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Abstract

Off-policy evaluation is critical in a number of ap-
plications where new policies need to be evaluated
offline before online deployment. Most existing
methods focus on the expected return, define the
target parameter through averaging and provide
a point estimator only. In this paper, we develop
a novel procedure to produce reliable interval es-
timators for a target policy’s return starting from
any initial state. Our proposal accounts for the
variability of the return around its expectation,
focuses on the individual effect and offers valid
uncertainty quantification. Our main idea lies in
designing a pseudo policy that generates subsam-
ples as if they were sampled from the target policy
so that existing conformal prediction algorithms
are applicable to prediction interval construction.
Our methods are justified by theories, synthetic
data and real data from short-video platforms.

1 Introduction

Policy evaluation plays a crucial role in many real-world ap-
plications including healthcare, marketing, social sciences,
among many others. Before deploying any new policy, it
is crucial to know the impact of this policy. However, in
the aforementioned applications, it is often impractical to
evaluate a new policy by directly running this policy. As a
result, the new policy needs to be evaluated offline based on
an observational dataset generated by a possibly different
behavior policy. This formulates the off-policy evaluation
(OPE) problem.

Most works in the literature focus on evaluating the aver-
age value of a target policy aggregated over different initial
states. In many applications such as healthcare and tech-
nology industries, in addition to the average effect, it is
crucial to learn the value under a given initial condition
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(e.g., the individual effect) as well. For instance, in preci-
sion medicine, it allows us to estimate the outcome of each
individual patient following a given treatment regime. In
online recommendation, it allows us to evaluate the effect
of a new strategy for each individual visitor. Moreover, real
world datasets often follow asymmetric or heavy-tailed dis-
tributions. An example is given in our real dataset collected
from a world-leading short-video platform where the out-
come distribution is highly heavy-tailed (see Figure 6). In
these applications, in additional to a target policy’s mean re-
turn, it is equally important to infer its outcome distribution.
This motivates us to construct a prediction interval for the
target policy’s outcome.

1.1 Related Work

Off-policy evaluation. There is a huge literature on OPE.
Existing methods can be divided into three categories, corre-
sponding to the value-based method (see e.g., Le et al., 2019;
Luckett et al., 2020; Liao et al., 2021; Chen and Qi, 2022;
Shi et al., 2022), importance sampling (IS) or resampling-
based method (see e.g., Precup, 2000; Li et al., 2011; Liu
et al., 2018; Nachum et al., 2019; Schlegel et al., 2019)
and doubly robust method (see e.g., Farajtabar et al., 2018;
Kallus and Zhou, 2018; Tang et al., 2019; Uehara et al.,
2020; Kallus and Uehara, 2020; Liao et al., 2022).

In addition, several papers have studied interval estimation
of the policy’s value for uncertainty quantification (Thomas
et al., 2015; Jiang and Li, 2016; Hanna et al., 2017; Dai
et al., 2020; Feng et al., 2020; Jiang and Huang, 2020;
Chandak et al., 2021; Hao et al., 2021; Shi et al., 2021;
Wang et al., 2021). These confidence intervals are typi-
cally derived based on concentration inequalities, normal
approximations, bootstrap (Efron and Tibshirani, 1994) or
the empirical likelihood method (Owen, 2001). However, all
the aforementioned methods focused on the average effect
of the target policy. To our knowledge, interval estimation of
the individual effect has been less explored in the literature.

Conformal prediction. Our proposal is closely related to a
line of research on conformal prediction (CP), which was
originally introduced by Vovk et al. (2005) to construct valid
model-free prediction intervals (PIs) for the response; see
also, some follow-up works by Vovk et al. (2009); Vovk
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(2012); Lei and Wasserman (2014); Lei et al. (2015, 2018);
Sesia and Candès (2020); Cauchois et al. (2021). Both PI
and confidence interval (CI) express uncertainty in statistical
estimates. Nonetheless, a CI gives a range for the condi-
tional mean function of the response whereas a PI aims to
cover the response itself. A key strength of CP lies in its
generality and finite-sample guarantees. Specifically, it can
accommodate any prediction model under minimal assump-
tions on the data and achieve nominal coverage even for
small samples.

Recently, Tibshirani et al. (2019) developed a weighted
CP method to handle settings under covariate shift. The
weighted CP method was further extended and applied to
a number of applications, including individual treatment
effects estimation (Kivaranovic et al., 2020; Jin et al., 2021;
Lei and Candès, 2021; Yin et al., 2022), survival analysis
Candès et al. (2021), classification under covariate shift
(Podkopaev and Ramdas, 2021), to name a few. These
methods considered either a standard supervised learning
setting, or a contextual bandit setting with “state-agnostic"
target policies. These settings differ from ours that involve
sequential decision making and a general target policy.

Finally, we notice that there is a closely related concur-
rent work by Taufiq et al. (2022) that studied conformal
off-policy prediction in contextual bandits. However, they
did not consider sequential decision making, which is more
challenging. In addition, even when specialized to contex-
tual bandits, the proposed methodology differs largely from
theirs. See Section 3.2 for more details.

Distributional reinforcement learning. Recently, there is
an emerging line of research on distributional reinforcement
learning that estimates the entire distribution of the return
under the optimal policy (see e.g., Bellemare et al., 2017;
Dabney et al., 2018; Mavrin et al., 2019; Zhou et al., 2020).
Our proposal shares similar spirits with these works in that
it not only considers the expected return, but takes the vari-
ability of the return around its expectation into account as
well.

1.2 Contribution

Methodologically, we develop a novel procedure to con-
struct off-policy PIs for a target policy’s return starting from
any initial state in sequential decision making. It is ul-
timately different from many existing OPE methods that
consider the average effect aggregated over different ini-
tial states, construct CIs for the expected return and ignore
the variance of the return around its expectation. A key
ingredient of our proposal lies in constructing a pseudo
variable whose distribution depends on both the target and
behavior policy. We next sample a subset of observations
based on this pseudo variable and apply weighted confor-
mal prediction method on the selected subsamples. Finally,
we develop an importance-sampling-based method and a

multi-sampling-based method to further improve efficiency.

Theoretically, we prove that the proposed PI achieves valid
coverage asymptotically. In addition, when the behavior
policy is known to us (e.g., as in randomized studies), it
achieves exact coverage in finite samples. Such a property
is particularly appealing as the sample size is usually limited
in offline domains. Finally, our PI is asymptotically efficient
when the regression estimator is consistent.

2 Preliminaries: Conformal Prediction

We begin with a brief overview for the CP algorithm
in supervised learning. Given i.i.d. predictor-response
pairs {Zi = (Xi, Yi)}ni=1, it is concerned with produc-
ing a prediction band Ĉ(•) (as a function of the predictor
Xi) such that for an identically distributed test data pair
Zn+1 = (Xn+1, Yn+1),

P(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α, (1)

for a given desired coverage rate 1 − α ∈ (0, 1). One ex-
ample of Ĉ(x) is given by [qαL

(x), qαU
(x)] where qαL

(x)
and qαU

(x) correspond to the αLth (lower) and αU th (up-
per) conditional quantiles of Y given X = x such that
αU −αL = 1−α. Given the observed data, we can employ
state-of-the-art machine learning algorithms to learn these
conditional quantiles. This yields the following Ĉ(x),

Ĉ(x) = [q̂αL
(x), q̂αU

(x)]. (2)

However, one disadvantage of the aforementioned PI is that
the inequality (1) is not guaranteed to hold in finite samples,
due to the estimation errors of the the conditional quantiles.

