
Automatic Attention Pruning: Improving and Automating Model Pruning
using Attentions

Kaiqi Zhao Animesh Jain Ming Zhao
Arizona State University Meta Arizona State University

Abstract

Pruning is a promising approach to compress
deep learning models in order to deploy them
on resource-constrained edge devices. However,
many existing pruning solutions are based on
unstructured pruning, which yields models that
cannot efficiently run on commodity hardware;
and they often require users to manually explore
and tune the pruning process, which is time-
consuming and often leads to sub-optimal re-
sults. To address these limitations, this paper
presents Automatic Attention Pruning (AAP), an
adaptive, attention-based, structured pruning ap-
proach to automatically generate small, accurate,
and hardware-efficient models that meet user ob-
jectives. First, it proposes iterative structured
pruning using activation-based attention maps to
effectively identify and prune unimportant fil-
ters. Then, it proposes adaptive pruning policies
for automatically meeting the pruning objectives
of accuracy-critical, memory-constrained, and
latency-sensitive tasks. A comprehensive evalu-
ation shows that AAP substantially outperforms
the state-of-the-art structured pruning works for
a variety of model architectures. Our code
is at: https://github.com/kaiqi123/
Automatic-Attention-Pruning.git.

1 Introduction

Deep neural networks (DNNs) have substantial computa-
tional and memory requirements. As the use of deep learn-
ing grows rapidly on a wide variety of Internet of Things
and devices, the mismatch between resource-hungry DNNs
and resource-constrained devices also becomes increas-
ingly severe. Pruning is a promising approach to iden-

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

tify and remove the parameters that do not contribute sig-
nificantly to the accuracy of a DNN. Recent works based
on the Lottery Ticket Hypothesis (LTH) have achieved
great results in creating smaller and more accurate mod-
els (dubbed as “winning tickets”) through iterative prun-
ing with rewinding [Frankle and Carbin, 2018]. However,
LTH has only been shown to work with unstructured prun-
ing which, unfortunately, leads to models with low spar-
sity and difficult to accelerate on commodity hardware;
e.g., directly applying NVIDIA cuSPARSE on unstructured
pruned models can lead to a 60ˆ slowdown compared to
dense kernels on GPUs [Hill et al., 2017]. Moreover, most
pruning methods require users to explore and adjust multi-
ple hyper-parameters, which is time-consuming and often
leads to sub-optimal results; e.g., with LTH-based iterative
pruning, users need to determine how many parameters to
prune in each pruning round.

We propose Automatic Attention Pruning (AAP), an adap-
tive, attention-based, structured pruning solution to auto-
matically generate small, accurate, and hardware-efficient
models that meet users’ accuracy, size, and speed require-
ments. We improve the LTH-based iterative pruning frame-
work by proposing two methods. First, we propose a novel
attention pruning method to identify and remove unimpor-
tant filters. Specifically, we properly define an attention
mapping function that takes the 2D activation feature map
of a filter as input and outputs a 1D value used to indicate
the importance of the filter. This approach is more effective
than weight-value-based filter pruning [Renda et al., 2020,
Zhuang et al., 2020, Wang et al., 2019] because activation-
based attention values not only capture the features of in-
puts but also contain the information of convolution layers
that act as feature detectors for prediction tasks. Also, it
is better than previous activation-based filter pruning meth-
ods [Lin et al., 2020, Liu et al., 2017] since the accuracy of
its measurement does not depend on the amount of inputs.

Second, we propose an adaptive pruning method that au-
tomatically optimizes the pruning process according to
different user objectives. For latency-sensitive scenar-
ios like interactive virtual assistants, we propose FLOPs-
guaranteed pruning to achieve the best accuracy with the
acceptable inference speed; for memory-limited environ-

https://github.com/kaiqi123/Automatic-Attention-Pruning.git
https://github.com/kaiqi123/Automatic-Attention-Pruning.git

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

ments like embedded systems, we propose model-size-
guaranteed pruning to achieve the best accuracy and fit
the memory constraint; for accuracy-critical applications
such as those on self-driving cars, we propose accuracy-
guaranteed pruning to create the most resource-efficient
model with the acceptable accuracy loss. Given the tar-
get, our method adaptively controls the pruning aggressive-
ness by adjusting the global threshold used to prune fil-
ters. Moreover, it recognizes the difference in each layer’s
contribution to the model’s size and computational com-
plexity and uses a layer-wise threshold, calculated by di-
viding each layer’s remaining parameters or FLOPs by the
entire model’s remaining parameters or FLOPs, to prune
each layer with a differentiated level of aggressiveness.

