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Abstract

In this paper, we revisit the online non-monotone
continuous DR-submodular maximization prob-
lem over a down-closed convex set, which finds
wide real-world applications in the domain of
machine learning, economics, and operations re-
search. At first, we present the Meta-MFW al-
gorithm achieving a 1/e-regret of O(

√
T ) at the

cost of T 3/2 stochastic gradient evaluations per
round. As far as we know, Meta-MFW is the first
algorithm to obtain 1/e-regret of O(

√
T ) for the

online non-monotone continuous DR-submodular
maximization problem over a down-closed convex
set. Furthermore, in sharp contrast with ODC al-
gorithm (Thang & Srivastav, 2021), Meta-MFW
relies on the simple online linear oracle with-
out discretization, lifting, or rounding operations.
Considering the practical restrictions, we then pro-
pose the Mono-MFW algorithm, which reduces
the per-function stochastic gradient evaluations
from T 3/2 to 1 and achieves a 1/e-regret bound
of O(T 4/5). Next, we extend Mono-MFW to
the bandit setting and propose the Bandit-MFW
algorithm which attains a 1/e-regret bound of
O(T 8/9). To the best of our knowledge, Mono-
MFW and Bandit-MFW are the first sublinear-
regret algorithms to explore the one-shot and ban-
dit setting for online non-monotone continuous
DR-submodular maximization problem over a
down-closed convex set, respectively. Finally, we
conduct numerical experiments on both synthetic
and real-world datasets to verify the effectiveness
of our methods.
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1 Introduction

Continuous DR-submodular maximization draws wide atten-
tion since it mathematically depicts the diminishing return
phenomenon in continuous domains. Numerous real-world
applications in machine learning, operations research, and
other related areas, such as non-definite quadratic program-
ming (Ito & Fujimaki, 2016), revenue maximization (Soma
& Yoshida, 2017; Bian et al., 2020), viral marketing (Kempe
et al., 2003; Yang et al., 2016), determinantal point pro-
cesses (Kulesza et al., 2012; Mitra et al., 2021), to name a
few, could be modeled throughout the notion of continuous
DR-submodularity.

In recent years, the prominent paradigm of online optimiza-
tion (Zinkevich, 2003; Hazan et al., 2016) has led to spectac-
ular successes in modelling the imperfect and complicated
environment. In this framework, at each step, the online
algorithm first chooses an action from a predefined set of
feasible actions; then the adversary reveals the utility func-
tion. The objective of the online algorithm is to minimize
the gap between the accumulative reward and that of the
best fixed policy in hindsight.

Previously, a large body of algorithms (Bian et al., 2020;
Mokhtari et al., 2020) with approximation guarantees rely
on the monotone assumption of continuous DR-submodular
functions. However, many real-world problems, such as the
general DR-submodular quadratic programming (Ito & Fu-
jimaki, 2016) and revenue maximization (Soma & Yoshida,
2017), are instances of non-monotone DR-submodular max-
imization. Motivated by these real applications, in this
paper we focus on the problem of online non-monotone con-
tinuous DR-submodular maximization over a down-closed
convex set under different feedbacks, i.e., full-information
and bandit feedback.

Recently, based on a special online non-convex oracle,
Thang & Srivastav (2021) presented the first online algo-
rithm (ODC) for non-monotone continuous DR-submodular
maximization over a down-closed convex set. ODC
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achieves a 1/e-regret of O(T 3/4) where T is the horizon.
Notably, the non-convex oracles of ODC need to discretize
the original constrained domain and lift the n-dimensional
subroutine problem into a solvable linear programming in a
higher (M × n)-dimensional space where M = (T/n)1/4,
which will incur a heavy computation burden when T is
large. Moreover, the rounding operation (Mirrokni et al.,
2017) in the online non-convex oracle assumes the knowl-
edge of the vertices of the down-closed convex set, which
is infeasible in many real applications. In this paper, we
propose a new method to overcome these drawbacks. Moti-
vated via the measured continuous greedy (Feldman et al.,
2011), we first present the Meta-Measured Frank-Wolfe
(Meta-MFW) algorithm, which achieves a faster 1/e-regret
of O(T 1/2) with only a simple online linear oracle.

Note that ODC and Meta-MFW require inquiring T 3/4

and T 3/2 stochastic gradient evaluations at each round, re-
spectively. Therefore, when T is large, the huge amount
of gradient estimates at each round makes both algorithms
computationally prohibitive. In many scenarios, the stochas-
tic gradient is 1) time-consuming to acquire, for instance,
in the influence maximization task (Kempe et al., 2003;
Yang et al., 2016), we need to generate enormous samples
on large-scale social graphs to estimate the gradient, or
2) impossible to compute, e.g., black-box attacks and opti-
mization (Chen et al., 2017; Ilyas et al., 2018; Chen et al.,
2020). Considering these practical limitations, we also want
to extend our proposed Meta-MFW into both one-shot
and bandit feedback scenarios. As for the one-shot set-
ting, we merge the blocking procedures (Zhang et al., 2019)
into Meta-MFW to present Mono-MFW algorithm which
yields a result with a 1/e-regret of O(T 4/5) and reduces
the number of per-function stochastic gradient evaluations
from T 3/2 (or T 3/4) to 1. Finally, in the bandit feedback
where the only observable information is the reward we
receive, a new algorithm Bandit-MFW is proposed with
the exploration-exploitation policy (Zhang et al., 2019) and
achieves a 1/e-regret of O(T 8/9).

To be specific, we make the following contributions:

1. We first develop a new algorithm Meta-MFW for on-
line non-monotone continuous DR-submodular max-
imization problem over a down-closed convex set,
which only relies on the simple online linear ora-
cle without discretization, lifting, or rounding oper-
ations. Moreover, in sharp contrast with ODC (Thang
& Srivastav, 2021), Meta-MFW achieves a faster 1/e-
regret of O(T 1/2) at the cost of T 3/2 stochastic gradi-
ent evaluations for each reward function. It is worth
mentioning that the 1/e-regret of O(T 1/2) result not
only achieves the best-known approximation guaran-
tee for the offline problem (Bian et al., 2017a) but
also matches the optimal O(

√
T ) regret (Hazan et al.,

2016). Meanwhile, like ODC algorithm, our proposed
Meta-MFW also can achieve 1/e-regret of O(T 3/4)

with T 3/4 per-function stochastic gradient evaluations.

2. Considering the practical restrictions, we then present
the one-shot algorithm Mono-MFW equipped with
blocking procedures (Zhang et al., 2019), which
achieves a 1/e-regret of O(T 4/5) and reduces the
stochastic gradient evaluations from T 3/2 or T 3/4 to 1
at each round. Next, in the bandit setting, we propose
the Bandit-MFW algorithm achieving a 1/e-regret of
O(T 8/9) by only inquiring one-point function value
for each reward function. To the best of our knowl-
edge, Mono-MFW and Bandit-MFW are the first
sublinear-regret algorithm to explore the one-shot and
bandit settings for online non-monotone continuous
DR-submodular maximization problem over a down-
closed convex set, respectively.

3. Finally, we empirically evaluate our proposed methods
on both synthetic and real-world datasets. Numerical
experiments demonstrate the superior performance of
our proposed algorithms.

1.1 Related Work

Continuous DR-submodular maximization problem has
been extensively investigated as it admits efficient approxi-
mate maximization routines. In this section, we provide a
summary about these known results.

Monotone Setting: In the deterministic setting, Bian et al.
(2017b) first proposed a variant of Frank-Wolfe achieving
(1 − 1/e)OPT − ϵ after O(1/ϵ) iterations where OPT
is the optimal objective value. When a stochastic gradi-
ent oracle is available, Hassani et al. (2017) proved that
the stochastic gradient ascent guarantees (1/2)OPT − ϵ
after O(1/ϵ2) iterations. Next, Mokhtari et al. (2018) pro-
posed the stochastic continuous greedy algorithm, which
achieves a (1−1/e)-approximation after O(1/ϵ3) iterations.
Then, an accelerated stochastic continuous greedy algorithm
is presented in Hassani et al. (2020), which guarantees a
(1−1/e)OPT−ϵ after O(1/ϵ2) iterations. As for the online
settings, Chen et al. (2018b) first investigated the online gra-
dient ascent with a (1/2)-regret of O(

√
T ). Then, inspired

by the meta actions (Streeter & Golovin, 2008), Chen et al.
(2018b) proposed the Meta-Frank-Wolfe algorithm with a
(1 − 1/e)-regret bound of O(

√
T ) under the determinis-

tic setting. With an unbiased gradient oracle, then Chen
et al. (2018a) proposed a variant of the Meta-Frank-Wolfe
algorithm having a (1− 1/e)-regret bound of O(T 1/2) and
requiring T 3/2 stochastic gradient queries for each function.
In order to reduce the number of gradient evaluations, Zhang
et al. (2019) presented Mono-Frank-Wolfe taking the block-
ing procedure, which achieves a (1 − 1/e)-regret bound
of O(T 4/5) with only one stochastic gradient evaluation
at each round. Leveraging this one-shot algorithm, Zhang
et al. (2019) also presented a bandit algorithm Bandit-Frank-
Wolfe achieving (1− 1/e)-regret bound of O(T 8/9). Next,
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Sadeghi & Fazel (2020) and Sadeghi et al. (2020) extended
the Meta-Frank-Wolfe algorithm to the online continuous
DR-submodular maximization problem with long-term or
stochastic constraints. Recently, based on a novel auxiliary
function, Zhang et al. (2022) have presented a variant of
gradient ascent improving the approximation ratio of the
standard gradient ascent (Hassani et al., 2017; Chen et al.,
2018b) from 1/2 to 1− 1/e in both offline and online set-
tings.

Non-Monotone Setting: Without the monotone property,
maximizing the continuous DR-submodular function be-
comes much harder. Under the down-closed convex con-
straint, Bian et al. (2017a) proposed the deterministic Two-
Phase Frank-Wolfe and Non-monotone Frank-Wolfe with
1/4-approximation and 1/e-approximation guarantee, re-
spectively. When only an unbiased estimate of gradient is
available, Hassani et al. (2020) improved the Non-monotone
Frank-Wolfe by variance reduction technique, which yields
a result with 1/e-approximation guarantee. Moreover, in-
spired by the Double Greedy (Buchbinder et al., 2015;
Buchbinder & Feldman, 2018) for discrete unconstrained
submodular set maximization, Niazadeh et al. (2018) and
Bian et al. (2019) proposed a similar 1/2-approximation
algorithms for unconstrained continuous DR-submodular
maximization. Note that Vondrák (2013) pointed that any
algorithm with a constant-factor approximation for maxi-
mizing a non-monotone DR-submodular function over a
non-down-closed convex set would require exponentially
many value queries and the approximation guarantee of
1/2 is tight for unconstrained DR-submodular maximiza-
tion. Thang & Srivastav (2021) is the first work to explore
the sublinear-regret online algorithm for the non-monotone
continuous DR-submodular maximization problems over a
down-closed convex set.

We present a comparison between this work and previous
studies in Table 1.

