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Abstract

Supply chain management (SCM) has been rec-
ognized as an important discipline with applica-
tions to many industries, where the two-echelon
stochastic inventory model, involving one down-
stream retailer and one upstream supplier, plays
a fundamental role for developing firms’ SCM
strategies. In this work, we aim at designing on-
line learning algorithms for this problem with
an unknown demand distribution, which brings
distinct features as compared to classic online op-
timization problems. Specifically, we consider
the two-echelon supply chain model introduced
in (Cachon and Zipkin, 1999) under two different
settings: the centralized setting, where a planner
decides both agents’ strategy simultaneously, and
the decentralized setting, where two agents decide
their strategy independently and selfishly. We de-
sign algorithms that achieve favorable guarantees
for both regret and convergence to the optimal in-
ventory decision in both settings, and additionally
for individual regret in the decentralized setting.
Our algorithms are based on Online Gradient De-
scent and Online Newton Step, together with sev-
eral new ingredients specifically designed for our
problem. We also implement our algorithms and
show their empirical effectiveness.

1 Introduction

A supply chain is two or more parties linked by a flow
of goods, information, and funds, before a product can be
finally delivered to outside customers. When multiple deci-
sion makers are involved, behavior that is locally rational
can be inefficient from a global perspective. Supply chain
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management (SCM) research then focuses on methods for
improving system efficiencies, so as to “efficiently integrate
suppliers, manufacturers, warehouses, and stores · · · in or-
der to minimize system-wide costs while satisfying service
level requirements” (Simchi-Levi et al., 1999). In the vast
body of SCM literature, the mathematical model of a two-
echelon stochastic inventory system with a known demand
distribution plays a fundamental role for analyzing firms’
SCM strategies and has been well studied over the past
decades (Clark and Scarf, 1960; Federgruen and Zipkin,
1984; Chen and Zheng, 1994; Cachon and Zipkin, 1999).

In the classic two-echelon stochastic inventory planning
problem, two agents, Agent 1 (the retailer, referred to as
he) and Agent 2 (the supplier, referred to as she), will go
through a process of T rounds. Following the sequence of
events in the SCM literature (Cachon and Zipkin, 1999),
Agent 1 first observes an external demand dt ∼ D and uti-
lizes his available inventory (products in stock) to satisfy
customers’ demand; as a result, Agent 1 suffers either an
inventory holding cost (for excess inventory) or a backorder
cost (for excess demand). Then, Agent 1 decides his desired
inventory level for round t + 1 and orders from Agent 2.
Next, Agent 2 handles the order from Agent 1, suffers inven-
tory holding costs or backorder costs, decides her base-stock
level for round t+ 1, and places an order from an external
source (assumed to have infinite inventory). The two agents’
orders will arrive at the beginning of the next round. The
optimal policy with known demand distributions is known
as the base-stock policy for both agents (Clark and Scarf,
1960; Federgruen and Zipkin, 1984; Chen and Zheng, 1994).
Specifically, a base-stock policy keeps a fixed base-stock
level s over all time periods, meaning that if the inventory
level (on-hand inventory minus the backlogged ordered)
at the beginning of a period is below s, an order will be
placed to bring the inventory level to s; otherwise, no order
is placed.

There are recently works extending the classic inventory
control problem with known demand distribution to the
one with unknown distribution (Levi et al., 2007; Huh and
Rusmevichientong, 2009; Huh et al., 2011; Levi et al., 2015;
Zhang et al., 2018; Chen et al., 2020, 2021; Chen and Chao,
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2020; Ding et al., 2021). However, these works consider
the single-agent case, instead of the two-echelon case. In
this work, we aim at extending the classic two-echelon
stochastic inventory planning problem to an online setup
with an unknown demand distribution D. In addition, we
consider the nonperishable setting in which any leftover
inventory will be carried over to the next round; as a result,
the inventory level at the beginning of the next round can not
be lower than the inventory level at the end of current round.
The performance is measured by i) regret, the difference
between their total loss and that of the best base-stock policy
in hindsight; ii) last-iterate convergence to the best base-
stock policy for both agents.

It is important to note that Agent 2 only observes orders
from Agent 1 and does not necessarily receive the same
demand information as Agent 1 does. In addition, in our
problem formulation, Agent 1’s inventory will be impacted
by Agent 2’s shortages. Specifically, when Agent 2 does not
have enough inventory to fill Agent 1’s order, we assume
that Agent 2 cannot expedite to meet the shortfall, and this
shortfall will cause a partial shipment to Agent 1, which
implies that Agent 1 may not achieve his desired inventory
level at the beginning of each round. This model with a
known demand distribution is first examined in (Cachon and
Zipkin, 1999).

We consider two different decision-making settings: cen-
tralized and decentralized settings. The centralized setting
takes the perspective of a central planner who decides both
agents’ desired inventory level at each round in order to
minimize the total loss of the entire supply chain. A more
interesting and realistic setting concerns a decentralized
structure in which the two agents independently decide their
own desired inventory level at each round to minimize their
own costs, which often results in poor performance of the
supply chain (i.e., the optimal base-stock level for each
agent may not be the one that achieves minimal overall loss).
To achieve the optimal supply chain performance under the
decentralized setting, as discussed in previous works (i.e.
(Cachon, 2003)), some mechanism concerns contractual
arrangement or corporate rules, such as rules for sharing
the holding costs and backorder costs, accounting methods,
and/or operational constraints. A contract transfers the loss
between the two agents such that each agent’s objective is
aligned with the supply chain’s objective. However, as far
as we know, this is only discussed under known demand
distribution. Thus, we extend the results to the online setting
with an unknown demand distribution and design learning
algorithms to achieve the optimal supply chain performance.

1.1 Techniques and Results

Techniques. Our problem has three salient features that
are different from the classic stochastic online convex op-
timization problem. First, as will be shown in Section 3,

the overall loss function is not convex with respect to both
agents’ inventory decisions, meaning that we can not di-
rectly apply online convex optimization algorithms to this
problem. Second, due to the multi-echelon nature of the
supply chain, Agent 2’s input information is dependent on
the information generated by Agent 1, which can be non-
stochastic. Third, in the nonperishable setting, each agent’s
inventory level at the beginning of the next round can not
be lower than the inventory level at the end of the current
round, which implies that the desired inventory level may
not be always achievable.

To address the first challenge, we introduce an augmented
loss function upon which is convex and we are able to per-
form online convex optimization algorithms. To address
the second and the third challenge, our algorithm for both
agents has the low-switching property, which only updates
the strategy O(log T ) times. This makes Agent 2’s input
information almost the same as the realized demand at each
round. For Agent 1, as he can always observe the true
realized demand at each round in both centralized and de-
centralized setting, he makes his inventory decision based
on the empirical demand distribution, which is updated
O(log T ) times during the process. For Agent 2, in the
centralized and the decentralized setting, our algorithm is
a variant of Online Gradient Descent (OGD) and Online
Newton Step (ONS) (Hazan et al., 2007), respectively. Both
of the algorithms have the important low-switching prop-
erty, which only updates the strategy O(log T ) times while
at the same time achieving Õ(

√
T ) and O(log2 T ) regret

respectively. We remark that our variant of ONS algorithm
achieves O(log2 T ) regret, even when the loss function is
not strongly convex but satisfies a certain property.

Our results. In the centralized setting, we design an al-
gorithm which achieves Õ(

√
T ) expected regret and last-

iterate convergence to the optimal base-stock policy with
rate Õ(1/

√
T ) for Agent 1 and Õ(T−1/4) for Agent 2. In

the decentralized setting, we design a novel contract mech-
anism and also learning algorithms for both agents, which
lead to convergence to both agents’ global optimal base-
stock policy with the same rate as the centralized setting. In
addition, our algorithm guarantees that Agent 1 has Õ(T 3/4)
individual expected regret and Agent 2 has O(log3 T ) indi-
vidual expected regret. Moreover, the expected regret with
respect to the overall loss is bounded by Õ(

√
T ), which

is the same as the one in the centralized setting. Table 1
shows a summary of our results.1 We also implement our
algorithms, and the empirical results validate the effective-
ness of our algorithms (see Appendix D). To the best of
our knowledge, our work is the first one considering the
two-echelon stochastic inventory planning problem in the
online setup with unknown demand distribution.

1All our expected regret bound can be extended to high-
probability regret bound with an O(

√
T log(1/δ)) overhead by

applying standard Azuma’s inequality.
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Table 1: Summary of our results. “Centralized” and “Decentralized” represent the centralized and decentralized settings,
respectively. The definitions of RegT , RegT,1 and RegT,2 are introduced in Section 3. “Convergence for Agent 1” and
“Convergence for Agent 2” represent the convergence rate to Agent 1 and Agent 2’s optimal inventory level, respectively.

Setting RegT RegT,1 RegT,2 Convergence for Agent 1 Convergence for Agent 2

Centralized Õ(
√
T ) N/A N/A Õ(1/

√
T ) Õ(T−1/4)

Decentralized Õ(
√
T ) Õ(T 3/4) Õ(log3 T ) Õ(1/

√
T ) Õ(T−1/4)

1.2 Related Works

There is a vast body of SCM literature on achieving the
optimal supply chain performance in the decentralized set-
ting (Lariviere, 1999; Tsay et al., 1999; Cachon, 2003; Chen,
2003) concerning coordination with contract design and in-
formation sharing. In this body of literature, there is a line
of works based on multi-echelon decentralized inventory
models, which are closely related to our study, including
(Lee and Whang, 1999; Cachon and Zipkin, 1999; Lee et al.,
2000; Porteus, 2000; Watson and Zheng, 2005; Shang et al.,
2009). However, these works all assume that the demand
distribution is known (at least to the downstream agent).

More recently, there has been growing interest in single-
agent inventory control problems with unknown demand
distribution (Levi et al., 2007; Huh and Rusmevichientong,
2009; Huh et al., 2011; Levi et al., 2015; Zhang et al.,
2018; Chen et al., 2020, 2021; Chen and Chao, 2020; Ding
et al., 2021). In particular, (Huh and Rusmevichientong,
2009) achieves O(log T ) regret in the perishable setting
and Õ(

√
T ) regret in the nonperishable setting using online

gradient descent method. (Ding et al., 2021) further extends
the results to the feature-based setting. The nonparametric
approach of this line of works is fundamentally different
from the conventional inventory control models in which
the inventory manager knows the demand distribution (see,
e.g., (Zipkin, 2000; Snyder and Shen, 2019) for comprehen-
sive reviews of the conventional inventory models); however,
unlike the conventional inventory theory which has been
extended from the single-echelon problems to multi-echelon
problems, little has been done for the multi-echelon prob-
lems under unknown demand distributions, and we aim to
fill in this gap.

The other relevant line of works is online convex optimiza-
tion. (Zinkevich, 2003) shows that OGD algorithm achieves
O(
√
T ) expected regret bound for general convex functions.

If the loss functions are exp-concave, (Hazan et al., 2007)
shows that ONS achieves O(log T ) expected regret bound.
Both algorithms change their decision at every round. On
the other hand, Sherman and Koren (2021) proposes a lazy
version of OGD, which changes its decision only O(log T )
times and still achieves Õ(

√
T ) (orO(log2 T )) regret when

the loss functions are stochastically generated and convex
(or strongly convex). In our problem, it turns out to be cru-

cial to apply an algorithm with a small number of switches,
and our algorithm generalizes the idea of (Sherman and
Koren, 2021) to the ONS algorithm to achieve O(log T )
switches and Õ(1) regret for a larger class of functions
including strong convex functions.

2 Preliminary

Notations. For a positive integer n, denote [n] to be the
set {1, 2, . . . , n}. For conciseness, we hide polynomial
dependence on the problem-dependent constants in the O(·)
notation and only show the dependence on the horizon T .
Õ(·) further hides the poly-logarithmic dependency on T .
Define (x)+ ≜ max{x, 0} and (x)− ≜ max{−x, 0}. ∥x∥
denotes the Euclidean norm of x.

Throughout this work, we make the following two mild
assumptions on the demand distribution D. These mild
assumptions are also made in (Chen et al., 2020).

Assumption 1. The demand distribution D is supported on
[d,D] where D > d > 0.

Assumption 2. The image of the density function of D,
ϕ(·), lies in [γ,Γ] where Γ > γ > 0.

Under the above demand assumptions, we consider the fol-
lowing model in the two-echelon inventory planning prob-
lem, which is first considered in (Cachon and Zipkin, 1999).
Our goal is to find the best base-stock policy.

We first introduce the cost function under a fixed base-stock
policy. In this model, we assume that Agent 2’s inventory
shortage will cause delayed (by one round) shipment and
shortfalls at Agent 1 while Agent 2’s orders will always be
satisfied as we assume that the external source has infinite
inventory. In addition, for unfilled demand for Agent 1,
there is a backorder cost shared by the two agents, αp1 for
Agent 1 and (1−α)p1 for Agent 2, where α is the negotiated
cost sharing parameters via contractual arrangements. The
inventory holding cost per unit for Agent 1 and Agent 2 is
h1 and h2 respectively.

Now we are ready to define the loss function for Agent 1 and
Agent 2 respectively. Specifically, Agent 1’s loss function
is formulated as follows. Define

G1(y) = h1Ex∼D[(y − x)+] + αp1Ex∼D[(y − x)−],
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which is Agent 1’s expected sum of the holding and backo-
rder costs per round with unlimited supply under base-stock
level y. Since the actual supply to Agent 1 is limited by
Agent 2’s available inventory, according to (Cachon and
Zipkin, 1999), Agent 1’s expected sum of the holding and
backorder costs per period is defined as

H1(s1, s2) ≜ Φ(s2)G1(s1) +

∫ D

s2

G1(s1 + s2 − x)ϕ(x)dx,

where Φ(·) is the cumulative density function ofD. The first
term is Agent 1’s costs when Agent 2 has sufficient inventory
to satisfy Agent 1’s order (i.e., Agent 1’s inventory level can
be brought up to s1), while the second term is the cost when
Agent 2 does not have enough inventory to satisfy Agent 1’s
order, meaning that Agent 2’s shortfall is x− s2 and Agent
1’s inventory can only be brought up to s1 + s2 − x.