The proposed AAP outperforms the related works signif-
icantly in all cases targeting accuracy loss, parameters re-
duction, and FLOPs reduction for a variety of model ar-
chitectures. For example, on ResNet-56 with CIFAR-10,
without accuracy drop, AAP achieves the largest parame-
ters reduction (79.11%), outperforming the related works
by 22.81% to 66.07%, and the largest FLOPs reduction
(70.13%), outperforming the related works by 14.13% to
26.53%. On ResNet-50 with ImageNet, for the same
level of parameters and FLOPs reduction, AAP achieves
the smallest accuracy loss, lower than the related works
by 0.08% to 2.61%; and for the same level of accuracy
loss, AAP reduces significantly more parameters (6.45%
to 29.61% higher than the related works) and more FLOPs
(0.82% to 17.2% higher than the related works).

In summary, our main contributions are: 1) a novel iter-
ative, structured pruning approach for finding the “win-
ning ticket” models that are hardware efficient; 2) a
new attention-based mechanism for accurately identifying
unimportant filters for pruning, which is much more ef-
fective than existing methods; and 3) an adaptive pruning
method that can automatically optimize the pruning pro-
cess according to diverse real-world scenarios.

2 Background and Related Works

Unstructured Pruning vs. Structured Pruning. Unstruc-
tured pruning (e.g., [LeCun et al., 1990, Han et al., 2015a,
Molchanov et al., 2017]) prunes individual elements in the
weight tensors of a model. It has less impact on model ac-
curacy, compared to structured pruning, because it is finer-
grained, but unstructured pruned models are hard to ac-
celerate on commodity hardware. Structured pruning is a
coarser-grained approach that prunes entire regular regions
of the weight tensors of a model. It is more difficult to
prune a model without causing accuracy loss using struc-
tured pruning, because by removing entire regions, it might
remove weight elements that are important to the final ac-
curacy. However, structured pruned models can be mapped
easily to general-purpose hardware and accelerated directly

with off-the-shelf hardware and libraries [He et al., 2018b].

One Shot Pruning vs. Iterative Pruning. One-shot
pruning prunes a pre-trained model and then retrains
it once, whereas iterative pruning prunes and retrains
the model in multiple rounds. Iterative pruning gen-
erally achieves much better performance than one-shot
pruning because multiple retraining phases help recover
the accuracy lost during pruning. In particular, recent
works based on the Lottery Ticket Hypothesis (LTH)
have achieved great results in creating smaller and more
accurate models through iterative pruning with rewind-
ing [Frankle and Carbin, 2018]. LTH posits that a dense
network has a sub-network, termed as a “winning ticket”,
which can achieve an accuracy comparable to the origi-
nal network. However, existing LTH-based works consider
only unstructured pruning, e.g., Iterative Magnitude Prun-
ing (IMP) [Frankle and Carbin, 2018, Frankle et al., 2019]
and Synflow [Tanaka et al., 2020], which, as discussed
above, are hardware-inefficient.

Automatic Pruning. For pruning to be useful in prac-
tice, it is important to automatically meet the prun-
ing objectives for diverse machine learning applications
and devices. Most pruning methods require users to
explore and tune multiple hyper-parameters, e.g., with
LTH-based pruning, users need to determine how many
parameters to prune in each round. Manual tuning
is time-consuming and often leads to sub-optimal re-
sults. Some works use learning-based methods to find
smaller models in a Neural Architecture Search (NAS) ap-
proach: AMC [He et al., 2018b], NAS [Zoph et al., 2018],
NT [Cai et al.,], and N2N [Ashok et al., 2017] use rein-
forcement learning, and GAL [Lin et al., 2019] uses adver-
sarial learning. But these methods have to explore a large
search space of all available layer-wise sparsity, which
is time consuming when neural networks are large and
datasets are complex.