2 Preliminaries

Notation: In this paper, a lower boldface denotes a vec-
tor with suitable dimension and an uppercase boldface for
a matrix. For each vector x, the i-th element of x is de-
noted as (x)i. Specially, 0 and 1 represent the vector
whose elements are all zero or one, respectively. For any
positive integer number K, the symbol [K] denotes the
set {1, . . . ,K}. Moreover, the symbol ⊙ and ⊘ denote
coordinate-wise multiplication and coordinate-wise divi-
sion, respectively. For instance, given two vector x and y,
if y > 0, the i-th element of vector x⊘ y is (x)i

(y)i
. The prod-

uct ⟨x,y⟩ =
∑

i(x)i(y)i and the norm ∥x∥ =
√

⟨x,x⟩.
We say the domain C ⊆ [0, 1]n is down-closed, if there
exist a lower vector u ∈ C such that 1) y ≥ u for any
y ∈ C; 2) x ∈ C if there exists a vector y ∈ C satisfying
u ≤ x ≤ y. Additionally, the radius r(C) = maxx∈C ∥x∥

Table 1: Comparison of regrets for online non-monotone
continuous DR-submodular function maximization over a
down-closed convex set with stochastic gradient oracles.
# Grad’ means the number of stochastic gradient eval-
uations at each round; ’Oracle’ indicates which type of
online oracle used in algorithms; ’Feedback’ indicates full-
information or bandit feedback scenario. ’ODC’ refers
to the algorithm 2 in (Thang & Srivastav, 2021). ’Meta-
MFW’, ’Mono-MFW’, and ’Bandit-MFW’ are our pro-
posed algorithms. Note that all these algorithms can achieve
1/e approximation ratio.

Method Regret # Grad Oracle Feedback

ODC O(T 3/4) T 3/4 nonconvex full

Meta-MFW O(T 3/4) T 3/4 linear full

Meta-MFW O(T 1/2) T 3/2 linear full

Mono-MFW O(T 4/5) 1 linear full

Bandit-MFW O(T 8/9) 0 linear bandit

and the diameter diam(C) = maxx,y∈C ∥x− y∥.

DR-Submodularity: A differentiable function f :
[0, 1]n → R+ is DR-submodular iff ∇f(x) ≤ ∇f(y) when
x ≥ y (Bian et al., 2020).

Smoothness: A differentiable function f is called L0-
smooth if for any x,y ∈ [0, 1]n, ∥∇f(x)−∇f(y)∥ ≤
L0 ∥x− y∥.

Problem Settings and α-regret: In this paper, we revisit
the online non-monotone continuous DR-submodular maxi-
mization problem over a down-closed convex set C. For a
T -round game, after the learner chooses an action xt ∈ C
at each round, the adversary reveals a DR-submodular func-
tion ft : [0, 1]

n → R+ and feeds back the reward ft(xt) to
the learner. The goal is to design efficient algorithms such
that the gap between the accumulative reward and that of
the best fixed policy in hindsight with scale parameter α,
i.e., Rα(T ) = αmaxx∈C

∑T
t=1 ft(x) −

∑T
t=1 ft(xt), is

sublinear in horizon T . That is, limT→∞ Rα(T )/T = 0.
In this paper, we consider α = 1/e.

3 Algorithms and Main Results

3.1 Online Non-monotone Continuous
DR-submodular maximization

In previous literature (Bian et al., 2017a; Mokhtari et al.,
2018; Chen et al., 2018a,b), the monotone assumption of
continuous DR-submodular function plays a core role in
deriving the efficient competitive ratio. Therefore, we can
not directly apply these algorithms to the non-monotone
settings, due to lack of theoretical guarantee.
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In this subsection, we will present a new online algo-
rithm (Algorithm 1) for non-monotone continuous DR-
submodular maximization over a down-closed convex set,
which is inspired by the measured continuous greedy (Feld-
man et al., 2011; Mitra et al., 2021) for offline continuous
DR-submodular maximization and the meta-action frame-
work (Streeter & Golovin, 2008; Chen et al., 2018a) which
utilizes the online linear optimization oracles (Hazan et al.,
2016). Note that an online linear optimization oracle is
an instance of the off-the-shelf online linear maximization
algorithm that sequentially maximizes linear objectives.

In sharp contrast with the Meta-Frank-Wolfe (Chen et al.,
2018a) for online monotone continuous DR-submodular
maximization, in our Algorithm 1 we adopt a different up-
date rule (line 6) and a novel feedback (line 11). Given a
series of update directions v(k)

t ∈ C,∀k ∈ [K] and initial
point x(0)

t = 0, we consider

x
(k)
t = x

(k−1)
t +

1

K
v
(k)
t ⊙ (1− x

(k−1)
t ), (1)

where we re-weight the i-th element of v(k)
t by (1−x

(k−1)
t )i

at each round and push the iteration point x(k−1)
t along the

weighted update direction v
(k)
t ⊙(1−x

(k−1)
t ) with step size

1
K . Due to the update rule of Equation (1), then Algorithm 1
feeds back the weighted gradient estimate g(k)

t ⊙ (1−x
(k)
t )

for the linear oracle E(k), where we view the vector g(k)
t as

an estimate for ∇ft(x
(k)
t ). Our update rule guarantees that

x
(k)
t ∈ C (proof in Appendix B).

Next, we demonstrate how the K different linear oracles
work. Each linear oracle E(k) in Algorithm 1 tries to
online maximize the cumulative linear reward function∑T

t=1⟨g
(k)
t ⊙ (1 − x

(k)
t ), ·⟩. Precisely, after E(k) com-

mits to the action v
(k)
t ∈ C at t-th round, Algorithm 1

feeds back the vector g
(k)
t ⊙ (1 − x

(k)
t ) and the reward

⟨g(k)
t ⊙ (1 − x

(k)
t ),v

(k)
t ⟩ to the oracle E(k); then the ora-

cle E(k) updates the action via some well-known strategies
such as the online gradient ascent or regularized-follow-the-
leader (Hazan et al., 2016). Taking the online gradient ascent
as an example, the oracle E(k) will choose the next action
v
(k)
t+1 = argminv∈C ∥v− (v

(k)
t + 1√

T
g
(k)
t ⊙ (1− x

(k)
t ))∥.

Predictably, compared with the complicated online non-
convex oracle of ODC (See online vee learning algorithm
in (Thang & Srivastav, 2021)), the online linear oracle in
the Meta-MFW, without discretization, lifting, or rounding
operations, is simpler and more efficient.

We then make some assumptions for the regret analysis of
Algorithm 1.
Assumption 1.

(i) The domain C ⊆ [0, 1]n is a down-closed convex set
including the original point 0, where n is the dimen-
sional parameter.

Algorithm 1 Meta-Measured Frank-Wolfe (Meta-MFW)
1: Input: K online linear maximization oracles over C,

i.e, E(1), . . . , E(K), ηk, g(0)
t = x

(0)
t = 0.

2: Output: y1, . . . ,yT .
3: for t = 1, . . . , T do
4: for k = 1, . . . ,K do
5: Receive v

(k)
t which is the output of oracle E(k).

6: x
(k)
t = x

(k−1)
t + 1

Kv
(k)
t ⊙ (1− x

(k−1)
t ).

7: end for
8: Play yt = x

(K)
t for ft to get reward ft(yt) and

observe the stochastic gradient information of ft.
9: for k = 1, . . . ,K do

10: g
(k)
t = (1 − ηk)g

(k−1)
t + ηk∇̃ft(x

(k)
t ) where

E(∇̃ft(x
(k)
t )|x(k)

t ) = ∇ft(x
(k)
t ).

11: Feed back ⟨g(k)
t ⊙ (1− x

(k)
t ),v

(k)
t ⟩ as the payoff

to be received by oracle E(k).
12: end for
13: end for

(ii) Each ft : [0, 1]n → R+ is a differentiable, DR-
submodular function with smoothness parameter L0.

(iii) For any linear maximization oracle E(k), the regret at
horizon t is at most M0

√
t, where M0 is a parameter.

Assumption 2. For any t ∈ [T ] and x ∈ [0, 1]n, there exists
a stochastic gradient oracle ∇̃ft(x) with E(∇̃ft(x)|x) =
∇ft(x) and E(∥∇ft(x)− ∇̃ft(x)∥2) ≤ σ2.

Theorem 1. [Proof in Appendix C] Under Assumption 1
and 2, if we set ηk = 2

(k+3)2/3
for any k ∈ [K], we could

verify that Algorithm 1 achieves:

1

e

T∑
t=1

ft(x
∗)−

T∑
t=1

E(ft(yt))

≤M0

√
T + L0r

2(C) T

2K
+

diam(C)
2

(3N0 + 1)
T

K1/3
,

where N0 = max{42/3 maxt∈[T ] ∥∇ft(x
(1)
t )∥2, 4σ2 +

6(L0r(C))2} and x∗ = argmaxx∈C
∑T

t=1 ft(x).

Remark 1. According to Theorem 1, if we set K = T 3/2,
Meta-MFW yields the first result to achieve a 1/e-regret
of O(

√
T ), which is faster than the previous outcome of

ODC (Thang & Srivastav, 2021). It is worth mentioning that
the 1/e-regret of O(

√
T ) not only achieves the best-known

guarantee for the offline problem, but also matches the
optimal O(

√
T ) regret of online convex optimization (Hazan

et al., 2016).

Remark 2. Meanwhile, when K = T 3/4, Meta-MFW
achieves a 1/e-regret of O(T 3/4), which has the same ap-
proximation ratio and regret as ODC (Thang & Srivas-
tav, 2021). Although the oracle number K = T 3/4 of
Meta-MFW is the same as ODC, Meta-MFW is more time-
efficient than ODC since we adopt the simple online linear
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oracles while ODC utilizes complicated online non-convex
oracles with discretization, lifting, and rounding operations.

3.2 One-shot Online Non-monotone Continuous
DR-submodular maximization

In many real-world scenarios, it could be time-consuming
or even impossible to compute the stochastic gradient, e.g.,
influence maximization (Yang et al., 2016) as well as black-
box attacks (Ito & Fujimaki, 2016). Thus, our Algorithm 1,
which needs to inquire K gradient estimates for each re-
ward function ft (See line 10 in Meta-MFW), seems to
be restrictive for many applications. To tackle the practical
challenges, we hope to extend our proposed Meta-MFW
into one-shot or bandit settings, where we only are permit-
ted to inquire an unbiased gradient or one-point function
value for each ft, respectively. At first, we investigate the
one-shot non-monotone DR-submodular maximization in
this subsection.

We begin by reviewing the fairly known blocking technique
in online learning (Zhang et al., 2019; Hazan et al., 2016).
Specifically, we divide the T reward functions f1, . . . , fT
into Q blocks of the same size K, where T = QK,
i.e., the q-th block includes the K different functions
f(q−1)K+1, . . . , fqK . We also define the average function
in the q-th block as f̄q =

∑qK
t=(q−1)K+1 ft/K. To reduce

the number of per-function stochastic gradient evaluations,
the key idea is to view each f̄q as a virtual reward function,
such that the original T -round online optimization can be
transferred into a new Q-round game. In this new Q-round
game, at the q-th step, the algorithm first chooses an action
xq ∈ C, then the adversary reveals the reward f̄q(xq) for
the algorithm.

