:t−1∇l(zt, θ̂τ+1:t−1)),

where Hτ+1:t−1 is a preconditioning matrix that
serves as a surrogate for the second order information∑t−1

i=τ+1 ∇2l(zi, θ̂τ+1:t−1). When the second order in-
formation is available, we suggest update the precondi-

tioning matrix through the iteration

Hτ+1:t = Hτ+1:t−1 +∇2l(zt, θ̂τ+1:t).

Alternatively, by the idea of Fisher scoring, we can also
update the preconditioning matrix by

Hτ+1:t = Hτ+1:t−1 + It(θ̂τ+1:t),

where It(θ) = E[∇2l(zt, θ)|xt] with xt being a
subvector of zt such as the covariates in the regres-
sion setting. Finally, we approximate θ̃τ+1:t by (t −
τ)−1

∑t
j=τ+1 θ̂τ+1:j and the cost value C(zτ+1:t) by

Ĉ(zτ+1:t) =

t∑
i=τ+1

l

zi, (t− τ)−1
t∑

j=τ+1

θ̂τ+1:j

 .

Algorithm 1 summarizes the details of the algorithm.
Also, see the supplement for a graphical illustration.

Remark 3.1. When the second order information is
available, we suggest setting At(θ̂τ+1:t) = It(θ̂τ+1:t)
in Algorithm 1, which leads to a type of sequential New-
ton’s method. On the other hand, our theory in Section
4 allows At(θ̂τ+1:t) = µI/2 for some constant µ > 0
defined in Assumption A2.

Remark 3.2. To speed up the optimization,
we can add a relatively large momentum term
to the gradient, which leads to the update:
PΘ(θ̂τ+1:t−1 − H−1

τ+1:t−1∇l(zt, θ̂τ+1:t−1) +

aτ+1:t−1(θ̂τ+1:t−1 − θ̂τ+1:t−2)), where aτ+1:t−1

represents the momentum.

Remark 3.3. To initialize the estimate θ̂t:t, we sug-
gest dividing the data into a pre-determined number of
segments and estimating the parameters using the data
within each segment. We set θ̂t:t to be the preliminary
estimate using the data in the segment to which t belongs.

Remark 3.4. In practice, a post-processing step is rec-
ommended to remove the change-points in C(T ) that
are too close to the boundaries and merge those change-
points that are too close to each other.

Remark 3.5. As suggested by Theorem 4.1, the approxi-
mation error of the cost to the true cost value depends on
the length of the data segment, which can be relatively
large for a small data segment. To address this issue, one
can perform exact minimization for data segments with a
length less than a pre-specified number.

3.2 Generalized linear models

As an illustration of our algorithm, we consider the
change-point detection problem in the generalized linear
models (GLM). In this case, zi contains a response yi4



Algorithm 1 Sequential Updating Algorithm

• Input the data {zi}Ti=1, the individual cost function
l(·, θ) and the penalty constant β.

• Set F (0) = −β, C = ∅ and R1 = {0}.

• Iterate for t = 1, 2, . . . , T :

1. Initialize St:t = θ̂t:t and Ht:t. For
τ ∈ Rt \ {t − 1} with t ≥ 2, perform
the following updates

θ̂τ+1:t = PΘ(θ̂τ+1:t−1 −H−1
τ+1:t−1∇l(zt, θ̂τ+1:t−1)),

Hτ+1:t = Hτ+1:t−1 +At(θ̂τ+1:t),

Sτ+1:t = Sτ+1:t−1 + θ̂τ+1:t.

2. For each τ ∈ Rt, compute

Ĉ(zτ+1:t) =

t∑
i=τ+1

l
(
zi, (t− τ)−1Sτ+1:t

)
.

3. Calculate

F (t) = min
τ∈Rt

{
F (τ) + Ĉ(zτ+1:t) + β

}
,

τ∗ = argmin
τ∈Rt

{
F (τ) + Ĉ(zτ+1:t) + β

}
.

4. Let C(t) = {C(τ∗), τ∗}.
5. Set

Rt+1 = {τ ∈ Rt ∪ {t} : F (τ) + C(zτ+1:t) ≤ F (t)} .