For Agent 2, define

G2(y) = (1− α)p1Ex∼D[(y − x)−],

which is the expected backorder cost per period incurred
by Agent 2 due to Agent 1’s shortages. Then, the expected
backorder cost incurred by Agent 2 is

Φ(s2)G2(s1) +

∫ D

s2

G2(s1 + s2 − x)ϕ(x)dx.

The first term is the backorder cost incurred by Agent 2 due
to Agent 1’s shortfalls when the Agent 1’s inventory level is
s1, while the second term is the backorder cost incurred by
Agent 2 when Agent 1’s inventory level is s1 − (x− s2) <
s1. As can be seen, Agent 2’s shortages (x − s2) will
cause insufficient supply to Agent 1, which, in turn, will
be detrimental to Agent 2 herself when Agent 1 is out of
stock due to the insufficient supply. Therefore, Agent 2’s
loss function is the sum of the expected backorder cost and
the expected holding cost, which is defined as

H2(s1, s2) ≜ h2Ex∼D[(s2 − x)+] + Φ(s2)G2(s1)

+

∫ D

s2

G2(s1 + s2 − x)ϕ(x)dx.

We also define the sum of both agents loss as H(s1, s2) ≜
H1(s1, s2) +H2(s1, s2) and G(s) ≜ G1(s) +G2(s).

Online Inventory Control In this work, we study this
conventional model in an online learning setting that pro-
ceeds in T rounds. Before the game starts, both Agent 1 and
Agent 2 order an initial inventory level s1,1 and s1,2. Then,
for each round t ∈ [T ]:

• at the start of round t, both agents’ orders arrive. The
current inventory level for Agent 1 and Agent 2 reaches
to ŝt,1 and ŝt,2;

• external demand dt occurs at Agent 1’s level where
dt is drawn from the unknown demand distribution
D. In this step, Agent 1 suffers from some inventory
holding cost or backorder cost. Define the inventory
level for Agent 1 after demand as s̃t,1. This value can
be negative as we assume backlogged orders;

• Agent 1 decides his desired inventory level at the next
round st+1,1, which leads to a demand for Agent 2:
ot = (st+1,1 − s̃t,1)

+;

• Agent 2 receives the demand ot from Agent 1, and the
inventory level after demand is s̃t,2. Note that, in gen-
eral, Agent 2 only knows ot instead of the real demand
dt. Agent 2 then suffers some inventory holding cost
or backorder cost;

• Agent 2 decides her desired inventory level for the next
round st+1,2 and orders o′t = (st+1,2 − s̃t,2)

+ from
some external source.

We remark that the dynamic of the inventory for Agent 1
and Agent 2 are different. As we assume that the external
source has infinite inventory, Agent 2’s order can always
be satisfied and we have the following dynamic for s̃t,2 and
ŝt+1,2:

s̃t,2 = ŝt,2 − ot, ŝt+1,2 = s̃t,2 + o′t. (1)

However, as Agent 2 may have delayed shipment when
she does not have enough inventory, Agent 1’s dynamic is
defined as follows. Define the delayed shipment of Agent
2 as (ot−1 − ŝt−1,2)

+, which will arrive after Agent 1 has
served the demand dt. This means that

s̃t,1 = ŝt,1 − dt + (ot−1 − ŝt−1,2)
+,

ŝt+1,1 = s̃t,1 +min{ŝt,2, ot}.

The specific costs suffered by the two agents in each step,
as well as their objectives will be discussed in detail in Sec-
tion 3.2.

3 Main Results

3.1 Centralized Setting

In this section, we start from considering the centralized
setting of our model where there is a central planner who
decides both agents’ strategy simultaneously. Define the
loss suffered by the learner at round t as follows:

H̃t = h1(ŝt,1 − dt)
+ + p1(ŝt,1 − dt)

− + h2(ŝt,2 − ot)
+,

and the benchmark as the expected loss suffered by
the best base-stock policy: H(s∗1, s

∗
2) where (s∗1, s

∗
2) =

argmins1,s2 H(s1, s2). The regret is defined as the differ-
ence between the sum of the learners’ total loss and the loss
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Algorithm 1 Central Planner for Coupling Model
Input: An instance of stochastic OGD A (Algorithm 2).
Initialize: Arbitrary empirical cumulative density function
Φ̂0(·). Epoch length L1 = 1. τ = 1.
for m = 1, 2, . . . do

1 Define epoch Im = {τ, τ + 1, . . . , τ + Lm − 1}.
2 Set sm,1 = Φ̂−1

m−1(
h2+p1

h1+p1
).

3 Receive sm,2 from A.
while τ ∈ Im do

4 Decide the desired inventory level for both agents:
sm,1 for Agent 1 and sm,2 for Agent 2.

5 Receive the realized demand dτ , τ ← τ + 1.
end

6 Collect Dm = {dt′}t′∈Im ; define Φ̂m(x) =
1

Lm

∑
τ∈Im

I{dτ ≤ x} and also the inverse function

Φ̂−1
m (z) = min{x : Φ̂(x) ≥ z}; send Φ̂m(x) and Dm

to A; and set Lm+1 = 2Lm.
end

of the best base-stock policy, which is formally written as
follows:

E [RegT ] = E

[
T∑

t=1

(H̃t −H(s∗1, s
∗
2))

]
.

Compared with the standard online convex optimization
problem (Zinkevich, 2003), in which at each round the loss
suffered in each round is a convex function of the current
decision, our problem has two main difficulties. First, in our
problem, the loss of the algorithm in each round depends
not only on the current decided order-up-to level st,1 and
st,2, but also the past decisions sτ,1 and sτ,2 for τ ∈ [t] as
we consider the non-perishable setting, meaning that the
ordered inventories can not be discarded. Second, even
under fixed base-stock policy, the loss function H(s1, s2) is
not jointly convex (also not convex in s2). In the following,
we show how we handle these two difficulties respectively.

To deal with the first difficulty, our first key observation is
that if both agents’ decision st,1 and st,2 are changing very
infrequently, then the loss of the algorithm at each round is
almost equivalent to Ĥt(s1, s2), which is defined as:

Ĥt(s1, s2) (2)

≜ h1(̊st,1 − dt)
+ + p1(̊st,1 − dt)

− + h2(s2 − dt)
+,

where s̊t,1 = s1 if s2 > dt−1 and s̊t,1 = s1 + s2 − dt−1 if
s2 ≤ dt−1. Note that this loss function is a stochastic func-
tion and is only dependent on the current decision variables
(s1, s2).

To see why the loss function at round t can be almost written
as Ĥt(st,1, st,2) if both agents’ decisions do not change very
frequently, we first point out the two differences between

H̃t and Ĥt(s1, s2). First, as agents can not discard the
inventories that have been ordered, the true inventory level
ŝt,1 at the beginning of round t may not be the desired
inventory level st,1 when Agent 2 does not have an inventory
shortage, or st,1+st,2−dt−1 when Agent 2 has an inventory
shortage. Similarly, Agent 2’s true inventory level ŝt,2 may
not be her desired inventory level st,2. Recall that ŝt,1 and
ŝt,2 are used in defining H̃t. Second, in Ĥt(st,1, st,2), the
demand of Agent 2 equals to dt, while in the definition of
H̃t, the demand for Agent 2 is the order amount ot from
Agent 1.

Fortunately, these two differences can both be properly han-
dled by a low-switching algorithm. Specifically, suppose
that both agents’ desired inventory levels are kept the same:
st,1 = s′1 and st,2 = s′2 for all t in some time period
[t0, t0 + L]. Then, we can show that

ŝt,1 =

{
s′1, if s′2 > dt−1,

s′1 + s′2 − dt−1, otherwise,
(3)

ŝt,2 = s′2, (4)
ot = dt, (5)

except for at most Θ(1) rounds at the beginning of the
period [t0, t0 + L], making H̃t = Ĥt(st,1, st,2) for all the
rest of the rounds. This is because Equation (3) does not
hold only when s̃t−1,1 > st,1 = s′1, which can only happen
for Θ(1) rounds as the demand at each round is strictly
larger than 0 according to Assumption 1. Then, as ot =
(st+1,1− s̃t,1)

+ = (st+1,1− ŝt,1+dt)
+, when ŝt,1 = s′1 =

st+1,1, we know that ot = dt. Similarly, as ŝt,2 ̸= st,2 only
happens when s̃t−1,2 > st,2 = s′2, and ot = dt is strictly
positive after Θ(1) rounds, we know that ŝt,2 = st,2 =
s′2 after another Θ(1) rounds. This argument is formally
summarized below and proven in Appendix A.

Lemma 3.1. In round t0, suppose that Agent 1 and Agent
2’s desired inventory level for the following L rounds is
s′1 and s′2. Then, for some t1 = Θ(1), it holds that for
all t ∈ [t0 + t1, t0 + L], ŝt,2 = s′2, ot = dt. In addition,
ŝt,1 = s′1 if s′2 > dt−1 and ŝt,1 = s′1+s′2−dt−1 otherwise.
Consequently, it holds that H̃t = Ĥt(s

′
1, s

′
2) during t ∈

[t0 + t1, t0 + L].

In addition, as proven in Lemma A.2 in the appendix, it
holds that E[Ĥt(s1, s2)] = H(s1, s2). This reduces our
problem to optimizing over the stochastic loss Ĥt(s1, s2)
with infrequent changes.

Next, we show how we handle the second difficulty, which
is the issue of non-convexity of our loss function. Our sec-
ond key observation is that with direct calculation, one can
show that the optimal base-stock policy of Agent 1 has the
close form: s∗1 = Φ−1(h2+p1

h1+p1
) and that H(s∗1, s2) is now

convex in s2; see Lemma A.3 for a formal proof. Ideally,
if we set Agent 1’s desired inventory level to be s∗1, then
we are able to apply gradient descent method to learn the
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best base-stock policy for Agent 2. However, we do not
have the knowledge of the true demand distribution. There-
fore, our solution is to construct an empirical cumulative
density function Φ̂L(·) for the demand distribution during
the learning process where Φ̂L(·) is constructed by using L
i.i.d. demand samples. Then, let Agent 1’s desired inventory
level be sL,1 = Φ̂−1

L (h2+p1

h1+p1
).

However, the expected loss function H(sL,1, s2) may still
not be convex in s2 due to the approximation error of the
empirical cumulative density function. To handle this issue,
we introduce the following augmented loss function:

H ′
L(sL,1, s2)

≜ H(sL,1, s2) + (h1 + p1)C1

√
log(TD/δ)

L

∫ s2

0

Φ(x)dx,

(6)

where C1 > 0 is some universal constant specified
in Lemma A.4. We show in Lemma A.5 that H ′

L(sL,1, s2)
is indeed convex in s2 with high probability.

Combining the above augmented loss function design with
the idea of having a low-switching algorithm, we design
our centralized algorithm Algorithm 1 as follows. The algo-
rithm goes in epochs with exponentially increasing lengths,
meaning that the number of epochs is only O(log T ). At
the beginning of the m-th epoch Im, both agents decide a
fixed desired inventory level for this epoch. Specifically,
Agent 1 chooses his level as sm,1 = Φ̂−1

m−1(
h2+p1

h1+p1
) (Line 2)

where Φ̂m−1(·) is the empirical cumulative density function
constructed by the observed demand samples within the
previous epoch Im−1. Standard concentration (Lemma A.4)
shows that sm,1 converges to s∗1. As discussed before, with
this choice of sm,1, the loss function H(sm,1, s2) may still
not convex in s2. According to Equation (6), with a slight
abuse of notation, we introduce the augmented loss function
for Agent 2 at epoch m:

H ′
m(sm,1, s2)

≜ H(sm,1, s2) + (h1 + p1)C1

√
log(TD/δ)

Lm−1

∫ s2

0

Φ(x)dx,

(7)

where Lm is the length of epoch Im and C1 is the same as
the one in Equation (6). As proven in Lemma A.5, with high
probability, H ′

m(sm,1, s2) is convex in s2, which enables us
to apply stochastic OGD to minimize this (unknown) loss
function via demands received in the previous epoch and
output the average iterate as the desired inventory level for
Agent 2. The full pseudo code is shown in Algorithm 2.

This concludes our algorithm design for the centralized set-
ting of our model. Note that as the number of epoch is
O(log T ) and both agents pick a fixed desired inventory
level within each epoch, there are at most Θ(log T ) number

Algorithm 2 Centralized Algorithm for Agent 2
Input: A set of demand valueD = {d1, . . . , dL}, empirical
cumulative density function Φ̂L(x) =

1
L

∑L
i=1 I{di ≤ x},

learning rate η > 0 and failure probability δ.
Initialize: Set s1,2 ≤ D − h2

Γ(h2+p1)
= smax arbitrarily.

Set s1 = Φ̂−1
L

(
h2+p1

h1+p1

)
.

for t = 1, 2, . . . , L do
st+1,2 = min{smax,max{0, (st,2 − η ·mt)}}, where
mt = (h1 + p1)I{ŝt,1 ≥ dt} − p1 + h2I{st,2 ≥ dt}+
C1(h1 + p1)

√
log(TD/δ)

L · Φ̂L(st,2) and ŝt,1 = s1 if
dt−1 ≤ st,2 and ŝt,1 = s1 + st,2 − dt−1 otherwise.

end
return s̄L,2 = 1

L

∑L
τ=1 sτ,2.

of rounds such that Equation (3), Equation (4) and Equa-
tion (5) do not hold. In addition, as the epoch length Lm−1

gets longer, H ′
m(sm,1, s2) will get closer to the true loss

function H(sm,1, s2). Combined with the fact that sm,1 is
converging to s∗1 when m grows, the output of Algorithm 2,
which is the average iterate of stochastic OGD, will converge
to s∗2 as well. Moreover, it can be shown that Algorithm 1
achieves Õ(

√
T ) regret. See the formal statement below,

the proof in Appendix A, and empirical results in Section 4
and Appendix D.

Theorem 3.2. Algorithm 1 guarantees that with probability
at least 1− 2δ, the strategy converges to the optimal base-
stock policy with the following rate:

|sM,1 − s∗1| ≤ O
(√

log(T/δ)/T
)
,

|sM,2 − s∗2| ≤ O
(
T−1/4 log1/4(T/δ)

)
,

with M = O(log T ) the number of epochs. Picking δ =

1/T 2, Algorithm 1 guarantees that E[RegT ] ≤ Õ(
√
T ).