Therefore, there is a great need for an automatic, iterative,
structured pruning solution that can automatically and ef-
ficiently generate small, accurate, and hardware-efficient
models. The challenges are three-fold.

First, how to effectively identify the insignificant parame-
ters in a model to prune? Existing works have explored
different mechanisms, e.g., L2-Norm in Soft Filter Pruning
(SFP) [He et al., 2018a], Soft Channel Pruning (SCP)
[Kang and Han, 2020] and EagleEye [Li et al., 2020a],
geometric median in FPGM [He et al., 2019], Hessian in
EigenDamage [Wang et al., 2019], Empirical Sensitivity
in Provable Filter Pruning (PFP) [Liebenwein et al., 2019],
adversarial knockoff features in SCOP [Tang et al., 2020],
polarization regularizer in Neuron-level Structured
Pruning (NSP) [Zhuang et al., 2020], LASSO regres-
sion in Channel Pruning (CP) [He et al., 2017], and
other information considering the relationship between

Kaiqi Zhao, Animesh Jain, Ming Zhao

neighboring layers (Gate Batch Normalization (GBN)
[You et al., 2019], Sparse Structure Selection (SSS)
[Huang and Wang, 2018], Hinge [Li et al., 2020b],
Pruning From Scratch (PFS) [Wang et al., 2020] and
Stripe-Wise Pruning (SWP) [Meng et al., 2020]). In com-
parison, activation-based attention, proposed in this paper,
can more effectively capture the importance of filters,
and pruning based on attention values can produce much
better models, as quantitatively shown in our evaluation
(Section 4).

Second, how to design an effective iterative pruning
process to recover the accuracy loss caused by struc-
tured pruning? LTH-based iterative pruning is a promis-
ing approach, but it has only been shown to work
with unstructured pruning such as IMP. Its counterpart
in structured pruning—Iterative L1-norm-based pruning
(ILP) [Renda et al., 2020], which removes filters based on
their L1-norm values, cannot effectively prune a model
while maintaining its accuracy. For example, ILP can prune
ResNet-50 by at most 11.5% of parameters when the max-
imum accuracy loss is limited to 1% on ImageNet. So
directly applying iterative pruning with existing weight-
magnitude-based structured pruning methods does not pro-
duce accurate pruned models. This paper proposes a novel
LTH-based iterative, structured pruning solution using at-
tentions, and it significantly outperforms ILP and other re-
lated structured pruning works that involve an iterative pro-
cess (GDP [Guo et al., 2021], ACTD [Wang et al., 2021],
Quantization and Pruning (QP) [Paupamah et al., 2020],
IMP-Refill and IMP-Regroup [Chen et al., 2022]).

The third challenge is how to automate the pruning pro-
cess so it does not require any human intervention?
The existing structured pruning works all require diffi-
cult hand-tuning of many hyper-parameters, e.g., DCP
[Zhuang et al., 2018] and MDP [Guo et al., 2020] need
multiple hyper-parameters to balance the original task-
specific loss and the additional pruning loss; VCNNP
[Zhao et al., 2019] requires careful settings of τ and θ to
decide which filters to prune; DMC [Gao et al., 2020] and
DeepHoyer [Yang et al., 2019] require parameters to de-
cide the regularization strength with different settings for
different datasets and models. To address this challenge,
this paper proposes a fully automated pruning solution that
can automatically generate pruned models that meet users’
diverse model accuracy, size, and speed requirements.

