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Abstract

This paper studies the generalization capa-
bility of the compressed k-nearest neighbor
(KNN) estimator, where randomly-projected low-
dimensional data are put into the KNN estimator
rather than the high-dimensional raw data. Con-
sidering both regression and classification, we
give improved bounds on its generalization er-
rors, to put more specific, ¢5 error for regression
and mis-classification rate for classification. As a
byproduct of our analysis, we prove that ordered
distance is almost preserved with random projec-
tions, which we believe is for the first time. In
addition, we provide numerical experiments on
various public datasets to verify our theorems.

1 Introduction

K-nearest neighbor (KNN) estimator has become a popular
family of non-parametric methods (Wasserman, 2006; Biau
and Devroye). Due to its simple form and self-adaption
to local geometric structures (Kpotufe, 2011; Chaudhuri
and Dasgupta, 2014), we have witnessed a broad spectrum
of its applications ranging from function regression, clas-
sification, to entropy estimation, which all lie within the
core areas of the machine learning research. In practice,
one common problem with KNN is the large computational
burden brought by the high-dimensional data. In this paper,
we study the use of random projections for alleviate the
computational/storage burden in KNN. Our work fills in
the gap in the literature in two directions: (i) we prove the
improved bounds on the generalization errors of KNN using
random projections; and (ii) we also prove that the the order
of ranked distances is almost preserved using estimates from
random projections.
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1.1 Random Projections

The method of random projections (RP) has become a pop-
ular tool in machine learning and other fields, to reduce the
high-dimsionality the data. Suppose the original dimension
of the data matrix is p. The basic idea of random projections
is to multiply a random matrix of size d x p with the original
data matrix, to produce a compressed version of the data
matrix in d dimensions, where d « p. The entries of the pro-
jection matrix are typically sampled i.i.d. from the standard
Gaussian (or Gaussian-like) distribution. The method of
random projections (and the related analysis techniques) has
been widely adapted in numerous applications in machine
learning, compressed sensing, databases, search, computa-
tional biology, privacy, permutation recovery, etc. (Johnson
and Lindenstrauss, 1984; Goemans and Williamson, 1995;
Dasgupta, 2000; Bingham and Mannila, 2001; Buhler, 2001;
Charikar, 2002; Fern and Brodley, 2003; Achlioptas, 2003;
Datar et al., 2004; Candes et al., 2006; Donoho, 2006; Li,
2007; Rahimi and Recht, 2007; Dasgupta and Freund, 2008;
Liet al., 2014; Li, 2016; Li and Slawski, 2017; Li, 2019; Li
and Li, 2019b,a; Rabanser et al., 2019; Tomita et al., 2020;
Li and Li, 2021; Zhang and Li, 2020, 2021). In this study,
we focus on analyzing theoretical properties of KNN using
distances estimated from projected data.

1.2 KNN: Literature Review

Due to its large volume, it is impossible for us to exhaust all
KNN literature (Hastie and Tibshirani, 1995; Thanh et al.,
2011; Fritz, 1975; Gyorfi and Gyorfi, 1978; Wagner, 1971;
Kohler and Krzyzak, 2007; Audibert and Tsybakov, 2007;
Chaudhuri and Dasgupta, 2014; Gadat et al., 2014). Here
we only list the most related ones, which is broadly divided
into the asymptotic analysis and non-asymptotic analysis.
Regarding the asymptotic analysis, this line of research can
at least date back to 1960s, when Cover and Hart (1967)
considered the nearest neighbor classifier and showed the
classification rate converges to twice of the optimal value
as the sample number n goes to infinity. Subsequent works
include Fritz (1975); Gyorfi and Gyorfi (1978); Wagner
(1971), which all focused on the task of classification. Re-
garding the non-asymptotic analysis, a good starting point
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could be Gyorfi et al. (2002). Assuming the conditional
expectation function to be Lipschitz, Gyorfi et al. (2002)
obtained a convergence rate of O(n~"(*2)). Later, this
rate has been constantly improved with more stringent as-
sumptions. For example, a margin condition is put in Kohler
and Krzyzak (2007); Audibert and Tsybakov (2007), a
distribution-related smooth condition is put in Chaudhuri
and Dasgupta (2014), and a minimal mass assumption is put
in Gadat et al. (2014). For a detailed introduction, we refer
the interested readers to Biau and Devroye.

1.3 KNN+Random Projections

To tackle the computational/storage challenge of KNN with
high-dimensional data, it is a common practice to conduct
KNN on the projected data (Bingham and Mannila, 2001;
Fradkin and Madigan, 2003; Wilkinson et al., 2011; Kaban,
2015a,b; Li and Li, 2019a; Bhattacharya et al., 2021). De-
spite the empirical success of KNN+random projections,
to our surprise, there is no fully convincing theoretical
explanation. Kabdn (2015b); Li and Li (2019a) tried to
tackle this problem but they focused on the restrictive case
where k can only be one and their bounds can hardly be
regarded as tight. For example, they required the sample
size to be exponentially large. Moreover, the celebrated
No-Free-Lunch-Theorem (Wolpert and Macready, 1997,
Shalev-Shwartz and Ben-David, 2014) claims that this size
cannot be reduced in general. This forms a sharp contrast
with the practice, where a much less sample size is usually
used. To mitigate this contradiction, people turn to the role
of the intrinsic dimension, which captures the local behavior,
in the practical success of KNN. In Kpotufe (2011), it is
proved that KNN can automatically adapt to the intrinsic di-
mension of samples when used for regression. Later, Kaban
(2015b) combined 1-NN classifier with random projection.
Assuming the samples to be of locally low-dimension, they
gave the first bound that reflects the impact of the projec-
tion dimension d on the classification rate. Then Li and
Li (2019a) generalized its analysis to study the impact of
quantization. However, all these bounds do not capture the
impact of dimension d correctly (Kabdn, 2015a; Li and Li,
2019a); See an explanation in Section 5.1. In addition, we
would like to mention Indyk and Naor (2007), which studied
the influence of random projection on the nearest distance.
Compared with our analysis, their work heavily rely on the
fact £ = 1 and may introduce some undesired logarithmic
factors when being generalized to an arbitrary k.

1.4 Summary of Our Contributions

* We give improved bounds on the generalization er-
ror of compressed KNN estimator. We consider both
the function regression and supervised classification;
and obtain almost mini-max optimal convergence rates.