The CP algorithm is developed to address this challenge. At
a high-level, CP allows us to calibrate PIs (such as (2)) com-
puted by general black box machine learning algorithms
with finite-sample guarantees such that (1) holds for any
n. Specifically, CP first splits the data into training and
calibration data-subsets. On the training dataset, it learns
the conditional mean or quantile of Y given X using any
black box machine learning algorithm. For instance, let µ̂
denote the estimated conditional mean function. On the
calibration dataset {(Xcal

i , Y cal
i )}i, it calculates a noncon-

formity score (e.g., |Y cal
i − µ̂(Xcal

i )|) that measures how
each observation “conforms" to the training dataset. The
resulting PI is constructed based on the empirical quantiles
of these nonconformity scores and attains valid coverage
as long as the data observations are exchangeable. There
are many choices of the score function available and we
refer readers to Gupta et al. (2021) for details. Another
widely-used score function is given by

max{q̂αL
(Xcal

i )− Y cal
i , Y cal

i − q̂αU
(Xcal

i )} (3)

where q̂αL
and q̂αU

are the conditional quantile estimators
given in (2). The resulting algorithm is referred to as the
conformal quantile regression (Romano et al., 2019).
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We next review the weighted CP algorithm developed by
Tibshirani et al. (2019). As commented earlier, the afore-
mentioned CP algorithm relies on exchangeability — a key
assumption that requires the joint distribution of calibration
and testing samples to be invariant to the order of samples.
This assumption is clearly violated under distributional shift
where the calibration and testing samples follow different
distribution functions. To address this concern, Tibshirani
et al. (2019) introduced the so-called “weighted exchange-
ability” that relaxes the classical i.i.d. assumption and is
automatically satisfied for independent samples.

Definition 1. (Weighted Exchangeability) Z1, . . . , Zn and
the testing sample Zn+1 are said to be weighted exchange-
able, if the density f of their joint distribution can be factor-
ized as

f(z1, . . . , zn+1) =
n+1∏
i=1

wi(zi)g(z1, . . . , zn+1),

for certain weight functions {wi}n+1
i=1 , and a permutation-

invariance function g such that g(zσ(1), . . . , zσ(n+1)) =
g(z1, . . . , zn+1) for any permutation σ of {1, . . . , n+ 1}.

According to the definition, independent data are always
“weighted exchangeable" with weight function correspond-
ing to the likelihood ratios.

Lemma 1. Let Zi ∼ Pi, i = 1, . . . , n+ 1 be independent
draws, where each Pi is absolutely continuous with respect
to P1 for i ≥ 2. Then Z1, . . . , Zn+1 are weighted exchange-
able with weight functions w1 = 1 and wi = dPi/dP1,
i ≥ 2.

Let Si = S(Zcal
i ,Ztr) denote the nonconformity score for

the ith observation in the calibration data based on certain
machine learning algorithm trained on the training dataset
Ztr, and S(x,y) = S((x, y),Ztr) denote the one for an
arbitrary predictor-response pair (x, y). Instead of relying
on the empirical quantiles of these nonconformity scores,
the weighted CP algorithm considers a weighted version
and constructs the PI for Y given X = x as

{y : S(x,y) ≤ (1− α)th quantile of the mixture distribution
n∑

i=1

pwi δSi
+ pwn+1δ∞}

where 1− α denotes the desired coverage rate, δa denotes
the Dirac delta distribution that places all mass at the value
a, and the mixing probabilities {pwi }

n+1
i=1 are functions of

weights {wi}n+1
i=1 whose explicit expressions are given in

Tibshirani et al. (2019).

Finally, we remark that the (weighted) CP method possesses
several appealing statistical properties. First, it does not
depend on any specific model assumption in the conditional
distribution of the outcome given the covariates; as such, it
is applicable to complex nonlinear and high-dimensional

settings. Second, it achieves exact coverage in the sense
that P{Y ∈ Ĉn(X)} ≥ 1 − α for any n. To the contrary,
most interval estimation procedures are only asymptotically
valid. Nonetheless, it is not straightforward to extend these
methods to the OPE problem. See Section 3.2 for details.

3 Conformal Off-Policy Prediction in
Contextual Bandits

3.1 Problem Formulation

To better illustrate the idea, in this section, we focus on a
contextual bandit setting (i.e., single stage decision mak-
ing) where the observed data consist of n i.i.d. samples
{(Xi, Ti, Yi)}ni=1 where Xi collects the contextual informa-
tion of the ith instance, Ti ∈ {0, 1, · · · ,m− 1} denotes the
treatment (e.g., action) that the ith instance receives where
m denotes the number of treatment options, and Yi is the cor-
responding response (e.g., reward). We adopt a counterfac-
tual/potential outcome framework (Rubin, 2005) to formu-
late the OPE problem. Specifically, for any 0 ≤ t ≤ m− 1,
let Y t

i denote the reward that the ith instance would have
been observed were they to receive action t.

A policy π is a (stochastic) decision rule that maps the con-
textual space to a distribution function over the action space.
We use π(t|x) to denote the probability that the agent se-
lects treatment t given X = x. For a given target/evaluation
policy πe, we are interested in inferring the conditional
distribution of the potential outcome Y πe

n+1 that would be
observed were the instance to follow πe given Xn+1. Specif-
ically, given Xn+1, we aim to produce a PI for Y πe

n+1 with
valid coverage guarantees. Notice that our objective differs
from the standard OPE problem in which one aims to derive
a CI for the expected value EY πe

n+1.

Finally, we impose standard assumptions in the causal infer-
ence literature (see e.g., Zhang et al., 2012; Zhu et al., 2017;
Chen et al., 2022), including (1) Y Ti

i = Yi almost surely for
any i (i.e., consistency); (2) (Y 0

i , · · · , Y
m−1
i ) ⊥⊥ Ti|Xi for

any i (i.e., no unmeasured confounders); (3) The behavior
policy πb(t|x) = P(Ti = t|Xi = x) is uniformly bounded
away from zero for any t, x (i.e., positivity).

3.2 Conformal Prediction for Off-Policy Evaluation

To motivate our proposed approach, we first outline two po-
tential extensions of CP to the OPE problem in this section,
corresponding to the direct method and the subsampling-
based method, and discuss their limitations. We next illus-
trate the main idea of our proposal.

Direct method. OPE is essentially a policy evaluation
problem under distribution shift where the target policy πe

differs from the behavior policy πb that generates the offline
data. By Lemma 1, the calibration dataset {(Xcal

i , Y cal
i )}i

and the predictor-potential outcome pair (Xn+1, Y
πe
n+1)
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in the target population satisfy weighed exchangeability
with weights 1 for samples in the calibration dataset and
wn+1(x, y) (given below) for the testing data

wn+1(x, y) =
dPY πe |X(y|x)
dPY |X(y|x)

, (4)

where PY |X and PY πe |X denote the conditional distribu-
tions of Y and Y πe given X , respectively. As a result, a
direct application of the weighted CP method is valid for
OPE given the weights {wi}i. We refer to the resulting al-
gorithm as the direct method and notice that the concurrent
work by Taufiq et al. (2022) adopted a similar idea. One
key step in their proposal is to use the estimated conditional
density function and the Monte Carlo method to learn the
weight function (see equation 7 in Taufiq et al. (2022) for
details). As such, their method can be sensitive to the specifi-
cation of the conditional density model. On the contrary, our
proposal below is robust to the model misspecification. We
also conduct simulation studies in Section 5 to empirically
verify the robustness property of our proposal.

To apply weighted CP, it remains to specify the weight wn+1.
Notice that both Y and Y πe correspond to a mixture of {Y t :
1 ≤ t ≤ m} with different weight vectors. Estimating wn+1

essentially requires to learn the conditional densities of Y t

given X — an extremely challenging task in complicated
high-dimensional nonlinear systems. As will show later,
this approach would fail to cover Y πe when the conditional
density model is misspecified.

Subsampling-based method. Another approach to handle
distributional shift is to take a data subset whose distribu-
tion is similar to the “target distribution" and apply standard
CP to this sub-dataset. In particular, for each observation
(Xi, Ti, Yi) in the calibration dataset, we sample a pseudo
action Ei following the evaluation policy πe, select subsam-
ples whose pseudo action matches the observed action, and
apply CP to these subsamples. We refer to the resulting
algorithm as the subsampling-based method.

However, this approach is not valid and is likely to produce
PIs that undercover the target outcome Y πe

n+1 in general.
This is because the distribution of the selected subsam-
ples {(Xi, Yi) : Ti = Ei} generally differs from that of
(Xn+1, Y

πe
n+1). The two distributions coincide only when

πe is deterministic or πb is uniformly random, as shown
below.
Proposition 1. Let E denote a pseudo action generated
according to the target policy πe. Then the conditional
distribution of Y given E = T and X follows a mixture
distribution given as follows

PY |E=T,X =

m−1∑
t=0

πe(t|X)πb(t|X)∑
t′ πe(t′|X)πb(t′|X)

PY t|X .