3.2 Decentralized Setting with Contracts

In this section, we consider how both agents learn the opti-
mal base-stock policy (s∗1, s

∗
2) in the decentralized setting

where each agent decides their desired inventory level inde-
pendently. As shown by (Cachon and Zipkin, 1999), in the
offline setting with known demand distribution, to guaran-
tee that each agent’s own optimal inventory level matches
the overall optimal level, a contract is needed to reallocate
the inventory holding and backorder costs between the two
agents through linear payments. This contract mechanism
is widely used in SCM (Cachon and Zipkin, 1999; Lee and
Whang, 1999). Specifically, we design a contract between
the two agents, which sets α = 1, meaning that Agent 1 is
responsible for all penalty costs due to his shortages, and
decides a coefficient ω, which is the cost that Agent 2 needs
to compensate Agent 1 for each unsatisfied order requested
by Agent 1.
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Therefore, we define the loss suffered by Agent 1 and Agent
2 at round t as follows:

H̃c
t,1 ≜ h1(ŝt,1 − dt)

+ + p1(ŝt,1 − dt)
− − ωt(ŝt,2 − ot)

−,

H̃c
t,2 ≜ h2(ŝt,2 − ot)

+ + ωt(ŝt,2 − ot)
−,

where ωt is the contract coefficient agreed by both agents
at round t. The benchmark is the loss suffered by the best
base-stock policy for each agent defined as follows:

H̊c
t,1(̊s

∗
1)

≜ h1(̊s
∗
t,1 − dt)

+ + p1(̊s
∗
t,1 − dt)

− − ωt(ŝt,2 − dt)
−,

H̊c
t,2(̊s

∗
2) ≜ h2(̊s

∗
2 − ot)

+ + ωt(̊s
∗
2 − ot)

−,

where s̊∗1 = argmins1 E[
∑T

t=1 H̊
c
t,1(s1)], s̊∗2 =

argmins2 E[
∑T

t=1 H̊
c
t,2(s2)] and s̊∗t,1 is Agent 1’s inventory

level at the beginning of round t if he uses the base-stock
policy s̊∗1. Note that when Agent 1 keeps a fixed base-stock
policy, it holds that ot = dt for all t ∈ [T ]. The expected
regret for each agent is defined as

E
[
RegT,1

]
≜ E

[
T∑

t=1

H̃c
t,1 −

T∑
t=1

H̊c
t,1(̊s

∗
1)

]
,

E
[
RegT,2

]
≜ E

[
T∑

t=1

H̃c
t,2 −

T∑
t=1

H̊c
t,2(̊s

∗
2)

]
.

Now we introduce the design of our algorithm in the decen-
tralized setting. Similar to the centralized setting, in order
to make sure that the loss function for each of the agent
is almost only dependent on the current desired inventory
level, the algorithm we design still satisfies that both agents
do not update their desired inventory level very frequently,
making Equation (3), Equation (4) and Equation (5) hold
almost all the time. First, we introduce Agent 1’s algorithm.
As Agent 1 can still observe the true demand at each round,
he is able to apply the same process as shown in Algo-
rithm 1. Specifically, Agent 1 still breaks the total horizon
into O(log T ) epochs with exponentially increasing length
and chooses his desired inventory level to be Φ̂−1

m−1(
h2+p1

h1+p1
)

at each epoch Im to converge to s∗1.

Next, we consider the design of Agent 2’s algorithm. Al-
though Agent 2 can also run a variant of Algorithm 2 as
Agent 1 only changes his desired levelO(log T ) times, mak-
ing ot = dt except forO(log T ) rounds, Agent 2 will suffer
a Õ(
√
T ) regret due to the approximation error of the cu-

mulative density function. To achieve a better regret bound
for Agent 2, note that if Agent 2 applies a low-switching
algorithm and in addition, ωt = ω, ot = dt for all t ∈ [T ],
then Agent 2’s loss can almost be written as Ĥc,ω

t,2 (s) defined
as follows:

Ĥc,ω
t,2 (s) ≜ h2 (s− dt)

+
+ ω (s− dt)

−
, (8)

as we know that there are only few rounds such that ŝt,2 ̸= s
according to Lemma 3.1. In addition, direct calculation
shows that argmins Edt∼D[Ĥ

c,ω
t,2 (s)] = Φ−1( ω

ω+h2
).

Now, we focus on regret minimization with respect to Ĥc
t,2.

Our key observation here is that this loss function is not only
convex, but also satisfy the so-called Bernstein Stochastic
Gradients property that allows faster learning. Specifically,
we prove in Lemma B.1 that Ĥc,ω

t,2 satisfies the following
property (with a specific choice of B > 0).2

Property 1. Let F be a distribution over a class of convex
functions f : X 7→ Rd. We say F satisfies B-Bernstein
condition with B > 0 if for all x ∈ X , we have

(x− x∗)⊤Ef∼F
[
∇f(x)∇f(x)⊤

]
(x− x∗)

≤ B(x− x∗)⊤Ef∼F [∇f(x)] ,

where x∗ = argminx∈X Ef∼F [f(x)].

As shown by Van Erven and Koolen (2016), there exist learn-
ing algorithms that achieve O(log T ) regret bound when
facing a sequence of loss functions ft, each drawn indepen-
dently from F that satisfies Property 1. As a simplification,
we show that the classic ONS algorithm (Algorithm 4 shown
in Appendix B.1) with a proper learning rate is already able
to achieve O(log T ) regret in this case; see Theorem B.3.

However, classic ONS changes its decision at each round.
Taking inspiration from (Sherman and Koren, 2021), we in-
deed succeed in designing a low-switching variant of ONS
that changes its decision only Õ(1) times while still ensur-
ing Õ(1) regret under Property 1. Specifically, our algo-
rithm (Algorithm 5 shown in Appendix B.1) divides the
total horizon into O(log T ) epochs with exponentially in-
creasing lengths. While in each round it still performs the
ONS update, the actual decision is only updated at the be-
ginning of each epoch, which is set to the average of all
previous ONS decisions. It is clear that our algorithm only
switches its decision O(log T ) times. More importantly, we
show that the price for the regret is only an extra O(log T )
factor, leading to an overall O(log2 T ) regret; see Theo-
rem B.4 for the formal statement.3 In additional to enjoying
O(log2 T ) regret, our algorithm in fact also ensures the last-
iterate convergence to the global optimal solution of the
expected loss function. This is due to the strong convexity
of E[Ĥc,ω

t,2 (s)] and the fact that the last-iterate is the average
of ONS updates in the previous epochs. We summarize the
results in Lemma B.5 and the full proof is presented in Ap-
pendix B.4. This means that if Agent 1 changes his desired

2We show in Lemma B.2 that Ĥ
c,ω

t,1 (s1) satisfies Property 1
even when the demand is discrete.

3In fact, one can show that a lazy version of OGD also achieves
similar guarantees. However, this heavily relies on a continuous
demand distribution, while ONS works even for discrete demands
(see Footnote 2). Note that a discrete demand distribution is com-
mon in applications since demands usually come in a batch.
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Algorithm 3 Protocol among Agent 1, Agent 2 and contract
maker
Input: Failure probability δ. Initial epoch length L1 =
16ρ ≜ 256(h2 + p1)

4h−4
2 C4

3 log
4(T/δ), where C3 > 0 is

a constant defined in Equation (22).
Initialize: s0,2 and Φ̂0(·) arbitrarily. τ = 1.
for m = 1, 2, . . . do

1 Define epoch Im = {τ, τ + 1, . . . , τ + Lm − 1}.
2 Agent 1 and Agent 2 receive the contract coefficient ωm

from contract maker using Algorithm 2.
3 Agent 1 chooses sm,1 = Φ̂−1

m−1(
h2+p1

h1+p1
). Ini-

tialize an instance A of Algorithm 5 with η =
max{ω2

m, h2
2}/(γ(h2 + ωm)), ε = 1/T and initial de-

cision sτ−1,2.
while τ ∈ Im do

4 Agent 1 receives demand dτ .
5 Agent 2 receives her ordered products from the outer

resource and Agent 1 receives his unsatisfied de-
mand at τ − 1 and his inventory level goes to s̃τ,1.

6 Agent 1 decides his desired inventory level at τ+1 to
be sm,1, sends the order oτ = max{sm,1 − s̃τ,1, 0}
to Agent 2, and suffers loss H̃c

τ,1.
7 Agent 2 sends the loss function fτ (x) = h2I{x ≥

oτ}+ ωmI{x ≤ oτ} to A, and suffers loss H̃c
τ,2.

8 Agent 2 sets her own desired inventory level to be
sτ,2, which is the output of A.

end
9 Agent 1 collectsDm = {dt′}t′∈Im , computes Φ̂m(x) =

1
Lm

∑
τ∈Im

I{dτ ≤ x} and also the inverse function

Φ̂−1
m (z) = min{x : Φ̂m(x) ≥ z}. Set Lm+1 = 2Lm.

end

inventory level O(log T ) times and Agent 2 applies Algo-
rithm 5 on her loss with ωt = ω for all t ∈ [T ], she will
suffer O(log2 T ) regret and converge to base-stock policy
Φ−1( ω

ω+h2
). Therefore, if ωt = ω∗ = h2Φ(s∗2)/1−Φ(s∗2) for

all t ∈ [T ], then applying Algorithm 5, Agent 2 will con-
verge to s∗2.

Thus, it remains to figure out how to learn ω∗ for the contract
maker. We design an algorithm which updates the contract
coefficient ω at the beginning of each epoch Im of Agent
1. With a slight abuse of notation, let ωm be the contract
during epoch Im. As the contract maker can observe the
realized demand as well as both agents cost parameters, at
the beginning of epoch Im, we run Algorithm 2 to obtain an
(imaginary) inventory level s′m,2 for Agent 2 given Lm−1

demand samples collected during epoch Im−1, and then
calculate ωm following h2Φ(s∗2)

1−Φ(s∗2)
with s∗2 replaced by s′m,2

and Φ replaced by the empirical cumulative density func-
tion. The algorithm is shown in Algorithm 6 and deferred
to Appendix B.5. The following lemma shows that given
enough samples from the demand distribution, with high
probability, Algorithm 6 outputs a contract coefficient ω that

is very close to the ideal coefficient ω∗. The proof can be
found in Appendix B.6.

Lemma 3.3. Let L ≥ ρ where ρ is defined in Algorithm 3.
Given L i.i.d samples {di}Li=1 from the demand distribution
D, with probability at least 1 − δ, Algorithm 6 guaran-
tees that i) |ω − ω∗| ≤ O(L−1/4 log(T/δ)), where ω∗ =
h2Φ(s∗2)
1−Φ(s∗2)

; and ii) ω ∈ [0, h2 + p1 +O(L−1/4 log(T/δ))].

Given this lemma, we now provide an overview of our algo-
rithm (Algorithm 3). It proceeds in epochs with exponen-
tially increasing lengths again. At the beginning of epoch
Im, both agents receive a contract coefficient ωm calculated
via Algorithm 6 (Line 2). Then Agent 1 decides his desired
inventory level to be Φ̂−1

m−1(
h2+p1

h1+p1
) based on his observed

demand in epoch Im−1. Agent 2 then initializes an instance
of Algorithm 5 with the decision from the last round of the
previous epoch as the initial decision (Line 3), and uses this
instance to decide her inventory level for this epoch (Line 7
and Line 8). The following theorem shows that Algorithm 3
guarantees the convergence to the offline optimal solution
as well as sublinear regret for both agents. The proof is
deferred to Appendix B.7.

Theorem 3.4. Algorithm 3 guarantees that with probability
at least 1− 3δ,

|sM,1 − s∗1| ≤ O
(√

log(T/δ)/T
)
,

|sM,2 − s∗2| ≤ O
(
T−1/4 log(T/δ)

)
,

where M = O(log T ) the total number of epochs. Pick-
ing δ = 1/T 2, Algorithm 3 guarantees that E[RegT,1] ≤
Õ(T 3/4) and E[RegT,2] ≤ O(log

3 T ).

Finally, we show that Algorithm 3 also guarantees that the
regret with respect to the sum of both agents’ losses is
bounded by Õ(

√
T ), which is the same as the one obtained

in the centralized setting. Note that by directly using the
regret guarantees, the convergence of both agents decisions
in Theorem 3.4, and the lipschitzness of the loss function,
the overall regret of the loss sum can only be bounded
by Õ(T 3/4). In order to improve the overall regret from
Õ(T 3/4) to Õ(

√
T ), we need to apply a refined analysis

on Agent 2’s decision sequence; see the following see Ap-
pendix B.8 for the proof of the following theorem. Empirical
results shown in Section 4 and Appendix D also support our
theoretical statements.

Theorem 3.5. Picking δ = 1/T 3, Algorithm 3 guarantees
that E [RegT ] ≤ Õ(

√
T ).