* We prove that the ranked distance is almost pre-

served after the random projection for the first time.
The major technical challenge comes from the fact such
that the distance rankings may be perturbed after the
projection. Hopefully, the established property along
with its proof technique will pave ways for the future
investigation of estimators involving order distances.

2 Problem Setting

Notations. We denote ¢, ¢ and ¢ as some positive con-
stants. We write a < b if there exists a positive constant ¢
such that a < ¢gb. Similarly, we define a 2 b. Provided
that a < b and a 2 b hold simultaneously, we write a = b.

For one arbitrary point &, we denote its kth-nearest neigh-
bor’s index among set {x(*)}7_, as 4 (a; {x(*)}"_,). The
kth-nearest distance between & and {x(*)}"_, is denoted as

or (x; {x¥}7_, ) reading as Haz — gre(@{@VY)

‘ 2

Consider the pair of random variables (X,Y) € R? x R,
where X is distributed according to the probability measure
u(+) and y is the corresponding response. Given n i.i.d
samples {(*), y(*)}7_, of (X,Y"), we would like to predict
the response variable y based on the observed value of X.
Here we consider the compressed KNN estimator, which
consists of two stages

+ Stage I. We project the high-dimensional samples (%)
onto low-dimension space. The projection relation is
written as

2% = Az 1<s<n,

where A € RY*? is the projection matrix. For a fair
comparison, we adopt the same setting as Kaban (2015a);
Li and Li (2019a) and assume each entry A;; being an
i.i.d Gaussian random variable (RV) with zero mean and

d~1 variance, i.c., A;; " N(0, Va).

¢ Stage II. We apply KNN estimator to the projected sam-
ples {:%(s), y(*)} and predict the response y associated
with Z (= Ax). We consider two applications of com-
pressed KNN estimator, i.e., regression and classification.
For the regression task, we have y € R and the compressed
KNN estimator f,, () takes the form as

k

ro (24208
far(z) = Z wiy(T @HEH) 1)

i=1

where w; denotes the ith entry of w € Ag_; and Ay,
denotes the k-dimensional simplex defined as Ay =
{weRF|w; >0, Y, w; = 1}. For the classification
task, we have y € {£1} and express the corresponding
compressed KNN estimator as

gn,k’(w) = sign (fn,k(x)) ’ (@)
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where sign(-) denotes the sign function and f,, x(-) is
defined in (1).

Despite of its wide practices, compressed KNN estimator’s
theoretical properties (i.e., generalization error) are not well
understood. Previous works such as Kaban (2015a); Li
and Li (2019a) perform preliminary attempts however their
analysis only apply to the nearest neighbor estimator, i.e.,
k = 1. Moreover, their bounds on generalization error are
rather loose. Even worse, their generalization errors are
unbounded with increasing projection dimension d.

In this paper, we mitigate the above drawbacks and give im-
proved bounds on the generalization error of compressed
KNN estimator, which applies to an arbitrary choice of k.
Before proceeding, we first list our assumptions on the ran-
dom variables (X, y).

Assumption 1. We denote f(x) as the conditional expec-
tation E[y|X = x] and assume that the residual y — f(x)
satisfies the tail bound

P(ly — f(z)| > t) < 2exp(—1"/202), 3)

where g > 0 is some positive constant.

In addition, we need the following concepts and results.

Definition 1 (Packing Number). Consider a bounded metric
space (X, |-|)- The a-packing number of T is defined as

N (e ) & max {11 € 2. er — eaf > 0

’
Ve —eyeX el # e

Definition 2 (Metric Entropy). The metric entropy H(-, X)
of X is defined as the logarithmic of the packing number,
i.e., H(, X) = 10g./\[HH (, X)

Theorem 1 (Klartag-Mendelson Theorem (Theorem 13.5
in Boucheron et al. (2013))). Consider the random projec-
tion matrix A € R¥*P with i.i.d Gaussian entries N(0, 1/d).
Let T be a set of normalized pair-wise differences, i.e.,

T = {”2%2”, e; #es€ X} Define its metric entropy

integral as Z(T) = So A/ H(t, T)dt, where H(t,T) is the
metric entropy w.r.t the Euclldean distance. Then for all

d,e € (0,1), we have
(1= 8) &1 — 2] < |A (21— 22) [3
< (1+0) |z — a3 @

hold with probability exceeding 1 — ¢ for arbitrary points
X1, T € X, provided that d = 6~ 2(Z%(T) + log 2/e).

3 Properties of Perturbed Distances

This section studies the properties of the perturbed k-nearest
distance, which paves way to the subsequent analysis for
the function regression and classification.

kth nearest
neighbor

~\
| AN
kth nearest

neighbor

Figure 1: Illustration of technical difficulties: the index of
the kth nearest neighbor is changed after random projection.

3.1 Technical challenge

We begin this subsection with an informal statement of the
technical challenge: the distance rankings in terms of the
original samples {x(*)}"_, can be different from that in

terms of the randomly-projected samples {m [
2=

le—a(=)]
cording to Theorem 1, to put it more specific, we have

On one hand, we have the ratio be bounded ac-

1 _Jz= 2|

V1—=46 H2\

V1I—6, 1<s<

Hac — s
|2=8') |,
le—a ()]
(1 < s,t < n), where the superscripts s and ¢ are not
necessarily the same. Unfortunately, this happens to be
our case. One illustration is given in Figure 1, from which
we can see that the index of the kth-nearest neighbor of
x among the samples {x()}7_, is ry,(z; {z®}7_,) = 3
while the index of the kth-nearest neighbor of Z among the
projected samples {&" )}?:1 is 71 (25 {:2(5>}g:1) = 2. How

to bound the ratio 12=222
H 932 Hz

However, we do not have such guarantees for

constitutes the major technical
challenge.

3.2 Main results

To tackle the above challenge, we reinterpret the distances
o (; {x®1"_ ) and o5, (&; {#*)}"_,) as the solutions of
min-max optimizations, with which we can show that the
kth-nearest distance of point « is almost preserved with the
random projection. To the best of our knowledge, this is the
first result on the randomly-projected kth-nearest distance.
A formal statement is put in the following lemma.