The above mixture distribution equals PY πe |X =∑
t πe(t|X)PY t|X if and only if πe is a deterministic policy

or πb(0|X) = πb(1|X) = · · · = πb(m− 1|X).

Our proposal. The subsampling-based method fails be-
cause the distribution of the selected response differs from
that of the potential outcome. To address this issue, instead
of sampling according to the target policy πe, we carefully
design a pseudo/auxiliary policy πa whose distribution de-
pends on both πe and πb such that the resulting subsamples’
distribution matches that of the potential outcome. More
specifically, for any 0 ≤ t < m− 1 and x, πa shall satisfy
the following,

πa(t|x)
πa(0|x)

=
πe(t|x)
πe(0|x)

[
πb(t|x)
πb(0|x)

]−1

. (5)

In other words, πa(•|x) shall be proportional to the ratio
πe(•|x)/πb(•|x) for any x. Similar to Proposition 1, let A
denote the pseudo action generated according to πa, we can
show that subsamples with A = T follow the following
distribution,

PY |A=T,X =

m−1∑
t=0

πa(t|X)πb(t|X)∑
t′ πa(t′|X)πb(t′|X)

PY t|X

=

m−1∑
t=0

πe(t|X)PY t|X = PY πe |X .

This implies that subsampling according to the pseudo pol-
icy πa yields the same conditional distribution as PY πe |X in
the target population. Nonetheless, the selected subsamples
and the target possess different covariate distributions. Such
a “covariate shift" problem can be naturally handled by the
weighted CP algorithm. Using Lemma 1 again, the subsam-
ples and the target population are weighted exchangeable
with weights wi = 1 for any i such that Ai = Ti and

wn+1(x, y) =
PX,Y πe (x, y)

PX,Y |A=T (x, y)
=

PX(x)

PX|A=T (x)

=
P(A = T )

P(A = T |X = x)
∝ 1

P(A = T |X = x)
,

Compared to the direct method (see 7), the weight in the
above expression depends only on the behavior policy which
is known in randomized studies. and is independent of y.
Consequently, our proposal is robust to the model misspec-
ification of the conditional distribution PY t|X , as shown
later. When the behavior policy is unknown, it can be es-
timated based on existing supervised learning algorithms.
We summarize our proposal in Algorithm 1, and call our
method COPP, short for conformal off-policy prediction.
Finally, we remark that by (5), πe = πa only when πe is
deterministic or πb is uniformly random. Consequently,
the subsampling-based method is valid in these two special
cases.

A numerical example. We conduct a simulation study to
further demonstrate the sub-optimality of the direct and
subsampling-based methods. We generate 500 data points
from Example 1 of Section 5 for calibration and 10000
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test data points. We consider a random target policy and
a deterministic target policy. We further consider two con-
ditional distribution models for Y t|X , corresponding to a
correctly specified model (denoted by “true"), and a mis-
specified model (denoted by “false") generated by injecting
uniformly random noises on (0, 1) to the oracle distribu-
tion function. It can be seen from Figure 1 that the direct
method fails to cover the response when the conditional
distribution model is misspecified whereas the subsampling-
based method fails when the target policy is random. To
the contrary, our proposal achieves valid coverage in all
settings.

Algorithm 1 COPP for single-stage decision making

Input: Data {(Xi, Ti, Yi)}ni=1; a test point Xn+1; a tar-
get policy πe; number of treatment options m; propen-
sity score training algorithmP ; quantile prediction algo-
rithmQ; quantile levels αU , αL with αU −αL = 1−α.

1: Split the data into two disjoint subsets Ztr ∪ Zcal.
2: Estimate πb(t|x) via P using samples from Ztr.
3: Draw {Ai}ni=1 by plugging the propensity score

estimator π̂b(t|x) in (5).
4: Select subsamples satisfying Ai = Ti in both data

subsets. Denote them by Ztr,s and Zcal,s.
5: Apply quantile regressions via Q to selected sub-

samples from Ztr,s to obtain the conditional quan-
tile functions q̂αL

and q̂αU
.

6: Compute the conformity scores {Si}i for all se-
lected subsamples i ∈ Zcal,s according to (3).

7: For any i ∈ Zcal,s ∪ {n+ 1}, estimate the weight
ŵn+1(Xi) =

∑m−1
t=0 πe(t|Xi)/π̂b(t|Xi).

8: For any i, compute the mixing probability pwi =
[
∑

j∈Zcal,s∪{n+1} ŵn+1(Xj)]
−1ŵn+1(Xi).

9: Compute Q1−α(Xn+1) as the (1− α)th quantile
of
∑

i∈Zcal,s pwi δSi + pwn+1δ∞.

Output: the PI Ĉ(Xn+1) = [q̂αL
(Xn+1) −

Q1−α(Xn+1), q̂αU
(Xn+1) +Q1−α(Xn+1)]

Statistical properties. Let π̂b(t|x) denote the estimated
behavior policy, wn+1(x) = 1/P(A = T |X = x) denote
the oracle normalized weight function and ŵn+1 denote the
estimated weight function in Step 7 of Algorithm 1. We
first show that COPP achieves valid coverage asymptoti-
cally when the behavior policy is consistently estimated.
Notice that we do not require consistency of the estimated
conditional outcome distribution.

Theorem 1 (Asymptotic coverage). Let n1 = |Ztr|. Fur-
ther, suppose that E[ŵn+1(X)|Ztr] <∞, E[wn+1(X)] <
∞ and the consistency of behavior policy estimates (see the
detailed requirements in Appendix A), then the output Ĉ(x)
from Algorithm 1 satisfies

lim
n1→∞

P(Y πe
n+1 ∈ Ĉ(Xn+1)) ≥ 1− α.

Next, we show that if the propensity scores are known in
advance, the proposed PI achieves exact coverage in finite
samples.

Theorem 2 (Exact coverage). Suppose that E[wn+1(X)] <

∞, then the output Ĉ(x) from Algorithm 1 with correctly
specified propensity scores satisfies, for any sample size n,

P(Y πe
n+1 ∈ Ĉ(Xn+1)) ≥ 1− α.

Finally, we show that the proposed PI is asymptotically
efficient when the quantile regression estimator in Step 5 of
Algorithm 1 is consistent.

Theorem 3 (Asymptotic efficiency). Suppose the behavior
policy is known and the quantile regresssion estimates are
consistent (see the detailed requirements in Appendix A),
the output Ĉ(x) from Algorihtm 1 satisfies

L(Ĉ(Xn+1)△Coracle
α (Xn+1)) = op(1),

as |Ztr|, |Zcal| → ∞. Here L(A) indicates the Lebesgue
measure of the set A, and △ is the symmetric difference
operator, i.e., A△B = (A\B) ∪ (B\A), Coracle

α (x) is the
oracle interval defined as [qαL

(x), qαU
(x)].

3.3 Extensions

In this section, we discuss two extensions of COPP, based
on importance sampling and multi-sampling, respectively.

Extension 1. One limitation of COPP lies in that the PIs
are constructed based only on observations in the subsam-
ples. Nonetheless, when the target policy is stochastic, each
observation has certain chance of being selected. To make
full use of data, we adopt the importance sampling trick to
compute the normalized weights and quantiles in Steps 8
and 9 of Algorithm 1, respectively. Specifically, in Step 7,
we set the weight ŵn+1(Xi) for each of the sample in Zcal

to π̂a(Ti|Xi)ŵn+1(Xi). These weights are then passed to
Step 8 to compute p̂i, and subsequently to Step 9 to calculate
Q1−α(Xn+1) by replacing Zcal,s with the whole calibra-
tion set Zcal. As we will show in Section 5, this procedure
is much more efficient than COPP when the selected sub-
samples contains only a few observations. We next prove
that such an extension achieves valid coverage as well.

Theorem 4. Under the conditions of Theorem 1, we have

lim
n1→∞

P(Y πe
n+1 ∈ Ĉ(Xn+1)) ≥ 1− α.