• Output C(T ).

and a set of predictors/covariates xi. Suppose yi follows
a distribution in the canonical exponential family

f(yi; γi, ϕ) = exp

{
yiγi − b(γi)

w−1ϕ
+ c(yi, ϕ)

}
,

where γi is the canonical parameter, ϕ is the dispersion
parameter and w is some known weight. The mean of
yi is related to x⊤

i θi via g(E[yi]) = g(∇b(γi)) = x⊤
i θi,

where g is a known link function. Suppose the obser-
vations from the time point τ + 1 to t share the same
parameter θ, i.e., θi = θ for τ + 1 ≤ i ≤ t. When ϕ is
known, we let

l(zi, θ) = −yiγi − b(γi)

w−1ϕ
− c(yi, ϕ), τ + 1 ≤ i ≤ t.

Some algebra yields that

∇l(zi, θ̂τ+1:t)

=− a

ϕv(µ̂i,τ+1:t)g′(µ̂i,τ+1:t)
(yi − µ̂i,τ+1:t)xi,

I(xi, θ̂τ+1:t) =
a

ϕv(µ̂i,τ+1:t)[g′(µ̂i,τ+1:t)]2
xix

⊤
i ,

where g(µ̂i,τ+1:t) = x⊤
i θ̂τ+1:t and v is related to the

variance of yi through var(yi) = ϕw−1v(µi). In the
cases of the logistic and Poisson regressions, we have
ω = ϕ = 1 and g′(µ)v(µ) = 1. Hence for the logistic
regression,

∇l(zi, θ̂τ+1:t) = −

(
yi −

ex
⊤
i θ̂τ+1:t

1 + ex
⊤
i θ̂τ+1:t

)
xi,

I(xi, θ̂τ+1:t) = (µ̂i,τ+1:t)(1− µ̂i,τ+1:t)xix
⊤
i .

While for the Poisson regression,

∇l(zi, θ̂τ+1:t) = −
(
yi − ex

⊤
i θ̂τ+1:t

)
xi,

I(xi, θ̂τ+1:t) = µ̂i,τ+1:txix
⊤
i .

We shall investigate the performance of the correspond-
ing algorithms in Section 5.

3.3 Sequential proximal gradient descent

In this section, we extend our algorithm to handle the
case where the cost function value results from solving
a penalized optimization problem. More precisely, let us
consider

C(zτ+1:t) = min
θ∈Θ

t∑
i=τ+1

l(zi, θ) + λτ+1:tpen(θ), (6)
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where the penalty term enforces a constraint on the pa-
rameter θ (e.g., the smoothness or sparsity constraint)
and λτ+1:t > 0 is allowed to vary over data segments.
Let

Prox(a;λ) = argmin
z

1

2λ
∥z − a∥2+pen(z)

be the proximal operator associated with the penalty
term. For a = (a1, . . . , ad) with ai ̸= 0
and λ = (λ1, . . . , λd) with λi > 0, we
write a−1 = (a−1

1 , . . . , a−1
d ) and Prox(a;λ) =

(Prox(a1;λ1), . . . ,Prox(ad;λd)). We update the param-
eter estimate by θ̂τ+1:t = PΘ(θ̆τ+1:t) with

(7)θ̆τ+1 :t = Prox
(
θ̂τ+1:t−1

−H−1
τ+1:t−1∇l(zt, θ̂τ+1:t−1);λτ+1:t∥Hτ+1:t−1∥−1

2

)
,

where ∥H∥2 denotes the spectral norm of H (one can
also replace ∥H∥2 by the Frobenius norm of H). An ex-
ample here is the Lasso regression, where zi = (xi, yi) ∈
R × Rd and the objective function in (6) can be written
as

1

2

t∑
i=τ+1

∥yi − x⊤
i θ∥2+λτ+1:t

d∑
i=1

|θi|

with θ = (θ1, . . . , θd). In this case, Prox(a;λ) =
sign(a)max(|a|−λ, 0) is the soft thresholding operator.

3.4 Choice of the penalty constant β

Our method aims to solve the following l0 penalized op-
timization problem approximately

min
k

min
τ


k∑

j=0

min
θ∈Θ

τj+1∑
i=τj+1

l(zi, θ) + f(k, T )


where we simultaneously optimize over the number of
change-points k, the locations of change-points τ , and
the parameters within each segment. With k change-
points that divide the data sequence into k + 1 seg-
ments, the total number of parameters is (k + 1)d + k,
where (k + 1)d counts the number of parameters from
the k + 1 segments and k corresponds to the number
of change-points. We recommend setting f(k, T ) =
{(k + 1)d+ k} log(T )/2 or equivalently

βT = (d+ 1) log(T )/2,

which leads to the BIC criterion.