3 Methodology

Algorithm 1 lists the proposed adaptive structured prun-
ing for AAP. We improve LTH-based iterative pruning by
proposing activation-based attention pruning (Lines 7 and
8) and adaptive pruning policies (Lines 11–14), to automat-
ically and efficiently generate a pruned model that meets
the user’s different objectives. To represent pruning of

Algorithm 1 Adaptive Iterative Structured Pruning
1: Input: An uncompressed network, and the pruning target
2: Output: A pruned network that meets the target
3: [Initialize] Initialize a network fpx;M0

d W 0
0 q with the ini-

tial mask M0
“ t0, 1u|W0

0 |

4: [Save weights] Train the network for k epochs, yielding net-
work fpx;M0

d W 0
k q, and save weights W 0

k

5: [Train to converge] Train the network for E ´ k epochs to
converge, producing network fpx;M0

d W 0
Eq

6: for pruning round r (r ě 1) do
7: [Calculate attention] Calculate the attention value of each

filter using the attention mapping function F p¨q

8: [Prune] From W r´1
E , prune filters with an attention value

less than T rrs, producing a mask Mr and a network
fpx;Mr

d W r´1
E q

9: [Rewind Weights] Reset the remaining filters to W 0
k at

epoch k, producing network fpx;Mr
d W r´1

k q

10: [Rewind Learning Rate] Reset the learning rate schedule
to its state from epoch k

11: [Retrain] Retrain the unpruned filters for E ´ k epoch to
converge, yielding network fpx;Mr

d W r
Eq

12: [Evaluate] Evaluate the retrained network fpx;Mr
dW r

Eq

according to the target
13: [Reset Weights] If the target is not met, reset the weights

to an earlier round
14: [Adapt Threshold] Calculate the next threshold T rr ` 1s

15: end for

weights, we use a mask Mrϵ t0, 1u
|W r

| for each weight
tensor W r

t , where r is the pruning round number and t is
the training epoch. Therefore, the pruned network at the
end of training epoch E is represented by the element-wise
product MrdW r

E . Lines 3–5 are to train the original model
to completion while saving the weights at epoch k. Lines
6–15 represent a pruning round. Lines 7 and 8 prune the
model (discussed in Section 3.1). Lines 9 (optional) and 10
perform rewinding. Line 11 retrains the pruned model for
the remaining E ´ k epochs. Line 12 evaluates the pruned
model according to the pruning target. If the target is not
met, Line 13 resets the weights to an earlier round. Line 14
calculates the threshold for the next pruning round follow-
ing the adaptive pruning policy (discussed in Section 3.2)

3.1 Attention-based Filter Pruning

First, we propose that, compared with the weight values
of a filter, its activation values are more effective indica-
tors of finding unimportant filters to prune. Activations
like ReLu enable non-linear operations, and enable con-
volutional layers to act as feature detectors. If an activa-
tion value is small, then its corresponding feature detector
is not important for prediction tasks. On the other hand,
some filters, even though their weight values are small, can
still produce useful non-zero activation values that are im-
portant for learning features during backpropagation. We
present a visual motivation in Figure 1a. The figure shows

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

Original Augmented
filter_1 filter_2 filter_4filter_3

filter_5 filter_6 filter_8filter_7

filter_9 filter_10 filter_12filter_11

filter_13 filter_14 filter_16filter_15

Activation Outputs

(a) Filter activation outputs.

Inputs

n
i Filters

Outputs

ReLuConv2d

F
0

i

k
i

k
i

n
i-1

F
1

i

k
i

k
i

n
i-1

F
i

k
i

k
i

n
i-1

X
i

w
i-1

h
i-1

n
i-1

A
i

w
i

h
i

n
i

(b) Convolution layer tensors.

Figure 1: (a) Activation outputs of 16 filters, and (b) input
and output tensors of a convolution layer.

the activation outputs of 16 filters of a convolution layer on
one input image. The first image on the left is the origi-
nal image, and the second image is the input features after
data augmentation. We observe that some filters extract im-
age features with high activation patterns, e.g., the 6th and
12th filters. In comparison, the activation outputs of some
filters are close to zero, such as the 2nd, 14th, and 16th
filters. Therefore, from visual inspection, removing filters
with weak activation patterns is likely to have a low impact
on the final accuracy of the pruned model.