Extension 2. The second extension integrates COPP with
the multi-sampling method. Notice that Algorithm 1 only
implements subsampling once. The result can be very
sensitive to the selected subsamples. To mitigate the ran-
domness the single-sampling procedure introduces, we pro-
pose to repeat COPP multiple times and then aggregate
all these PIs to gain efficiency. To combine multiple PIs,
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Figure 1: Empirical coverage probabilities (CPs) of PIs based on the Direct method (DM), Subsampling-based method
(SM) and our proposal (COPP) in single-stage studies. The stochastic target policy is given by πe(1|X) = 1− πe(0|X) =
sigmoid(−0.5+X(1)+X(2)−X(3)−X(4)) and the deterministic target policy is given by I(X(3)+X(4) > X(1)+X(2)).
The nominal level 1− α is 90%.

we adopt the idea proposed by Solari and Djordjilović
(2022) for multi-split conformal prediction. A key ob-
servation is that, the PI in Algorithm 1 is equivalent to
Ĉ(Xn+1) = {y : p(Xn+1, y) ≥ α} where p(Xn+1, y) is
given by∑
i∈Zcal,s

pwi I[max{q̂αL
(Xn+1)−y, y−q̂αU

(Xn+1)} ≤ Si]+pw∞,

serving as a p-value for the testing hypotheses H0 : Y πe
n+1 =

y against H1 : Y πe
n+1 ̸= y given Xn+1. This allows us to

follow the idea of Meinshausen et al. (2009) for p-value
aggregation. Let pb(x, y) for 1 ≤ b ≤ B be the p-values
for B constructed PIs with significance level αγ for certain
tuning parameter 0 < γ < 1. We aggregate these p-values
by setting p̄(Xn+1, y) to their empirical γ-quantile. The
final PI is given by ĈB,γ(Xn+1) = {y : p̄(Xn+1, y) ≥ α}.
Theorem 5. Under the conditions of Theorem 1, we have
for any B > 0 and 0 < γ < 1,

lim
n1→∞

P(Y πe
n+1 ∈ ĈB,γ(Xn+1)) ≥ 1− α.

Finally, we remark that we only derive the asymptotic cover-
age of the two extensions in Theorems 4 and 5. Nonetheless,
when the behavior policy is known, these methods also
achieve exact coverage.

4 Conformal Off-Policy Prediction in
Sequential Decision Making

Problem formulation. In this section, we consider sequen-
tial desicion making where the observed data consist of n
i.i.d samples {(X1i, T1i, X2i, T2i, . . . , XKi, TKi, Yi)}ni=1

where for the ith instance, Xki collects the state informa-
tion at the kth stage, Tki ∈ {0, . . . ,m − 1} denotes the
action at the kth stage , Yi is the corresponding reward at
the final stage. Such a sparse reward setting is frequently
considered for precision medicine type applications (Mur-
phy, 2003). Meanwhile, our method is equally applicable to

settings with immediate rewards at each decision point (see
Appendix B).

Let Hk = {X1, T1, . . . , Xk} denote the history up to the
kth stage. We define a (history-dependent) policy Π =
(π1(t1|h1), π2(t2|h2), . . . , πK(tK |hK)) as a sequence of
(stochastic) decision rules where each πk(tk|hk) determines
the probability that an agent selects action tk at the kth stage
given that Hk = hk. For a given target policy πe, we are
interested in constructing PIs for the potential outcome Y πe

that would be observed were the instance to follow πe for
any initial state X1. To save space, we impose the consis-
tency, sequential ignorability and positivity assumption in
Appendix B.

COPP. We generalize our proposal in Section 3.2 to se-
quential making decision. We design a pseudo policy
πa = {πa,k}k which relies on both πb = {πb,k}k and
πe = {πe,k}k, to generate subsamples whose outcome dis-
tribution conditional on the state-action history matches that
of the potential outcome. Specifically, for any 1 ≤ k ≤ K
and hk, the pseudo policy πa,k(•|hk) shall be proportional
to the ratio πe,k(•|hk)/πb,k(•|hk). Similar to Proposition
1, we can show that the conditional density of Y |AK =
TK , HK equals that of Y πe |HK .

More importantly, by iteratively integrating over the space
of {Tk, Xk+1, · · · , XK}, we can show that the conditional
density of Y |Ak = Tk, · · · , AK = TK , Hk also equals
that of Y πe |Hk for each k. Using Lemma 1 again, the
subsamples {(H1i, Y1i) : Aki = Tki, 1 ≤ k ≤ K, 1 ≤ i ≤
n} and the target population (H1,n+1, Yn+1) are weighted
exchangeable with weights wi = 1 for any i and

wn+1(h) ∝ P−1(A1 = T1, · · · , AK = TK |H1 = h).

Based on these weights, the PIs can be similarly derived as
in Algorithm 1. We defer the pseudocode and the statistical
properties of the constructed PIs to Appendix B.

Extensions. Our proposal suffers from the “curse of hori-
zon" (Liu et al., 2018) in that the number of selected subsam-
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ples decreases exponentially fast with respect to the number
of decision stages. While this phenomenon is unavoidable
without further model assumptions (Jiang and Li, 2016),
the importance-sampling-based and multi-sampling-based
approach alleviate this issue to some extent, as shown in our
simulations. Since these extensions are very similar to those
presented in Section 3.3, we omit them for brevity.

5 Synthetic Data Analysis

In this section, we conduct simulation studies to investigate
the empirical performance of our proposed methods. In
particular, we focus on the following three examples:

Example 1 (Single-Stage Decision Making):

• The baseline covariates X(1), X(2), X(3), X(4) are inde-
pendently uniformly generated from (0, 1).

• The action is binary and satisfies P(T = 1|X) =

sigmoid(−0.5 − 0.5
∑4

j=1 X
(j)) where sigmoid(t) =

exp(t)/[1 + exp(t)].

• The return is given by Y = 1+X(1)−X(2) +(X(3))3 +
exp(X(4)) + T (3− 5X(1) + 2X(2) − 3X(3) +X(4)) +

(1 + T )(1 +
∑4

j=1 X
(j))ϵ where ϵ is a standard normal

variable independent of X and T .

• The target policy πe satisfies πe(1|X) = sigmoid(−0.5+
X(1) +X(2) −X(3) −X(4))).

Example 2 (Two-Stage Decision Making):

• Observations and actions are generated as follows:

X1 ∼ Uniform(0, 1),

T1|X1 ∼ Bernoulli(sigmoid(−0.5 +X1)),

X2|X1, T1 ∼ Uniform(X1, X1 + 1),

T2|X1, T1, X2 ∼ Bernoulli(sigmoid(−0.5−X2)).

• The final return is given by Y = 1+X1+T1[1−3(X1−
0.2)2] + X2 + T2[1 − 5(X2 − 0.4)2] + (1 + 0.5T1 −
T1X1 + 0.5T2 − T2X2)ϵ for a standard normal variable
ϵ independent of observations and actions.

• The target policy is defined as follows

E1|X1 ∼ Bernoulli(sigmoid(0.5X1 − 0.5)),

E2|X1, E1, X2 ∼ Bernoulli(sigmoid(0.5X2 − 1)).

For each example, we further consider two settings. In the
high-dimensional setting, we manually include 100 − p0
null variables that are uniformly distributed on (0, 1) in the
state with p0 = 4 and 1 in Examples 1 and 2, respectively.
In the low-dimensional setting, these null variables are not
included. This yields a total of four different scenarios. The
sample size is fixed to 2000.

Example 3 (Multi-Stage Decision Making): We design an
additional simulation studies where the number of horizon
(e.g., the decision stages) equals 3, 4 or 5, and investigate
the performance of our methods under this setting.

• Observations and actions are generated as follows:

X1 = 0.5ϵ1, ϵk ∼ N(0, 1), 1 ≤ k ≤ m,

Tk|Xk ∼ Bernoulli(sigmoid(−0.5 +Xk)),

Xk = 0.5Xk−1 + 0.1Tk−1 + 0.5ϵk.

• The final return is given by Ym = Xm.

• The target policy is defined as follows

Dk|Xk ∼ Bernoulli(sigmoid(−0.5 + 0.5Xk)).

The data consist of 2000 observations, in which three quar-
ters are used for training and the rest for validation.