4 CONVERGENCE ANALYSIS

To understand why our method works, it is crucial to in-
vestigate how well the sequential gradient method can
approximate the cost value for each data segment. To
be clear, let us focus on the segment z1:n with 1 ≤
n ≤ T . Let θ̂∗ = argmin θ∈Θ Fn(θ), where Fn(θ) =

n−1
∑n

i=1 l(zi, θ). Recall that given θ̂1 (which only de-
pends on z1), we have the following updating scheme for
finding an approximation to θ̂∗

θ̂1:t = PΘ(θ̂1:t−1 −H−1
1:t−1∇l(zt, θ̂t−1)), 2 ≤ t ≤ n,

where H1:t−1 is a preconditioning matrix that only de-
pends on z1, . . . , zt−1. Throughout this section, we write
θ̂1:t = θ̂t, H1:t = Ht and l(zt, θ) = lt(θ) for the ease of
notation. Our analysis here focuses on the SeGD.

Definition 4.1 (Strong convexity). A differentiable func-
tion F is said to be µ-strongly convex, with µ > 0, if and
only if

F (η) ≥ F (θ) +∇F (θ)⊤(η − θ) +
µ

2
∥η − θ∥2.

Definition 4.2 (Smoothness). A differential function F
is said to be L-smooth if

|F (η)− F (θ)−∇F (θ)⊤(η − θ)|≤ L

2
∥η − θ∥2,

for any η, θ in the domain of F .

We aim to quantify the difference Fn(n
−1
∑n

t=1 θ̂t) −
Fn(θ̂

∗) and derive the convergence rate. To this end, we
make the following assumptions.

A1. There is an unknown change-point 1 ≤ ξ <
T . The first ξ observations are assigned with
their time locations through a random permutation
(σ(1), . . . , σ(ξ)) while the last n − ξ observations
are assigned with the time locations through a ran-
dom permutation (σ(ξ + 1), . . . , σ(T ));

A2. Fn is µ-strongly convex;

A3. Ht = ηtI with ηt = tµ/2;

A4. sup1≤i≤n,θ∈Θ∥∇li(θ)∥≤ C for some constant C >
0;

A5. Θ is a compact set;

A6. li(θ) = f(x⊤
i θ, yi) + r(θ), where f(a, y) is L1-

Lipschitz and L2-smooth in a for any given y, ∥xi∥
is bounded almost surely, and r is some fixed func-
tion.
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Theorem 4.1. Let E∗ be the expectation with respect to
the random permutation σ conditional on the observed
data values {zi}ni=1. Under Assumptions A1-A6, we
have

E∗

[
Fn

(
n−1

n∑
t=1

θ̂t

)
− Fn(θ̂

∗)

]
≤ c log(n)

n
,

for some constant c that depends on µ,C,L1 and L2.
Remark 4.1. The proof of Theorem 4.1 is given in the
supplement. In Assumption A.1, we assume that there is
a single change point. Similar arguments can be used to
handle the cases of no change point and multiple change-
points.
Remark 4.2. Assumptions A2, A4 and A6 are ful-
filled for logistic models when ∥xi∥ is bounded almost
surely and the smallest eigenvalue of n−1

∑n
t=1 xtx

⊤
t is

bounded away from zero almost surely. We also remark
that the same conclusion can be justified when Assump-
tions A2, A4, and A6 hold with probability converging
to one by using the conditioning argument.
Remark 4.3. Under Assumption A1, we can cast our
method into a type of SGD without replacement sam-
pling and employ the related techniques (Shamir, 2016)
to prove Theorem 4.1.

5 NUMERICAL STUDIES

In this section, we apply the PELT method and the pro-
posed SE method to several simulated data sets and a
real data set to compare their estimation accuracy mea-
sured by the rand index and the computational time (in
seconds).

5.1 Logistic regression

We first consider the GLM with piecewise constant re-
gression coefficients. The details for implementing SE
under GLM has been described in Section 3.2. We only
present the results for logistic regression in the main pa-
per. Results for the cases of no change-point and the
Poisson regression are relegated to the supplement.

Consider the logistic regression model:

yi ∼ Bernoulli
(

1

1 + e−xT
i θi

)
, xi ∼ Nd(0,Σ)

with Σ = (0.9|i−j|)d×d, 1 ≤ i ≤ T.