Thus the key problem is to design a proper function
that can reflect the useful information of the activa-
tion feature maps of each filter. Previous activation-
based filter pruning methods address this problem us-
ing different forms of activations: NN Slimming
[Liu et al., 2017] measures Average Percentage of Zeros
(APoZ) of the activations; HRank [Lin et al., 2020] con-
ductes a Singular Value Decomposition (SVD) for ac-
tivations; AP+Coreset [Dubey et al., 2018] computes the
mean value of activations; Provable Filter Pruning (PFP)
[Liebenwein et al., 2019] computes the sensitivity of acti-
vations. However, these data-driven approaches require a
large amount of inputs (e.g., 50,000 of ImageNet images
for NN Slimming and all training samples for AP+Coreset)
to achieve a reasonably accurate prediction and leads to
data-dependent compressed models. Instead, we aim to de-
sign a function that is data-independent and robust to in-
puts: no matter what the input image is, the filters that can
extract useful image features should always be maintained.

Activation-based attention is a good indicator of
neurons regarding their ability to capture features
[Zagoruyko and Komodakis, 2016]. Attention has been
proven to be useful in various tasks, including neural ma-
chine translation [Bahdanau et al., 2014], object localiza-
tion [Oquab et al., 2015], and knowledge transfer for image
classification [Zagoruyko and Komodakis, 2016]. Also,
motivated by human attention mechanism theories, atten-
tion maps can be obtained by computing a Jacobian of net-
work outputs regarding the inputs [Simonyan et al., 2013],
guided backpropagation [Springenberg et al., 2014], or
converting the linear classification layer into a convolu-
tional layer [Zhou et al., 2016]. However, the effectiveness
of using attention as a mechanism for model compression
is currently unexplored, and it imposes new challenges,
e.g., the attention mapping function defined in Attention
Transfer [Zagoruyko and Komodakis, 2016] outputs a
flattened 2D matrix representing the ability to capture
features of the whole convolution layer, not individual
filters in that layer, and cannot be used to prune individual
filters.

We address the challenge of effectively identifying in-
significant filters in a network with novel designs for the
attention mapping function. We start with some notations
shown in Figure 1b. For the ith 2D convolution (conv2d)
layer, let XiϵRni´1

ˆhi´1
ˆwi´1

denote the input features,
and F i

j ϵR
ni´1

ˆki
ˆki

be the jth filter, where hi´1 and wi´1

are the height and width of the input features, respectively,
ni´1 is the number of input channels, ni is the number
of output channels, and ki is the kernel size of the fil-
ter. The activation of the jth filter F i

j after ReLu mapping
is therefore denoted by Ai

jϵR
hi

ˆwi

. The proposed atten-
tion mapping function takes a 2D activation Ai

jϵR
hi

ˆwi

of filter F i
j as input, and outputs a 1D value which will

be used as an indicator of the importance of filters. We
consider three forms of activation-based attention mapping
functions, where p ě 1 and aik,l denotes every element of
Ai

j :

1. Attention Mean (mean of the activation values)

FmeanpAi
jq “ 1

hiˆwi

řhi

k“1

řwi

l“1

ˇ

ˇ

ˇ
aik,l

ˇ

ˇ

ˇ

p

;

2. Attention Max (max of the activation values)

FmaxpAi
jq “ maxl“1,hiˆwi

ˇ

ˇ

ˇ
aik,l

ˇ

ˇ

ˇ

p

;

3. Attention Sum (sum of the activation values)

FsumpAi
jq “

řhi

k“1

řwi

l“1

ˇ

ˇ

ˇ
aik,l

ˇ

ˇ

ˇ

p

.