Lemma 1. Provided that d = §~2(Z*(T) + log2/c) and
adopt the setting in Theorem 1, we have

1—3 Qk($,{$ s 1) 1 .
or(@{z}))  V1-4
. (s)yn
Vie< @iz 8:1)< L i<k<n,

or(@ (&),)  VI-d
hold with probability at least 1 — e.
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Proof. To begin with, we construct vectors 8, 0 € R™ with
their ith entries being |z — (V|5 and |A(z — )|,
respectively. Denote A,,_1 is the n-dimensional simplex
defined as {z € R" : 2 >0, >, 2 = 1} and L}, is an
arbitrary linear space such that its support set’s cardinality
is no greater than k. Then, we will prove

log Qk(w;{w(s) ") = inf sup (u,log0);

['k uEAn_l ﬂﬂk

log o1 (Z; {5;(5)}?:1) = inf  sup <u, log §> .
['k uEAn_l ﬂ Lk
This is because for a fixed linear space Ly, we have

sup  {(u,log @) = argmax

) log 0;,
’U/EAT,,71 ﬂ ﬁk

iesupp(L

where supp(-) is the support set of L. Then, we obtain

inf  sup (u,logh) =

inf argmax ) log 0;
L ueN, 1 mLk Lk

iesupp (L

log oy, (; {2}1,).

The infimum is achieved when supp (L) coincides with the
indices of the k-nearest neighbors of .

Afterwards, we conclude

9= flog o(@: (@ }1_y) — log o (@: (27},

NS

inf

ind (u,log @) —

sup
a€Np_1 () Lk

[Cu, log 9/6)|

sup

<u, log §>
OLEAn,1 nﬁk

NS

inf sup
Lk aeAn_1NL

N

. NG "
inf  sup ful,[log 98], = [log /6],

k aEAn,1 ﬂ ﬁk

where in (D and @ we use the relation |sup C; — sup Cs| <
sup |[C; — Cs|; and in @ we use the fact such that u €
A,_1, which means |u|, = 1. Invoking Theorem 1, we
conclude

|z — 2@,

e—aOle |
A — a0 | <18~

log

= max
© K

(7]
log =
(7]

~oa(s)n
Combining with the fact such that 2<&{2 i)

i ort@ (@)
% all lie within the region [e~?, €”] then com-
@ {@}r_,

pletes the proof. U

and

Returning to the scenario as in Figure 1, this lemma suggests
that the ratio 12=2512 i within the region [v/T — 8, /1 + 4]

[2—22[,
In other words, the distance |x — x3]|, is almost the same
as | — Za,.

Remark 1. We notice that the distance preservation prop-
erty is independent of the underlying probability and only
depends on the projection matrix. In addition, our bound
applies to arbitrary k rather than only to the restrictive case,
where k can only be one.

Remark 2. Notice that Lemma 1 is not restricted to ran-
dom Gaussian matrices. In fact, it applies to all random
projection matrices with point-wise isometry and will auto-
matically translate the point-wise isometry to rank-based
distance isometry.

Building on this lemma, the following context studies the
performance of compressed KNN estimator for function
regression and classification. A diagram of the main results
is put in Figure 2.

Regression Classification

Hélder Condition
(Assumption 3)

Corollary 1 Theorem 4

Modified Lipschitz
Condition
(Assumption 4)

Figure 2: Diagram of our main results.

4 Analysis of Function Regression

This section analyzes the performance of function regression
with compressed KNN with randomly-projected samples

{:E(s) }7_, . First, we collect the required assumptions.

Assumption 2. Forall x € X and d < d;, we assume the
probability measure yu(-) satisfies

CVLB'ﬂ_dim/’L (B ($7 ’lgd)) < p (B (CE, d))
< Cypd ™"y (B (,94d))

where B (x, -) denotes a ball centered at x with radius (),
deit, CLg and Cyg are some positive constants, and ¥ is
within the region [0, 1].

Remark 3. This assumption is modified from the concept
of maximally-homogeneous in Kpotufe (2011) (c.f. Defi-
nition 3). It suggests that the local behavior of probability
measure [i(-) is similar to a ball with dimension dim. In
general, we assume that dim < p.

Assumption 3. We assume the conditional expectation
f () to satisfy the Holder condition

(1) = f(@2)] < |21 — 225,

where f(x) = E[y|X = @] and 0 < o < 1 controls the
smoothness of the function.

Remark 4. This assumption is widely used in previous
works such as Kpotufe (2011); Doring et al. (2017); Biau
etal (2011).



Hang Zhang, Ping Li

Then we obtain the following theorem.
Theorem 2. Define D as 62;0:0 277\ /M (2-G+D) X))

and I(T) = Sé A/ H(t,T)dt as the metric entropy inte-
gral in Theorem 1, where H(-, ) denotes the metric entropy
w.r.t. the Euclidean distance. Assuming that (i) D < v/5n;
(i)k > 32; (iii) d 2 672 [TI%(T) + log?e|, and (iv)

I’
f(x) satisfies Assumption 3, we have

|fus(x) — f(z)]* <

+ 0? (Z wf) logn, (&)
hold with probability exceeding 1—2n~ —¢, where f, j(-)
is the compressed KNN estimator defined in (1), ¢y and €

are some positive constants and o is a parameter associated
with the tail bound of y — f(x) and is defined in (3).

For the clarify of presentation, we defer its proof to the
supplementary material.

Remark 5. Adopting the uniform weight for {w;}*_,, i.e.,
w; = k™Y, we can enhance (5) to be

|fus(@) — f(=)]* <

o?logn
k )

__2a . .
where the optimal rate O (n 2a+dim> is attained when set-

72(1 . . .
ting k as n2a+am [t is worth mentioning that this rate almost
reaches mini-max optimality.

Remark 6. We notice that our {5 error converges to the
previous result in Kpotufe (2011) as the projection dimen-
sion d increases, or equivalently, § | 0. To the best of our
knowledge, this is the first bound uncovering the perfor-
mance improvement brought by the increasing projection
dimension d. A detailed explanation is deferred to Section 5.

4.1 Results free from probability measure

We notice the convergence rate in Theorem 2 depends on the
probability measure u (B (x, deit)). This subsection aims
to decouple the dependence. First, we modify the Holder
condition in Assumption 3 to the following.