Throughout the simulations, we set T = 1500, d ∈
{1, 3, 5} and vary the value of θi leading to different
magnitudes of change. Let δd ∈ Rd be the differ-
ence between the coefficients before and after a change-
point. We choose δd such that M(δd) := δ⊤d Σδd ∈

{0.36, 0.81, 1.96} corresponding to small, medium and
large magnitudes of change respectively. We remark that
the results are not sensitive to the specific choice of δd as
long as M(δd) is held at the same level. For each config-
uration, we shall consider the number of change-points
equal to 1, 3 and 5. The detailed simulation settings for
each case are given in the supplement. As seen from Fig-
ure 1, SE achieves the same estimation accuracy in terms
of the rand index as PELT does. SE could be around
350 times faster than PELT, making SE a highly scalable
method in practice. For example, when the magnitude of
change is small with three change-points for d = 5, SE
finished the analysis within 8.77 seconds while it took
3133.58 seconds for PELT to get the same result.

5.2 Penalized linear regression

We consider the linear model

yi = x⊤
i θi + ϵi, xi ∼ Nd(0,Σ) with

Σ = 0.5Id×d and ϵi ∼ N(0, 0.5), 1 ≤ i ≤ T.

Set T = 1500, d = 50 and s ∈ {1, 3, 5}, where s
is the number of non-zero components of the d dimen-
sional regression coefficients θi. The locations of the
nonzero components are randomly selected. The mag-
nitude of change is reflected by the difference between
the θi values before and after the change-point(s). The
values of the non-zero components of the regression co-
efficients θi within each odd-numbered segment parti-
tioned by the change-points {τi} (i.e. 1 ≤ i ≤ τ1 and
τj < i ≤ τj+1 when j is even) are set to be 1. For
the even-numbered segment (i.e. τj < i ≤ τj+1 when
j is odd), the non-zero coefficients are generated from
N(1, δ) with δ ∈ {0.1, 0.4, 1} corresponding to small,
medium and large magnitudes of changes, respectively.
Like the GLM simulation settings, we shall consider 1, 3,
and 5 change-points for different combinations of s and
magnitude of change. We consider the cost function

C(zτ+1:t) = min
θ∈Θ

1

2

t∑
i=τ+1

∥yi − x⊤
i θ∥2+λτ+1:t

d∑
i=1

|θi|,

(8)

where λτ+1:t = σ̂
√
2 log(d)/(t− τ) with σ̂ being a pre-

liminary estimate of the noise level. In particular, we di-
vide the data into ten segments, estimate the noise level
within each segment using Lasso, and set σ̂ to be the
average of these estimates. We implement both PELT
and SeGD (without the second order information) in this
case. As seen from Figures 2, SE achieves competitive
accuracy compared to PELT in most cases with lower
computational cost. For instance, when s = 1 and there
is only one medium change-point, SE is about 8 times
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faster than PELT.

5.3 A real data example

We illustrate the method using a dataset from the im-
mune correlates study of Maternal To Child Transmis-
sion (MTCT) of HIV-1 (Fong et al., 2015). The data
set contains three variables: the 0/1 response yi indicat-
ing whether HIV transits from mother to child (79 HIV-
transmitting mothers and 157 non-transmitting mothers,
leading to T = 236), childbirth delivery type xi (C-
section/Vaginal), and the NAb score zi measuring the
amount and breadth of neutralizing antibodies. We con-
sider the following change point/threshold model: yi ∼
Bernoulli(pi) with

log

(
pi

1− pi

)
= x̃⊤

i β(zi), x̃i = (1, xi)
⊤,

where β(z) =
∑k

j=0 βj1{aj ≤ z < aj+1} with
mini zi = a0 < a1 < a2 < · · · < ak+1 = +∞. In
words, the regression coefficient is a piece-wise constant
function of the NAb score.

To implement PELT and SE, we first sort the data in de-
scending order according to the NAb score. Both meth-
ods find a single change that corresponds to the NAb
score at 7.548556. SE finishes the analysis in 0.62 sec-
onds, while PELT takes 22 seconds to get the same result.