Implementation details. We estimate the behavior policy
using logistic regression. In the high-dimensional setting,
we apply penalized regression to improve the estimation
efficiency. The conditional quantile functions are estimated
based on quantile regression forest (Meinshausen and Ridge-
way, 2006). Following Sesia and Candès (2020), we use
75% of the data for training and the rest for calibration.
We fix αL = α/2 and αU = 1 − α/2 in all settings. In
addition, to implement the multi-sampling-based method,
we fix γ = 1/2 and set the significance level to α instead
of αγ = α/2 to improve the precision (interval length).
We find that the resulting PI achieves nominal coverage in
practice. The number of intervals B is set to 100 in the low-
dimensional setting, and 50 in high dimension to reduce
computation time. Finally, in each simulation, we generate
10000 test data points in the target population to evaluate
the converge probability. The R code is released here.

Benchmark specification. We compare our proposed meth-
ods against the subsampling-based method (SM) detailed in
Section 3.2. In low-dimensional settings, we also compare
with the standard importance sampling (IS) and doubly ro-
bust (DR) method (see e.g., Dudík et al., 2011; Zhang et al.,
2012; Jiang and Li, 2016) designed for off-policy confidence
interval estimation. These methods focus on the average
effect. We couple them with kernel density estimation to
infer the individual effect conditional on the initial state.
Please refer to Appendix C for the detailed implementation.

Results. Figure 2 reports the coverage probability and av-
erage length of various interval estimators for Examples
1 and 2, aggregated over 100 simulations. We denote the
extensions of our proposal based on importance-sampling,
multi-sampling alone and a combination of the two are
denoted by COPP-IS, COPP-MS and COPP-IS-MS, respec-
tively. We summarize our findings below. First, intervals

https://github.com/yyzhangecnu/COPP
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Figure 2: Empirical coverage probabilities (CPs) and average lengths (ALs) of intervals based on SM, IS, DR, and our
proposed COPP, COPP-IS, COPP-MS, COPP-IS-MS in four settings. The nominal level is 90%.

based on SM, IS and DR significantly undercover the poten-
tial outcome. As we have commented, these methods are
not valid in general. SM requires either a uniformly random
behavior policy, or a deterministic target policy. IS and DR
focus on the expected return and ignore the variability of the
return around its expectation. Second, all the proposed meth-
ods achieve nominal coverage in most cases. Among them,
the multi-sampling-based methods (COPP-MS and COPP-
IS-MS) achieve the best performance, with substantially
reduced variability compared to the single-sampling-based
methods. In addition, COPP-IS performs much better than
COPP in two-stage settings where the number of subsam-
ples is limited, as expected.

We report the results for Example 3 in Figure 3, where
the proposed COPP, COPP-IS, COPP-MS, COPP-IS-MS
with horizon m are labelled as m-1, m-2, m-3 and m-4,
respectively. It can be seen that the proposed method is able
to achieve nominal coverage in general. Nonetheless, as
commented in our paper, it suffers from the curse of horizon
and would be inefficient in long-horizon settings. It remains
unclear how to break the curse of horizon and we leave it as
future work.

Comparison with Taufiq et al. (2022). We consider the
simulation setting described in Section 6.1.1 of Taufiq et al.
(2022) with four actions, implement their methods with a
correctly specified f (denoted by “Tau-TDen”) and a mis-
specified model (denoted by“Tau-FDen”), and compare both
methods against our proposal with a misspecified f . All
these methods additionally require to specify the propensity
score model and we use a correctly specified model. It is

seen from Figures 4 and 5 below that unlike our proposal,
Taufig et al. (2022)’s method is sensitive to the specification
of the conditional density function.

6 Real Data Analysis

We illustrate the usefulness of our method based on a dataset
collected from a world-leading technology company. This
company has one of the largest mobile platforms for produc-
tion, aggregation and distribution of short-form videos with
extensive search functionality. It implements a strategy to
encourage users to explore its search functionality. Specifi-
cally, when a user launches the app for the first time in a day,
they will see a pop-up window that recommends them to
use the search feature. However, pop-ups are annoying for
some users. As such, the company’s interested in ‘pop-up’
policies that implement this strategy to a subgroup of users
to increase their search frequency.

The dataset is collected from an online experiment which
involves two millions daily active users and has been scaled
due to privacy. The features available to us consist of each
user’s history information including the frequency they used
the app and the search functionality prior to the experiment.
The reward is the user’s search frequency after treatment
and is highly heavy-tailed as shown in Figure 6. As such,
instead of focusing on a target policy’s expected return, we
are interested in its entire distribution. As commented ear-
lier, most existing OPE methods are not directly applicable.
In addition, since the behavior policy is known to us, the
proposed method is robust to the model misspecification of
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Figure 3: Coverage Probability for SDM
for Horizons 3,4,5.

Figure 4: Coverage Probability for Mul-
tiple Action Space

Figure 5: Average Length for Multiple
Action Space

Figure 6: Histogram and QQ plot of users’ search frequen-
cies. In the QQ plot, the blue curve depicts the empirical
quantiles of the search frequency against those from a stan-
dard normal distribution function.

the outcome distribution, and achieves exact coverage.

To investigate the validity of the proposed method, we
equally split the dataset into two, one for learning an optimal
policy and the other for policy evaluation. On the evaluation
dataset, we further employ ten-fold cross-validation to test
our method. Specifically, we randomly split the data into
ten folds, use nine of them to train the proposed PIs and the
remaining fold to estimate their coverage probabilities. We
further aggregate these coverage probabilities over different
folds to get the full efficiency. In our implementation, the
number of intervals B is set to 100, and other configurations
are consistent with those in Section 5. It turns out that the
average coverage probabilities of COPP, COPP-MS, COPP-
IS and COPP-IS-MS are all close to the nominal level 90%,
and equal 91.0%, 90.5%, 89.6% and 90.4%, respectively.
The lower and upper bounds of the proposed PIs offer a
more accurate characterization of the target policy’s return
and give practitioners more information when conducting
online A/B tests.

7 Conclusion and Discussion

To our knowledge, our proposal is the first to procedure sta-
tistically sound PIs for a target policy’s return in sequential
decision making. The proposed PIs focus on the individual
effect, take the variability of the return around its mean into
consideration, achieve finite-sample coverage guarantees
and are robust to the misspecification of the conditional out-

come model. Currently, we consider a discrete action space.
It would be practically interesting to extend our proposal
to the continuous action setting. However, this is beyond
the scope of the current paper and we leave it for future
research.
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A PROOF OF MAIN RESULT

This section provides the additional assumptions and proofs for Theorems 1-5 for COPP, COPP-IS, COPP-MS in contextual
bandits. We first provide two assumptions concerning the consistency of behavior policy estimates π̂b(t|x). Assumption 1
is similar to A1 in Lei and Candès (2021). Let Ã and A denote the pseudo actions generated according to the estimated
behavior policy π̂b obtained from the training dataset Ztr and the oracle behavior policy πb, respectively. Let PX|Ã=T be the
distribution function of the contextual information in selected samples Zcal,s as an estimate of PX|A=T . Since observations
in the calibration dataset follow same distribution, it suffices to estimate the weight function wn+1. To ease notation, we
will omit the subscript n+ 1 in wn+1 and ŵn+1 when there is no confusion.

Assumption 1. For any 0 ≤ t ≤ m− 1, lim
n1→∞

EX∼PX
|1/π̂b(t|X)− 1/πb(t|X)| → 0.

Assumption 2. EX∼PX|Ã=T
[ŵ(X)|Ztr] <∞.

Proof of Theorem 1 (Asymptotic coverage). The proof is similar to that of Theorem 3 in Lei and Candès (2021). First, we
index the data points in the selected calibration dataset Zcal,s by {1, 2, . . . , n′

2}. Notice that PX|Ã=T is close to PX|A=T

given a consistent behavior policy estimator. In addition, the two conditional distributions are the same if the propensity score
is known in advance. The distribution of selected outcome is given by PY |Ã=T,X , which aims to approximate PY |A=T,X .
By definition, we have

PY |Ã=T,X =

m−1∑
t=0

πe(t|x)πb(t|x)/π̂b(t|x)∑
t′ πe(t′|x)πb(t′|x)/π̂b(t′|x)

PY t|X .