Since each f̄q is also continuous DR-submodular, we could
directly adopt Algorithm 1 to tackle the new Q-round game,
which also requires inquiring K unbiased gradient estimates
for each f̄q. Note that, in q-th block, there exist K differ-
ent stochastic gradient oracles {∇̃f(q−1)K+1, . . . , ∇̃fqK}.
Moreover, for each random permutation {t(1)q , . . . , t

(K)
q } of

the indices {(q−1)K+1, . . . , qK}, it could be verified that
the E(f

t
(k)
q

(x)|x) = f̄q(x) and E(∇̃f
t
(k)
q

(x)|x) = ∇f̄q(x).
As a result, we can construct unbiased gradient estimates
of f̄q at K different points via the K existing oracles
{∇̃f(q−1)K+1, . . . , ∇̃fqK}, and each oracle inquires only
one gradient evaluation. In this manner, we successfully re-
duce the number of per-function gradient evaluations from
K to 1. Motivated via this high-level idea, we present a
one-shot variant in Algorithm 2 (Mono-MFW). Note that in
the q-th block, we play the same point yt = x

(K)
q for each

objective function in {f(q−1)K+1, . . . , fqK}. We provide
the regret analysis of Algorithm 2 in Theorem 2.

Theorem 2 (Proof in Appendix D). Under Assumption 1-2
and maxx∈C ∥∇ft(x)∥ ≤ G for any t ∈ [T ], if we set ηk =

Algorithm 2 Mono-Measured Frank-Wolfe (Mono-MFW)
1: Input: K online linear maximization oracles over C,

i.e., E(1), . . . , E(K), Q = T
K , ηk, g(0)

q = x
(0)
q = 0.

2: Output: y1, . . . ,yT .
3: for q = 1, . . . , Q do
4: for k = 1, . . . ,K do
5: Receive the update direction v

(k)
q which is the

output of oracle E(k).
6: x

(k)
q = x

(k−1)
q + 1

Kv
(k)
q ⊙ (1− x

(k−1)
q ).

7: end for
8: Generate a random permutation {t(1)q , . . . , t

(K)
q } for

{(q − 1)K + 1, . . . , qK}.
9: for t = (q − 1)K + 1, . . . , qK do

10: Play yt = x
(K)
q to get reward ft(yt) and observe

the stochastic gradient information of ft.
11: end for
12: for k = 1, . . . ,K do
13: g

(k)
q = (1− ηk)g

(k−1)
q + ηk∇̃f

t
(k)
q

(x
(k)
q ).

14: Feed back ⟨(1− x
(k)
q )⊙ g

(k)
q ,v

(k)
q ⟩ as the payoff

to be received by oracle E(k).
15: end for
16: end for

2
(k+3)2/3

, when 1 ≤ k ≤ K
2 + 1, and ηk = 1.5

(K−k+2)2/3
,

when K
2 + 2 ≤ k ≤ K, then Algorithm 2 achieves:

1

e

T∑
t=1

ft(x
∗)−

T∑
t=1

E(ft(yt))

≤ 2diam(C)(N1 + 1)QK2/3 +
L0r

2(C)
2

Q+M0

√
QK,

where x∗ = argmaxx∈C
∑T

t=1 ft(x) and N1 =
max{52/3G2, 8(σ2 +G2) + 32(2G+ L0r(C))2, 4.5(σ2 +
G2) + 7(2G+ L0r(C))2/3}.

Remark 3. According to Theorem 2, if we set K = T 3/5

and Q = T 2/5, the Mono-MFW achieves a 1/e-regret of
O(T 4/5). To the best of our knowledge, this is the first result
with sublinear regret for one-shot online non-monotone DR-
submodular maximization over a down-closed convex set.

3.3 Bandit Online Non-monotone Continuous
DR-submodular maximization

In this subsection, we turn to the bandit setting for online
non-monotone continuous DR-submodular maximization.
To begin, we review the one-point estimator (Flaxman et al.,
2005), which is of great importance to our proposed bandit
algorithm.

3.3.1 One-point Estimator

For any function f : [0, 1]n → R+, define the δ-smooth
version of f as f̂δ(x) = Ev∼Bn(f(x + δv)) where v ∼
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Bn represents that the vector v is uniformly sampled from
the n-dimensional unit ball Bn. If ∥∇f(x)∥ ≤ G, we
have |f(x) − f̂δ(x)| ≤ Gδ. Thus, f̂δ can be viewed as an
approximation of f , when δ is small. Roughly speaking,
we can approximately maximize f via the maximizer of
f̂δ. Note that if f is continuous DR-submodular and L0-
smooth, so is f̂δ. Moreover, according to Flaxman et al.
(2005), ∇f̂δ(x) = n

δEv∼Sn−1(f(x + δv)v) where v ∼
Sn−1 implies that the vector v is uniformly sampled from
the unit sphere Sn−1, which sheds light on the possibility
of estimating the gradient of f̂δ(x) via the function value at
a random point x+ δv.

However, we cannot use this estimate method directly. The
point x+ δv may fall outside of the constraint set C, when
x is close to the boundary of C. To tackle this challenge, we
introduce the concept of δ-interior. We say that a subset C′

is a δ-interior of C, if the ball B(x, δ) centered at x with
radius δ, is included in C for any x ∈ C′

. As a result, for
every point x ∈ C′

, x+ δv is included in C, which enables
us to use the one-point estimator. Recently, for a down-
closed convex set C, Zhang et al. (2019) provided a method
to construct a δ-interior down-closed convex set C′

. Next,
we show this outcome in Lemma 1.

Lemma 1 (Zhang et al. (2019)). Under Assumption 1, if
there exists a positive number r such that rBn

≥0 ⊆ C where
Bn

≥0 = Bn ∩ Rn
+, and δ < r√

n+1
, the set C′

= (1 −
α)C + δ1 is a down-closed convex δ-interior of C with
supx∈C,y∈C′ ∥x − y∥ ≤ ((

√
n + 1) r(C)r +

√
n)δ, where

α = (
√
n+1)δ
r .

3.3.2 Bandit Measured Frank-Wolfe

To design an efficient algorithm in the bandit setting, a sim-
ple idea is to replace the stochastic gradient in Algorithm 2
with the one-point estimator and run it on the δ-interior C′

.
However, we cannot take this simple policy directly. In Al-
gorithm 2, for each t in the q-th block, we play x

(K)
q for ft,

but we may require inquiring the gradient at a different point
x
(k)
q . Therefore, we could not construct the one-point gra-

dient estimate at point x(k)
q via the reward ft(x

(K)
q ), when

k ̸= K.

To circumvent this drawback, we take the exploration-
exploitation trade-off strategy in Zhang et al. (2019). Specif-
ically, we divide the T reward functions into Q blocks of
size L, where T = LQ. Then, we cut each block into two
phases (i.e., exploration and exploitation). Taking the q-th
block as an example, in the exploration phase, we select K
random reward functions to play the x

(k)
q + δu

(k)
q which

provide the one-point gradient estimators. Then, in the
exploitation phase, we commit to the point x(K)

q for the re-
maining (L−K) reward functions. Combining Algorithm 2
with this strategy, we present Algorithm 3 (Bandit-MFW).
Moreover, we make an additional assumption and provide

Algorithm 3 Bandit-Measured Frank-Wolfe (Bandit-
MFW)

1: Input: δ, r, α = (
√
n+1)δ
r , δ-interior down-closed con-

vex set C′
= (1−α)C+ δ1, K online linear maximiza-

tion oracles on C′
, i.e., E(1), . . . , E(K), L, Q = T

L , ηk,
g
(0)
q = 0, x(0)

q = δ1.
2: Output: y1, . . . ,yT .
3: for q = 1, . . . , Q do
4: for k = 1, . . . ,K do
5: Receive v

(k)
q which is the output of oracle E(k).

6: ṽ
(k)
q = (v

(k)
q − δ1)⊘ (1− δ1).

7: x
(k)
q = x

(k−1)
q + 1

K ṽ
(k)
q ⊙ (1− x

(k−1)
q ).

8: end for
9: Generate a random permutation {t(1)q , . . . , t

(L)
q } for

{(q − 1)L+ 1, . . . , qL}.
10: for t = (q − 1)L+ 1, . . . , qL do
11: if t ∈ {t(1)q , . . . , t

(K)
q } then

12: Play yt = x
(k)
q + δu

(k)
q for ft, where u

(k)
q ∼

Sn−1. ▷ Exploration
13: end if
14: if t ∈ {(q − 1)L + 1, . . . , qL} \ {t(1)q , . . . , t

(K)
q }

then
15: Play yt = x

(K)
q for ft. ▷ Exploitation

16: end if
17: end for
18: for k = 1, . . . ,K do
19: g

(k)
q = (1 − ηk)g

(k−1)
q + ηk

n
δ ft(k)

q
(x

(k)
q +

δu
(k)
q )u

(k)
q .

20: x̃
(k)
q = (x

(k)
q − δ1)⊘ (1− δ1).

21: Feed back ⟨(1− x̃
(k)
q )⊙ g

(k)
q ,v

(k)
q ⟩ as the payoff

to be received by oracle E(k).
22: end for
23: end for

the regret bound of Algorithm 3.

Assumption 3.

(i) There exists a positive number r such that rBn
≥0 ⊆ C

where Bn
≥0 = Bn ∪ Rn

+.

(ii) For each t ∈ [T ], supx∈C ft(x) ≤ M1.

Theorem 3 (Proof in Appendix E). Under Assumption 1,
Assumption 3, and maxx∈C ∥∇ft(x)∥ ≤ G for any t ∈ [T ],
if we set ηk = 2

(k+3)2/3
for k ∈ [K], then Algorithm 3

achieves:

1

e

T∑
t=1

ft(x
∗)−

T∑
t=1

E(ft(yt)) ≤ C1
LQ

K
+M0L

√
Q

+
C2LQ

2δK1/3
+

C3δLQ

2K1/3
+ 2M1KQ+ C4Tδ,

where x∗ = argmaxx∈C
∑T

t=1 ft(x), C1 = L0r
2(C)
2 ,
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C2 = (8n2M2
1 + 1)diam(C), C3 = max{32/3G2, 8G2 +

3(4.5L0r(C) + 3G)2/2}diam(C) and C4 = ((
√
n +

1) r(C)r +
√
n+ 2)G.

Remark 4. According to Theorem 3, if we set L = T 7/9,
Q = T 2/9, K = T 2/3, and δ = r

(
√
n+2)T 1/9 , Bandit-MFW

achieves a 1/e-regret of O(T 8/9) . As far as we know, this
is the first sublinear-regret online algorithm for continuous
non-monotone DR-submodular maximization with bandit
feedback.

4 Empirical Evaluation

In this section, we compare the performance of the fol-
lowing algorithms in Python 3.9.7 with CVX optimization
tool (Grant & Boyd, 2014) on a MacBook Pro with M1 chip
with 16 GB RAM:

Meta-Measured Frank-Wolfe (β-Meta): In Algorithm 1,
we set K = T β and ηk = 2

(k+3)2/3
for any k ∈ [K]. In the

experiments, we consider β = 3
4 or β = 3

2 .
Mono-Measured Frank-Wolfe (Mono): In Algorithm 2,
we set K = T 3/5 and Q = T 2/5. Simultaneously, ηk =

2
(k+3)2/3

for any 1 ≤ k ≤ K
2 + 1 and ηk = 1.5

(K−k+2)2/3
for

any K
2 + 2 ≤ k ≤ K.