6 CONCLUDING REMARKS

We point out three possible strategies namely accelerated
SeGD, multiple epochs and backward updating scheme
to improve estimation accurate by speeding up the con-
vergence in SeGD. In Theorem 4.1, we have shown that
the difference between Fn

(
n−1

∑n
t=1 θ̂t

)
and the tar-

get cost value is of the order O(log(n)/n) with n being
the length of the segment. An interesting future direction
is to develop an accelerated sequential gradient method
to improve the convergence rate. Motivated by the ac-
celerated SGD, we may consider the following update
strategy:

βτ+1:t−1 = αθ̂τ+1:t−1 + (1− α)vτ+1:t−1,

θ̂τ+1:t = βτ+1:t−1 −H−1
τ+1:t−1∇L(f(xt, βτ+1:t−1), yt),

γτ+1:t−1 = βτ+1:t−1 + (1− β)vτ+1:t−1,

vτ+1:t = γτ+1:t−1 − ζH−1
τ+1:t−1∇L(f(xt, βτ+1:t−1), yt),

where we set vτ+1:τ+1 = θ̂τ+1:τ+1 and α, β, ζ are tun-
ing parameters. An in-depth analysis of this algorithm
is left for future research. Another way to improve the
convergence is by using multiple epochs/passes over the

data points in each segment. Algorithm 1 only uses each
data point once (one-pass) in updating the parameter es-
timates for a particular segment. Using multiple epochs
has been shown to improve the rate of convergence (Na-
garaj et al., 2019). In the supplement, we describe such
an extension of our algorithm. Finally, one can introduce
a backward updating scheme. Together with the forward
scheme, we can update θ̂a:t using the estimates based on
nearby segments θ̂a+1:t and θ̂a:t−1.
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Figure 1: Average rand index (upper panel) and compu-
tational time (lower panel) for SE and PELT under logis-
tic regression models with different number of change-
points (1, 3, 5), magnitude of changes (small, medium
and large) and dimension d (1, 3, 5). Error bars represent
the 95% CIs (±2× standard error).
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Figure 2: Average rand index (upper panel) and compu-
tational time (lower panel) for SE and PELT under pe-
nalized linear regression models with different number
of change-points (1, 3, 5), magnitude of changes (small,
medium and large) and the number of non-zero coef-
ficients s (1, 3, 5). Error bars represent the 95% CIs
(±2× standard error).
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A APPENDIX

A.1 Technical details

Proof of Theorem 4.1. Write σa:b = (σ(a), . . . , σ(b)) for 1 ≤ a ≤ b ≤ n. By the definition of the algorithm,

E∗[∥θ̂t − θ̂∗∥2] =E∗[∥PΘ(θ̂t−1 −H−1
t−1∇lσt(θ̂t−1))− θ̂∗∥2]

≤E∗[∥θ̂t−1 −H−1
t−1∇lσt

(θ̂t−1)− θ̂∗∥2]

≤E∗[∥θ̂t−1 − θ̂∗∥2] + η−2
t−1C

2 − 2η−1
t−1E

∗[∇lσt
(θ̂t−1)

⊤(θ̂t−1 − θ̂∗)]

=E∗[∥θ̂t−1 − θ̂∗∥2] + η−2
t−1C

2 − 2η−1
t−1E

∗[{∇lσt
(θ̂t−1)−∇Fn(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)]

− 2η−1
t−1E

∗[∇Fn(θ̂t−1)
⊤(θ̂t−1 − θ̂∗)].

By Assumption A2, namely the strong convexity, we have

∇Fn(θ̂t−1)
⊤(θ̂t−1 − θ̂∗) ≥ Fn(θ̂t−1)− Fn(θ̂

∗) +
µ

2
∥θ̂∗ − θ̂t−1∥2,

which implies that

E∗[∥θ̂t − θ̂∗∥2] ≤E∗[∥θ̂t−1 − θ̂∗∥2] + η−2
t−1C

2 − 2η−1
t−1E

∗[{∇lσt
(θ̂t−1)−∇Fn(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)]

− 2η−1
t−1E

∗[Fn(θ̂t−1)− Fn(θ̂
∗)]− η−1

t−1µ∥θ̂∗ − θ̂t−1∥2.

Re-arranging the terms, we get

E∗[Fn(θ̂t−1)− Fn(θ̂
∗)] ≤

(ηt−1

2
− µ

2

)
E∗[∥θ̂t−1 − θ̂∗∥2]− ηt−1

2
E∗[∥θ̂t − θ̂∗∥2] + C2

2ηt−1

+ E∗[{∇Fn(θ̂t−1)−∇lσt(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)].