4 Experiment

In this section, we show the empirical performance of our de-
signed algorithms. We implement the Explore-then-Exploit
algorithm, in which both agents first spend ⌈T 2

3 ⌉ rounds
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(h1, h2, p1) Distribution
Agent 1 Loss Agent 2 Loss Loss sum

Explore-then-Exploit Algorithm 3 Imp (%) Explore-then-Exploit Algorithm 3 Imp (%) Explore-then-Exploit Algorithm 1 Imp (%) Algorithm 3 Imp (%)

(0.3, 0.1, 0.5)

Gaussian 1.6376(0.0072) 1.4689(0.0061) 10.30% 0.371(0.0025) 0.3027(0.0062) 18.42% 2.0086(0.0067) 1.7656(0.0066) 12.10% 1.7716(0.0044) 11.80%

Exponential 2.1009(0.013) 1.8795(0.011) 10.54% 0.466(0.0058) 0.3838(0.0112) 17.63% 2.5669(0.0101) 2.2452(0.0077) 12.53% 2.2633(0.0053) 11.83%

Uniform 2.0384(0.0091) 1.9304(0.007) 5.30% 0.4518(0.0031) 0.3929(0.0058) 13.05% 2.4902(0.0084) 2.313(0.0136) 7.12% 2.3233(0.0048) 6.70%

(0.4, 0.25, 0.6)

Gaussian 2.2086(0.0061) 1.9779(0.0141) 10.45% 0.6244(0.0031) 0.4151(0.0134) 33.52% 2.833(0.0061) 2.3872(0.0059) 15.74% 2.393(0.003) 15.53%

Exponential 2.9418(0.0091) 2.652(0.0161) 9.85% 0.58(0.0082) 0.2998(0.0152) 48.32% 3.5218(0.0053) 2.9647(0.0171) 15.82% 2.9518(0.0054) 16.19%

Uniform 2.7329(0.0094) 2.5752(0.0082) 5.77% 0.7418(0.0055) 0.5544(0.0089) 25.27% 3.4747(0.009) 3.1228(0.0115) 10.13% 3.1295(0.005) 9.93%

(0.5, 0.35, 1.5)

Gaussian 3.4114(0.0103) 3.2144(0.0113) 5.77% 0.9955(0.0033) 0.7046(0.0107) 29.22% 4.4069(0.0095) 3.9115(0.0078) 11.24% 3.919(0.0058) 11.07%

Exponential 4.6274(0.0112) 4.3911(0.0147) 5.11% 0.9569(0.008) 0.5583(0.013) 41.66% 5.5844(0.0102) 4.9476(0.0181) 11.40% 4.9494(0.0081) 11.37%

Uniform 4.1014(0.0123) 4.0023(0.0122) 2.41% 1.3272(0.0055) 1.0825(0.0099) 18.44% 5.4286(0.0108) 5.0661(0.0198) 6.68% 5.0849(0.0068) 6.33%

(0.6, 0.4, 2.0)

Gaussian 4.1805(0.0117) 3.9578(0.01) 5.33% 1.217(0.0049) 0.89(0.0082) 26.86% 5.3975(0.0106) 4.8422(0.01) 10.29% 4.8478(0.0082) 10.18%

Exponential 5.6462(0.0148) 5.3838(0.0163) 4.65% 1.2314(0.0074) 0.7841(0.0137) 36.32% 6.8776(0.0134) 6.1566(0.0109) 10.48% 6.1679(0.0099) 10.32%

Uniform 5.0052(0.016) 4.9028(0.0104) 2.05% 1.6306(0.0048) 1.3579(0.008) 16.72% 6.6358(0.0166) 6.2478(0.0213) 5.85% 6.2607(0.0093) 5.65%

Table 2: Empirical results of our algorithm for coupling model with T = 400000. The contract coefficient at each round is
generated by Algorithm 6. Each algorithm is processed over 32 trials of demand sequences drawn from the three distributions.
The mean and the standard deviation of the time-averaged loss over the 32 trials of format “mean (std)” are shown in
the table. “Imp (%)” shows the amount of improvement of our algorithm compared to the baseline Explore-then-Exploit
algorithm. The results show that our proposed algorithm (Algorithm 3) in the decentralized setting outperforms the vanilla
Explore-then-Exploit algorithm in the perspective of each agent’s individual loss. From the perspective of overall loss,
Algorithm 1 performs the best and Algorithm 3 still performs better than the vanilla Explore-then-Exploit algorithm, showing
the effectiveness of our proposed algorithms.

picking a fixed base-stock policy which is uniformly ran-
domly drawn from [d,D]. Then, both agents use the col-
lected realized demand samples to construct the empirical
density function of the demand and switch to the optimal
base-stock policy with respect to the empirical demand dis-
tribution for the remaining T − ⌈T 2

3 ⌉ rounds. The demand
distributions we constructed are as follows:

• Gaussian distribution N (10, 5) clipped on support
[0.5, 20];

• Uniform distribution over [0.5, 20];

• Exponential distribution with mean 10 clipped on sup-
port [0.5, 20].

We set the number of round T = 400000 and
choose the cost configuration to be (h1, h2, p1) =
(0.3, 0.1, 0.5), (0.4, 0.25, 0.6),(0.5, 0.35, 1.5), (0.6, 0.4, 2.0).
For each demand distribution, 32 trials are processed and
we calculate the mean and the standard deviation of each
agent’s individual loss with the contract coefficient gener-
ated by Algorithm 6 over the 32 trials. The time-averaged
losses for each agents with mean and standard deviation are
shown in Table 2. From Table 2, we can observe that from
the perspective of each agent’s individual loss, our proposed
decentralized algorithm (Algorithm 3) outperforms the
vanilla Explore-then-Exploit algorithm. Specifically, our
algorithm suffers about 10% ∼ 40% less per-round loss
compared to the one suffered by the vanilla Explore-then-
Exploit algorithm. In the sense of overall loss, our proposed
centralized algorithm (Algorithm 1) performs the best
among the three algorithms and the performance of the
decentralized algorithm (Algorithm 3) is still 10% ∼ 20%
better than the one of vanilla Explore-then-Exploit, which

shows the effectiveness of our proposed algorithms. More
experiment results are shown in Appendix D.

5 Conclusion and Future Directions

In contrast to the classic offline two-echelon stochastic in-
ventory planning problem with known distribution studied
in the SCM literature, we consider the problem with an un-
known demand distribution in an online setting, which is
more realistic and, as far as we know, not studied before. We
consider the model formulation introduced in (Cachon and
Zipkin, 1999) under both the centralized and decentralized
setting, and prove both regret guarantees and convergence
to the offline optimal base-stock policy. While we assume
that the true demand is observable even when it exceeds
the current inventory level, a more challenging setting is
the censored demand setting where only the amount of the
satisfied demand is available. Extending our results to the
censored demand and unobserved lost sales setting appears
to require new ideas.
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A Omitted proofs in Section 3.1

In this section, we show the omitted proofs in the centralized setting in Section 3.

First, we prove Lemma 3.1, which shows that if both agents keep picking the same desired inventory level (st,1, st,2) =
(s′1, s

′
2) for a period of rounds, then there are at most Θ(1) rounds such that Equation (3), Equation (4) and Equation (5) do

not hold. For completeness, we restate Lemma 3.1 as follows:

Lemma A.1 (Restatement of Lemma 3.1). In round t0, suppose that Agent 1 and Agent 2’s desired inventory level for the
following L rounds is s′1 and s′2. Then, for some t1 = Θ(1), it holds that for all t ∈ [t0 + t1, t0 + L], ŝt,2 = s′2, dt = ot. In
addition, ŝt,1 = s′1 if s′2 > dt−1 and ŝt,1 = s′1 + s′2 − dt−1 otherwise. Consequently, it hold that H̃t = Ĥt(s

′
1, s

′
2) for all

t ∈ [t0 + t1, t0 + L].

Proof. Let τ∗ = argminτ∈[L] {ot0+τ > 0}. Next, we first show that {ot0+τ}L−1
τ=τ∗+1 = {dt+τ}L−1

τ=τ∗+1 and s̃t,1 = s′1 − dt
for all t ∈ {τ∗ + 1, τ∗ + 2, . . . , L − 1}. If s′1 ≥ s̃t0,1, then we have ot0 = s′1 − s̃t0,1 ≥ 0. As Agent 1 will receive the
unsatisfied orders from Agent 2 before Agent 1 makes the order in the next round, at round t+1, Agent 1’s inventory before
ordering is s̃t0+1 = s′1 − dt0+1, which means that ot0+1 = s′1 − s̃t0+1 = dt0+1. Repeating the above process shows that
for all t ∈ [t0 + 1, t0 + L], we have ot = dt and s̃t,1 = s′1 − dt.

On the other hand, if s′1 < s̃t0,1, then we have ot0 = 0 as Agent 1 can not discard the inventory. According to Assumption 1,
we have dt0+1 ≥ d and s̃t0+1,1 ≤ s̃t0,1 − d. Therefore, within at most constant t2 = O(1) number of rounds, we have
s̃t+t2,1 ≥ s′1. Then following the analysis in the first case proves that during t ∈ [t0 + t2, t0 + L], we have ot = dt and
s̃t,1 = s′1 − dt.

Next, we show that ŝt,2 = s2 after constant number of rounds. Specifically, if ŝt0,2 ≤ s′2, then at round t0 + 1, we have
ŝt0+1,2 = s′2. Otherwise, note that when t′ ≥ t0 + t2, ot′ = dt′ ≥ d. Therefore, after at most constant t3 = O(1) number
of rounds, we have ŝt0+t2+t3,2 ≤ s′2, meaning that ŝt,2 = s′2 for all t ∈ [t0 + t2 + t3 + 1, t0 + L].

Finally, we show that ŝt,1 = s′1 if s′2 > dt−1 and ŝt,1 = s′1 + s′2 − dt−1 otherwise after constant number of rounds. As
shown above, when t ≥ t0 + t2 + t3 + 1, we know that ŝt,2 = s′2, s̃t,1 = s′1 − dt and ot = dt. According to the dynamic of
ŝt,1, we know that

ŝt+1,1 = s̃t,1 +min{ŝt,2, ot} = s′1 − dt +min{s′2, dt} =

{
s′1 + s′2 − dt if s′2 < dt,

s′1 otherwise.

Therefore, setting t1 = t2 + t3 + 1 = O(1) finishes the proof of the first statement. The second statement holds for
t ∈ [t0 + t1, t0 + L] according to the definition of H̃t and Ĥt(s

′
1, s

′
2).

Next, we show that stochastic loss function defined in Equation (2) is an unbiased loss estimator of the expected loss
H(s1, s2).

Lemma A.2. E
[
Ĥt(s1, s2)

]
= H(s1, s2), for all t ∈ [T ], where Ĥt(s1, s2) is defined in Equation (2).

Proof. According to the definition of H̃t, we know that

E
[
Ĥt(s1, s2)

]
= E

[
h1(̊st,1 − dt)

+ + p1(̊st,1 − dt)
− + h2(s2 − dt)

+
]

= E
[(
h1(s1 − dt)

+ + p1(s1 − dt)
−) · I {s1 ∈ [s1 − dt−1, s1 − dt−1 + s2]}

]
+ E

[
h2(s2 − dt)

+
]
.

+ E
[(
h1(s1 + s2 − dt−1 − dt)

+ + p1(s1 + s2 − dt−1 − dt)
−) · I {s1 ≥ s1 − dt−1 + s2}

]
= E

[(
h1(s1 − dt)

+ + p1(s1 − dt)
−) · I {s2 ≥ dt−1}

]
+ E

[
h2(s2 − dt)

+
]
.

+ E
[(
h1(s1 + s2 − dt−1 − dt)

+ + p1(s1 + s2 − dt−1 − dt)
−) · I {s2 ≤ dt−1}

]
= Φ(s2) ·G(s1) +

∫ D

s2

G(s1 + s2 − u)ϕ(u)du = H(s1, s2).
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The next lemma shows that the optimal solution (s∗1, s
∗
2) of H(s1, s2) satisfies that s∗1 = Φ−1(h2+p1

h1+p1
) and H(s∗1, s2) is

convex in s2.
Lemma A.3. Let (s∗1, s

∗
2) = argmins1,s2 H(s1, s2). Then it holds that s∗1 = Φ−1(h2+p1

h1+p1
) and H(s∗1, s2) is convex in s2,

where Φ(·) is the cumulative density function of demand distribution D.

Proof. By definition of H(s1, s2), it holds that

H(s1, s2) = h2Ex∼D[(s2 − x)+] + Φ(s2)G(s1) +

∫ D

s2

G(s1 + s2 − u)ϕ(u)du

= h2Ex∼D[(s2 − x)+] + Φ(s2)G(s1) +

∫ D−s2

0

G(s1 − u)ϕ(u+ s2)du.

Taking gradient over s1 and s2 respectively, we know that

∇s1H(s1, s2) = (p1 + h1)Φ(s2)

(
Φ(s1)−

p1
p1 + h1

)
+ (p1 + h1)

∫ D−s2

0

(
Φ(s1 − u)− p1

p1 + h1

)
ϕ(u+ s2)du

= (p1 + h1)Φ(s2)Φ(s1)− p1 + (p1 + h1)

∫ D−s2

0

Φ(s1 − u)ϕ(u+ s2)du,

∇s2H(s1, s2) = h2Φ(s2) + ϕ(s2)G(s1) +

∫ D−s2

0

G(s1 − u)dϕ(u+ s2)−G(s1 + s2 −D)ϕ(D)

= h2Φ(s2) + ϕ(s2)G(s1) + [G(s1 − u)ϕ(u+ s2)]
D−s2
0

+

∫ D−s2

0

ϕ(u+ s2)(h1 + p1)

(
Φ(s1 − u)− p1

p1 + h1

)
−G(s1 + s2 −D)ϕ(D)

= h2Φ(s2)− p1(1− Φ(s2)) + (h1 + p1)

∫ D−s2

0

Φ(s1 − u)ϕ(u+ s2)du. (9)

Setting the two gradients to be 0, we obtain that

Φ(s2)Φ(s1) +

∫ D−s2

0

Φ(s1 − u)ϕ(u+ s2)du =
p1

p1 + h1
,

0 = ∇s2H(s1, s2) = (h2 + p1)Φ(s2)− p1 − (h1 + p1)Φ(s2)Φ(s1) + p1 = Φ(s2) [(p1 + h2)− (h1 + p1)Φ(s1)] .

Therefore, we have s∗1 = Φ−1
(

h2+p1

h1+p1

)
and s∗2 satisfies that

(h2 + p1)Φ(s
∗
2) + (p1 + h1)

∫ D−s∗2

0

Φ(s∗1 − u)ϕ(u+ s∗2)du = p1.

Replacing s1 by s∗1 in Equation (9) and taking gradient over s2, we obtain that

∇2
s2H(s∗1, s2) = (h2 + p1)ϕ(s2) + (h1 + p1) ·

(∫ D−s2

0

ϕ(s2 + u)ϕ(s∗1 − u)du− Φ(s∗1)ϕ(s2)

)
(10)

≥ ((h2 + p1)− (h1 + p1)Φ(s
∗
1))ϕ(s2) = 0,

showing that H(s∗1, s2) is convex in s2.