Bandit-Measured Frank-Wolfe (Bandit): In Algorithm 3,
we set L = T 7/9, Q = T 2/9, K = T 2/3, δ = r

(
√
n+2)T 1/9

as well as ηk = 2
(k+3)2/3

for any k ∈ [K].
Online algorithm for down-closed convex sets (ODC): We
consider Algorithm 2 in (Thang & Srivastav, 2021) where
L = T 3/4 and ρl =

2
(l+3)2/3

for all 1 ≤ l ≤ L.

4.1 Non-Convex/Non-Concave Quadratic
Programming

We consider the quadratic objective f(x) = 1
2x

THx +
hTx+ c and constraints C = {x ∈ Rn

+|Ax ≤ b,0 ≤ x ≤
u,A ∈ Rm×n

+ ,b ∈ Rm
+}. Following Bian et al. (2017a,b);

Chen et al. (2018b), we choose the matrix H ∈ Rn×n to
be a randomly generated symmetric matrix with entries Hij

uniformly distributed in [−10, 0], and the matrix A to be a
random matrix with entries uniformly distributed in [0, 1].
It can be verified that f is a continuous DR-submodular
function and C is down-closed. We set b = u = 1. Mean-
while, we set h = −0.1 ∗ HTu, which ensures the non-
monotone property. To make f non-negative, we choose
c = −0.5 ∗

∑
i,j Hij . We consider the Gaussian noise

for gradient, i.e., (∇̃ft(x))i = (∇ft(x))i + δN (0, 1) for
any i ∈ [n] and x ∈ [0, 1]n, where we set δ = 0.1 in the
experiments.

In our simulations, we first generate T = 200 reward
functions f1, . . . , fT with associated matrices H1, . . . ,HT .
Next, we run the well-studied offline algorithms (Bian et al.,
2017a; Mitra et al., 2021) to produce an effective solution

Table 2: Running time (in seconds)

Method
(n,m)

(25, 15) (40, 20) (50, 50)

ODC 14.14 26.38 45.08

3/2-Meta 471.99 609.50 895.97
3/4-Meta 8.75 11.54 16.61

Mono 0.16 0.21 0.31
Bandit 0.11 0.14 0.21

Table 3: Running time (in seconds)

Method CA-HepPH CA-GrQc CA-HepTH
ODC 51.70 94.21 161.27

3/2-Meta 1302.50 1818.33 3156.41
3/4-Meta 24.97 35.26 59.56

Mono 0.52 0.64 1.08
Bandit 0.24 0.33 0.68

x∗
t that is a (1/e)-approximation to the optimum of the ob-

jective
∑t

m=1 fm for each t ∈ [T ]. Then, under different n
and m, we present the trend of the ratio between regret and
horizon, namely, (

∑t
m=1 fm(x∗

t )−
∑t

m=1 fm(ym))/t in
Figure 1(a)-1(c). Simultaneously, we report the 200-round
running time in Table 2.

As shown in Figure 1, our proposed Meta-MFW with
β = 3/2 and 3/4 (i.e., 3/2-Meta and 3/4-Meta) achieve
lower regret in contrast with ODC (Thang & Srivastav,
2021). Interestingly, the regret curves of both 3/2-Meta
and 3/4-Meta are nearly the same in Figure 1. When the
iteration index increases, Mono (Algorithm 2) also outper-
forms ODC in all three settings. Moreover, according to
Table 2, 3/4-Meta and Mono effectively save running time
compared with ODC. For example, when n = 50,m = 50,
we spend 16.61 and 0.31 seconds in running 3/4-Meta and
Mono, respectively, while the ODC takes 45.08 seconds. It
is worth mentioning that although the bandit algorithm (Al-
gorithm 3) with only one-point reward information exhibits
the lowest convergence rate among all algorithms, it has the
least running time as demonstrated in Table 2.

4.2 Revenue Maximization

In this application, we consider revenue maximization on an
undirected social network G = (V,W ) where V is the set
of nodes, and wij ∈ W represents the weight of the edge
between node i and node j. If we invest x proportion of
the budget B on a user (node) i ∈ V , the user becomes an
advocate of some product with probability 1− (1− p)xB ,
where p ∈ (0, 1) is a parameter. Intuitively, for investing a
unit cost to user (node) i, we have an extra chance that the
user i becomes an advocate with probability p. Let S ⊆ V
be a random set of users who advocate the product. Follow-
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Figure 1: We test the performance of the 3/2-Meta, 3/4-Meta, Mono, Bandit, and ODC in the simluated continuous
DR-submodular quadratic programming under different dimension n and number of linear constraints m.
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Figure 2: We test the performance of the 3/2-Meta, 3/4-Meta, Mono, Bandit, and ODC in revenue maximization on social
network CA-HepPH, CA-GrQc and CA-HepTH.

ing Thang & Srivastav (2021), the revenue with respect to
S is defined as

∑
i∈S

∑
j∈V \S wij . Let f : [0, 1]|V | → R+

be the expected revenue obtained in this model, that is
f(x) =

∑
i

∑
j ̸=i wij(1 − (1 − p)(x)iB)(1 − p)(x)jB . It

has been shown that f is a non-monotone continuous sub-
modular function (Niazadeh et al., 2018; Soma & Yoshida,
2017).

In our experiments, we first sample three subgraphs from so-
cial networks (Leskovec et al., 2007) to simulate the online
revenue maximization, i.e., a part of collaboration network
of Arxiv High Energy Physics (CA-HepPH) with 316 edges
and 56 vertices, a part of collaboration network of Arxiv
General Relativity (CA-GrQc) with 316 edges and 81 ver-
tices and a part of collaboration network of Arxiv High
Energy Physics Theory (CA-HepTH) with 658 edges and
106 vertices. At each round t ∈ [T ], we randomly select
20 vertices Vt ⊆ V and construct Wt with edge-weight
wt

ij = 100 if i, j ∈ Vt and edge (i, j) exists in the net-
work. Otherwise, wt

ij = 0. As a result, the reward function
ft(x) =

∑
i

∑
j ̸=i w

t
ij(1− (1− p)(x)iB)(1− p)(x)jB . We

also impose a down-closed convex constraint as C = {x ∈
Rn

+|Ax ≤ b,
∑

i(x)i ≤ 1,0 ≤ x ≤ 1} where A is a
random matrix with entries uniformly distributed in [0, 1].
We set p = 0.002, m = 25 as well as B = 5. Similarly,
we consider the Gaussian noise for gradient with δ = 0.1.
Then, we report the trend of the ratio between regret and
time horizon in Figure 2(a)-2(c) and running time in Table 3.

As shown in Figure 2, our proposed Meta-MFW with
β = 3/2 and 3/4 (i.e., 3/2-Meta and 3/4-Meta) have
nearly the same curves and outperform the ODC (Thang
& Srivastav, 2021). Similarly, compared to the ODC, the
Mono-MFW (Algorithm 2) achieves lower regret in all
three real-world social networks, when T is large. More-
over, according to Table 3, our proposed 3/4-Meta and Mono
take less running time than the ODC algorithm. Note that
the bandit algorithm (Algorithm 3) exhibits the lowest con-
vergence rate among all algorithms with the fastest running
time.

5 Conclusion

In this paper, we design three online no-regret algorithms for
non-monotone continuous DR-submodular maximization
over a down-closed convex set. The first one, Meta-MFW,
attains a 1/e-regret bound of O(

√
T ) while requiring in-

quiring the T 3/2 amounts of gradient evaluations for each
reward function. The second one, Mono-MFW, reduces
the number of per-function gradient evaluations from T 3/2

to 1, and achieves a 1/e-regret bound of O(T 4/5). Finally,
we present the Bandit-MFW algorithm, which is the first
bandit algorithm for online continuous non-monotone DR-
submodular maximization over a down-closed convex set
and achieves a 1/e-regret bound of O(T 8/9). Numerical
experiments demonstrate the superior performance of our
algorithms.
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Algorithm 4 Online Algorithm using the doubling trick
1: Input:down-closed domain C.
2: Output: y1, . . . ,yT .
3: for m = 0, 1, 2, . . . do
4: Run base algorithm (e.g., Algorithm 1-3) with horizon 2m from the 2m-th iteration to the (2m+1 − 1)-th iteration.
5: We select the results y2m , . . . ,y2m+1−1 of the previous base algorithm for the objectives f2m , . . . , f2m+1−1.
6: end for

A The Doubling Trick and Error of Soma & Yoshida (2017)

The authors would like to thank the anonymous reviewers for their helpful comments. In this section, we highlight two
points during the peer review process

A minor drawback of our proposed algorithms (i.e., Algorithm 1-3) is that it requires the knowledge of the horizon T . This
problem can be easily tackled via the doubling trick while preserving the order of the regret bound. The doubling trick was
first proposed in Auer et al. (1995) and its key idea is to repeat the base algorithm with a doubling horizon. Algorithm 4
shows a online framework with the doubling trick.

Soma & Yoshida (2017) incorrectly assumed that the revenue maximization objective function is DR-submodular. Actually,
it is continuous submodular (not DR-submodular), considering a counterexample f(x1, x2) = (1 − qx1)qx2 where
q = 1− p ∈ (0, 1) and ∂2f

∂x2
2
= (1− qx1)qx2(log(q))2 > 0. Although our proposed algorithms achieve superior empirical

performance in revenue maximization problems, it’s unsure whether our methods can guarantee the same approximation
ratio for the general continuous submodular maximization over down-closed sets.

B Variance Reduction Techniques

Our algorithms rely on the well-studied variance reduction techniques in (Chen et al., 2018a; Zhang et al., 2019; Mokhtari
et al., 2020). Next, we demonstrate some results about variance reduction in the following lemmas.

Lemma 2 (Chen et al. (2018a); Mokhtari et al. (2020)). Let {at}Kt=0 be a sequence of points in Rn such that ∥at −at−1∥ ≤
G
t+s for all 1 ≤ t ≤ K with fixed constant G ≥ 0 and s ≥ 3. Let {ãt}Kt=0 be a sequence of random variables such
that E(ãt|Ft−1) = at and E(∥ãt − at∥2|Ft−1) ≤ σ2 for every t ≥ 0, where Ft−1 is the σ-field generated by {ãk}t−1

k=0

and F0 = ∅. Let {dt}Kt=0 be a sequence of random variables where d0 is fixed and subsequent dt are obtained by
dt = (1− ηt)dt−1 + ηtãt. If we set ηt = 2

(t+s)2/3
, we have

E(∥dt − at∥2) ≤
N

(t+ s+ 1)2/3
, (2)

where N = max{∥a0 − d0∥2(s+ 1)2/3, 4σ2 + 3G2/2}.