(9)

To deal with the last term on the RHS, we consider two cases, namely t ≤ ξ and t > ξ, separately. Let us first consider
the case t > ξ. Conditional on σ1:t−1 and the data values {zi}ni=1, θ̂t−1 is fixed. Note that θ̂∗ is independent of any
permutation of the data. Moreover, σt is uniformly distributed on {1, 2, . . . , n}\σ1:t−1 = {σt, . . . , σn}. We also note
that

E∗[∇Fn(θ̂t−1)|σ1:t−1] =
1

n

t−1∑
j=1

∇lσj
(θ̂t−1) +

1

n

n∑
j=t

E∗[∇lσj
(θ̂t−1)|σ1:t−1]

=
1

n

t−1∑
j=1

∇lσj
(θ̂t−1) +

1

n

n∑
j=t

∇lσj
(θ̂t−1)

=∇Fn(θ̂t−1).

Using these facts, we have

E∗[{∇Fn(θ̂t−1)−∇lσt
(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)]

=E∗[E∗[{∇Fn(θ̂t−1)−∇lσt
(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)|σ1:t−1]]

=E∗


∇Fn(θ̂t−1)− (n− t+ 1)−1

n∑
j=t

∇lσj
(θ̂t−1)


⊤

(θ̂t−1 − θ̂∗)


=
t− 1

n
E∗
[{

∇l1:t−1(θ̂t−1)−∇lt:n(θ̂t−1)
}⊤

(θ̂t−1 − θ̂∗)

]
11



=
t− 1

n
E∗

[
∥θ̂t−1 − θ̂∗∥

{
∇l1:t−1(θ̂t−1)−∇lt:n(θ̂t−1)

}⊤ θ̂t−1 − θ̂∗

∥θ̂t−1 − θ̂∗∥

]

≤ t− 1

n

√
E∗
[
∥θ̂t−1 − θ̂∗∥2

]√√√√√E∗

(sup
θ∈Θ

{∇l1:t−1(θ)−∇lt:n(θ)}⊤
θ − θ̂∗

∥θ − θ̂∗∥

)2


where we have defined ∇la:b(θ) =
∑b

i=a ∇lσi
(θ)/(b−a+1). Applying Lemma A.1, the above expression is at most

C

n

√
E∗
[
∥θ̂t−1 − θ̂∗∥2

](√
t− 1 +

t− 1√
n− t+ 1

)
≤µ

4
E∗
[
∥θ̂t−1 − θ̂∗∥2

]
+

C2

µn2

(√
t− 1 +

t− 1√
n− t+ 1

)2

≤µ

4
E∗
[
∥θ̂t−1 − θ̂∗∥2

]
+

2C2

µn2

(
t− 1 +

(t− 1)2

n− t+ 1

)
,

where the first inequality follows from the fact that
√
ab ≤ µa/4+ b/µ and the second inequality is due to (a+ b)2 ≤

2a2 + 2b2.

Next we consider the case where t ≤ ξ. Conditional on σ1:t−1, σt is uniformly distributed on {1, 2, . . . , ξ} \ σ1:t−1 =
{σt, . . . , σξ}. Similar arguments show that

E∗[{∇Fn(θ̂t−1)−∇lσt
(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)]

=E∗


∇Fn(θ̂t−1)− (ξ − t+ 1)−1

ξ∑
j=t

∇lσj
(θ̂t−1)


⊤

(θ̂t−1 − θ̂∗)


=
n− ξ + t− 1

n
E∗

[
∥θ̂t−1 − θ̂∗∥

{
∇l−(t:ξ)(θ̂t−1)−∇lt:ξ(θ̂t−1)

}⊤ θ̂t−1 − θ̂∗

∥θ̂t−1 − θ̂∗∥

]

≤n− ξ + t− 1

n

√
E∗
[
∥θ̂t−1 − θ̂∗∥2

]√√√√√E∗

(sup
θ∈Θ

{
∇l−(t:ξ)(θ)−∇lt:ξ(θ)

}⊤ θ − θ̂∗

∥θ − θ̂∗∥

)2
,

where ∇l−(t:ξ)(θ) = (n− ξ + t− 1)−1{
∑t−1

j=1 ∇lj(θ) +
∑n

j=ξ+1 ∇lj(θ)}. As

∇l−(t:ξ)(θ)−∇lt:ξ(θ) = w(∇l1:t−1(θ)−∇lt:ξ(θ)) + (1− w)(∇lξ+1:n(θ)−∇lt:ξ(θ))

with w = (t− 1)/(n− ξ + t− 1), we have

E∗

(sup
θ∈Θ

{
∇lt:ξ(θ)−∇l−(t:ξ)(θ)