From these three, we choose Attention Mean, FmeanpAi
jq

with p equal to 1 as the indicator to identify and prune
unimportant filters. Also, in contrast to the related works,
our proposed attention mapping function is robust to the

Kaiqi Zhao, Animesh Jain, Ming Zhao

Algorithm 2 Accuracy-guaranteed Adaptive Pruning
1: Input: A converged uncompressed network and the target

accuracy loss AccLossTarget
2: Output: The smallest model meeting the accuracy target
3: Initialize: T “ 0.0, λ “ 0.01.
4: for pruning round r (r ě 1) do
5: Prune the model using T rrs (Refer to Lines 7 and 8 in

Algorithm 1)
6: Rewind weights and learning rate (Refer to Lines 9 and 10

in Algorithm 1)
7: Train the pruned model, and evaluate its accuracy Accrrs

(Refer to Lines 11 and 12 in Algorithm 1)
8: Calculate the accuracy loss AccLossrrs:

AccLossrrs “ Accr0s ´ Accrrs

9: if AccLossrrs ă AccLossTarget then
10: if the changes of model size are within 0.1% for several

rounds then
11: Terminate
12: else
13: λrr ` 1s “ λrrs

14: T rr ` 1s “ T rrs ` λrr ` 1s

15: end if
16: else
17: Find the last acceptable round k
18: if k has been used to roll back for several times then
19: Mark k as unacceptable
20: Go to Step 17
21: else
22: Roll back model weights to round k
23: λrr`1s “ λrrs{2.0pC`1q (C is the number of times

for rolling back to round k)
24: T rr ` 1s “ T rks ` λrr ` 1s

25: end if
26: end if
27: end for

inputs, including real data or arbitrary random vectors; the
attention values are calculated by only one batch of ran-
domly chosen training data. See Section 4.4 for ablation
studies on the choices of attention functions and the effect
of data for evaluating attention values.

To the best of our knowledge, we are the first to study the
effectiveness of using attention theories for model com-
pression tasks such as structured pruning and solve the
challenges by designing novel attention mapping functions
that are effective for filter pruning.

3.2 Adaptive Iterative Pruning

Our approach to pruning is to automatically and efficiently
generate a pruned model that meets the users’ different ob-
jectives. Automatic pruning means that users do not have to
figure out how to configure the pruning process. Efficient
pruning means that the pruning process should produce the
user-desired model as quickly as possible. Users’ pruning
objectives can vary depending on the usage scenarios: 1)
Accuracy-critical tasks, like those used by self-driving cars,

have stringent accuracy requirements, which are critical for
safety, but do not have strict limits on their computing and
storage usages; 2) Memory-constrained tasks, like those
deployed on microcontrollers, have very limited available
memory to store the models but do not have strict accuracy
requirements; and 3) Latency-sensitive tasks, like those
employed by virtual assistants where timely responses are
desirable but accuracy is not a hard constraint.

In order to achieve automatic and efficient pruning, we
propose three adaptive pruning policies to provide 1)
Accuracy-guaranteed pruning which produces the most
resource-efficient model with the acceptable accuracy loss;
2) Memory-constrained pruning which generates the most
accurate model within a given memory footprint; and 3)
FLOPs-constrained pruning which creates the most accu-
rate model within a given computational intensity. Specif-
ically, our adaptive pruning method automatically adjusts
the global threshold (T) used in our iterative structured
pruning algorithm (Algorithm 1) to quickly find the model
that meets the pruning objective. Other objectives (e.g.,
limiting a model’s energy consumption) as well as multi-
objective optimization can also be readily supported (See
Section 4.5). We take Accuracy-guaranteed Adaptive Prun-
ing, described in Algorithm 2, as an example to show the
procedure of adaptive pruning. Algorithm 2 is a specific
version of Algorithm 1 with the acceptable accuracy loss
set as the pruning target. Other versions with memory and
FLOPs targets are included in Appendix A.1.