Lemma 3 (Zhang et al. (2019)). Let {at}Kt=0 be a sequence of points in Rn such that ∥at − at−1∥ ≤ G
K+2−t for all

1 ≤ t ≤ K with fixed constant G ≥ 0. Let {ãt}Kt=0 be a sequence of random variables such that E(ãt|Ft−1) = at and
E(∥ãt − at∥2|Ft−1) ≤ σ2 for every t ≥ 0, where Ft−1 is the σ-field generated by {ãk}t−1

k=0 and F0 = ∅. Let {dt}Kt=0 be a
sequence of random variables where d0 is fixed and subsequent dt are obtained by dt = (1− ηt)dt−1 + ηtãt. If we set
ηt =

2
(t+3)2/3

, when 1 ≤ t ≤ K
2 + 1, and when K

2 + 2 ≤ t ≤ K, ηt = 1.5
(K−t+2)2/3

, we have

E(∥dt − at∥2) ≤


N

(t+ 4)2/3
1 ≤ t ≤ K

2
+ 1

N

(K − t+ 1)2/3
K

2
+ 2 ≤ t ≤ K

(3)

where N = max{52/3∥a0 − d0∥2, 4σ2 + 32G2, 2.25σ2 + 7G2/3}.
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C Proofs in Section 3.1

C.1 The Properties of New Update Rule

In our Algorithm 1, we take a novel update rule (Equation (1) in Section 3.1). Before going into the detail, we first
demonstrate some important properties of this new update rule. Next, we use new symbols to retell this update rule: Given a
series of update directions dk ∈ C,∀k ∈ [K] and initial point y0 = 0, we consider the following update rule, i.e.,

yk = yk−1 +
1

K
dk ⊙ (1− yk−1). (4)

A prompt benefit of this rule is shown in the following lemma.

Lemma 4. When C ⊆ [0, 1]n is down-closed convex set and 0 ∈ C, then yk ∈ C for any k ∈ [K].

Proof. First, we prove that yk ≤ 1 for any k ≤ K. By induction, we know y0 = 0. If we assume yk−1 ≤ 1, then

yk = yk−1 +
1

K
dk ⊙ (1− yk−1)

=
1

K
dk + yk−1 ⊙ (1− 1

K
dk)

≤ 1

K
dk + 1− 1

K
dk

= 1.

As a result, yk ≤ 1 for any k ≤ K. Next, we verify that yk ∈ C. According to Equation (4), we could conclude that
yK = 1

K

∑K
k=1 dk ⊙ (1 − yk−1). Due to convexity and each dk ∈ C, we know 1

K

∑K
k=1 dk ∈ C. Also, we know that

0 ≤ y1 ≤ y2 ≤ . . .yK ≤ 1
K

∑K
k=1 dk (yk ≤ 1) so that yk ∈ C for any k ∈ [K](the down-closed property).

Moreover, we could derive a upper bound about every element of yk, i.e.,

Lemma 5. For i ∈ [n] and k ∈ [K], we have (yk)i ≤ 1− (1− 1
K )k.

Proof. From Equation (4), we have

(yk)i = (yk−1)i +
1

K
(dk ⊙ (1− yk−1))i

= (yk−1)i +
1

K
(dk)i ∗ (1− (yk−1)i)

≤ (yk−1)i +
1

K
(1− (yk−1)i)

= (1− 1

K
)(yk−1)i +

1

K
,

(5)

where the inequality follows from (dk)i ≤ 1 and (yk−1)i ≤ 1 .

First, we have (y0)i = 0 ≤ 0. If (yk)i ≤ 1− (1− 1
K )k, we have

(yk)i ≤ (1− 1

K
)(yk−1)i +

1

K

≤ (1− 1

K
)(1− (1− 1

K
)k) +

1

K

= 1− (1− 1

K
)k+1.

(6)

Therefore, we have (yk)i ≤ 1− (1− 1
K )k by induction.

Next, for any continuous DR-submodular function f : [0, 1]n → R+, we show the relationship between f(z) and f(x)
when the vector z take a similar form of the update rule (Equation (4)), namely, z = y + (1− y)⊙ x where x,y ∈ [0, 1]n.
Noticeably, z ≥ x.
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Lemma 6. For any continuous DR-submodular function f : [0, 1]n → R+, when z = y+(1−y)⊙x where x,y ∈ [0, 1]n,
we have

f(z) ≥ (1− ∥y∥∞)f(x).

Proof. First, we set g(z) = f(x+ z(1−x)⊙y). Moreover, we know x+ 1
∥y∥∞

(1−x)⊙y ∈ [0, 1]n. According to (Bian
et al., 2020; Thang & Srivastav, 2021), we know continuous DR-submodular function f is concave along the any positive
direction. Therefore, g is a concave function in the interval [0, 1

∥y∥∞
]. As a result, we have

f(y + (1− y)⊙ x) = f(x+ (1− x)⊙ y)

= g(1)

= g(∥y∥∞ ∗ 1

∥y∥∞
+ (1− ∥y∥∞) ∗ 0)

≥ (1− ∥y∥∞)g(0) + ∥y∥∞g(
1

∥y∥∞
)

≥ (1− ∥y∥∞)g(0)

= (1− ∥y∥∞)f(x),

(7)

where the first inequality comes from the concave property of g; the second from g( 1
∥y∥∞

) ≥ 0.

Thus, according to Equation (4) and Lemma 5-6, we have f(yk +(1−yk)⊙y∗) ≥ (1−∥yk∥∞)f(y∗) ≥ (1− 1
K )kf(y∗)

where y∗ = argmaxy∈C f(y), which sheds light on the possibility to derive a constant-factor approximation for maximizing
a non-monotone DR-submodular function for our proposed algorithms.

C.2 Proof of Theorem 1

First, we present a frequently used lemma.

Lemma 7. For any continuous DR-submodular function f : [0, 1]n → R+ with smoothness parameter L0, if xk =
xk−1 +

1
Kvk ⊙ (1− xk−1) for any 0 ≤ k ≤ K, then we have, for ∀d ∈ Rn and ∀y ∈ [0, 1]n,

f(xk) ≥(1− 1

K
)f(xk−1) +

1

K
f(xk−1 + (1− xk−1)⊙ y) +

1

K
⟨(1− xk−1)⊙ d,vk − y⟩

+
1

K
⟨(vk − y)⊙ (1− xk−1),∇f(xk−1)− d⟩ − L0

2
∥xk − xk−1∥2.

(8)

Proof. According to the L0-smooth condition, we have

f(xk)− f(xk−1) ≥ ⟨xk − xk−1,∇f(xk−1)⟩ −
L0

2
∥xk − xk−1∥2

=
1

K
⟨vk ⊙ (1− xk−1),∇f(xk−1)⟩ −

L0

2
∥xk − xk−1∥2.

(9)

Then,

⟨vk ⊙ (1− xk−1),∇f(xk−1)⟩
=⟨vk ⊙ (1− xk−1),d⟩+ ⟨vk ⊙ (1− xk−1),∇f(xk−1)− d⟩
=⟨(1− xk−1)⊙ d,vk⟩+ ⟨vk ⊙ (1− xk−1),∇f(xk−1)− d⟩
=⟨(1− xk−1)⊙ d,y⟩+ ⟨(1− xk−1)⊙ d,vk − y⟩+ ⟨vk ⊙ (1− xk−1),∇f(xk−1)− d⟩
=⟨(1− xk−1)⊙∇f(xk−1),y⟩+ ⟨(1− xk−1)⊙ d,vk − y⟩+ ⟨(vk − y)⊙ (1− xk−1),∇f(xk−1)− d⟩
=⟨∇f(xk−1), (1− xk−1)⊙ y⟩+ ⟨(1− xk−1)⊙ d,vk − y⟩+ ⟨(vk − y)⊙ (1− xk−1),∇f(xk−1)− d⟩.

(10)

For DR-submodular function f , we also have

⟨∇f(xk−1), (1− xk−1)⊙ y⟩ ≥ f(xk−1 + (1− xk−1)⊙ y)− f(xk−1), (11)
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because f is concave along the direction (1− xk−1)⊙ y and xk−1 + (1− xk−1)⊙ y ∈ [0, 1]n. Finally, we have

f(xk) ≥(1− 1

K
)f(xk−1) +

1

K
f(xk−1 + (1− xk−1)⊙ y) +

1

K
⟨(1− xk−1)⊙ d,vk − y⟩

+
1

K
⟨(vk − y)⊙ (1− xk−1),∇f(xk−1)− d⟩ − L0

2
∥xk − xk−1∥2.

(12)

Then, we show how g
(k)
t (See Line 10 in Algorithm 1) approximates the gradient ∇ft(x

(k)
t ).

Lemma 8. Under Assumption 1 and Assumption 2, if we set ηk = 2
(k+3)2/3

for any k ∈ [K], then we have, for any fixed
t ∈ [T ],

E(∥g(k)
t −∇ft(x

k
t )∥2) ≤

N0

(k + 4)2/3
, (13)

where N0 = max{42/3 maxt∈[T ] ∥∇ft(x
(1)
t )∥2, 4σ2 + 6(L0r(C))2}.

Proof. According to Algorithm 1, g(k)
t = (1− ηk)g

(k−1)
t + ηk∇̃ft(x

(k)
t ) where E(∇̃ft(x

(k)
t )|x(k)

t ) = ∇ft(x
(k)
t ). We first

derive that

∥∇ft(x
(k)
t )−∇ft(x

(k−1)
t )∥ ≤ L0

K
∥v(k)

t ∥ ≤ 2L0r(C)
k + 3

, (14)

where the first inequality follows from the L0-smoothness of ft Therefore, if we set the ãt in Lemma 2 as ∇̃ft(x
(k)
t ), we

have

E(∥g(k)
t −∇ft(x

(k)
t )∥2) ≤ N0

(k + 4)2/3
. (15)

Now, we present the proof of Theorem 1.

Proof. If we set (f,xk,xk−1,vk,d,y) in Lemma 7 as (ft,x
(k+1)
t ,x

(k)
t ,v

(k+1)
t ,g

(k)
t ,x∗) in the Algorithm 1 where x∗ =

argmaxx∈C
∑T

t=1 ft(x), we have, for any k ∈ [K],

ft(x
(k+1)
t )

≥(1− 1

K
)ft(x

(k)
t ) +

1

K
ft(x

(k)
t + (1− x

(k)
t )⊙ x∗) +

1

K
⟨(1− x(k))⊙ g

(k)
t ,v

(k+1)
t − x∗⟩

+
1

K
⟨(v(k+1)

t − x∗)⊙ (1− x
(k)
t ),∇f(xk−1)− g

(k)
t ⟩ − L0

2
∥x(k+1)

t − x
(k)
t ∥2

≥(1− 1

K
)ft(x

(k)
t ) +

1

K
(1− 1

K
)kft(x

∗) +
1

K
⟨(1− x(k))⊙ g

(k)
t ,v

(k+1)
t − x∗⟩

+
1

K
⟨(v(k+1)

t − x∗)⊙ (1− x
(k)
t ),∇f(xk−1)− g

(k)
t ⟩ − L0

2
∥x(k+1)

t − x
(k)
t ∥2,

(16)
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where the second inequality comes from Lemma 5 and Lemma 6. Therefore, by iteration, we have

ft(x
(K)
t )

≥(1− 1

K
)ft(x

(K−1)
t ) +

1

K
(1− 1

K
)K−1ft(x

∗) +
1

K
⟨(1− x(K−1))⊙ g

(K−1)
t ,v

(K)
t − x∗⟩

+
1

K
⟨(v(K)

t − x∗)⊙ (1− x
(K−1)
t ),∇f(x

(K−1)
t )− g

(K−1)
t ⟩ − L0r

2(C)
2K2

≥ . . .