}⊤ θ − θ̂∗

∥θ − θ̂∗∥

)2


≤2w2E∗

(sup
θ∈Θ

{∇lt:ξ(θ)−∇l1:t−1(θ)}⊤
θ − θ̂∗

∥θ − θ̂∗∥

)2


+ 2(1− w)2E∗

(sup
θ∈Θ

{∇lt:ξ(θ)−∇lξ+1:n(θ)}⊤
θ − θ̂∗

∥θ − θ̂∗∥

)2
 .
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Similar argument as before gives

E∗[{∇Fn(θ̂t−1)−∇lσt
(θ̂t−1)}⊤(θ̂t−1 − θ̂∗)]

≤µ

4
E∗
[
∥θ̂t−1 − θ̂∗∥2

]
+

4C2

µn2

{(
(t− 1)2

ξ − t+ 1
+ t− 1

)
+

(
(n− ξ)2

ξ − t+ 1
+ n− ξ

)}
.

Using the above bounds and averaging over 2, . . . , n+ 1 of (9), we obtain

E∗

[
n−1

n∑
t=1

Fn(θ̂t)− Fn(θ̂
∗)

]

≤ 1

2n

n∑
t=1

(ηt − µ/2− ηt−1)E
∗[∥θ̂t − θ̂∗∥2] + C2

2n

n∑
t=1

1

ηt

+
4C2

µn3

ξ∑
t=2

{(
(t− 1)2

ξ − t+ 1
+ t− 1

)
+

(
(n− ξ)2

ξ − t+ 1
+ n− ξ

)}

+
4C2

µn3

n+1∑
t=ξ+1

(
t− 1 +

(t− 1)2

n− t+ 1

)
,

where η0 = 0 and we have replaced the dummy variable t− 1 with t in the summation. Note that

ξ∑
t=2

{(
(t− 1)2

ξ − t+ 1
+ t− 1

)
+

(
(n− ξ)2

ξ − t+ 1
+ n− ξ

)}
+

n+1∑
t=ξ+1

(
t− 1 +

(t− 1)2

n− t+ 1

)

=

n∑
t=1

t+

ξ−1∑
t=1

{
t2

ξ − t
+

(n− ξ)2

ξ − t
+ n− ξ

}
+

n∑
t=ξ

t2

n− t

≤C ′n2 log(n),

for C ′ > 0, where we have used the following facts

n∑
t=1

t =
(n+ 1)n

2
≤ C1n

2,

ξ−1∑
t=1

(n− ξ)2

ξ − t
≤ C2n

2 log(n),

ξ−1∑
t=1

t2

ξ − t
≤ (ξ − 1)2

ξ−1∑
t=1

1

t
≤ C3n

2 log(n),

n∑
t=ξ

t2

n− t
≤ n2

n∑
t=ξ

1

n− t
≤ C4n

2 log(n),

for some positive constants Ci with 1 ≤ i ≤ 4. Finally, using the definition ηt =
tµ
2 and the convexity of Fn, we have

E∗

[
Fn

(
n−1

n∑
t=1

θ̂t

)
− Fn(θ̂

∗)

]
≤ E∗

[
n−1

n∑
t=1

Fn(θ̂t)− Fn(θ̂
∗)

]
≤c log(n)

n
,

for some c > 0. The conclusion thus follows.

The result below follows from Corollary 3 of Shamir (2016), which is proved using the transductive learning theory.
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Lemma A.1. Under Assumptions A5-A6, we have

E∗

(sup
θ∈Θ

{∇L1:a(θ)−∇La+1:n(θ)}⊤
θ − θ̂∗

∥θ − θ̂∗∥

)2
 ≤ C2

1

(
1√
a
+

1√
n− a

)2

,

where C1 is some constant that depends on L1, L2 and D (the diameter of Θ).

A.2 Simulation settings

The tables below summarize the values of the regression coefficients θi (for both the logistic and Poisson regressions)
within each segment partitioned by the change-point locations {τi}.