In the algorithm, T controls the aggressiveness of pruning,
and λ determines the increment of T at each pruning round.
Pruning starts conservatively, with T initialized to 0, so that
only completely useless filters that cannot capture any fea-
tures are pruned. After each round, if the model accuracy
loss is below the target accuracy loss, it is considered “ac-
ceptable”, and the algorithm increases the aggressiveness
of pruning by incrementing T by λ, with λ initialized to
0.01. As pruning becomes increasingly aggressive, the ac-
curacy eventually drops below the target in a certain round
which is considered “unacceptable”. When this happens,
our algorithm rolls back the model weights and pruning
threshold to the last acceptable round where the accuracy
loss is within the target, and restarts the pruning from there
but more conservatively—it increases the threshold more
slowly by cutting the λ value by half. If this still does not
lead to an acceptable round, the algorithm cuts λ by half
again and restarts again. If after several trials, the accuracy
loss is still not acceptable, the algorithm rolls back even
further and restarts from an earlier round. The rationale
behind this adaptive algorithm is that the aggressiveness of
pruning should accelerate when the model is far from the
pruning target and decelerate when it is close to the target.

Note that the value of λ continuously decreases as the algo-
rithm gets close to the target, which guarantees the conver-
gence of the pruned model: when λ becomes sufficiently

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

small, T does not grow much anymore, which means no
more filters are pruned and the model converges. See Sec-
tion 4.4 for an example. The algorithm terminates when the
changes of model size is within 0.1% for several rounds.

The proposed algorithms can automatically—the only two
parameters T and λ are automatically tuned—generate
pruned models that meet diverse user requirements in
model accuracy, size, and speed. Moreover, by making
LTH-based iterative pruning adaptive, the algorithms can
automatically find the best models that meet user require-
ments. Compared to related works which require time-
consuming manual tuning of pruning parameters, AAP is
the first to achieve these goals which are crucial to the prac-
tical use of model pruning for diverse real-world scenarios.

3.3 Layer-aware Threshold Adjustment

While adapting the global pruning threshold using the
above discussed policies, our pruning method further con-
siders the difference in each layer’s contribution to model
size and complexity and uses differentiated layer-specific
thresholds to prune the layers. As shown in Figure 1b, in
terms of the contribution to model size, the number of pa-
rameters of layer i can be estimated as N i “ npi´1q ˆki ˆ

ki ˆni; in terms of the contribution to computational com-
plexity, the number of FLOPs of layer i can be estimated as
F i “ 2 ˆ hi ˆ wi ˆ N i. A layer that contributes more to
the model’s size or FLOPs is more likely to have redundant
filters to prune without affecting the model’s accuracy.

Therefore, to effectively prune a model while maintain-
ing its accuracy, we need to treat each layer differently
at each round of the iterative pruning process based on
its current contributions to the model size and complex-
ity. Specifically, our adaptive pruning method calculates
a weight for each layer based on its contribution and then
uses this weight to adjust the current global threshold and
derive a local threshold for the layer. If the goal is to re-
duce model size, the weight is calculated as each layer’s
number of remaining parameters N irrs divided by the
model’s total number of remaining parameters NTotalrrs:
wirrs “

Ni
rrs

NTotalrrs
, where r is the pruning round. If the goal

is to reduce model computational complexity, the weight
is calculated as each layer’s remaining FLOPs F irrs di-
vided by the model’s total remaining FLOPs FTotalrrs:
wirrs “

F i
rrs

FTotalrrs
. Then the threshold of layer i is cal-

culated as: T irrs “ T rrs ˆ wirrs. These layer-specific
thresholds are then used to prune the layers in the current
pruning round; they replace the global threshold T rrs used
to prune filters in Line 8 of Algorithm 1.

Compared to the related works which often use a sin-
gle threshold to prune parameters for the entire network
[Han et al., 2015b, Zhao et al., 2019], AAP’s layer-specific
thresholds allow it to generate better pruned models, and

Table 1: Implementation details

Dataset Model Learning Rate Schdeluder Training
Epochs

Weight
decayInitial LR Decay

Epochs

MNIST LeNet-5 0.1 N/A 100 0.0
LeNet-300-100 0.0012 N/A 100 0.0

CIFAR-10

ResNet-56 0.1 [91, 136] 182 2.00E-04
ResNet-50 0.1 [91, 136] 182 2.00E-04
ShuffleNet 0.1 [60, 120, 160] 200 4.00E-05

MobileNet-V2 0.1 [150, 225] 300 4.00E-05
VGG-16 0.05 [150, 180, 210] 240 5.00E-04
VGG-19 0.05 [150, 180, 210] 240 5.00E-04
LeNet-5 0.0002 N/A 24 1.00E-04

Tiny-
ImageNet

ResNet-101 0.1 [150, 225] 300 2.00E-04
VGG-19 0.1 [150, 225] 300 2.00E-04

ImageNet ResNet-50 0.256 [30, 60, 80] 90 1.00E-04

these thresholds are also fully automatically tuned.