Using Bayesian rule,

dPX|Ã=T (x) =
P (Ã = T |X = x)dPX(x)∫
x
P (Ã = T |X = x)dPX(x)

=
(
∑m−1

t=0 πe(t|x)πb(t|x)/π̂b(t|x))/(
∑m−1

t=0 πe(t|x)/π̂b(t|x))dPX(x)∫
x
(
∑m−1

t=0 πe(t|x)πb(t|x)/π̂b(t|x))/(
∑m−1

t=0 πe(t|x)/π̂b(t|x))dPX(x)
. (6)

Since the denominator is a constant and the weighted conformal inference is invariant to rescaling of the likelihood ratio, we
can reset the estimated weights by multiplying the denominator in the above. In other words, instead of setting ŵ(x) to∑m−1

t=0 πe(t|x)/π̂b(t|x) as in the main paper, we define

ŵ(x) =

∫
x
(
∑m−1

t=0 πe(t|x)πb(t|x)/π̂b(t|x))/(
∑m−1

t=0 πe(t|x)/π̂b(t|x))dPX(x)

1/(
∑m−1

t=0 πe(t|x)/π̂b(t|x))
. (7)

Let Zi = (Xi, Yi) for 1 ≤ i ≤ n′
2 where (Xi, Yi) ∼ PX|Ã=T × PY |X,Ã=T and Zn+1 = (Xn+1, Yn+1) ∼ PX × PY πe |X .

Recall that PY |X,A=T = PY πe |X and PY |X,Ã=T = PY πe |X if and only if π̂b(t|x) = πb(t|x) for any 0 ≤ t ≤ m− 1 and x.
The true weight function w is set to

w(x) =
dPX(x)

dPX|A=T (x)
,

accordingly. Under the assumption that E[w(X)] <∞, we have PX∼PX
(w(X) <∞) = 1. Similarly, under the assumption

that E[ŵ(X)|Ztr] <∞, we obtain
PX∼PX

(ŵ(X) <∞) = 1.

Let P̃X denote a context distribution function such that dP̃X(x) is proportional to ŵ(x)dPX|Ã=T (x). Under Assumption 2,

we have that PX∼PX|Ã=T
(ŵ(X) <∞|Ztr) = 1, which in turn implies that P̃X is a probability measure. Consider now a

new sample Z̃n+1 = (X̃n+1, Ỹn+1) ∼ P̃X × PY |Ã=T,X .

Let Ez̃ denote the event that {Z1, . . . , Zn′
2
, Z̃n+1} = {z1, . . . , zn′

2
, z̃n+1}. The corresponding nonconformity scores are

denoted as S̃ = (S1, . . . , Sn′
2
, S̃n+1), si = S(zi,Ztr) for 1 ≤ i ≤ n′

2 and s̃n+1 = S(z̃n+1,Ztr). Without loss of
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generality, assume these scores are discrete-valued. For each 1 ≤ i ≤ n′
2,

P{S̃n+1 = si|Ez̃} = P{Z̃n+1 = zi|Ez̃} =
∑

σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑
σ f(zσ(1), . . . , zσ(n+1))

where σ corresponds to the permutation of numbers {1, . . . , n′
2, n+ 1} and f is the joint density of {Z1, . . . , Zn′

2
, Z̃n+1}.

For instance, suppose σ(i) = n+ 1, then we have zσ(i) = z̃n+1. Notice that the condition distribution of Ỹn+1 given X̃n+1

is the same as those in the calibration data. It follows from Lemma 1 that

P{S̃n+1 = si|Ez̃} =
∑

σ:σ(n+1)=i ŵ(xσ(n+1))∑
σ ŵ(xσ(n+1))

=
ŵ(xi)∑

i∈Zcal,s ŵ(xi) + ŵ(x̃n+1)
≡ p̂i(x̃n+1), (8)

Similarly,

P{S̃n+1 = s̃n+1|Ez̃} =
ŵ(xi)∑

i∈Zcal,s ŵ(xi) + ŵ(x̃n+1)
≡ p̂n+1(x̃n+1).

This yields that

S̃n+1|Ez̃ ∼
n′
2∑

i=1

p̂i(x̃n+1)δsi + p̂n+1(x̃n+1)δS̃n+1
.

By Lemma 1 in Tibshirani et al. (2019), it is equivalent to

S̃n+1|Ez̃ ∼
n′
2∑

i=1

p̂i(x̃n+1)δvi + p̂n+1(x̃n+1)δ∞. (9)

As a consequence,

P(Ỹn+1 ∈ Ĉ(X̃n+1)|Ztr) = P(S̃n+1 ≤ η(X̃n+1)|Ztr)

= P(S̃n+1 ≤ Quantile(1− α;

n′
2∑

i=1

p̂i(x̃n+1)δvi
+ p̂n+1(x̃n+1)δ∞|Ztr)) ≥ 1− α,

where the last inequality follows from (9). In addition, we have that∣∣P(Yn+1 ∈ Ĉ(Xn+1)|Ztr,Zcal)− P(Ỹn+1 ∈ Ĉ(X̃n+1)|Ztr,Zcal)
∣∣

≤ dTV(P̃X × PY |Ã=T,X , PX × PY πe |X).

Taking expectation with respect to Zcal on both sides, we obtain that∣∣P(Yn+1 ∈ Ĉ(Xn+1)|Ztr)− P(Ỹn+1 ∈ Ĉ(X̃n+1)|Ztr)
∣∣ ≤ dTV(P̃X × PY |Ã=T,X , PX × PY πe |X).

Recall that P̃X is defined as the distribution function such that dP̃X(x) is proportional to ŵ(x)dPX|Ã=T (x). It follows that

dTV(P̃X × PY |Ã=T,X , PX × PY πe |X)

≤ 1

2

m−1∑
t=0

∫ ∣∣∣∣ŵ(x) πe(t|x)πb(t|x)/π̂b(t|x)∑
t′ πe(t′|x)πb(t′|x)/π̂b(t′|x)

dPX|Ã=T (x)− w(x)πe(t|x)dPX|A=T (x)

∣∣∣∣
+

1

2

m−1∑
t=0

∫ ∣∣∣∣ŵ(x) πe(t|x)πb(t|x)/π̂b(t|x)∑
t′ πe(t′|x)πb(t′|x)/π̂b(t′|x)

dPX|Ã=T (x)

(
1− 1∫

ŵ(x)dPX|A=T (x)

)∣∣∣∣
(1)
=

1

2

m−1∑
t=0

∫
|πe(t|x)πb(t|x)/π̂b(t|x)dPX(x)− πe(t|x)dPX(x)|

+
1

2

m−1∑
t=0

∫ ∣∣∣∣∣πe(t|x)πb(t|x)/π̂b(t|x)dPX(x)

(
1− 1∫ ∑m−1

t=0 πe(t|x)πb(t|x)/π̂b(t|x)dPX(x)

)∣∣∣∣∣
=

1

2

m−1∑
t=0

∫
πe(t|x)πb(t|x) |1/π̂b(t|x)− 1/πb(t|x)| dPX(x) +

1

2

m−1∑
t=0

∫
πe(t|x)πb(t|x)/π̂b(t|x)dPX(x)− 1

2

≤
m−1∑
t=0

∫
|1/π̂b(t|x)− 1/πb(t|x)| dPX(x)

(2)→ 0,
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where (1) follows from (6) and (7) and (2) follows from Assumption 1.

Proof of Theorem 2 (Exact coverage). The proof is very similar to that of Theorem 1 in Tibshirani et al. (2019) and is
hence omitted.

Assumption 3. (consistency of quantile regression estimates). For n1 large enough,

P
[
E
[
(q̂αL

(Xn+1)− qαL
(Xn+1))

2|q̂αL
, q̂αU

]
≤ ηn1

]
≥ 1− ρn1

,

P
[
E
[
(q̂αU

(Xn+1)− qαU
(Xn+1))

2|q̂αL
, q̂αU

]
≤ ηn1

]
≥ 1− ρn1 ,

for some sequences ηn1
= o(1) and ρn1

= o(1) as n1 →∞.