• Single change-point (k = 1): τ1 = 750 and

d = 1 d = 3 d = 5
1 ≤ i ≤ τ1 1.2 (1, 1.2,−1) (1, 1.2,−1, 0.5,−2)
τ1 < i ≤ T 1.2 + δ1 (1, 1.2,−1) + δ3 (1, 1.2,−1, 0.5,−2) + δ5

• Three change-points (k = 3): τ1 = 375, τ2 = 750, τ3 = 1125 and

d = 1 d = 3 d = 5
1 ≤ i ≤ τ1 1.2 (1, 1.2,−1) (1, 1.2,−1, 0.5,−2)
τ1 < i ≤ τ2 1.2 + δ1 (1, 1.2,−1) + δ3 (1, 1.2,−1, 0.5,−2) + δ5
τ2 < i ≤ τ3 1.2 (1, 1.2,−1) (1, 1.2,−1, 0.5,−2)
τ3 < i ≤ T 1.2− δ1 (1, 1.2,−1)− δ3 (1, 1.2,−1, 0.5,−2)− δ5

• Five change-points (k = 5): τ1 = 250, τ2 = 500, τ3 = 750, τ4 = 1000, τ5 = 1250 and

d = 1 d = 3 d = 5
1 ≤ i ≤ τ1 1.2 (1, 1.2,−1) (1, 1.2,−1, 0.5,−2)
τ1 < i ≤ τ2 1.2 + δ1 (1, 1.2,−1) + δ3 (1, 1.2,−1, 0.5,−2) + δ5
τ2 < i ≤ τ3 1.2 (1, 1.2,−1) (1, 1.2,−1, 0.5,−2)
τ3 < i ≤ τ4 1.2− δ1 (1, 1.2,−1)− δ3 (1, 1.2,−1, 0.5,−2)− δ5
τ4 < i ≤ τ5 1.2 (1, 1.2,−1) (1, 1.2,−1, 0.5,−2)
τ5 < i ≤ T 1.2 + δ1 (1, 1.2,−1) + δ3 (1, 1.2,−1, 0.5,−2) + δ5

A.3 Multiple epochs

This section describes an extension of Algorithm 1 to allow multiple epochs. Specifically, we will use each data point
K ≥ 1 times in updating the parameter estimates for a particular segment. The details are summarized in Algorithm 2
below. SE with multiple epochs/passes allows more efficient use of the data with an additional computational expense
controlled by K. We leave a detailed analysis of this trade-off between statistical and computational efficiencies for
future investigation.
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Algorithm 2 Sequential Updating Algorithm with Multiple Epochs

• Input the data {zi}Ti=1, the individual cost function l(·, θ), the penalty constant β and the number of epochs K.

• Set F (0) = −β, C = ∅ and R1 = {0}.

• Iterate for t = 1, 2, . . . , T :

1. Initialize S
(K)
t:t = θ̂

(K)
t:t and H

(K)
t:t . For τ ∈ Rt \ {t− 1}, perform the update

θ̂
(1,t)
τ+1:t = PΘ(θ̂

(K)
τ+1:t−1 −H

(K),−1
τ+1:t−1∇l(zt, θ̂

(K)
τ+1:t−1)),

H
(1,t)
τ+1:t = H

(K)
τ+1:t−1 +A(θ̂

(1,t)
τ+1:t).

Next for k = 2, . . . ,K, perform the update

θ̂
(k,t)
τ+1:j = PΘ(θ̂

(k,t)
τ+1:j−1 −H

(k,t),−1
τ+1:j−1∇l(zj , θ̂

(k,t)
τ+1:j−1)),

H
(k,t)
τ+1:j = H

(k,t)
τ+1:j−1 +A(θ̂

(k,t)
τ+1:j),

over j = τ + 1, . . . , t, where (θ̂
(k,t)
τ+1:τ , H

(k,t)
τ+1:τ ) = (θ̂

(k−1,t)
τ+1:t ), H

(k−1,t)
τ+1:t ). Set θ̂(K)

τ+1:t = θ̂
(K,t)
τ+1:t, H

(K)
τ+1:t =

H
(K,t)
τ+1:t and

S
(K)
τ+1:t = S

(K)
τ+1:t−1 + θ̂

(K)
τ+1:t.

2. For each τ ∈ Rt, compute

Ĉ(zτ+1:t) =

t∑
i=τ+1

l
(
zi, (t− τ)−1S

(K)
τ+1:t

)
.

3. Calculate

F (t) = min
τ∈Rt

{
F (τ) + Ĉ(zτ+1:t) + β

}
,

τ∗ = argmin
τ∈Rt

{
F (τ) + Ĉ(zτ+1:t) + β

}
.

4. Let C(t) = {C(τ∗), τ∗}.
5. Set

Rt+1 = {τ ∈ Rt ∪ {t} : F (τ) + C(zτ+1:t) ≤ F (t)} .

• Output C(T ).
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