The next lemma follows by the standard concentration inequality, showing that the gap between Φ(sm,1) and Φ(s∗1) is
bounded by Õ(L−1/2

m−1) with high probability.
Lemma A.4. Let d1, . . . , dT be T i.i.d. samples from distribution D which satisfies Assumption 1. Let the empirical density
distribution constructed by {di}Li=1 as Φ̂L(·) defined as Equation (36) and the inverse of the empirical density function
Φ̂−1

L (·) as defined in Equation (37). Let sL,1 = Φ̂−1
L (h2+p1

h1+p1
). Then, with probability at least 1− δ, for all L ∈ [T ],

|Φ(sL,1)− Φ(s∗1)| ≤ C1

√
log(TD/δ)

L
,
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where C1 > 0 is some universal constant.

Proof. Direct calculation shows that for all L ∈ [T ],

|Φ(sL,1)− Φ(s∗1)| ≤ Γ |sL,1 − s∗1| ≤ Γ

∣∣∣∣Φ̂−1
L

(
h2 + p1
h1 + p1

)
− Φ−1

(
h2 + p1
h1 + p1

)∣∣∣∣ ≤ C0

√
log(TD/δ′)

L
,

where the first inequality is by Assumption 2, the second inequality is by definition of sL,1 and s∗1, and the last inequality
holds with probability 1− δ by Lemma C.3.

The next lemma shows that with probability at least 1− δ, our constructed augmented loss function in Equation (6):

H ′
L(sL,1, s2) = H(sL,1, s2) + (h1 + p1)C1

√
log(TD/δ)

L

∫ s2

0

Φ(x)dx

is convex in s2 for all L ∈ [T ], where sL,1 = Φ̂−1
L (h2+p1

h1+p1
) and C1 > 0 is defined in Lemma A.4. This ensures that using

(stochastic) online gradient descent with respect to H ′
m(sm,1, ·) defined in Equation (7) achieves sublinear regret.

Lemma A.5. With probability at least 1− δ, H ′
L(sL,1, s2) ≜ H(sL,1, s2)+(h1+p1)C1

√
log(TD/δ)

L

∫ s2
0

Φ(x)dx is convex
in s2, for all L ∈ [T ]. Consequently, with probability at least 1− δ, for all m ∈ [M ], H ′

m(sm,1, s2) defined in Equation (7)
is convex, where M = O(log T ) is the number of epochs.

Proof. According to the definition of H ′
L(sL,1, s2), we obtain that the second-order gradient on the second parameter s2

equals to

g22 = ∇2
s2H

′
L(sL,1, s2)

= [(h2 + p1)− (h1 + p1)Φ(sL,1)] · ϕ(s2) + (h1 + p1)

∫ D

s2

ϕ(sL,1 + s2 − u)ϕ(u)du

+ C1(h1 + p1)

√
log(TD/δ)

L
ϕ(s2)

≥

[
(h2 + p1)− (h1 + p1)

(
Φ(sL,1)− C1

√
log(TD/δ)

L

)]
ϕ(s2)

≥ [(h2 + p1)− (h1 + p1)Φ(s
∗
1)]ϕ(s2) = 0,

where the last inequality holds for all L ∈ [T ] with probability at least 1− δ according to Lemma A.4. Therefore, we know
that with probability at least 1− δ, H ′

L(sL,1, s2) is a convex function for all L ∈ [T ], meaning that H ′
m(sm,1, s2) is also

convex in s2 for all m ∈ [M ] with probability at least 1− δ, where M = O(log T ) is the total number of epochs.

In the next lemma, we show that Algorithm 2, which applies stochastic online gradient descent with respect to s2 on the
augmented loss function, enjoys average-iterate convergence to the optimal solution.

Lemma A.6. Given L i.i.d samples {di}Li=1 from the demand distributionD with L ≥ log(TD/δ). Let sL,2 be the inventory
level output by Algorithm 2 A. Then with probability at least 1− δ, we have |sL,2 − s∗2| ≤ O(L−1/4 log1/4(TD/δ)).

Proof. According to Lemma A.4, we know that with probability at least 1− δ, for any L ∈ [T ],

|Φ(sL,1)− Φ(s∗1)| ≤ Γ |sL,1 − s∗1| ≤ Γ

∣∣∣∣Φ̂−1
L

(
h2 + p1
h1 + p1

)
− Φ−1

(
h2 + p1
h1 + p1

)∣∣∣∣ ≤ C1

√
log(TD/δ)

L
, (11)

Direct calculation shows that the gradient of H ′
L(sL,1, s2) with respect to s2 is as follows:

∇s2H
′
L(sL,1, s2) = ∇s2H(sL,1, s2) + (h1 + p1)C1

√
log(TD/δ)

L
Φ(s2). (12)
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As shown in Lemma A.2, we know that

H(sL,1, s2) = E
[
h1(ŝL,1 − dt)

+ + p1(ŝL,1 − dt)
− + h2(s2 − dt)

+
]
,

where ŝL,1 = sL,1 if s2 ≤ dt−1 and ŝL,1 = sL,1 + s2 − dt−1 otherwise. Therefore, an unbiased estimator of the first term
of the right hand side of Equation (12) is as follows:

(h1 + p1)I{ŝL,1 ≥ dt} − p1 + h2I{s2 ≥ dt}.

For the second term, as Φ̂L(·) is an unbiased estimator of Φ(·), we know that

(h1 + p1)C1

√
log(TD/δ)

L
Φ(s2) = (h1 + p1)C1

√
log(TD/δ)

L
E
[
Φ̂L(s2)

]
.

Therefore, we can indeed construct an unbiased estimator of the true gradient∇s2H
′
L(ŝL,1, s2) and run stochastic online

gradient descent. Specifically, as shown in Algorithm 2, let

mt = (h1 + p1)I{ŝL,1 ≥ dt} − p1 + h2I{st,2 ≥ dt}+ C1(h1 + p1)

√
log(TD/δ)

L
Φ̂L(st,2).

Then based on the above calculation, we know that E[mt] = ∇s2H
′
L(ŝ

∗
1, st,2). Moreover, as L ≥ log(TD/δ), we know

that |mt| ≤ max{h1, p1} + C1(h1 + p1) = O(1). According to classic online gradient descent analysis (e.g. Theorem
3.1.1 in (Hazan et al., 2016)), Algorithm 2 guarantees that for any s2 ≤ D − h2

Γ(h2+p1)
,

E

[
L∑

τ=1

H ′
L(sL,1, sτ,2)−

L∑
τ=1

H ′
L(sL,1, s2)

]
≤ O(

√
L), (13)

where we omit all the problem-dependent constants here.

Next, we show that s∗2 ≤ D − h2

Γ(h2+p1)
. From the optimality condition of s∗1 and s∗2 and Equation (9), we know that

s∗1 = Φ−1

(
h2 + p1
h1 + p1

)
,

0 = ∇s2H(s∗1, s
∗
2) = (h2 + p1)Φ(s

∗
2)− p1 + (p1 + h1)

∫ D−s∗2

0

Φ(s∗1 − u)ϕ(u+ s∗2)du

≥ (h2 + p1)Φ(s
∗
2)− p1.

Therefore, it holds that

s∗2 ≤ Φ−1

(
p1

h2 + p1

)
. (14)

Furthermore, as ϕ(x) ∈ [γ,Γ] for all x ∈ [d,D],

Γ(D − s∗2) ≥ Φ(D)− Φ(s∗2) ≥ 1− p1
h2 + p1

=
h2

h2 + p1
=⇒ s∗2 ≤ D − h2

Γ(h2 + p1)
.

Therefore, according to the max{h1, p1}-Lipschitzness of H ′
L(s1, s2) in s1, we have

E

[
L∑

τ=1

H ′
L(s

∗
1, sτ,2)−

L∑
τ=1

H ′
L(s

∗
1, s2)

]

≤ E

[
L∑

τ=1

H ′
L(sL,1, sτ,2)−

L∑
τ=1

H ′
L(sL,1, s2)

]
+O

(√
L log(TD/δ)

)
(Lipschitzness of H ′

L(s1, s2) and Equation (11))

≤ O(
√
L log(TD/δ)). (by Equation (13))
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Choosing s2 = s∗2, δ = 1
T 2 and using the definition of H ′

L(s1, s2), we can obtain that

E

[
L∑

τ=1

H(s∗1, sτ,2)−
L∑

t=1

H(s∗1, s
∗
2)

]

≤ E

[
L∑

τ=1

H ′
L(s

∗
1, sτ,2)−

L∑
τ=1

H ′
L(s

∗
1, s

∗
2)

]
+ 2C1L(h1 + p1)µ ·

√
log(TD/δ)

L
+O(1)

≤ E

[
L∑

τ=1

H ′
L(s

∗
1, sτ,2)−

L∑
τ=1

H ′
L(s

∗
1, s

∗
2)

]
+ 2C1(h1 + p1)µ

√
L log(TD/δ) +O(1)

≤ O(
√
L log T ), (15)

where µ = Ex∼D[x] ≤ D and O(·) hides all problem-dependent constants.

Moreover, note that H(s∗1, s2) is σ′′
2 -strongly convex in s2 ≤ D − h2

Γ(h2+p1)
as according to Equation (10),

∇2H(s∗1, s2) = [(h2 + p1)− (h1 + p1)Φ(s
∗
1)] · ϕ(s2) + (h1 + p1)

∫ D

s2

ϕ(s∗1 + s2 − u)ϕ(u)du

≥ (h1 + p1)(D − s2)γ
2

≥ γ2(h1 + p1)

Γ(h2 + p1)
≜ σ′′

2 .

Therefore, according to Lemma B.5, we know that with probability at least 1− δ,

|s̄L,2 − s∗2| ≤ O

√√L log(TD/δ)

L
+

√
log(1/δ)

L

 = O
(
L− 1

4 log
1
4 (TD/δ)

)
, (16)

which finishes the proof.

Now we are ready to prove our main result Theorem 3.2 in the central planner setting. For completeness, we restate the
theorem as follows.

Theorem A.7 (Restatement of Theorem 3.2). Algorithm 1 guarantees that with probability at least 1− 2δ, the strategy
converges to the optimal base-stock policy with the following rate:

|sM,1 − s∗1| ≤ O
(√

log(T/δ)/T
)
,

|sM,2 − s∗2| ≤ O
(
T−1/4 log1/4(T/δ)

)
,

with M = O(log T ) the total number of epochs. Picking δ = 1/T 2, Algorithm 1 also guarantees that E[RegT ] ≤ Õ(
√
T ).

Proof. We first prove the convergence of sM,1 and sM,2. According to Equation (11) and Lemma A.6, we know that with
probability at least 1− 2δ, for all m ∈ [M ],

|sm,1 − s∗1| ≤
C1

Γ

√
log(TD/δ)

Lm−1
= O

(√
log(T/δ)

2m

)
, (17)

|sm,2 − s∗2| ≤ O
(
L
− 1

4
m−1 log

1
4 (T/δ)

)
= O

(
2−

m
4 log

1
4 (T/δ)

)
. (18)

Picking m = M and noticing the fact that 2m = Θ(T ) prove the convergence of sM,1 and sM,2.

According to Equation (15), picking δ = 1
T 2 , we obtain that

Lm · E [H(s∗1, sm,2)−H(s∗1, s
∗
2)]
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Algorithm 4 Online Newton Step
Input: learning rate η > 0, perturbation ε > 0.
Initialize: x1 = x0 arbitrarily.
for t = 1 to T do

Choose action xt ∈ X and observe gt = ∇ft(xt).
Update xt+1 = ΠMt

X (xt − ηM−1
t gt), where Mt =

∑t
s=1 gsg

⊤
s + εI .

end

= E

[∑
t∈Im

H(s∗1, sm,2)−
∑
t∈Im

H(s∗1, s
∗
2)

]
≤ O

(√
Lm log T

)
.

Furthermore, according to the max{h1, p1}-Lipschitzness of H(·, s2) for any s2 and Equation (17), we know that

Lm · E [H(sm,1, sm,2)−H(s∗1, s
∗
2)]

≤ Lm · E [H(s∗1, sm,2)−H(s∗1, s
∗
2)] + LmO (|sm,1 − s∗1|)

≤ O(
√

Lm log T ). (19)

To further show that the expected regret is also well-bounded, as proven in Lemma 3.1, within each epoch, there is only
constant number of rounds such that H̃t ̸= Ĥt(sm,1, sm,2), t ∈ Im. Therefore, picking δ = 1/T 2, we have,

E [RegT ] = E

[
T∑

t=1

H̃t −
T∑

t=1

H(s∗1, s
∗
2)

]

= E

[
M∑

m=1

∑
t∈Im

(
H̃t −H(sm,1, sm,2)

)]
+ E

[
M∑

m=1

(∑
t∈Im

H(sm,1, sm,2)−
∑
t∈Im

H(s∗1, s
∗
2)

)]

= E

[
M∑

m=1

∑
t∈Im

(
H̃t − Ĥt(sm,1, sm,2)

)]
+ E

[
M∑

m=1

(∑
t∈Im

H(sm,1, sm,2)−
∑
t∈Im

H(s∗1, s
∗
2)

)]

≤ O(log T ) + E

[
M∑

m=1

O
(√

Lm log(TD/δ)
)]

(Equation (19))

≤ O(
√
T log T ),

where the last inequality is because of the exponential length scheduling of the epochs.

B Omitted proofs in Section 3.2

B.1 ONS and Lazy ONS algorithm

We show full pseudo code of the classic ONS algorithm in Algorithm 4 and our proposed lazy ONS algorithm in Algorithm 5.

B.2 Ĥc,ω
t,2 (x) satisfies Property 1

Lemma B.1. Suppose that demand distribution D satisfies and Assumption 2. The stochastic function Ĥc,ω
t,2 defined

in Equation (8) satisfies Property 1 with B =
max{ω2,h2

2}
γ(h2+ω) for all t ∈ [T ].