≥(1− 1

K
)ft(x

(0)
t ) + (1− 1

K
)K−1ft(x

∗) +
1

K

K−1∑
m=0

(1− 1

K
)K−1−m⟨(1− x(m))⊙ g

(m)
t ,v

(m+1)
t − x∗⟩

+
1

K

K−1∑
m=0

(1− 1

K
)K−1−m⟨(v(m+1)

t − x∗)⊙ (1− x
(m)
t ),∇f(x

(m)
t )− g

(m)
t ⟩ − L0r

2(C)
2K

≥(1− 1

K
)ft(x

(0)
t ) +

1

e
ft(x

∗) +
1

K

K−1∑
m=0

(1− 1

K
)K−1−m⟨(1− x(m))⊙ g

(m)
t ,v

(m+1)
t − x∗⟩

+
1

K

K−1∑
m=0

(1− 1

K
)K−1−m⟨(v(m+1)

t − x∗)⊙ (1− x
(m)
t ),∇f(x

(m)
t )− g

(m)
t ⟩ − L0r

2(C)
2K

,

(17)

where the final inequality comes from (1− 1
K )K−1 ≥ 1

e for any K ≥ 2.

Finally,

T∑
t=1

E(ft(x(K)
t ))

≥1

e

T∑
t=1

ft(x
∗) +

1

K

T∑
t=1

K−1∑
m=0

(1− 1

K
)K−1−mE(⟨(1− x(m))⊙ g

(m)
t ,v

(m+1)
t − x∗⟩)

+
1

K

T∑
t=1

K−1∑
m=0

(1− 1

K
)K−1−mE⟨(v(m+1)

t − x∗)⊙ (1− x
(m)
t ),∇f(x

(m)
t )− g

(m)
t ⟩)− L0Tr

2(C)
2K

=
1

e

T∑
t=1

ft(x
∗) +

1

K

K−1∑
m=0

(1− 1

K
)K−1−m

T∑
t=1

E(⟨(1− x(m))⊙ g
(m)
t ,v

(m+1)
t − x∗⟩)

+
1

K

T∑
t=1

K−1∑
m=0

(1− 1

K
)K−1−mE(⟨(v(m+1)

t − x∗)⊙ (1− x
(m)
t ),∇f(x

(m)
t )− g

(m)
t ⟩)− L0Tr

2(C)
2K

≥1

e

T∑
t=1

ft(x
∗)− 1

K

K−1∑
m=0

(1− 1

K
)K−1−mM0

√
T − L0Tr

2(C)
2K

− 1

2K

T∑
t=1

K−1∑
m=0

(diam2(C)b+ E(
∥∇f(x

(m)
t )− g

(m)
t ∥2

b
))

≥1

e

T∑
t=1

ft(x
∗)−M0

√
T − L0Tr

2(C)
2K

− diam(C)(3
2
N0 +

1

2
)

T

K1/3
,

(18)

where the second inequality follows from ⟨(v(m+1)
t − x∗) ⊙ (1 − x

(m)
t ),∇f(x

(m)
t ) − g

(m)
t ⟩ ≤ 1

2 (diam
2(C)b +

∥∇f(x
(m)
t )−g

(m)
t ∥2

b ) for any b > 0 and
∑T

t=1 E(⟨(1 − x(m)) ⊙ g
(m)
t ,v

(m+1)
t − x∗⟩) ≤ M0

√
T from Assumption 1;

and the last inequality comes from
∑K−1

m=0(1−
1
K )K−1−m ≤ K,

∑K−1
m=0 E(∥∇f(x

(m)
t )− g

(m)
t ∥2) ≤

∑K−1
m=0

N0

(m+4)2/3
≤∫K

t=0
N0

t2/3
≤ 3N0K

1/3 and setting b = 1
diam(C)K1/3 .
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D Proofs in Section 3.2

In this section, we begin by deriving the upper bound of x(k)
q in Algorithm 2. First, like the Equation (4), we also take a

similar rule to update the x
(k)
q . As a result, we have:

Lemma 9. For i ∈ [n] and q ∈ [Q], we have (x
(k)
q )i ≤ 1− (1− 1

K )k.

Before going into the detail, we define the average function of the remaining (K − k) functions as f̄q,k =

∑K
m=k+1 f

t
(m)
q

K−k for

any 0 ≤ k ≤ K − 1. Also, we use Fq,k to denote the σ-field generated via t(1)q , . . . , t
(k)
q . As a result, according to Lemma 3

in variance reduction section, we show how g
(k)
q (See Line 13 in Algorithm 2) approximates the gradient ∇f̄q,k−1(x

k
q ), i.e.,

Lemma 10. Under Assumption 1-2 and ∥∇ft(x)∥ ≤ G, if we set ηk = 2
(k+3)2/3

, when 1 ≤ k ≤ K
2 + 1, and ηk =

1.5
(K−k+2)2/3

, when K
2 + 2 ≤ k ≤ K, we have, for any fixed q ∈ [Q],

E(∥g(k)
q −∇f̄q,k−1(x

k
q )∥2) ≤


N1

(k + 4)2/3
, 1 ≤ k ≤ K

2
+ 1

N1

(K − k + 1)2/3
,

K

2
+ 2 ≤ k ≤ K

(19)

where N1 = max{52/3G2, 8(σ2 +G2) + 32(2G+ L0r(C))2, 4.5(σ2 +G2) + 7(2G+ L0r(C))2/3}.

Proof. From Algorithm 2, g
(k)
q = (1 − ηk)g

(k−1)
q + ηk∇̃f

t
(k)
q

(x
(k)
q ). As we know, E(∇̃f

t
(k)
q

(x
(k)
q )|Fq,k−1) =

∇f̄q,k−1(x
(k)
q ). Also, we have

∇f̄q,k−1(x
(k)
q )−∇f̄q,k−2(x

(k−1)
q )

=

∑K
m=k ∇f

t
(m)
q

(x
(k)
q )

K − k + 1
−

∑K
m=k−1 ∇f

t
(m)
q

(x
(k−1)
q )

K − k + 2

=

∑K
m=k(∇f

t
(m)
q

(x
(k)
q )−∇f

t
(m)
q

(x
(k−1)
q ))

K − k + 2
+

∑K
m=k ∇f

t
(m)
q

(x
(k)
q )

(K − k + 1)(K − k + 2)
−

∇f
t
(k−1)
q

(x
(k−1)
q )

K − k + 2
.

(20)

Thus,

∥∇f̄q,k−1(x
(k)
q )−∇f̄q,k−2(x

(k−1)
q )∥

≤∥

∑K
m=k(∇f

t
(m)
q

(x
(k)
q )−∇f

t
(m)
q

(x
(k−1)
q ))

K − k + 2
∥+ ∥

∑K
m=k ∇f

t
(m)
q

(x
(k)
q )

(K − k + 1)(K − k + 2)
∥+ ∥

∇f
t
(k−1)
q

(x
(k−1)
q )

K − k + 2
∥

≤ (K − k + 1)L0r(C)
K(K − k + 2)

+
G

K − k + 2
+

G

K − k + 2

≤L0r(C) + 2G

K − k + 2
.

(21)

Moreover,

E(∥∇̃f
t
(k)
q

(x(k)
q )−∇f̄q,k−1(x

(k)
q )∥2|Fq,k−1)

≤2(E(∥∇̃f
t
(k)
q

(x(k)
q )−∇f

t
(k)
q

(x(k)
q )∥2|Fq,k−1) + E(∥∇f

t
(k)
q

(x(k)
q )−∇f̄q,k−1(x

(k)
q )∥2|Fq,k−1))

=2(E(∥∇̃f
t
(k)
q

(x(k)
q )−∇f

t
(k)
q

(x(k)
q )∥2|Fq,k−1) + V ar(∇f

t
(k)
q

(x(k)
q )|Fq,k−1))

≤2(σ2 +G2),

(22)

where V ar(∇f
t
(k)
q

(x
(k)
q )|Fq,k−1) = E(∥∇f

t
(k)
q

(x
(k)
q )−∇f̄q,k−1(x

(k)
q )∥2|Fq,k−1).
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According to Lemma 3 where we set ãk = ∇̃f
t
(k)
q

(x
(k)
q ), we have

E(∥g(k)
q −∇f̄q,k−1(x

k
q )∥2) ≤


N1

(k + 4)2/3
1 ≤ k ≤ K

2
+ 1

N1

(K − k + 1)2/3
K

2
+ 2 ≤ k ≤ K

(23)

where N1 = max{52/3G2, 8(σ2 +G2) + 32(2G+ L0r(C))2, 4.5(σ2 +G2) + 7(2G+ L0r(C))2/3}.

Now, we prove Theorem 2.

Proof. Note that f̄q,k−1 is continuous DR-submodular and L0-smooth. Thus, if we set (f,xk,xk−1,vk,d,y) in Lemma 7
as (f̄q,k−1,x

(k+1)
q ,x

(k)
q ,v

(k+1)
q ,g

(k)
q ,x∗) in the Algorithm 2 where x∗ = argmaxx∈C

∑T
t=1 ft(x), we have, for any

k ∈ [K],

f̄q,k−1(x
(k+1)
q )

≥(1− 1

K
)f̄q,k−1(x

(k)
q ) +

1

K
f̄q,k−1(x

(k)
q + (1− x(k)

q )⊙ x∗) +
1

K
⟨(1− x(k)

q )⊙ g(k)
q ,v(k+1)

q − x∗⟩

+
1

K
⟨(v(k+1)

q − x∗)⊙ (1− x(k)
q ),∇f̄q,k−1(x

k
q )− g(k)

q ⟩ − L0

2
∥x(k+1)

q − x(k)
q ∥2

≥(1− 1

K
)f̄q,k−1(x

(k)
q ) +

1

K
(1− 1

K
)kf̄q,k−1(x

∗) +
1

K
⟨(1− x(k)

q )⊙ g(k)
q ,v(k+1)

q − x∗⟩

+
1

K
⟨(v(k+1)

q − x∗)⊙ (1− x(k)
q ),∇f̄q,k−1(x

k
q )− g(k)

q ⟩ − L0

2
∥x(k+1)

q − x(k)
q ∥2,

(24)

where the second inequality comes from Lemma 9 and Lemma 6. Therefore, by iteration, we have

E(f̄q(x(K)
q ))

=E(f̄q,K−2(x
(K)
q ))

≥(1− 1

K
)E(f̄q,K−2(x

(K−1)
q )) +

1

K
(1− 1

K
)K−1E(f̄q,K−2(x

∗)) +
1

K
E(⟨(1− x(K−1)

q )⊙ g(K−1)
q ,v(K)

q − x∗⟩)

+
1

K
E(⟨(v(K)

q − x∗)⊙ (1− x(K−1)
q ),∇f̄q,K−2(x

K−1
q )− g(K−1)

q ⟩)− L0r
2(C)

2K2

=(1− 1

K
)E(f̄q,K−3(x

(K−1)
q )) +

1

K
(1− 1

K
)K−1f̄q(x

∗) +
1

K
E(⟨(1− x(K−1)

q )⊙ g(K−1)
q ,v(K)

q − x∗⟩)

+
1

K
E(⟨(v(K)

q − x∗)⊙ (1− x(K−1)
q ),∇f̄q,K−2(x

K−1
q )− g(K−1)

q ⟩)− L0r
2(C)

2K2

≥ . . .