Proof of Theorem 3 (Asymptotic efficiency). The proof is similar to that of Theorem 1 in Sesia and Candès (2020). First,
we rewrite Assumption 3 as

P
[
E
[
(q̂αL

(Xn+1)− qαL
(Xn+1))

2|q̂αL
, q̂αU

]
≤ ηn1

/2
]
≥ 1− ρn1

/2,

P
[
E
[
(q̂αU

(Xn+1)− qαU
(Xn+1))

2|q̂αL
, q̂αU

]
≤ ηn1

/2
]
≥ 1− ρn1

/2,

for some sequences ηn1 = o(1) and ρn1 = o(1) as n→∞. Recall that our prediction band is defined as

Ĉ(Xn+1) = [q̂αL
(Xn+1)−Q1−α(Xn+1), q̂αU

(Xn+1) +Q1−α(Xn+1)]

where Q1−α(Xn+1) = (1− α)th quantile of
∑

i∈Zcal,s pi(Xn+1)δVi
+ p∞(Xn+1)δ∞. The oracle band is given by

Coracle
α (Xn+1) = [qαL

(Xn+1), qαU
(Xn+1)].

It suffices to show

(i) |q̂β(Xn+1)− qβ(Xn+1)| = oP (1) for β = αL, αU . (10)
(ii) |Q1−α(Xn+1)| = oP (1) (11)

(i) Define random sets

Bn,U = {x : |q̂αU
(x)− qαU

(x)| ≥ η1/3n1
}, Bn,L = {x : |q̂αL

(x)− qαL
(x)| ≥ η1/3n1

}

and Bn = Bn,U ∪Bn,L. we have

P[Xn+1 ∈ Bn|q̂αL
, q̂αU

]

≤ P[|q̂αU
(x)− qαU

(x)|2 ≥ η2/3n1
|q̂αU

] + P[|q̂αL
(x)− qαL

(x)|2 ≥ η2/3n1
|q̂αL

]

≤ η−2/3
n1

E[|q̂αU
(x)− qαU

(x)|2] + η−2/3
n1

E[|q̂αL
(x)− qαL

(x)|2] ≤ η1/3n1

with probability at least 1− ρn1 by Assumption 3. This implies (10).

(ii) Consider the following partition of the data in Zcal,s, where n′
2 = |Zcal,s|:

Zcal,s
a = {i ∈ Zcal,s : Zi ∈ Bc

n}, Z
cal,s
b = {i ∈ Zcal,s : Zi ∈ Bn}.

First, by Hoeffding’s inequality,

P
[
|Zcal,s

b | ≥ n′
2η

1/3
n1

+ t
]
≤ P

[
1

n′
2

∑
i∈Zcal,s I[Zi ∈ Bn] ≥ P[Zi ∈ Bn] +

t
n′
2

]
≤ exp

(
−2t2

n′
2

)
.

Set t = c
√

n′
2 log n

′
2, we obtain that |Zcal,s

b | = oP (n
′
2) = oP (n).

Next, define S̃i = max{qαL
(Xi)− Yi, Yi − qαU

(Xi)} for any i ∈ Zcal,s. By definition, for all i ∈ Zcal,s
a ,

S̃i − η1/3n1
≤ Si ≤ S̃i + η1/3n1

. (12)



Yingying Zhang, Chengchun Shi, Shikai Luo

Let Fn and F̃n denote the empirical distribution
∑

i∈Zcal,s pi(Xn+1)δSi + p∞(Xn+1)δ∞ and
∑

i∈Zcal,s pi(Xn+1)δS̃i
+

p∞(Xn+1)δ∞ respectively. Define Fn,a and F̃n,a as versions of Fn and F̃n when restricting attentions to observations that
belong to Zcal,s

a only. For sufficiently large n, we can show |Zcal,s
b |/|Zcal,s

a | ≤ α by noting that |Zcal,s
b | = oP (n). We

next show that

F−1
n,a

(
1− n′

2α

|Zcal,s
a |

)
≤ F−1

n (1− α) ≤ F−1
n,a

(
1−

n′
2α− |Z

cal,s
b |

n′
2|Z

cal,s
a |

)
.

To prove the first inequality, notice that for those observations that belong to Zcal,s
b , if their scores are in the lower 1− α

quantile of Fn, F−1
n,a(1 − n′

2α/|Zcal,s
a |) = F−1

n (1 − α). However, in general, the quantiles of Fn,a will be smaller. The
second inequality can be proven in a similar manner. Combining this together with (12) yields that

F̃−1
n,a

(
1− n′

2α

|Zcal,s
a |

)
− η1/3n1

≤ F−1
n (1− α) ≤ F̃−1

n,a

(
1−

n′
2α− |Z

cal,s
b |

n′
2|Z

cal,s
a |

)
+ η1/3n1

.

It in turn yields that |F̃−1
n,a(1−α)− F̃−1

n (1−α)| = oP (1) and hence, |F̃−1
n (1−α)−F−1

n (1−α)| = oP (1). By definition,
F̃−1
n (1− α) = oP (1). It follows that Q1−α(Xn+1) := F−1

n (1− α) = oP (1). This yields (11).

Proof of Theorem 4 (COPP-IS). We index the data points in the calibration dataset Zcal by {1, 2, . . . , n2}. Recall that
Zi = (Xi, Ti, Yi) for any i ∈ Zcal. Let Z̃n+1 = (X̃n+1, Ẽn+1, Ỹn+1) where (X̃n+1, Ỹn+1) ∼ P̃X ×PY |Ã=T,X and Ẽn+1

is the latent treatment variable. Let Ez̃ denote the event that {Z1, . . . , Zn, Z̃n+1} = {z1, . . . , zn, z̃n+1}. Notice that each
Zi involves the binary treatment variable. The corresponding nonconformity scores are denoted by S̃ = (S1, . . . , Sn, S̃n+1)
and si = S((xi, yi),Ztr) for 1 ≤ i ≤ n2, s̃n+1 = S((x̃n+1, ỹn+1),Ztr). Notice that these scores are independent of the
binary variable.

Similar to the proof of Theorem 1, for each 1 ≤ i ≤ n2,

P{S̃n+1 = vi|Ez̃, A1, . . . , An2
}

= P{(X̃n+1, Ỹn+1) = (xi, yi)|Ez̃, A1, . . . , An2
}

=
ŵ(zi)I(Ai = ti)∑

i∈Zcal ŵ(zi)I(Ai = ti) + ŵ(z̃n+1)
= p̂i(x̃n+1|A1, . . . , An2).

The quantile Q1−α(x̃n+1|A1, . . . , An2
) used to construct the interval is defined as

(1− α)th quantile of
∑

i∈Zcal

p̂(x̃n+1|A1, . . . , An2
)δVi

+ p̂n+1(x̃n+1|A1, . . . , An2
)δ∞.

In COPP-IS,

P{S̃n+1 = vi|Ez̃} =
ŵ(zi)π̂A(ti|xi)∑

i∈Zcal ŵ(zi)π̂A(ti|xi) + ŵ(z̃n+1)
= p̂i(x̃n+1).

The quantile Q1−α(x̃n+1) used to construct the interval is defined as

(1− α)th quantile of
∑

i∈Zcal

p̂(x̃n+1)δVi + p̂n+1(x̃n+1)δ∞.

By law of large numbers, limn2→∞{Q1−α(x̃n+1|A1, . . . , An2
)−Q1−α(x̃n+1)} = 0. Other results can be similarly proven.
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Proof of Theorem 5 (COPP-MS). By Markov inequality, we have

P(X,Y πe )∼PX×P
Y πe |X

(Y πe

/∈ ĈB,γ(X))

= P(X,Y πe )∼PX×P
Y πe |X

(

B∑
b=1

I(Y πe

/∈ Ĉb
n1,n2

(X)) ≥ γB)

= E[I(
B∑

b=1

I(Y πe

/∈ Ĉb
n1,n2

(X)) ≥ γB)]

≤ 1

γB
E[

B∑
b=1

I(Y πe

/∈ Ĉb
n1,n2

(X))]

=
1

γ
P(X,Y πe )∼PX×P

Y πe |X
(Y πe

/∈ Ĉb
n1,n2

(X)).

According to Theorem 1, we have

lim
n1,n′

1→∞
P(X,Y πe )∼PX×P

Y πe |X
(Y πe

/∈ Ĉb
n1,n2

(X)) ≤ αγ.

Combining the two results, we obtain that

lim
n1,n′

1→∞
P(X,Y πe )∼PX×P

Y πe |X
(Y πe

/∈ ĈB,γ(X))

≤ lim
n1,n′

1→∞

1

γ
P(X,Y πe )∼PX×P

Y πe |X
(Y πe

/∈ Ĉb
n1,n2

(X)) ≤ α.