Proof. Direct calculation shows that

Hc,ω
2 (x) ≜ E

[
Ĥc,ω

t,2 (x)
]
= (h2 + ω)µ+ (h2 + ω)

∫ x

0

(
Φ(u)− ω

h2 + ω

)
du,
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Algorithm 5 Online Newton Step with lazy update
Input: learning rate η, perturbation ε > 0, total horizon T .
Initialize: x̂1 = x1 = x0 arbitrarily, k = 0.
for t = 1 to T do

1 if t = 2k then
2 k ← k + 1

3 x̂k = 1
t

∑t
s=1 xt ∈ X .

end
4 Choose action wt = x̂k ∈ X and observe ft.
5 Set gt = ∇ft(xt)

6 Update xt+1 = ΠMt

X (xt − ηM−1
t gt), where Mt =

∑t
s=1 gsg

⊤
s + εI .

end

where µ = Ed′∼D[d
′]. Also it is direct to see that the minimizer of Hc,ω

2 (x) is x∗ = Φ−1
(

ω
ω+h2

)
. Taking the gradient of

Ĥc,ω
t,2 (x), we have:

∇Ĥc,ω
t,2 (x) = (h1 + p1)I{x ≥ dt} − p1,

∇Ĥc,ω
t,2 (x) · ∇Ĥ

c,ω
t,2 (x) = (h1 + p1)

2I{x ≥ dt} − 2p1(h1 + p1)I{x ≥ dt}+ p21.

Taking expectation of the above two equations, we have

E
[
∇Ĥc,ω

t,2 (x)
]
= (h1 + p1)Φ(x)− p1,

E
[
∇Ĥc,ω

t,2 (x) · ∇Ĥ
c,ω
t,2 (x)

]
= p21 +Φ(x)(h2

1 − p21).

To show that Ĥc,ω
t,2 (x) satisfies Property 1, we first consider the case x ≥ x∗ = Φ−1

(
ω

ω+h1

)
. In this case, we need to find

B > 0 such that for all x ≥ x∗:

B ≥ (x− x∗)(ω2 +Φ(x)(h2
1 − ω2))

(ω + h1)Φ(x)− ω
.

Using Assumption 2, we have (x− x∗) ≤ 1
γ(h1+ω) ((h1 + ω)Φ(x)− ω), which means that

(x− x∗)(ω2 +Φ(x)(h2
1 − ω2))

(ω + h1)Φ(x)− ω
≤ ω2 +Φ(x)(h2

1 − ω2)

γ(h1 + ω)
≤ max(ω2, h2

1)

γ(h1 + ω)
.

Choosing B ≥ max(ω2,h2
1)

γ(h1+ω) satisfies Property 1. The second case where x ≤ x∗ can be proved in a similar way. Therefore,

we show that Ĥc,ω
t,2 (x) satisfies Property 1.

As claimed in Footnote 2, we show in the following lemma that even when the demand distribution is discrete and the
expected loss function is not strongly convex, the realized loss function Ĥc,ω

t,2 (x) also satisfies Property 1.

Lemma B.2. Suppose that demand distribution is supported on finite values di > 0 with probability wi > 0, i ∈ [k],∑k
i=1 wi = 1 and d1 < d2 < . . . < dk. Also suppose that there exists a unique i∗ ∈ [k] such that Φ(di∗−1) <

ω
h1+ω and

Φ(di∗) >
ω

h1+ω . Let θ = min{Φ(di∗)− ω
h1+ω ,

ω
h1+ω −Φ(di∗−1)}. The stochastic function Ĥc,ω

t,2 (x) defined in Equation (8)

satisfies Property 1 with B =
maxi∈[k] di·max{ω2,h2

1}
θ(h1+ω) .

Proof. We first show that Edt∼D[Ĥ
c,ω
t,2 (x)] is not strongly convex. In fact, direct calculation shows that

Edt∼D

[
Ĥc,ω

t,2 (x)
]
=

k∑
i=1

wi

(
ω(x− di)

+ + h1(x− di)
−) ,
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which is a piece-wise linear function, thus not strongly convex.

To show that Ĥc,ω
t,2 (x) satisfies Property 1, direct calculation shows that

E
[
∇Ĥc,ω

t,1 (x)
]
= (h1 + ω)Φ(x)− ω,

E
[
∇Ĥc,ω

t,2 (x) · ∇Ĥ
c,ω
t,2 (x)

]
= ω2 +Φ(x)(h2

1 − ω2).

It is also direct to see that the minimizer of E[Ĥc,ω
t,2 (x)] is x∗ = di∗ . When x ≥ x∗, we need to show that there exists B > 0

such that for all x > x∗,

B ≥ (x− x∗)(ω2 +Φ(x)(h2
1 − ω2))

(ω + h1)Φ(x)− ω
. (20)

Note that for x ≥ x∗, Φ(x) ≥ Φ(x∗) ≥ θ + ω
ω+h1

and x− x∗ ≤ maxi∈[k] di, therefore, we have

(x− x∗)(ω2 +Φ(x)(h2
1 − ω2))

(ω + h1)Φ(x)− ω
≤

maxi∈[k] di ·max{ω2, h2
1}

θ(ω + h1)
,

meaning that B =
maxi∈[k] di·max{ω2,h2

1}
θ(ω+h1)

satisfies Equation (20). Similarly, when x ≤ x∗, we can also show that B =
maxi∈[k] di·max{ω2,h2

1}
θ(ω+h1)

satisfies that

B ≥ (x∗ − x)(ω2 +Φ(x)(h2
1 − ω2))

ω − (ω + h1)Φ(x)
.

Combining both cases shows that Ĥc,ω
t,2 (x) satisfies Property 1.

B.3 ONS achieves O(log T ) regret when Property 1 is satisfied

Theorem B.3. Let X ⊆ Rd be a convex set with bounded diameter maxx,x′∈X ∥x− x′∥ ≤ J . If {ft}Tt=1 satisfy Property 1
for some B > 0, ft : X 7→ R and max ∥∇ft(x)∥ ≤ G, Algorithm 4 with η ≥ 2B and ε = 1/T ensures: E[

∑T
t=1 ft(xt)−∑T

t=1 ft(x
∗)] ≤ O(d log(GT ) + J2/2BT ), where x∗ = argminx∈X E[ft(x)].

Proof. The first part of the proof follows the classic ONS proof: let yt+1 = xt − ηM−1
t gt and we know that

yt+1 − x∗ = xt − x∗ − ηM−1
t gt,

Mt(yt+1 − x∗) = Mt(xt − x∗)− ηgt.

Therefore, by definition of xt+1, we know that

∥xt+1 − x∗∥2Mt
≤ ∥yt+1 − x∗∥2Mt

= ∥xt − x∗∥2Mt
− 2η⟨xt − x∗, gt⟩+ η2∥gt∥2M−1

t
,

where ∥x∥2M ≜ x⊤Mx. Rearranging the terms, we know that

⟨xt − x∗, gt⟩ ≤
∥xt − x∗∥2Mt

− ∥xt+1 − x∗∥2Mt

η
+ η∥gt∥2M−1

t
.

Taking summation over t ∈ [T ] using the definition of Mt, we know that

T∑
t=1

⟨xt − x∗, gt⟩ ≤
∥x1 − x∗∥2M0

η
+

1

η

T∑
t=1

(xt − x∗)⊤gtg
⊤
t (xt − x∗) + η

T∑
t=1

∥gt∥2M∗
t
.

By choosing ε = 1
T , we have the first term bounded by O( J2

ηT ). For the third term, according to the assumption that
∥gt∥2 ≤ G and Lemma 6 in (Hazan et al., 2007), we obtain that

T∑
t=1

∥gt∥2M∗
t
≤ log

(
det(

∑T
t=1 gtg

⊤
t + εI)

det(εI)

)
≤ d log

(
G2T

ε
+ 1

)
≤ 4d log(GT ).
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Finally, we consider the second term. Let f(x) = Eft∼F [ft(x)]. According to the convexity of f , we have for any x, y ∈ X ,

f(y) ≥ f(x) + (y − x)⊤∇f(x).

Choosing y = x∗ = argminx∈X f(x) and using Property 1, we have

f(x∗) ≥ f(x) + (x∗ − x)⊤∇f(x)

≥ f(x) + 2(x∗ − x)⊤∇f(x) + 1

B
(x− x∗)⊤Eft∼F

[
∇ft(x)∇ft(x)⊤

]
(x− x∗).

Therefore, we have

E

[
T∑

t=1

ft(xt)

]
− E

[
T∑

t=1

ft(x
∗)

]

≤ 2E

[
T∑

t=1

⟨xt − x∗, gt⟩

]
− E

[
T∑

t=1

1

B
(xt − x∗)⊤gtg

⊤
t (xt − x∗)

]

≤ O
(
J2

ηT
+ d log(GT )

)
+

(
2

η
− 1

B

)
E

[
T∑

t=1

(xt − x∗)⊤gtg
⊤
t (xt − x∗)

]
.

Choosing η ≥ 2B leads to the bound.

B.4 Proof of Theorem B.4

Finally, we prove that Algorithm 5, a lazy version of Algorithm 4 which only updates the decisions O(log T ) times over T
rounds, achieves O(log2 T ) expected regret guarantee. This algorithm shares the same spirit of Algorithm 3 in (Sherman
and Koren, 2021). We highlight again that the low switching property is important to achieve O(log2 T ) regret bound in our
two-echelon inventory control problem.

Theorem B.4. Let X ⊆ Rd be a convex set with bounded diameter maxx,x′∈X ∥x− x′∥ ≤ J . If {ft}Tt=1 satisfy Property 1
for some B > 0, ft : X 7→ R and maxt∈[T ],x∈X ∥∇ft(x)∥ ≤ G, then Algorithm 5 with η ≥ 2B, ε = 1

T guarantees that
E[
∑T

t=1 ft(wt)] − E[
∑T

t=1 ft(x
∗)] ≤ O(log2 T + logG + J2/B), where x∗ = argminx∈X Ef∼F [f(x)]. Moreover, the

decision sequence {wt}Tt=1 only switches O(log T ) times.

Proof. In Theorem B.3, we know that for any t ∈ [T ], the decision sequence {xs}ts=1 generated by ONS (Algorithm 4)
guarantees that,

E

[
t∑

s=1

fs(xs)

]
− E

[
t∑

s=1

fs(x
∗)

]
≤ O(d logGT + J2/2BT ),

where x∗ = argminf∼F f(x). For any fixed t, using the convexity and stochasticity of ft, we know that

E [ft(x̂k)− ft(x
∗)] ≤ 1

2k

2k∑
s=1

E [ft(xs)− ft(x
∗)] =

1

2k

2k∑
s=1

E [fs(xs)− fs(x
∗)] ≤ O

(
1

2k
·
(
d log(G2k) +

J2

2k+1B

))
.

Taking a summation over all t ∈ [T ], we have

E

[
T∑

t=1

ft(wt)

]
− E

[
T∑

t=1

ft(x
∗)

]
= E

log2 T∑
k=0

∑
t∈Ik

(ft(ŵk)− ft(x
∗))

 ≤ O(log2 T + logG+
J2

B

)
,

where Ik is the set of time index in the k-th epoch [2k−1, 2k − 1].

Lemma B.5. Suppose that {ft}Tt=1 is a sequence of i.i.d convex functions drawn from a distribution F and each ft : X 7→ R
has the same bounded feasible domain maxx,x′∈X |x− x′| ≤ J . Let x∗ = argminx∈X f(x) where f(x) = Eft∼F [ft(x)]
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Algorithm 6 Contract maker
Input: A set of realized demand value S = {d1, . . . , dL}, learning rate η.
Construct empirical cumulative density function Φ̂L(·) using S.
Let sL be the output of Algorithm 2 with input D, Φ̂L(·) and η.

return ωL = h2Φ̂L(sL)

1−Φ̂(sL)
.

and suppose that f(x) is σ-strongly convex. Suppose that {xt}Tt=1 be the decision sequence Algorithm 4 generates

when the loss function sequence is {ft}Tt=1. Suppose that E
[∑T

t=1 f(xt)− f(x∗)
]
≤ R. Let x̄1 = 2

T

∑T/2
t=1 xt and

x̄2 = 1
T

∑T
t=1 xt. Then, with probability at least 1− δ, we have

|x̄1 − x∗| ≤ O

√ R

Tσ
+ J

√
log 1

δ

T

 ,

|x̄2 − x∗| ≤ O

√ R

Tσ
+ J

√
log 1

δ

T

 .

Proof. According to the strong convexity of f(x), we know that

σ

2
E

T/2∑
t=1

|xt − x∗|2
 ≤ E

T/2∑
t=1

(f(xt)− f(x∗))

 ≤ E

[
T∑

t=1

(f(xt)− f(x∗))

]
≤ R.

By Cauchy-Schwarz inequality and the fact that E[x2] ≥ E[x]2, we have

E

T/2∑
t=1

|xt − x∗|

 ≤ O(√RT

σ

)
.

According to Azuma’s inequality and the boundedness of xt, x
∗, we have with probability at least 1− δ

2 ,

T/2∑
t=1

|xt − x∗| − E

T/2∑
t=1

|xt − x∗|

 ≤ O(J√T log
1

δ

)
. (21)

Note that x̄1 = 2
T

∑T/2
t=1 xt. Therefore, with probability at least 1− δ,

T

2
|x̄1 − x∗| ≤

T/2∑
t=1

|xt − x∗| ≤ O

(
J

√
T log

1

δ
+

√
RT

σ

)
.

Applying a similar analysis on x̄2 and a union bound finishes the proof.

B.5 Algorithm for the contract maker

We show the pseudo code of the algorithm for the contract maker in Algorithm 6.

B.6 Proof of Lemma 3.3

Proof. According to Lemma A.6, we know that with probability at least 1− δ, |s̄L,2 − s∗2| ≤ Õ(L− 1
4 ), where s̄L,2 is the

output of Algorithm 2. To bound the difference between the contract coefficient ω returned by the third party and the optimal

ω∗, note that ω =
h2Φ̂L(s̄L,2)

1−Φ̂L(s̄L,2)
. According to Lemma C.1, with probability at least 1− δ, it holds that∣∣∣Φ̂L(s̄L,2)− Φ(s∗2)

∣∣∣ ≤ ∣∣∣Φ̂L(s̄L,2)− ΦL(s̄L,2)
∣∣∣+ |Φ(s̄L,2)− Φ(s∗2)|
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≤
√

1

2L
log

2

δ
+ Γ |s̄L,2 − s∗2|

≤ C3 log(T/δ)L
− 1

4 , (22)

where the last inequality is due to Lemma A.6 and C3 > 0 is a universal constant. Moreover, note that according
to Equation (14), we know that Φ(s∗2) ≤

p1

h2+p1
, meaning that 1

1−Φ(s∗2)
≤ h2+p1

h2
. Combining with Equation (22), we know

that with probability 1− δ

1− Φ̂L(s̄L,2) ≥ 1− Φ(s∗2)− C3 log(T/δ)L
− 1

4 ≥ h2

h2 + p1
− C3 log(T/δ)L

− 1
4 ≥ h2

2(h2 + p1)
,

where the last inequality holds when L ≥ C4 ≜ 16(h2+p1)
4C4

3 log4(T/δ)

h4
2

. Also it holds that ω∗ =
h2Φ(s∗2)
1−Φ(s∗2)

≤ h2

1− p1
h2+p1

=

h2 + p1.