≥(1− 1

K
)K−1fq(x

∗) +
1

K

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(1− x(m)

q )⊙ g(m)
q ,v(m+1)

q − x∗⟩)

+
1

K

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(v(m+1)

q − x∗)⊙ (1− x(m)
q ),∇f̄q,m−1(x

m
q )− g(m)

q ⟩)− L0r
2(C)

2K
.

(25)
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Finally,
Q∑

q=1

E(f̄q(x(K)
q ))

≥(1− 1

K
)K−1

Q∑
q=1

fq(x
∗) +

1

K

Q∑
q=1

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(1− x(m)

q )⊙ g(m)
q ,v(m+1)

q − x∗⟩)

+
1

K

Q∑
q=1

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(v(m+1)

q − x∗)⊙ (1− x(m)
q ),∇f̄q,m−1(x

m
q )− g(m)

q ⟩)− L0Qr2(C)
2K

≥1

e

Q∑
q=1

fq(x
∗) +

1

K

K−1∑
m=1

(1− 1

K
)K−1−m

Q∑
q=1

E(⟨(1− x(m)
q )⊙ g(m)

q ,v(m+1)
q − x∗⟩)

− 1

2K

Q∑
q=1

K−1∑
m=1

E(bm ∗ diam2(C) +
∥∇f̄q,m−1(x

m
q )− g

(m)
q ∥2

bm
)− L0Qr2(C)

2K

≥1

e

Q∑
q=1

fq(x
∗)−M0

√
Q− L0Qr2(C)

2K
− 1

2K

Q∑
q=1

K−1∑
m=1

E(bm ∗ diam2(C) +
∥∇f̄q,m−1(x

m
q )− g

(m)
q ∥2

bm
),

(26)

where the second inequality comes from (1− 1
K )K−1 ≥ 1

e and ⟨(v(m+1)
q − x∗)⊙ (1− x

(m)
q ),∇f̄q,m−1(x

m
q )− g

(m)
q ⟩ ≤

1
2 (bm ∗ diam2(C)+ ∥∇f̄q,m−1(x

m
q )−g(m)

q ∥2

bm
) for any positive constant bm > 0; the third comes from

∑Q
q=1 E(⟨(1−x

(m)
q )⊙

g
(m)
q ,v

(K)
q − x∗⟩) ≤ M0

√
Q.

If we consider bm = 1
diam(C)(m+4)1/3

when 1 ≤ m ≤ K
2 + 1 and bm = 1

diam(C)(K−m+1)1/3
when K

2 + 2 ≤ m ≤ K, then
we have

K−1∑
m=1

diam2(C)bm ≤
K/2+1∑
m=1

diam(C)
(m+ 4)1/3

+

K∑
m=K/2+2

diam(C)
(K −m+ 1)1/3

≤ 2diam(C)K2/3,

K−1∑
m=1

E(
∥∇f̄q,m−1(x

m
q )− g

(m)
q ∥2

bm
) ≤

K/2+1∑
m=1

diam(C)N1

(m+ 4)1/3
+

K∑
m=K/2+2

N1

(K −m+ 1)1/3
≤ 2N1diam(C)K2/3,

(27)

where the second inequality comes from Lemma 10 and N1 = max{52/3G2, 8(σ2 +G2) + 32(2G+ L0r(C))2, 4.5(σ2 +
G2) + 7(2G+ L0r(C))2/3}.

As a result,
1

e

T∑
t=1

ft(x
∗)−

T∑
t=1

E(ft(yt))

=K(
1

e

Q∑
q=1

f̄q(x
∗)−

Q∑
q=1

E(f̄q(x(K)
q )))

≤2diam(C)(N1 + 1)QK2/3 +
L0r

2(C)
2

Q+M0

√
QK.

(28)

E Proofs in Section 3.3

To begin, we review the properties of smoothed function.
Lemma 11 (Zhang et al. (2019); Chen et al. (2020)). If f : [0, 1]n → R+ is continuous DR-submodular, G-Lipschitz, and
L0-smooth, then so is f̂δ where f̂δ(x) = Ev∼Bn(f(x+ δv)) and we have |f̂δ(x)− f(x)| ≤ Gδ for all x ∈ [0, 1]n.

In this section, we begin by examining the sequence of iterates x(0)
q ,x

(1)
q , . . . ,x

(K)
q in Algorithm 3. First, we derive the

upper bound of x̃(k)
q where x̃

(k)
q = (x

(k)
q − δ1)⊘ (1− δ1).
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Lemma 12. For i ∈ [n] and q ∈ [Q], we have (x̃
(k)
q )i ≤ 1− (1− 1

K )k where x̃
(k)
q = (x

(k)
q − δ1)⊘ (1− δ1).

Proof. From Algorithm 3 (See Line 7), we have

x(k)
q = x(k−1)

q +
1

K
ṽ(k)
q ⊙ (1− x(k−1)

q ). (29)

Therefore, we have

x̃(k)
q = x̃(k−1)

q +
1

K
ṽ(k)q ⊙ (1− x̃(k−1)

q ). (30)

Finally, due to 0 ≤ ṽ
(k)
q ≤ 1, we obtain

x̃(k)
q ≤ x̃(k−1)

q +
1

K
(1− x̃(k−1)

q ). (31)

According to Lemma 5, we get the result.

Next, we define some notations frequently used in this section. For any ft, we denote its δ-smoothed ap-
proximation as f̂t,δ(x) = Ev∼Bn(ft(x + δv)). Then, the average function for q-block is denoted as

F̄q(x) =
∑qL

m=(q−1)L+1
f̂m,δ((1−δ1)⊙x+δ1)

L . Also, the average function of remaining (L − l) rewards is F̄q,l(x) =∑L
m=l+1 f̂

t
(m)
q ,δ

(((1−δ1)⊙x+δ1))

L−l where 0 ≤ l ≤ L− 1.

In the following part, we assume x∗ = argmaxx∈C ft(x) and x∗
δ = argmaxx∈C′ ft(x). Then, we could conclude that

Lemma 13. Under Assumption 1 and Assumption 3 , if ∥∇ft(x)∥ ≤ G, then

T∑
t=1

1

e
ft(x

∗)−
T∑

t=1

ft(yt)

≤L

Q∑
q=1

1

e
F̄q(x̃

∗
δ)− L

Q∑
q=1

F̄q(x̃
(K)
q ) + 2M1KQ+

(
(
√
n+ 1)

r(C)
r

+
√
n+ 2

)
TGδ,

(32)

where x̃∗
δ = (x∗

δ − δ1)⊘ (1− δ1) and x̃
(K)
q = (x

(K)
q − δ1)⊘ (1− δ1).

Proof. We denote the x
′

as the projection of x∗ on the C′
, i.e., x

′
= argminx∈C′ ∥x− x∗∥, we could conclude that

T∑
t=1

1

e
ft(x

∗)−
T∑

t=1

ft(yt) =

T∑
t=1

1

e
ft(x

∗)−
T∑

t=1

1

e
ft(x

∗
δ) +

T∑
t=1

1

e
ft(x

∗
δ)−

T∑
t=1

1

e
f̂t,δ(x

∗
δ)

+

T∑
t=1

1

e
f̂t,δ(x

∗
δ)−

T∑
t=1

f̂t,δ(yt) +

T∑
t=1

f̂t,δ(yt)−
T∑

t=1

ft(yt).

(33)

First, |f̂t,δ(yt)− ft(yt)| ≤ Gδ and |f̂t,δ(x∗
δ)− ft(x

∗
δ)| ≤ Gδ. Then,

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(x
∗
δ)

≤
T∑

t=1

ft(x
∗)−

T∑
t=1

ft(x
′
)

≤TG∥x∗ − x
′
∥

≤
(
(
√
n+ 1)

r(C)
r

+
√
n

)
TGδ,

(34)

where the first inequality comes from the definition of x∗
δ and x

′ ∈ C′; the second follows from the lipschitz of ft; the final
from Lemma 1 in Zhang et al. (2019).
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Finally, if setting x̃∗
δ = (x∗

δ − δ1)⊘ (1− δ1) and x̃
(K)
q = (x

(K)
q − δ1)⊘ (1− δ1),

T∑
t=1

1

e
f̂t,δ(x

∗
δ)−

T∑
t=1

f̂t,δ(yt)

=L

Q∑
q=1

1

e
F̄q(x̃

∗
δ)− L

Q∑
q=1

F̄q(x̃
(K)
q ) +

Q∑
q=1

K∑
k=1

(f̂
t
(k)
q

(x(K)
q )− f̂

t
(k)
q

(y
t
(k)
q

))

≤L

Q∑
q=1

1

e
F̄q(x̃

∗
δ)− L

Q∑
q=1

F̄q(x̃
(K)
q ) + 2M1KQ,

(35)

where the inequality comes from |f̂tkq (x
(K)
q )− f̂tkq (ytkq

)| ≤ 2M1. Therefore,

T∑
t=1

1

e
ft(x

∗)−
T∑

t=1

ft(yt)

≤L

Q∑
q=1

1

e
F̄q(x̃

∗
δ)− L

Q∑
q=1

F̄q(x̃
(K)
q ) + 2M1KQ+

(
(
√
n+ 1)

r(C)
r

+
√
n+ 2

)
TGδ.

(36)

Next, we demonstrate how (1 − δ1) ⊙ g
(k)
q (See Line 19 in Algorithm 3) approximates ∇F̄q,k−1(x̃

(k)
q ) where x̃

(k)
q =

(x
(k)
q − δ1)⊘ (1− δ1).

Lemma 14. Under Assumption 1 and Assumption 3, if ∥∇ft(x)∥ ≤ G, L ≥ 2K and ηk = 2
(k+3)2/3

for k ∈ [K], we have,
for any fixed q ∈ [Q],

E(∥(1− δ1)⊙ g(k)
q −∇F̄q,k−1(x̃

(k)
q )∥2) ≤ N2

(k + 4)2/3
, (37)

where N2 = max{32/3G2, 8(
n2M2

1

δ2 +G2) + 3(4.5L0r(C) + 3G)2/2}.

Proof. Similarly, we use Fq,k to denote the σ-field generated via t(1)q , . . . , t
(k)
q . From Algorithm 3, g(k)

q = (1−ηk)g
(k−1)
q +

ηk
n
δ ft(k)

q
(x

(k)
q + δu

(k)
q )u

(k)
q . Also, we have n

δE(ft(k)
q

(x
(k)
q + δu

(k)
q )(1− δ1)⊙ u

(k)
q |Fq,k−1) = ∇F̄q,k−1(x̃

(k)
q ). Next, we

prove that
∇F̄q,k−1(x̃

(k)
q )−∇F̄q,k−2(x̃

(k−1)
q )

=

∑L
m=k(1− δ)∇f̂

t
(m)
q ,δ

(x
(k)
q )

L− k + 1
−

∑L
m=k−1(1− δ)∇f̂

t
(m)
q ,δ

(x
(k−1)
q )

L− k + 2

=

∑L
m=k(1− δ)(∇f̂

t
(m)
q ,δ

(x
(k)
q )−∇f̂

t
(m)
q ,δ

(x
(k−1)
q ))

L− k + 2
+

∑L
m=k(1− δ)∇f̂

t
(m)
q ,δ

(x
(k)
q )

(L− k + 1)(L− k + 2)

−
(1− δ)∇f̂

t
(k−1)
q ,δ

(x
(k−1)
q )

L− k + 2
.