Assumption 4. We assume f(x) to satisfy the modified
Lipschitz condition, reading as

|f(x1) — f(x2)| < min [ (B (zy, |1 — xQH))l/dim7

1 (B (@1, |21 — o))" |

b

for two arbitrary points x1,x2 € X.

o ()
( ) npy [B (CL'; dcrit)] !

(kYR
) B @) %

Similar assumption is also used in the previous work
(Déring et al., 2017). Then, we can refine Theorem 2 to be

Theorem 3. Define Z(T') as the metric entropy integral
in Theorem 1. Assuming the projection dimension d =
672 [I*(T) + log %/=] and Assumption 4, we have

farl@) — f(@) < 0> logn <Z w?>

1 i\ 2/dim
e (n) @

Cc1

hold with probability exceeding 1 —con = —¢, where cy, c1

and € are some positive constants.

Same as Theorem 2, the right-hand side in (6) is minimized
with the uniform weighting scheme, i.e., w; = Ell<i<

k). The optimal convergence rate is O (nfﬁ) which

is achieved when k is set as O (n2+am ). This coincides

with Theorem 2 when «v = 1. Its proof can be found in the
supplementary material.

5 Analysis of Supervised Classification

We now discuss applications of compressed KNN estima-
tor to supervised classification, where the response vari-
able y*) (1 < s < n) is restricted to {+1}. To evalu-
ate the performance of classification, we adopt the error
rate L(-) = P((-)(x) # y) and denote its optimal value
as Lopt = infgppsgo,13 P (9(x) # y). As shown in (Biau
and Devroye), the optimal error rate Loy is achieved by the
Bayes classifier g(x) defined as sign(f(x)), where f(x) is
the conditional expectation thereof, i.e., f(x) = E[y|X =
In addition, we assume there is no tie-breaking. A formal
statement is given as

Assumption 5. For a given x, we always have y(51) = y(52)

provided that HA (:1: — :1:(51)) H2 = HA (g; _ ;1;(52)) H2

This assumption suggests that two samples (51, 2(52) with
equal distance to x are always with the same label. Then
we conclude

Corollary 1. Define Z(T) as the metric entropy inte-
gral defined in Theorem 1. We consider the same set-
tings as in Theorem 2; and assume Assumption 5 and
d z 67%(Z?(T) + log ?/=). Then we have

+0 (Z wf) logn,

c1

|EL(9n,k) - LOpt| < (1- 6)_a it

hold with probability at least 1 — con™ ' — ¢, where gy, 1 (+)
is the compressed KNN estimator defined in (2).
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Similar to Theorem 2, the upper-bound achieves its min-
imum with the uniform weighting coefficients, i.e., w; =
k~1. Its proof is a simple combination of Theorem 2 and
the relation (Theorem 17.1 in Biau and Devroye)

1
2

520na) ~ Lol = ([ Unr(@) = 1@ utao)

With the same proof strategy, we are able to free the prob-
ability measure from the convergence rate by adopting the
modified Lipschitz assumption as in Assumption 4.

Corollary 2. Define Z(T) is the metric entropy integral
defined in Theorem 1. We adopt same assumptions as in
Theorem 3 and assume Assumption 5. Then, provided that
d 2 672(Z*(T) + log 2), we have

1 k 1/dim
|EL(gn,k) — Lop| < 13 (E) +o wa logn,

hold with probability at least 1 — con™°* — ¢, where gy, 1 (+)
is the compressed KNN estimator defined in (2).

5.1 Comparison with previous results

A comparison between our paper and previous works is in
Table 1. In this subsection, we focus on Kabdn (2015b)
and Li and Li (2019a), which are most related to our work.
Focusing on the 1-NN for classification with randomly-
projected data, Kabdn (2015b) give an upper-bound on the
classification error rate reading as

EL (gn,k) < 2L0pt

d
1 5 d+1 e
1 - 5) (en)” ™7 Vd.

+2v2 <Lﬁ

A similar result can also be found in Li and Li (2019a)
(Theorem 2). Compared with our results, these previous
results have the following drawbacks.

First, their bounds on the error probability are un-
bounded with increasing d. To put more specifically, they
have the additive term which is lower bounded as

155\ s :
(L\/Z; 15) (en)im \/a > (en)im \/a,

which approaches to infinity together with d. This is counter-
intuitive as high projection dimension usually means better
isometry preservation and hence a similar performance as
the estimator using the original data. The underlying reason
is that their analyses omit the properties of the perturbed
k-nearest distance, namely, Lemma 1.

Besides, their results on the error probability experience
a loss of factor 2, namely, EL(g,, ;) is upper-bounded by

2L rather than L. This factor loss seems to be inevitable
as long as k is restricted to one. This finding can date back
at least to 70s as in (Cover and Hart, 1967). Moreover, their
proof heavily relies on the properties of the nearest neighbor
and there is no clear path of how to generalize the analysis
to the arbitrary k-nearest neighbor setting.

5.2 Refined results with weak margin condition

As argued by Doring et al. (2017); Biau and Devroye, the
previous results in Corollary | and in Corollary 2 rely heav-
ily on the Holder condition and modified Lipschitz condi-
tion, which all concern with the functions’ global behavior.
Meanwhile, a significant number of mis-classifications oc-
cur near the boundary of classification rule. This motivates
us to adopt assumptions concerning the behavior of f(x)
within that region. Here, we follow Mammen and Tsybakov
(1999); Tsybakov (2004); Audibert and Tsybakov (2007);
Kohler and Krzyzak (2007); Doring et al. (2017) and place
an extra assumption called weak margin condition, which is
formally stated as

Definition 3 (Weak margin condition). Forall 0 <t <1,
we assume

PO <|f(z)| <t) S 17,

where 3 is some positive constant, and f(x) is the condi-
tional expectation defined as E[y|X = x].

Then we conclude

Theorem 4. Adopt the same settings as in Theorem 2 and
assume the weak margin condition and Assumption 5, we
have

|EL(gn,k) - Lopt‘ < kiHTa

a(B+1)

k ) dim g (B+D)
np [B (5 derir) ] et ’

with the uniform weighting scheme, i.e., w; = k~1, where
9n.k(+) is the compressed KNN estimator defined in (2)

+ (1 —§)~ B+ (

Moreover, if we switch from the Ho6lder condition in As-
sumption 3 to the modified Lipschitz condition in Assump-
tion 4, we can obtain the following result.