This is equivalent to
lim

n1,n′
1→∞

P(X,Y πe )∼PX×P
Y πe |X

(Y πe

∈ Ĉb
n1,n2

(X)) ≥ 1− α.

The proof is hence completed.

B SEQUENTIAL DECISION MAKING

This section provides assumptions, pseudo codes and theories in sequential decision making. Finally, we conclude this
section with a discussion to extend our proposal to settings with immediate rewards at each decision point. We begin with
the consistency, sequential ignorability and positive assumption in sequential decision making. Let Yi(t1, t2, . . . , tK) denote
the reward that the ith instance would be observed were they to receive action t1, t2, . . . , tK sequentially. The standard
assumptions are (1) Yi(T1i, T2i, . . . , TKi) = Yi almost surely for any i (i.e., consistenct); (2) A policy πb satisfies sequential
ignorability, that is at any stage k, conditional on the history Hk generated by the policy, the action Tk generated by the policy
is independent of the potential outcomes {Xk+1(t1, . . . , tk), Xk+2(t1, . . . , tk+1), . . . XK(t1 . . . , tK−1), Y (t1, t2, . . . , tK)}
for all tk ∈ {0, 1, . . . ,m− 1}. (3) πbk(tk|hk) is uniformly bounded away from zero for any tk, hk (i.e., positivity).

Denote A = (A1, . . . , AK)⊤ as the actions generated by the pseudo policy with πak
(tk|hk) ∝ πek(tk|hk)/πbk(tk|hk) and

T = (T1, . . . , TK)⊤ as the treatment generated by the behavior policy, and Ã as the one generated by the estimated pseudo
policy πãk

(tk|hk) ∝ πek(tk|hk)/π̂bk(tk|hk). We summarize the pseudocode of our proposal COPP in Algorithm 2.

Let n1 = |Ztr|. The following assumption provides the consistency of behavior policy estimates.

Assumption 4. For the output in Step 2 of Algorithm 2 and any 1 ≤ k ≤ K, π̂bk(tk|hk)s are uniformly bounded away from
zero and

lim
n1→∞

E
∣∣π̂bk(tk|Hk)− πbk(tk|Hk)

∣∣ = 0.

Assumption 5. Suppose that the output P̂(Ã = T|X1,Ztr) in Step 4 of Algorithm 2 is uniformly bounded away from zero
and

lim
n1→∞

EX1∼PX1

∣∣P̂(Ã = T|X1,Ztr)− P(Ã = T|X1,Ztr)
∣∣ = 0.
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Algorithm 2 COPP: Conformal off-policy prediction in multi-stage decision making

Input: Data {(X1i, T1i, . . . , XKi, TKi, Yi)}ni=1; a test point with initial state X1,n+1; a sequence of target policies
πe = {πek(tk|hk)}Kk=1; propensity score training algorithm P; quantile prediction algorithm Q; conformity score S;
and coverage level 1− α with αU − αL = 1− α.

1: Split the data into two disjoint subsets Ztr and Zcal.
2: Train {π̂bk(tk|hk)}Kk=1 using P on all samples from Ztr, i.e.,

π̂bk(tk|hk)← P({(Hki, Tki)}i∈Ztr ), Hki = {(X1i, T1i, . . . , Xki)}, for 1 ≤ k ≤ K.

3: Draw Ãi = (A1i, . . . , AKi) for i = 1, . . . , n with plugging π̂bk(tk|hk).

4: Train ŵ(X1) using P on all samples from the Ztr augmented by {Ãi}i∈Ztr , i.e.,

ê(X1) = P̂(Ã = T|X1,Ztr)← P({(Ãi,Ti, X1i)}i∈Ztr ), ŵ(X1) = 1/ê(X1).

5: Select subsamples satisfying Ãi = Ti in both subsets denoted as Ztr,s and Zcal,s.
6: Train quantile regressions using Q on selected subsamples from Ztr,s, i.e.,

q̂αL
(x;Ztr,s)← Q(αL, {(X1i, Yi)}i∈Ztr,s), q̂αU

(x;Ztr,s)← Q(αU , {(X1i, Yi)}i∈Ztr,s).

7: Compute the nonconformity scores for all selected subsamples i ∈ Zcal,s:

Si = max{q̂αL
(X1i;Ztr,s)− Yi, Yi − q̂αU

(X1i;Ztr,s)}.

8: Compute the normalized weights for i ∈ Zcal,s and the test point Xn+1

p̂i(X1,n+1) =
ŵ(X1i)∑

i∈Zcal,s ŵ(X1i) + ŵ(X1,n+1)
, p̂∞(X1,n+1) =

ŵ(X1,n+1)∑
i∈Zcal,s ŵ(X1i) + ŵ(X1,n+1)

.

9: Compute the (1− α)th quantile of
∑

i∈Zcal,s p̂i(X1,n+1)δSi
+ p̂∞(X1,n+1)δ∞ as Q1−α(X1,n+1).

10: Construct a prediction set for X1,n+1:

Ĉ(X1,n+1) = [q̂αL
(X1,n+1;Ztr,s)−Q1−α(X1,n+1), q̂αU

(X1,n+1;Ztr,s) +Q1−α(X1,n+1)].

Output: A prediction set Ĉ(X1,n+1) for the outcome Y πe

n+1.

Let PX1|Ã=T be the probability measure of the initial state for selected samples in Zcal,s as an estimate of PX1|A=T.

Denote w(X1) = 1/P(A = T|X1) and ŵ(X1) = 1/P̂(Ã = T|X1,Ztr) as the output in Step 4 of Algorithm 2. We
summarize the theoretical results below.

Theorem 6 (Asymptotic coverage for SDM). Let n′
1 = |Ztr,s|. Suppose that Assumptions 4-5 hold and

EX1∼PX1
[w(X1)] < ∞, EX1∼PX1

[ŵ(X1)|Ztr] < ∞, EX1∼PX1|Ã=T
[ŵ(X1)|Ztr] < ∞, then the output Ĉ(x) from

Algorithm 2 satisfies
lim

n1,n′
1→∞

P(X1,Y πe )∼PX1
×P

Y πe |X1

(Y πe

∈ Ĉ(X1)) ≥ 1− α, (13)

Discussion. We conclude this section by extending our proposal to settings with immediate rewards at each decision point.
Suppose the observed data can be summarized as {(X1i, T1i, Y1i, X2i, T2i, Y2i, . . . , XKi, TKi, YKi)}ni=1 where Yki is the
immediate reward at the kth stage. Similarly, we can show that the conditional distribution Yk|A1 = T1, . . . , Ak = Tk, H1

is the same as that of Y πe

k |H1 for each 1 ≤ k ≤ K. As such, for each k, we can apply our proposal to construct a PI for
Y πe

k . These PIs can be potentially further aggregated to cover the sum
∑

k Y
πe

k . We leave it for future research.

C ADDITIONAL IMPLEMENTATION DETAILS

This section provides additional implementation details for the competing methods in the simulation study. First, notice that
the importance sampling (IS) method can be naturally coupled with the kernel method to evaluate the individual treatment
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effect (ITE). Specifically, consider the following estimator,

Ê[Y πe
n+1|Xn+1] =

n∑
i=1

πe(Ti|Xi)

π̂b(Ti|Xi)
Yi

K((Xi −Xn+1)/h)∑n
i=1 K((Xi −Xn+1)/h)

,

for certain kernel function K with bandwidth h, and the logistic regression estimator estimator π̂b. Its standard deviation
can be estimated based on the sampling variance estimator and the corresponding confidence interval (CI) can be derived.
In our experiments, the bandwidth parameter h is manually selected so that the resulting CI achieves the best empirical
coverage rate.

Second, the double robust (DR) estimator can be coupled with kernel method for ITE evaluation as well. Specifically, define

Ê[Y πe
n+1|Xn+1] =

n∑
i=1

{
πe(Ti|Xi)

π̂b(Ti|Xi)
[Yi − µ̂(Xi)] + µ̂(Xi)

}
K((Xi −Xn+1)/h)∑n
i=1 K((Xi −Xn+1)/h)

,

where µ̂(x) denotes the estimated regression function obtained via random forest. The corresponding confidence interval
can be similarly constructed.
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