(38)

Thus, when L ≥ 2K,

∥∇F̄q,k−1(x̃
(k)
q )−∇F̄q,k−2(x̃

(k−1)
q )∥

≤∥

∑L
m=k(∇f̂

t
(m)
q ,δ

(x
(k)
q )−∇f̂

t
(m)
q ,δ

(x
(k−1)
q ))

L− k + 2
∥+ ∥

∑L
m=k ∇f̂

t
(m)
q ,δ

(x
(k)
q )

(L− k + 1)(L− k + 2)
∥+ ∥

∇f̂
t
(k−1)
q ,δ

(x
(k−1)
q )

L− k + 2
∥

≤ (L− k + 1)L0r(C)
K(L− k + 2)

+
G

L− k + 2
+

G

L− k + 2

≤4.5L0r(C) + 3G

k + 3
,

(39)
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where the final inequality follows from L− k + 2 ≥ 2K − k + 2 ≥ k + 2. Moreover,

E(∥n
δ
f
t
(k)
q

(x(k)
q + δu(k)

q )(1− δ1)⊙ u(k)
q −∇F̄q,k−1(x̃

(k)
q )∥2|Fq,k−1)

≤2E(∥n
δ
f
t
(k)
q

(x(k)
q + δu(k)

q )(1− δ1)⊙ u(k)
q − (1− δ)1⊙∇f̂

t
(k)
q ,δ

(x(k)
q )∥2|Fq,k−1)

+ 2E((1− δ)1⊙∇f̂
t
(k)
q ,δ

(x(k)
q )−∇F̄q,k−1(x̃

(k)
q )∥2|Fq,k−1)

=2E(∥n
δ
f
t
(k)
q

(x(k)
q + δu(k)

q )(1− δ1)⊙ u(k)
q − (1− δ)1⊙∇f̂

t
(k)
q ,δ

(x(k)
q )∥2|Fq,k−1)

+ 2V ar((1− δ)1⊙∇f̂
t
(k)
q ,δ

(x(k)
q )|Fq,k−1))

≤2

(
n2M2

1

δ2
+G2

)
.

(40)

According to Lemma 3 where we set ãk = n
δ ft(k)

q
(x

(k)
q + δu

(k)
q )(1− δ1)⊙ u

(k)
q , we have

E(∥(1− δ1)⊙ g(k)
q −∇Fq,k−1(x̃

(k)
q )∥2) ≤ N2

(k + 4)2/3
, (41)

where N2 = max{32/3G2, 8(
n2M2

1

δ2 +G2) + 3(4.5L0r(C) + 3G)2/2}.

Lemma 15. Under Assumption 1 and Assumption 3, if ∥∇̃ft(x)∥ ≤ G and L ≥ 2K, we could conclude that

Q∑
q=1

1

e
F̄q(x

∗
δ)−

Q∑
q=1

E(F̄q(x̃
(K)
q )) ≤ L0Qr2(C)

2K
+M0

√
Q+

diam(C)Q
2δK1/3

+
diam(C)N2δQ

2K1/3
, (42)

where N2 = max{32/3G2, 8(
n2M2

1

δ2 +G2) + 3(4.5L0r(C) + 3G)2/2}.

Proof. If we set (f,xk,xk−1,vk) in Lemma 7 as (F̄q,k−1, x̃
(k+1)
q , x̃

(k)
q ,v

(k+1)
q ) in the Algorithm 3, we have

F̄q,k−1(x̃
(k+1)
q )

≥(1− 1

K
)F̄q,k−1(x̃

(k)
q ) +

1

K
F̄q,k−1(x̃

(k)
q + (1− x̃(k)

q )⊙ y)− L0r(C)2

2K2

+
1

K
⟨(1− x̃(k)

q )⊙ d, ṽ(k+1)
q − y⟩+ 1

K
⟨(ṽ(k+1)

q − x̃∗
δ)⊙ (1− x̃(k)

q ),∇F̄q,k−1(x̃
k
q )− d⟩

≥(1− 1

K
)F̄q,k−1(x̃

(k)
q ) +

1

K
(1− 1

K
)kF̄q,k−1(y) +

1

K
⟨(1− x̃(k)

q )⊙ d, ṽ(k+1)
q − x̃∗

δ⟩

+
1

K
⟨(ṽ(k+1)

q − y)⊙ (1− x̃(k)
q ),∇F̄q,k−1(x̃

k
q )− d⟩ − L0r(C)2

2K2
,

(43)

where the second inequality comes from Lemma 12 and Lemma 6.

If we set d = (1− δ)g
(k)
q and y = x̃∗

δ , we have

F̄q,k−1(x̃
(k+1)
q )

≥(1− 1

K
)F̄q,k−1(x̃

(k)
q ) +

1

K
(1− 1

K
)kF̄q,k−1(x̃

∗
δ) +

1

K
⟨(1− x̃(k)

q )⊙ ((1− δ)g(k)
q ), ṽ(k+1)

q − x̃∗
δ⟩

+
1

K
⟨(ṽ(k+1)

q − x̃∗
δ)⊙ (1− x̃(k)

q ),∇F̄q,k−1(x̃
k
q )− (1− δ)g(k)

q ⟩ − L0r
2(C)

2K2

=(1− 1

K
)F̄q,k−1(x̃

(k)
q ) +

1

K
(1− 1

K
)kF̄q,k−1(x̃

∗
δ) +

1

K
⟨(1− x̃(k)

q )⊙ g(k)
q , (1− δ)(ṽ(k+1)

q − x̃∗
δ)⟩

+
1

K
⟨(ṽ(k+1)

q − x̃∗
δ)⊙ (1− x̃(k)

q ),∇F̄q,k−1(x̃
k
q )− (1− δ)g(k)

q ⟩ − L0r
2(C)

2K2

=(1− 1

K
)F̄q,k−1(x̃

(k)
q ) +

1

K
(1− 1

K
)kF̄q,k−1(x̃

∗
δ) +

1

K
⟨(1− x̃(k)

q )⊙ g(k)
q ,v(k+1)

q − x∗
δ)⟩

+
1

K
⟨(ṽ(k+1)

q − x̃∗
δ)⊙ (1− x̃(k)

q ),∇F̄q,k−1(x̃
k
q )− (1− δ)g(k)

q ⟩ − L0r
2(C)

2K2
.

(44)
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Therefore, by iteration, we have

E(F̄q(x̃
(K)
q ))

=E(F̄q,K−2(x̃
(K)
q ))

≥(1− 1

K
)E(F̄q,K−2(x̃

(K−1)
q )) +

1

K
(1− 1

K
)K−1E(F̄q,K−2(x̃

∗
δ)) +

1

K
E(⟨(1− x̃(K−1)

q )⊙ g(K−1)
q ,v(K)

q − x∗
δ)⟩)

+
1

K
E(⟨(ṽ(K)

q − x̃∗
δ)⊙ (1− x̃(K−1)

q ),∇F̄q,K−2(x̃
K−1
q )− (1− δ)g(K−1)

q ⟩)− L0r
2(C)

2K2

=(1− 1

K
)E(F̄q,K−3(x̃

(K−1)
q )) +

1

K
(1− 1

K
)K−1F̄q(x̃

∗
δ) +

1

K
E(⟨(1− x̃(K−1)

q )⊙ g(K−1)
q ,v(K)

q − x∗
δ)⟩)

+
1

K
E(⟨(ṽ(K)

q − x̃∗
δ)⊙ (1− x̃(K−1)

q ),∇F̄q,K−2(x̃
K−1
q )− (1− δ)g(K−1)

q ⟩)− L0r
2(C)

2K2

≥ . . .

≥(1− 1

K
)K−1F̄q(x

∗
δ) +

1

K

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(1− x̃(m)

q )⊙ g(m)
q ,v(m+1)

q − x∗
δ⟩)

+
1

K

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(ṽ(m+1)

q − x̃∗
δ)⊙ (1− x̃(m)

q ),∇F̄q,m−1(x̃
m
q )− (1− δ)g(m)

q ⟩)− L0r
2(C)

2K
.

(45)
Then,

Q∑
q=1

E(F̄q(x̃
(K)
q ))

≥(1− 1

K
)K−1

Q∑
q=1

F̄q(x
∗
δ) +

1

K

K−1∑
m=1

(1− 1

K
)K−1−m

Q∑
q=1

E(⟨(1− x̃(m)
q )⊙ g(m)

q ,v(m+1)
q − x∗

δ⟩)

+
1

K

Q∑
q=1

K−1∑
m=1

(1− 1

K
)K−1−mE(⟨(ṽ(m+1)

q − x̃∗
δ)⊙ (1− x̃(m)

q ),∇F̄q,m−1(x̃
m
q )− (1− δ)g(m)

q ⟩)− L0Qr2(C)
2K

(46)

First, for any m ≤ K,
∑Q

q=1 E(⟨(1− x̃
(m)
q )⊙ g

(m)
q ,x∗

δ − v
(m+1)
q ⟩) ≤ M0

√
Q. Next,

1

K

K−1∑
m=1

E(⟨(ṽ(m+1)
q − x̃∗

δ)⊙ (1− x̃(m)
q ),∇F̄q,m−1(x̃

m
q )− (1− δ)1⊙ g(m)

q ⟩)

≥− 1

2K

K−1∑
m=1

E(diam2(C)b+ ∥∇F̄q,m−1(x̃
m
q )− (1− δ)1⊙ g(m)

q ∥2/b)

≥− diam(C)
2δK1/3

− diam(C)N2δ

2K1/3
,

(47)

where the first inequality comes from the Cauchy inequality; the second follows from Lemma 14 and b = 1
diam(C)K1/3δ

.
Finally, due to (1− 1

K )K−1 ≥ 1
e , we have

Q∑
q=1

1

e
F̄q(x

∗
δ)−

Q∑
q=1

E(F̄q(x̃
(K)
q )) ≤ L0Qr2(C)

2K
+M0

√
Q+

diam(C)Q
2δK1/3

+
diam(C)N2δQ

2K1/3
. (48)

Next, we prove Theorem 3.
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Proof. Finally, according to Lemma 13 and Lemma 15, we have

T∑
t=1

1

e
ft(x

∗)−
T∑

t=1

E(ft(yt))

≤L0r
2(C)
2

LQ

K
+M0L

√
Q+

diam(C)LQ
2δK1/3

+
diam(C)N2δLQ

2K1/3
+ 2M1KQ

+

(
(
√
n+ 1)

r(C)
r

+
√
n+ 2

)
TGδ

≤C1
LQ

K
+M0L

√
Q+

C2LQ

2δK1/3
+

C3δLQ

2K1/3
+ 2M1KQ+ C4Tδ,

where the first inequality follows from the N2 ≤ max{32/3G2, 8G2 +3(4.5L0r(C)+ 3G)2/2}+8
n2M2

1

δ2 and in the second

inequality, we set C1 = L0r
2(C)
2 , C2 = (8n2M2

1 +1)diam(C), C3 = max{32/3G2, 8G2+3(4.5L0r(C)+3G)2/2}diam(C)
and C4 = ((

√
n+ 1) r(C)r +

√
n+ 2)G.
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