Theorem 5. Under the same settings as in Theorem 3, we
assume the weak margin condition and Assumption 5. Then,
we have

B+1 B+l
_ B+l 1 kY @
rtna) il <1 (55) (0

with the uniform weighting scheme, i.e., w; = k=", where
9n k() is the compressed KNN estimator defined in (2).

Compared with Corollary 1 and Corollary 2, we con-
clude the convergence rate improves from O(nfﬁ) to

1+8 |,
O(n~ T+am ) in Theorem 4 and Theorem 5, whose proof are
put in the supplementary material for reference.
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Table 1: Comparison with prior art. PA denotes random projection analysis; and N-OPT, denotes near-optimality when d
is sufficiently large. N/A means not applied; and X means the requirement is not met.

(Kpotufe, 2011) | (Chaudhuri and Dasgupta, 2014) | (Kabén, 2015a) | (Doring et al., 2017) | (Li and Li, 2019a) | Ours
k>1 v v X v X v
PA N/A N/A v N/A v v
N-OPT, N/A N/A X N/A X v

Table 2: Recall rate and precision rate for MNIST dataset (LeCun et al., 1998). Baseline is computed with KNN estimator

using the original data.

Recall Rate Precision Rate

Digit Baseline d/p=0.2 djp =04 d/p=0.6 g =0.8 Baseline d/p =02 d/p =04 dp=06 d/p=038

K=1
1 0.9799 0.9690 0.9759 0.9749 0.9759 0.9929 0.9888 0.9918 0.9918 0.9908
2 0.9674 0.9707 0.9642 0.9683 0.9641 0.9947 0.9938 0.9956 0.9947 0.9947
3 0.9841 0.9802 0.9842 0.9831 0.9871 0.9612 0.9612 0.9661 0.9593 0.9603
4 0.9613 0.9590 0.9556 0.9555 0.9585 0.9604 0.9505 0.9584 0.9564 0.9594
5 0.9722 0.9620 0.9711 0.9672 0.9660 0.9613 0.9542 0.9593 0.9603 0.9562
6 0.9513 0.9383 0.9489 0.9498 0.9468 0.9641 0.9552 0.9574 0.9540 0.9574
7 0.9813 0.9700 0.9742 0.9802 0.9813 0.9854 0.9791 0.9854 0.9833 0.9843
8 0.9566 0.9547 0.9500 0.9509 0.9482 0.9650 0.9630 0.9601 0.9601 0.9621
9 0.9808 0.9794 0.9787 0.9764 0.9808 0.9446 0.9261 0.9435 0.9333 0.9456
10 0.9565 0.9411 0.9484 0.9563 0.9527 0.9584 0.9495 0.9465 0.9544 0.9574

K =20
1 0.9690 0.9679 0.9700 0.9671 0.9719 0.9888 0.9837 0.9898 0.9888 0.9888
2 0.9416 0.9391 0.9432 0.9446 0.9400 0.9947 0.9921 0.9947 0.9921 0.9938
3 0.9866 0.9855 0.9906 0.9907 0.9866 0.9254 0.9205 0.9205 0.9273 0.9254
4 0.9807 0.9712 0.9744 0.9776 0.9787 0.9554 0.9347 0.9426 0.9505 0.9545
5 0.9829 0.9850 0.9840 0.9819 0.9828 0.9379 0.9338 0.9409 0.9409 0.9308
6 0.9826 0.9693 0.9801 0.9847 0.9824 0.9496 0.9193 0.9383 0.9406 0.9406
7 0.9792 0.9729 0.9742 0.9771 0.9761 0.9812 0.9749 0.9843 0.9812 0.9812
8 0.9633 0.9573 0.9584 0.9584 0.9574 0.9446 0.9387 0.9416 0.9407 0.9397
9 0.9921 0.9895 0.9897 0.9886 0.9910 0.9035 0.8747 0.8891 0.8922 0.8994
10 0.9559 0.9507 0.9524 0.9568 0.9557 0.9445 0.9356 0.9326 0.9435 0.9405

6 Numerical Results

This section presents the numerical experiments and verifies
our theorems. The baseline is computed with KNN estima-
tor using the original data, or equivalently, without random
projection. Our goal consists of two parts: () verify that
real-world data are with low intrinsic dimension; and (%)
show compressed KNN estimator with randomly-projected
data has comparable performance of KNN estimator. '

6.1 MNIST dataset

First, we consider MNIST dataset (LeCun et al., 1998),
which contains 70000 images (10000 images in the test set
and 60000 images in the training set) of dimension 28 x 28.
These images correspond to the digits ranging from 0 to
9. To verify our theorems, we iteratively perform binary

"The simulation code can be found in https://github.
com/hangzhang390/compressed_knn.git.

classification for each digit: the images corresponding to
the target digit are labeled as 1 while the rest digits are la-
beled as —1. The distance between images is defined based
on the pixel densities. Here we consider both the nearest
neighbor estimator (k = 1) and the 20-nearest neighbor
estimator. The baseline is computed with KNN estimator
using the original data without random projection. We put
the experiment results in Table 2, from which we can see
the performance gap is within 1% (in most scenarios) when
d/p = 0.2 and further decreases as this ratio increases. No-
tably, the classification performance can even be improved
with the random projection in certain scenarios.

6.2 CIFARIO0 dataset

In addition, we consider the CIFAR10 dataset (Krizhevsky
et al.), where each image is represented by a vector of length
3072 and fall within one of the ten categories. Names of
these categories can be found in the leftmost entries in Ta-
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Table 3: Recall and precision rates for the CIFAR10 dataset (Krizhevsky et al.). Baseline is computed with KNN estimator
using original data. Classification is conducted with the distance defined in terms of the pixel densities.