Therefore, we obtain that

|ω − ω∗| ≤

∣∣∣∣∣ h2Φ̂L(s̄L,2)

1− Φ̂L(s̄L,2)
− h2Φ(s

∗
2)

1− Φ(s∗2)

∣∣∣∣∣ ≤ h2

∣∣∣∣∣ Φ̂L(s̄L,2)− Φ(s∗2)

(1− Φ̂L(s̄L,2))(1− Φ(s∗2))

∣∣∣∣∣ ≤ O(L− 1
4 log(T/δ)),

which further shows that ω ∈ [0, ω∗ +O(L− 1
4 log(T/δ))] ⊆ [0, h2 + p1 +O(L− 1

4 log(T/δ))].

B.7 Proof of Theorem 3.4

Proof. We first show the convergence on the inventory level decisions of Agent 2. We consider each epoch Im separately.
As Agent 1 keeps his desired inventory level within each epoch, according to Lemma 3.1, there are only constant number of
rounds at the beginning of epoch Im such that ot ̸= dt. With a slight abuse of notation, define

Ĥc
t,2(s2) = h2(s2 − dt)

+ + ωm(s2 − dt)
−,

for t ∈ Im. According to Lemma B.1, we know that Ĥc
t,2 satisfies Property 1 with a specific choice of B > 0. Therefore,

according to Algorithm 3 and Lemma B.1, Agent 2 is using Algorithm 5 within each epoch with respect to Ĥc
t,2 except for

constant number of rounds at the beginning of the epoch. According to Theorem B.4 and Lemma 3.1, we know that the
expected regret of Agent 2 within epoch Im is bounded as follows: picking δ = 1

T 2 , for any s2 ∈ [d,D],

E

[∑
t∈Im

(
H̃c

t,2 − H̊c
t,2(s2)

)]
≤ O

(
log2 T + log T

)
+O(1) = O(log2 T ). (23)

As the total regret is upper bounded by the sum of the regrets in each epoch m ∈ [M ], M = O(log T ), we know that

E
[
RegT,2

]
= E

[
M∑

m=1

∑
t∈Im

(
H̃c

t,2 − H̊c
t,2(̊s

∗
2)
)]
≤ O(log3 T ).

Next, we consider the convergence of sT,2 and bound the term |sT,2− s∗2|. More generally, let em be the last round of epoch
m and we bound |sem,2 − s∗2|. First, according to the analysis in Lemma 3.3 with a union bound, we know that if ωm is
generated by Algorithm 2, with probability at least 1− δ, for any epoch index m ∈ [M ],

|ωm − ω∗| ≤ O
(
L
− 1

4
m log

T

δ

)
. (24)

In addition, note that according to the dynamic of Agent 1 and Agent 2, there are Θ(2m · L1) rounds in the epoch Im
where Agent 1 keeps choosing her inventory level to be sm,1, Agent 2 keeps choosing her inventory level to be sem,2

and the contract coefficient is ωm. Define the set of these rounds to be Tm. In addition, define the expected loss function
Hc

t,2(s2) = h2Ex∼D [(s2 − x)+] + ωmEx∼D [(s2 − x)−] for t ∈ Tm and s̄∗m,2 = argmins2 H
c
t,2(s2) = Φ−1

(
ωm

ωm+h2

)
,
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where the second equality is by direct calculation. In addition, recall that Ĥc
t,2(s2) = h2(s2 − dt)

+ + ωm(s2 − dt)
−. Then

by choosing δ = 1
T 2 , we know that for all m ∈ [M ]:

E

[∑
t∈Tm

Hc
t,2(sem,2)−

∑
t∈Tm

Hc
t,2(s̄

∗
m,2)

]

≤ E

[∑
t∈Im

Hc
t,2(st,2)−

∑
t∈Im

Hc
t,2(s̄

∗
m,2)

]
(25)

= E

[∑
t∈Im

Ĥc
t,2(st,2)−

∑
t∈Im

Ĥc
t,2(s̄

∗
m,2)

]
≤ O(log2 T ). (Lemma 3.1 and Theorem B.4)

In addition, according to Lemma C.4, we know that Hc
t,2(s2) is strongly convex in s2 with parameter σm = γ(h2 + ωm).

Therefore, according to Lemma B.5, we have with probability at least 1− δ, for all m ∈ [M ],∣∣sem,2 − s̄∗m,2

∣∣ ≤ O (L− 1
2

m log(T/δ)
)

(26)

Now we are ready to bound |sem,2 − s∗2|. Recall that s∗2 = Φ−1(ω∗/(ω∗ + h2)). Therefore, with probability at least 1− 2δ,
for all m ∈ [M ],

|sem,2 − s∗2| ≤ |sem,2 − s̄∗m,2|+ |s̄∗m,2 − s∗2|

≤ O(L− 1
2

m log(T/δ)) +

∣∣∣∣Φ−1

(
ωm

ωm + h2

)
− Φ−1

(
ω∗

ω∗ + h2

)∣∣∣∣ (Equation (26))

≤ O(L− 1
2

m log(T/δ)) +
1

γ

∣∣∣∣ ωm

ωm + h2
− ω∗

ω∗ + h2

∣∣∣∣ (Assumption 2)

≤ O(L− 1
2

m log(T/δ)) +O(|ωm − ω∗|)

≤ O(L− 1
4

m log(T/δ)), (27)

where the last inequality is due to Equation (24). Applying m = M shows that |seM ,2 − s∗2| = |sT,2 − s∗2| ≤
O(T− 1

4 log(T/δ)), which finishes the proof for the convergence of Agent 2.

In addition, according to Equation (25) and Cauchy-Schwarz inequality, we know that within epoch Im,

σm

2
E

[∑
t∈Im

|st,2 − s̄∗m,2|2
]
≤ O(log2 T )⇒ E

[∑
t∈Im

|st,2 − s̄∗m,2|

]
≤ O(

√
Lm log T ). (28)

In addition, based on the boundedness of st,2 and s̄∗m,2, according to Hoeffding-Azuma’s inequality, similar to Equation (21),
with probability at least 1− δ, we know that for all m ∈ [M ],

∑
t∈Im

|st,2 − s̄∗m,2| − E

[∑
t∈Im

|st,2 − s̄∗m,2|

]
≤ O

(√
Lm log

M

δ

)
. (29)

Therefore, combining Equation (29) and Equation (27), with probability at least 1− δ, for all m ∈ [M ],∑
t∈Im

|st,2 − s∗2| ≤
∑
t∈Im

(
|st,2 − s̄∗m,2|+ |s̄∗m,2 − s∗2|

)
≤ O

(√
Lm log

M

δ

)
+O

(
L

3
4
m log(T/δ)

)
= O

(
L

3
4
m log(T/δ)

)
. (30)



Zhang, Chen, Luo, Wang

For Agent 1, as sm,1 = Φ̂−1
m−1

(
h2+p1

h1+p1

)
, using Lemma C.3, we know that with probability at least 1− δ, for any m ∈ [M ],

|sm,1 − s∗1| =
∣∣∣∣Φ̂−1

m−1

(
h2 + p1
h1 + p1

)
− Φ−1

(
h2 + p1
h1 + p1

)∣∣∣∣ ≤ C0

√
log(2TD/δ)

Lm−1
= O

(√
log(2TD/δ)

2m

)
(31)

Again, setting m = M proves the convergence of sM,1.

Finally, we analyze the regret of Agent 1. For t ∈ Im, define

Ĥc
t,1(s1, s2) = h1(̊st,1 − dt)

+ + p1(̊st,1 − dt)
− − ωm(s2 − dt)

−,

Hc
t,1(s1, s2) = Ex∼D

[
h1(ŝt,1 − x)+ + p1(ŝt,1 − x)−

]
− ωmEx∼D

[
(s2 − x)−

]
,

where s̊t,1 = s1 if s2 > dt−1 and s̊t,1 = s1 + s2 − dt−1 otherwise. With the choice δ = 1
T 2 , direct calculation shows that,

for all s1, Ĥc
t,1(s1, ·) and Hc

t,1(s1, ·) are O(log T )-Lipschitz according to Lemma 3.3. Based on Lemma 3.1, we know that
within each epoch, except for constant number of rounds, Agent 1 can achieve her intended inventory level and ot = dt.
Therefore, by choosing δ = 1

T 2 , we know that

E
[
RegT,1

]
= E

[
T∑

t=1

H̃c
t,1

]
− E

[
T∑

t=1

H̊c
t,1(̊s

∗
1)

]

≤ E

[
M∑

m=1

∑
t∈Im

Ĥc
t,1(sm,1, st,2)

]
−min

s1
E

[
T∑

t=1

Ĥc
t,1(s1, st,2)

]
+ Õ(1) (Lemma 3.1)

≤ E

[
M∑

m=1

∑
t∈Im

Ĥc
t,1(sm,1, s

∗
2)

]
−min

s1
E

[
T∑

t=1

Ĥc
t,1(s1, s

∗
2)

]
+ E

[∑
m

∑
t∈Im

Õ(|st,2 − s∗2|)

]
+ Õ(1)

(Lipschitzness of Ĥc
t,1(s1, ·))

≤ E

[
M∑

m=1

∑
t∈Im

Hc
t,1(sm,1, s

∗
2)

]
−min

s1
E

[
M∑

m=1

∑
t∈Im

Hc
t,1(s1, s

∗
2)

]
+ Õ(T 3

4 ) (Equation (30))

≤ E

[
M∑

m=1

∑
t∈Im

Hc
t,1(sm,1, s

∗
2)

]
− E

[
M∑

m=1

∑
t∈Im

Hc
t,1(s

∗
1, s

∗
2)

]
+ Õ(T 3

4 ) (s∗1 is the minimizer of Hc
t,1(s1, s

∗
2))

≤ E

[
M∑

m=1

Õ (2m · |sm,1 − s∗1|)

]
+ Õ(T 3

4 ) (max{h1, p1}-Lipschitzness of Hc
t,1(·, s∗2))

≤ E

[
M∑

m=1

Õ
(√

2m
)]

+ Õ(T 3
4 ) (Equation (31))

≤ Õ(T 3
4 ),

which finishes the proof.

B.8 Proof of Theorem 3.5

Proof. Note that from Equation (15) and the convexity of H(s∗1, s2) in s2, let s̄m,2 be the output of the contract maker Al-
gorithm 2, we know that

E

[∑
t∈Im

H(s∗1, s̄m,2)−
∑
t∈Im

H(s∗1, s
∗
2)

]
≤ O

(√
Lm log T

)
. (32)

Let s̄∗m,2 = Φ−1( ωm

ωm+h2
). First, we bound

∑
t∈Im

|st,2 − s̄∗m,2| for each epoch m. Note that according to the analysis
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in Equation (25), we know that

E

[∑
t∈Im

Hc
t,2(st,2)−

∑
t∈Im

Hc
t,2(s̄

∗
m,2)

]
≤ O(log2 T ).

According to Equation (28) and Equation (29), we know that with probability 1− δ, for all m ∈ [M ],∑
t∈Im

∣∣st,2 − s̄∗m,2

∣∣ ≤ O(√Lm log
T

δ

)
. (33)

Next, we bound
∑

t∈Im
|s̄∗m,2 − s̄m,2| for each epoch m. Define s̃m,2 = Φ̂−1

m−1(
ωm

ωm+h2
). Note that ωm =

h2Φ̂m−1(s̄m,2)

1−Φ̂m−1(s̄m,2)
.

Let {dk}Lm−1

k=1 be the demand samples realized in epoch Im−1 and let {d′k}
Lm−1

k=1 be the sorted sequence in non-decreasing
order. Then, with probability at least 1− δ, for each m ∈ [M ],∑

t∈Im

|s̃m,2 − s̄m,2| = Lm ·
∣∣∣Φ̂−1

m−1

(
Φ̂m−1(s̄m,2)

)
− s̄m,2

∣∣∣
≤ Lm · max

k∈[Lm−1]
|d′k − d′k−1|

≤ Lm ·
1

γ
max

k∈[Lm−1]

∣∣Φ(d′k)− Φ(d′k−1)
∣∣

≤ 2

γ
log

Lm−1MT

δ
, (34)

where the last inequality is due to Equation (38).

Then, we bound the term
∑

t∈Im
|s̄∗m,2− s̃m,2|. According to Lemma C.3, with probability at least 1− δ, for each m ∈ [M ],

∑
t∈Im

|s̄∗m,2 − s̃m,2| = Lm

∣∣∣∣Φ−1

(
ωm

ωm + h2

)
− Φ̂−1

m−1

(
ωm

ωm + h2

)∣∣∣∣ ≤ Õ
(
Lm

γ

√
log(1/δ)

Lm−1

)
. (35)

Therefore, according to the Lipschitzness of H(s1, s2) in both parameters, picking δ = 1
T 3 , we can obtain that

E

[∑
t∈Im

H(s∗1, st,2)−
∑
t∈Im

H(s∗1, s
∗
2)

]

= E

[∑
t∈Im

H(s∗1, st,2)−
∑
t∈Im

H(s∗1, s̄
∗
m,2)

]
+ E

[∑
t∈Im

H(s∗1, s̄
∗
m,2)−

∑
t∈Im

H(s∗1, s̃m,2)

]

+ E

[∑
t∈Im

H(s∗1, s̃m,2)−
∑
t∈Im

H(s∗1, s̄m,2)

]
+ E

[∑
t∈Im

H(s∗1, s̄m,2)−
∑
t∈Im

H(s∗1, s
∗
2)

]
≤
∑
t∈Im

(
Õ
(
|st,2 − s̄∗m,2|

)
+ Õ

(
|s̄∗m,2 − s̃m,2|

)
+ Õ (|s̃m,2 − s̄m,2|)

)
+O(1)

+ E

[∑
t∈Im

H(s∗1, s̄m,2)−
∑
t∈Im

H(s∗1, s
∗
2)

]
≤ Õ(

√
Lm),

where the last inequality is by combining Equation (32), Equation (33), Equation (34) and Equation (35). Finally, note
that from Equation (31), we know that for all m ∈ [M ], E[|sm,1 − s∗1|] ≤ Õ(1/

√
Lm). Again using the Lipschitzness of

H(s1, s2), we can obtain that for all m ∈ [M ],

E

[∑
t∈Im

H(sm,1, st,2)−
∑
t∈Im

H(s∗1, s
∗
2)

]
≤ Õ(

√
Lm).
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Taking summation over all m ∈ [M ], we know that

E

[
M∑

m=1

∑
t∈Im

(H(sm,1, st,2)−H(s∗1, s
∗
2))

]
≤ Õ(

√
T ).