Recall Rate Precision Rate
Labels Baseline d/p =02 djp=04 dp=06 dp=038 Baseline d/p =02 d/p=04 dp=06 d)p=08
K=1
Airplane 0.4240 0.4342 0.4306 0.4273 0.4143 0.4850 0.4850 0.4810 0.4820 0.4810
Automobile  0.6488 0.6552 0.6667 0.6435 0.6380 0.2180 0.2280 0.2280 0.2310 0.2150
Bird 0.2424 0.2503 0.2379 0.2401 0.2418 0.3840 0.3870 0.3650 0.3830 0.3770
Cat 0.2916 0.2778 0.2842 0.2886 0.2881 0.2400 0.2320 0.2390 0.2390 0.2380
Beer 0.2492 0.2496 0.2561 0.2527 0.2473 0.4570 0.4660 0.4750 0.4640 0.4650
Dog 0.3634 0.3595 0.3545 0.3616 0.3582 0.2900 0.2930 0.2850 0.2810 0.2830
Frog 0.3284 0.3299 0.3211 0.3327 0.3321 0.3530 0.3540 0.3490 0.3530 0.3490
Horse 0.5589 0.5572 0.5668 0.5615 0.5579 0.2940 0.2970 0.2970 0.2920 0.2940
Ship 0.3988 0.4016 0.3955 0.3945 0.3951 0.6190 0.6080 0.6020 0.6130 0.6160
Truck 0.6067 0.6216 0.5916 0.6067 0.5893 0.1990 0.2070 0.1970 0.1990 0.1980
K =20
Airplane 0.6901 0.6854 0.6841 0.6890 0.6638 0.3140 0.3050 0.3010 0.3080 0.3060
Automobile  0.9455 0.9592 0.9808 0.9455 0.9615 0.0520 0.0470 0.0510 0.0520 0.0500
Bird 0.4752 0.4844 0.4938 0.4873 0.4875 0.1150 0.1240 0.1190 0.1150 0.1170
Cat 0.4545 0.5333 0.5833 0.4545 0.3000 0.0050 0.0080 0.0070 0.0050 0.0030
Beer 0.4094 0.4206 0.4177 0.4006 0.4068 0.2780 0.2780 0.2790 0.2720 0.2770
Dog 0.7692 0.7500 0.7391 0.7722 0.7973 0.0600 0.0660 0.0680 0.0610 0.0590
Frog 0.6715 0.6462 0.6690 0.6212 0.6378 0.0920 0.0840 0.0950 0.0820 0.0810
Horse 0.9487 0.9221 0.9444 0.9634 0.9452 0.0740 0.0710 0.0680 0.0790 0.0690
Ship 0.5140 0.4995 0.5198 0.5125 0.5031 0.5700 0.5480 0.5780 0.5750 0.5630
Truck 0.9189 0.8824 0.8947 0.9444 0.8780 0.0340 0.0300 0.0340 0.0340 0.0360

Table 4: Recall and precision rates for CIFAR10 dataset (Krizhevsky et al.). Baseline is computed with KNN estimator
using original data. Compared with Table 3, we define the distance in terms of the extracted features.

Recall Rate Precision Rate
Labels Baseline d/p =02 dfp=04 dp=06 dp=038 Baseline d/p =02 d/p=04 dp=06 dp=038
K=1
Airplane 0.8695 0.8669 0.8600 0.8652 0.8612 0.8860 0.8920 0.8910 0.8860 0.8870
Automobile  0.9443 0.9324 0.9323 0.9388 0.9379 0.9330 0.9380 0.9370 0.9360 0.9370
Bird 0.8435 0.8308 0.8416 0.8473 0.8354 0.8030 0.8100 0.8130 0.7990 0.8070
Cat 0.7813 0.7803 0.7784 0.7824 0.7890 0.7540 0.7600 0.7550 0.7480 0.7590
Beer 0.8771 0.8687 0.8785 0.8716 0.8832 0.8710 0.8670 0.8750 0.8760 0.8700
Dog 0.8041 0.7949 0.8068 0.8086 0.8124 0.8250 0.8180 0.8270 0.8320 0.8270
Frog 0.8837 0.8867 0.8967 0.8815 0.8795 0.9120 0.9160 0.9110 0.9150 0.9120
Horse 0.9116 0.9172 0.9078 0.9107 0.9169 0.9080 0.8970 0.9060 0.8970 0.9050
Ship 0.9215 0.9196 0.9207 0.9199 0.9203 0.9280 0.9260 0.9170 0.9300 0.9240
Truck 0.9100 0.8991 0.9019 0.9139 0.9100 0.9300 0.9270 0.9290 0.9240 0.9300
K =20
Airplane 0.9144 0.9125 0.9073 0.9104 0.9096 0.8970 0.8970 0.9000 0.9040 0.8950
Automobile  0.9584 0.9598 0.9572 0.9574 0.9535 0.9440 0.9320 0.9400 0.9450 0.9430
Bird 0.9073 0.9087 0.9037 0.9105 0.9110 0.8120 0.8060 0.7980 0.8040 0.8090
Cat 0.8513 0.8580 0.8488 0.8654 0.8521 0.7500 0.7430 0.7520 0.7520 0.7550
Beer 0.9129 0.9121 0.9112 0.9146 0.9105 0.8800 0.8820 0.8820 0.8780 0.8750
Dog 0.8822 0.8750 0.8803 0.8754 0.8860 0.8240 0.8190 0.8240 0.8220 0.8160
Frog 0.9174 0.9048 0.9090 0.9166 0.9197 0.9220 0.9220 0.9190 0.9230 0.9160
Horse 0.9490 0.9535 0.9461 0.9511 0.9453 0.8940 0.9020 0.8950 0.8950 0.8980
Ship 0.9526 0.9505 0.9545 0.9555 0.9529 0.9250 0.9220 0.9240 0.9230 0.9300
Truck 0.9436 0.9455 0.9424 0.9418 0.9399 0.9370 0.9360 0.9320 0.9380 0.9380

ble 3. We perform iterative binary classification for each
category. First, we investigate the performance with the
metric defined in terms of the pixel intensities, which is the

same as the MNIST experiment setting. Preliminary results,
which are put in Table 3, show that the recall rate and pre-
cision rate are below 70% for almost all categories. This
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Figure 3: Experiments with UCI data. Baseline is computed with KNN estimator on original data.

phenomenon suggests this metric can hardly distinguish im-
ages of different categories. For a better classification, we
extract features from these images and redefine the metric as
the Euclidean distance between these features. Here, we use
residual neural network (ResNet) (He et al., 2016) for the
feature extraction and put the features into a vector of length
512. The experiment results are put in Table 4, from which
we observe a significant performance improvement when
compared with the preliminary results, where the distance
is in terms of the pixel intensities.

Discussion. Recalling the fact that the dimension of the
features (512) is much less than the original dimension
(3072), we confirm our conjecture such that the images are
with a lower intrinsic dimension.

6.3 UCI datasets

Moreover, we investigate the compressed KNN estimator
using the UCI database (Dua and Graff, 2017): dataset
Carcinom, dataset gisette, dataset pixraw10P, dataset lym-
phoma, dataset orlraws, and dataset warpPIE10P are used.
A detailed introduction of these datasets are put in Table 5.
For each dataset, we put 80% of the samples into the training
set and leave the rest samples to the testing set. Compared
with the previous two databases, we notice UCI datasets
are with fewer samples but the data within are of higher di-
mensions. Therefore, instead of binary classification, which
corresponds to our theorems, we perform multi-class clas-
sifications here, as the sample number of each category is
not large enough. The results are shown in Figure 3. Except
for the dataset gisette, we notice the compressed KNN esti-
mator yields comparable performance when the d/p = 0.1,
which means the length of the randomly-projected data is

only one tenth of the original data. In particular, we no-
tice a perfect classification for the dataset pixraw10P when
d/p = 0.04. Summarizing the above results can then verify
our theorems.

Table 5: Summary of datasets in UCI (Dua and Graff, 2017).

# Features # Samples # Categories
Carcinom 9,182 174 11
gisette 5,000 7,000 2
pixraw10P 10,000 100 10
lymphoma 4,026 96 9
orlraws 10, 304 100 10
warpPIE10P 2,420 210 10

7 Conclusions

This paper studied the compressed KNN estimator, where
the high-dimensional samples are randomly projected into
low-dimensional space. First, we analyzed the properties
of ranked distance, which is perturbed by random projec-
tion, and gave a uniform bound on the distance change.
Afterwards, we gave improved bounds on generalization
error of the compressed KNN estimator in both the task
of function regression and that of supervised classification.
We successfully explained the performance improvement
brought by increasing projection dimension and obtained
almost mini-max optimal convergence rates. To the best of
our knowledge, this is the first theoretical analysis that can
correctly explain the impact of random projection on the
KNN estimators’ performance. In addition, we conducted
numerical experiments on multiple real-world datasets to
corroborate our theoretical results.
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A Proof of Function Regression

To begin with, we define the estimator
£ f: ()
fn,k(w) = (rk i@ }s=1)))_ )

A.1 Proof of Theorem 2
Proof. We begin the proof with the following decomposition
5 N 2 ~ 2
fusl@) = f @) < 2| fanl@) = Tar(@)| +2|Fun(@) - (@)

T1 T2

The following context separately bound the two terms 73 and T5. For T}, we have
fn k( fn k(T Zw ( (e - E[y|X = w(rk(i;{i(S)};l=1))]> :

Due to the independence between w; and the difference y(”(a?{ﬁ(s) D) —E[y|X = (e (@ {2 }=1))], we have (Kpotufe,
t

2011)
¥ @
P ([pnate) = Foste] 1) < 20 (<) o

where (D is due to the tail bound assumption, and in @ we set ¢ as o? (Zl wf) logn, and ¢ > 0 is some positive constant.
Having bounded 7}, we invoke Lemma 2 to bound 75 and complete the proof. O

A.2 Proof of Theorem 3

This proof follows a similar strategy as in proving Theorem 2 with the major difference such that Lemma 2 is replaced with
Lemma 3.

A.3 Supporting Lemmas

Lemma 2. With the same assumptions as in Theorem 2, we have

’f(ac(rk(ﬁ;{ﬁ(a‘)}?:l))) _ f(iL‘)‘ < (1 _ 5)—04 (nu[B(k‘)]) dim dsi—lt

Z; dcril

Proof. The proof strategy largely follows the framework advocated by Kpotufe (2011). We begin the proof as

k
Fur(e) = f@)] = Y1

With the Holder condition in Assumption 3, we have

2 @@y f(m)’ < ‘f(mak(a;{a“)}z:l))) ~ f@)|.

[}

‘f(xwk(@;{:z“)};;l))) _ f(m)’ < Lfo<m<a;{:z(s>};;1>> .

2
me@;{w};l)) _ mH “ me(z;{m“)}z:l)) _ ””H
2

2 . . (s)\n «
L\ femeemry —4), ) or(@; (ZO}_)) (ov(a: =)2)

«

NS

(1= 0" (enlas (=)2)) ®)



Improved Bound on Generalization Error of Compressed KNN Estimator

where (D is due to Lemma 1 and Theorem 1. Then our goal becomes bounding the distance o (x; {2®)}™_,).

First, we would like to show gy, (; {z*)}7_,) < dus, or equivalently, pi,, [B(z, derit)] = %, which is a direct consequence
of Corollary 3. Afterwards, we would like to obtain a tighter bound for gy, (a; {x(*)}7_, ), namely, o5, (z; {z(*)}"_,) < Ode,

1/dim
3Cugh ) . The reasoning is shown as the following. First we notice

where ¢ is set as (W

@ 9im  [B(x; deri 3k
(B (w5 9d)] = @ dei)]

CUB n ’

where @ is due to Assumption 2. According to Corollary 3, we have pi,, [B (x; 9dei)] = £ and hence g, (; {z(*)}7_,) <

Ydcrir- The proof is thus completed when combining with (8).

E
n

O
Lemma 3. Conditional on the modified Lipschitz condition (Assumption 4) and the settings of Theorem 3, we conclude
- 1 k 1/dim
fn,k(w)_f(w)‘ S 1-4§ (n> ’
with probability 1 — o(1).