Finally, according to Lemma 3.1, as both agents only changes their decision Õ(1) number of rounds and within each epoch,
we know that only constant number of round such that the desired inventory level can not be realized and dt ̸= ot. Therefore,
we can obtain that

E [RegT ] = E

[
M∑

m=1

∑
t∈Im

(
H̃t −H(s∗1, s

∗
2)
)]

≤ E

[
M∑

m=1

∑
t∈Im

(H(sm,1, st,2)−H(s∗1, s
∗
2))

]
+ Õ(1) ≤ Õ(

√
T ),

which finishes the proof.

C Auxiliary lemmas

In this section, we introduce several lemmas that are useful in the analysis. The first three lemmas show the properties
of the empirical density function and the true density function. Suppose in epoch I with |I| = L, we receive the demand
d1, d2, . . . , dL. Define the empirical cumulative density function Φ̂L(·) constructed by {di}Li=1 as

Φ̂L(x) =
1

L

L∑
i=1

I{di ≤ x}, (36)

and the corresponding inverse cumulative density function Φ̂−1
L (·):

Φ̂−1
L (κ) = min

{
z :

1

L

L∑
i=1

I{di ≤ z} ≥ κ

}
, (37)

where κ ∈ [0, 1]. The following Dvoretzky–Kiefer–Wolfowitz lemma shows the concentration between Φ̂L(a) and Φ(a) for
any a ∈ R.

Lemma C.1. (Dvoretzky–Kiefer–Wolfowitz lemma) Let {di}Ti=1 be T i.i.d. samples drawn from distribution D with
cumulative density function Φ. Define the empirical cumulative density function Φ̂L(·) as shown in Equation (36), L ∈ [T ].
Then with probability at least 1− δ, for any x ∈ R,∣∣∣Φ̂L(x)− Φ(x)

∣∣∣ ≤√ 1

2L
log

2

δ
.

Moreover, by applying a union bounded over all L ∈ [T ], with probability at least 1− δ, for any x ∈ R and L′ ∈ [T ], it
holds that ∣∣∣Φ̂L′(x)− Φ(x)

∣∣∣ ≤√ 1

2L′ log
2T

δ
.

The next lemma shows the stability of Φ̂−1
L (·) on consecutive grids of length 1

T over [0, 1], which turns out to be important
to prove our main lemma Lemma C.3.

Lemma C.2. Let {di}Ti=1 be T i.i.d. samples from distribution D satisfying Assumption 2. Let Φ̂L(·) be the empirical
cumulative density function constructed by {di}Li=1 as shown in Equation (36). The inverse of the empirical density function
Φ̂−1(·) is defined in Equation (37). Then with probability at least 1− δ, for any κ ∈

{
i
T

}T−1

i=0
and any L ∈ [T ],

Φ̂−1
L

(
κ+

1

T

)
− Φ̂−1

L (κ) ≤ 2

γL
log

LT

δ
.
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Proof. Fix any L ∈ [T ]. Without loss of generality, we assume that d1 ≤ d2 ≤ . . . ≤ dL be the ordered realized demand
and let d0 = 0. According to the definition of Φ̂−1

L , we know that for a ∈ ( i−1
L , i

L ], i ∈ [L]

Φ̂−1
L (a) = di.

Moreover, as L ≤ T , meaning that [κ, κ+ 1
T ] ⊆ ( i−1

L , i+1
L ] for some i ∈ [L], we know that for any κ ∈

{
i
T

}T−1

i=0
,

Φ̂−1
L

(
κ+

1

T

)
− Φ̂−1

L (κ) ≤ max
i∈[L]

|di − di−1| .

Note that according to the property of cumulative density function, Φ(x) with x ∼ D follows the uniform distribution
U [0, 1]. According to the property of the ordered statistics of U [0, 1], let ∆k = Φ(dk)− Φ(dk−1) be the gap between the
k − 1-th and the k-th ordered statistics, k ∈ [L] and we have ∆k follows the Beta distribution ∆k ∼ Beta(1, L). Therefore,
for any k ∈ [L],

P [∆k ≥ r] =

∫ 1

r

L(1− u)L−1du = (1− r)L.

Let r = 1
L log L

δ . Then we have

P [∃k ∈ [L],∆k ≥ r] ≤
L∑

k=1

P [∆k ≥ r]

= L(1− r)L

≤ L

(
1− 1

L
log

L

δ

)L

≤ L

((
1− 1

L
log

L

δ

) L

log L
δ

)log L
δ

≤ δ.

Therefore, with probability at least 1 − δ, we have ∆k ≤ 1
L log L

δ , for all k ∈ [L]. According to the assumption that
ϕ(d) ≥ γ, we have with probability 1− δ,

max
i∈[L]

|di − di−1| ≤ max
i∈[L]

1

γ
· |Φ(di)− Φ(di−1)| ≤

1

γL
log

L

δ
. (38)

Taking a union bound over all possible choices of κ and L ∈ [T ] gives the conclusion.

Now we are ready to prove Lemma C.3. Note that different from the concentration result which holds for a specific known
κ (e.g. Proposition 3 in (Chen et al., 2021)), with the help of Lemma C.2, Lemma C.3 proves that with high probability,
for all κ ∈ [0, 1], we have the difference between Φ̂−1

L (κ) and Φ−1(κ) bounded by Õ(1/
√
L), which is what we require in

the decentralized setting with contract in the coupling model introduced in Section 3 as βm

βm+h2
can take arbitrary values

between [0, 1].

Lemma C.3. Let {di}Ti=1 be T i.i.d. samples from distribution D which satisfies Assumption 2. Let Φ̂L(·) be the empirical
cumulative density function constructed by {di}Li=1 as shown in Equation (36). The inverse of the empirical density function
Φ̂−1(·) is defined in Equation (37). Then with probability at least 1− δ, for any κ ∈ [0, 1] and any L ∈ [T ], it holds that

∣∣∣Φ̂−1
L (κ)− Φ−1(κ)

∣∣∣ ≤ C0

√
log TD

δ

L
,

∣∣∣Φ(Φ̂−1
L (κ)

)
− κ
∣∣∣ ≤ C0

√
log TD

δ

L
,

where C0 > 0 are some universal constants.
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Proof. For any fixed κ ∈ { i
T }

T
i=0 and L ∈ [T ], we know that

P
[
Φ
(
Φ̂−1

L (κ)
)
− κ ≤ −ξ

]
≤ P

[
Φ̂−1

L (κ) ≤ Φ−1 (κ− ξ)
]

≤ P

[
1

L

L∑
i=1

{
di ≤ Φ−1 (κ− ξ)

}
≥ κ

]
(according to the definition of Φ̂−1

L (·))

≤ P

[
1

L

L∑
i=1

{
di ≤ Φ−1 (κ− ξ)

}
− (κ− ξ) ≥ ξ

]
≤ exp(−2Lξ2), (39)

where the last inequality is by Hoeffding’s inequality. On the other hand,

P
[
Φ
(
Φ̂−1

L (κ)
)
− κ ≥ ξ

]
≤ P

[
Φ̂−1

L (κ) ≥ Φ−1 (κ+ ξ)
]

≤ P

[
1

L

L∑
i=1

{
di ≤ Φ−1 (κ+ ξ)

}
< κ

]
(according to the definition of Φ̂−1

L (·))

≤ P

[
1

L

L∑
i=1

{
di ≤ Φ−1 (κ+ ξ)

}
− (κ+ ξ) < −ξ

]
≤ exp(−2Lξ2),

Therefore, we conclude that

P
[∣∣∣Φ(Φ̂−1

L (κ)
)
− κ
∣∣∣ ≥ ξ

]
≤ 2 exp(−2Lξ2).

Therefore, with probability at least 1− δ,

∣∣∣Φ(Φ̂−1
L (κ)

)
− κ
∣∣∣ ≤

√
log 2

δ

2L
.

Taking a union bound over all κ ∈ { i
T }

T
i=0, with probability at least 1− δ, we can obtain that for all κ ∈ { i

T }
T
i=0,

∣∣∣Φ(Φ̂−1
L (κ)

)
− κ
∣∣∣ ≤

√
log 2TD

δ

2L
. (40)

Next, for any κ ∈ [0, 1], let κ0 ≥ κ, κ1 ≤ κ be the real number such that κ0 − κ and κ − κ1 is minimized and
κ0, κ1 ∈ { i

T }
T
i=0, κ0 − κ1 = 1

T . Then, according to Lemma C.2, with probability at least 1− δ
2 , we have∣∣∣Φ̂−1

L (κ)− Φ−1(κ)
∣∣∣

=
∣∣∣Φ̂−1

L (κ)− Φ̂−1
L (κ1) + Φ̂−1

L (κ1)− Φ−1(κ1) + Φ−1(κ1)− Φ−1(κ)
∣∣∣

≤
∣∣∣Φ̂−1

L (κ)− Φ̂−1
L (κ1)

∣∣∣+ ∣∣∣Φ̂−1
L (κ1)− Φ−1(κ1)

∣∣∣+ ∣∣Φ−1(κ1)− Φ−1(κ0)
∣∣ (Φ−1(κ1) ≤ Φ−1(κ) ≤ Φ−1(κ0))

≤
∣∣∣Φ̂−1

L (κ0)− Φ̂−1
L (κ1)

∣∣∣+ ∣∣∣Φ̂−1
L (κ1)− Φ−1(κ1)

∣∣∣+ ∣∣Φ−1(κ1)− Φ−1(κ0)
∣∣

≤ 2

γL
log

4LT

δ
+

1

γ

∣∣∣Φ(Φ̂−1
L (κ1)

)
− κ1

∣∣∣+ ∣∣Φ−1(κ1)− Φ−1(κ0)
∣∣ (Lemma C.2)

≤ 1

γL
log

LT

δ
+

1

γ

√
log 8TD

δ

2L
+

1

γT
(Equation (40))

≤ C ′

√
log TD

δ

L
,
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where C ′ > 0 is some universal constant.

For
∣∣∣Φ(Φ̂−1

L (κ))− κ
∣∣∣, define κ0 and κ1 the same as before and we know that with probability at least 1− δ

2 ,∣∣∣Φ(Φ̂−1
L (κ)

)
− κ
∣∣∣

=
∣∣∣Φ(Φ̂−1

L (κ)
)
− Φ

(
Φ̂−1

L (κ1)
)
+Φ

(
Φ̂−1

L (κ1)
)
− κ1 + κ1 − κ

∣∣∣
≤
∣∣∣Φ(Φ̂−1

L (κ0)
)
− Φ

(
Φ̂−1

L (κ1)
)∣∣∣+ ∣∣∣Φ(Φ̂−1

L (κ1)
)
− κ1

∣∣∣+ |κ1 − κ|

≤ Γ
∣∣∣Φ̂−1

L (κ0)− Φ̂−1
L (κ1)

∣∣∣+
√

log 2TD
δ

2L
+

1

T
(Equation (40) and Lipschitzness of Φ)

≤ 2Γ

γL
log

4LT

δ
+

√
log 8TD

δ

2L
+

1

T
(Lemma C.2)

≤ C ′′

√
log TD

δ

L
,

where C ′′ > 0 is some universal constant. Taking a union bound over all κ and L ∈ [T ] and choosing C0 = max{4C ′, 4C ′′}
finish the proof.

The last lemma shows the strong convexity of the expectation of the loss function introduced in Equation (8).

Lemma C.4. For any h > 0, p > 0, let f(s) = hEx∼D [(s− x)+] + pEx∼D [(s− x)−] where D satisfies Assumption 1
and Assumption 2. Then f(s) is strongly convex in s with strongly convex parameter σ = (h + p)γ where γ is defined
in Assumption 2.

Proof. Taking the second order gradient of f(s), we know that

∇2f(s) = (h+ p)ϕ(x) ≥ (h+ p)γ,

where the last inequality is due to Assumption 2. This finishes the proof.

D Experiments

In this section, we show more empirical results for our designed algorithms. Specifically, we verify the empirical performance
of Algorithm 1 and Algorithm 3 in our model. We construct different bounded demand distributions listed as follows: 1)
Gaussian distribution N (3, 1) clipped on support [1, 4]; 2) uniform distribution over [1, 4]; 3) exponential distribution with
mean 3 clipped on support [1, 4]. We also set the number of round to be T = 800000 and choose the cost configuration to be
(h1, h2, p1) = {(0.3, 0.1, 0.5), (0.4, 0.25, 0.6), (0.5, 0.35, 0.75), (0.6, 0.4, 0.85)}. For each demand distribution, 128 trials
are processed and we calculate the mean and the standard deviation of the regret over the 128 trials. The results are shown
in Figure 1. The results show the effectiveness of our proposed algorithm in both the centralized and decentralized setting.
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Figure 1: Empirical results of our algorithms applied to our model with cost parameters (h1, h2, p1) =
{(0.3, 0.1, 0.5), (0.4, 0.25, 0.6), (0.5, 0.35, 0.75), (0.6, 0.4, 0.85)} and T = 800000. Each column shows the results of
a specific demand distribution with different cost parameter configurations. The algorithm is processed over 128 trials of
demand sequences drawn from the four distributions. The solid line is the mean over 128 trials and the shaded area is mean
± std. The performance of of Algorithm 1 is shown in the blue curve (“centralized”) and the one of Algorithm 3 is shown in
the orange curve (“decentralized ONS”). The results show the effectiveness of our proposed algorithms.
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