Proof. We begin the proof by showing

~

k
Jor(@) = f@)| < Yw

1=1

Pl @ EI0)) f(m)‘ 2 ‘f(a:wk(a;{a“)};l:l))) ~ f(=)

)

where in (D we use the fact such that 3", w; = 1. Then our focus turn to bounding the difference | f (2 (" @@ }i) )—f(x)].
With the modified Lipschitz condition (Assumption 4), we have

‘f(:n(m(ﬁ;{%(s)}ﬁzl))) _ f(w)‘ < (M []B% (w; Hw(rk(@;{@<s>}g:1)) B wH >]>1/dim'
2

We then separately discuss the two cases where (I) Hw(’"k(&?{ﬁ(s)}zzl)) —:I:H < ok (:E;{:E(S)}Zzl) and (II)

2
Hm(rmz;{@u)}::l)) _ m” > o (m; {x9}7_y).
2

Case I: Hw(m(ﬁ;{ﬁ@')}&:l)) _ :I;H < ok (w; {w(s)}?=1). We conclude
2

’f(ac(rk-,(i;{@“)}zzl))) _ f(m)’ < (ﬂ [15; (a:; on(x; {m(s) ?:1))])1/dim'

oS as)n @x: :E(S) n
Case II: Hm(m(m;{m( o) mH > 0k (a}; {a:(s) ?:1). Due to the assumption d; > W, we use Lemma 1
2

() n (ym . . .
and Theorem 1, which leads to Ha:(’“’“(w;{m( Hoo) wH < % < derir. According to Assumption 2, we obtain

2

dim
Hmm(a;{&(f)}zzm _ ‘”H
2 »”

ox(m; {@()}0_,)

S (115) B (@ on(a: 2)1) ).

(1 [B (2; 0x (2 {2y ))]) "
1—6 ’

i |B (i onl@: {a}i) | < Cue |B (@5 ou(a: 2} ) |

which yields

Flat @ @)  f(a)| <

According to Section 1.2 in Biau and Devroye, we have 11 [B (x; ox, (@; {(®}7_;))] < 2 with probability exceeding
1 — e~°* and complete the proof. O
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B Proof of Supervised Classification
This section presents the analysis of the supervised classification.

B.1 Proof of Theorem 4

Proof. First we decompose the error |[EL( f,, i) — Lop| as

[EL(fnk) = Lop| = EJ [f (@)1 [gn.r () # g(@)] p(de) < Eflf(iv)l L[ fo () = f(2)| = [f(2)]] n(d)

[ 15@)1[[fste) - Fos@)] = L i
s
+E [ 1@ |[Forto) - 1) = L | uao).

We then separately bound the two terms 73 and 75. For T}, we have

|| foste) - Fusta)| = L] 2 2y (- L),

where in (D we use the independence between the noises and the tail bound. Hence we can upper-bound 77 as

<2 [If@)ew ( 'é( Gl )mdm)sk”z“. ©)

We have . w? = k1. As for Ty, we follow the same proof strategy as in Lemma 3 and have

[Pnk(®) = flx)| < (1—6)" (M) " iy

and hence
o/dim a/dim
co(1=8) " T mmrma T A co(1=0) " iy daic
T2 S J- ( [B( dcnl)]) \f(sc)\,u(dw) $ J. ( [B( ,dcnt)]) SBdS
0 0
i a(/l3_+1>
— (] §)—oB+D) _ 4D 10
( ) np [B (SC; dcril)] crit ( )
The proof is thus completed by combining (9) and (10). O

B.2 Proof of Theorem 5

Proof. The proof basically follows that in Theorem 4. First we decompose the error [EL( fy, 1) — Lop| as

EL(fas) = Lonl = B [ f@)L1g00(@) # 9(2)] i) < [ 7(@)[1[1frl) - @) > |1(a)]] n(de)

e [Ir@i|
+E [ @l |

Fus@) = Fo(@) = L iz

<

&

!

1

Fo () —f(m)' S (=)l

2

| niaa.

2T,
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Then we separately bound the two terms 73 and 75. Term T} is bounded with the same way as in (9). The difference lies in
the analysis of T5. Following the same proof strategy as in proving Lemma 3, we obtain

(1 [B (; o (a5 {2)}7_1))])
1-6
According to Section 1.2 in Biau and Devroye, we have 11 [B (z; o (@; {(®}"_,))] to be distributed as U} ,,,. Then we

conclude . o
B (x; 0r (2 {x'*}5-1
T < EJ\f(a:)H |f(x)| < (#[ ( ¢ <(1E6)2} ))]) u(dw)

1/dim

For(@) = @) <

B [11@)1[(1= 9| @)™ < Vs ] u(da)

B [I@ (If(w)l < (f)lmm>u(dm) +E [17@1 (U > 2 ) u(ao)

Then we separately bound the two terms as

N

co )1/d1m

1 o 1/dim m(%
| If(w)|1<|f(w)|s(1_5)2<n) )u(dw)= O 1 (@)ln(dz)

<14f%>*2(27k)1/d"“ 3 J(li%ﬂ(znk)l/dim
0

s=0

B+1

B+1 dim
Po<li@i<ais(25) (3) 7

n

=PO<|f(x)<s)s

which concludes the proof. O

C Useful Facts

This section collects some useful facts for the sake of self-containing.

Lemma 4 (Lemma 13.5 in Boucheron et al. (2013)). Let S = {S; : t € T} be a countable class of measurable subsets of X
and let {a:(s) }Z=1 , %) € X be independent RVs drawn from the probability measure 1 [-]- Assume there exists a o such

that we have 1 (Sy) < (2 for all t € T. Denote D as 6 Z;O:O 277\ /H (2-0+1¢,S). prg < 5n(2, then we conclude

sup Z [ 1(x®) e Ay) (At)] < 3(Dc.

” teT

Corollary 3. Define D as 6 Z]O‘O:() 279\ H (2*(j+1), X). Assuming D < +/5n, we conclude

3D log 2/~

sup [, (B) —p(B)| < — +

up () — 4 (B) < 2 /5

with probability 1 —

Remark 7. If we set v = n~° and assume k > 3
>3

1 (B) > 2, we have (B) > £; (id) if u(B)

, then we have the following relations with probability 1 — n=¢: (i) if

, we have 11, (B) > £.

3 \?rﬂ‘

Proof. The proof is a direct consequence of Lemma 4. Set the sets S as the e-net of ' (Chapter 13 in Boucheron et al.
(2013)) and ¢ = 1. Easily, we can verify p(S;) < 1. Define RV Z as sup,cs ».._, Zs ¢, wWhere Z; is defined as

1(z® € A;) — u(A;). Then we conclude

1 1 2
P(Z—EZ)ﬁt)gIP(supZZst EZq+| > \ft> 26Xp( nt)7
n 2n

teT

where in D we use the fact |Z;; — EZ, ;| is bounded within [0, 1] and then invoke the Hoeffding inequality. Set ¢ as

A/ % then completes the proof.

O