4 Evaluation

We did an extensive evaluation on diverse mod-
els (ResNet, VGG, MobileNet, LeNet and Shuf-
fleNet) and datasets (MNIST [Xiao et al., 2017],
CIFAR-10 [Krizhevsky et al., 2009], Tiny-ImageNet
[Le and Yang, 2015] and ImageNet [Deng et al., 2009]),
and provided a thorough comparison to SOTA works
(discussed in Section 2 and 3). For the proposed AAP,
we consider different pruning policies: 1) meet accuracy
target while minimizing the number of model parameters
(AAP-P) or FLOPs (AAP-F); 2) meet parameter reduction
target while minimizing accuracy loss (AAP); and 3) meet
FLOP reduction target while minimizing accuracy loss
(AAP). Multi-objective, multi-constraint pruning with
AAP is also considered (Section 4.5).

Implementation Details We implemented AAP on Py-
Torch version 1.6.0 and conducted experiments on four
Nvidia RTX 2080 GPUs. The implementation details are
present in Table 1. The learning rate decays with a factor
of 0.1 at decay epochs. Nesterov SGD optimizer is used
with a momentum of 0.9. The batch size is set to 256,
128, 256, and 64 for the models on MNIST, CIFAR-10,
Tiny-ImageNet, and ImageNet, respectively. Simple data
augmentation (random crop and random horizontal flip) is
used for all training images.

4.1 Results on CIFAR-10

In all cases targeting accuracy, model size, and compute
intensity, the proposed method AAP significantly outper-
forms the recent related works. Table 2 shows the re-
sults from the widely used ResNet models on CIFAR-10.
For example, for ResNet-56, without accuracy drop, AAP
achieves the largest parameters reduction (79.11%), out-
performing the related works by 22.81% to 66.07%, and
the largest FLOPs reduction (70.13%), outperforming the
related works by 14.13% to 26.53%. With 70% of pa-
rameters reduction, AAP achieves the smallest accuracy

Kaiqi Zhao, Animesh Jain, Ming Zhao

Table 2: Results from ResNet-56 and ResNet-50 on CIFAR-10.
For the Acc. ↓ (%) column, a negative value means an increase in
accuracy. The baseline Top-1 accuracy of ResNet-56 and ResNet-
50 is 92.84% and 91.83%, respectively.

Model Target Target
Level Method Acc.

↓ (%)
Params.
↓ (%)

FLOPs.
↓ (%)

ResNet-56

Acc.
↓ (%)

0%

SCOP 0.06 56.30 56.00
HRank 0.09 42.40 50.00
SWP 0.03 42.60 43.60
ILP 0.00 13.04 -
NSP -0.03 - 47.00
EagleEye -1.40 - 50.41
AAP-P -0.33 79.11 56.97
AAP-F -0.08 65.78 70.13

1%

CP 1.00 50.00 -
ILP 1.00 41.18 -
GAL 0.52 44.80 48.50
AAP-P 0.86 88.23 70.09
AAP-F 0.77 78.69 81.19

Params.
↓ (%)

70%

DCP -0.01 70.30 -
GBN 0.03 66.70 -
HRank 2.38 68.10 -
AAP -0.60 71.57 -

50%
SFP 1.33 50.60 -
FPGM 0.10 50.60 -
AAP -1.06 53.89 -

FLOPs.
↓ (%)

75% HRank 2.38 - 74.10
AAP 0.97 - 75.97

70%
DeepHoyer 2.54 - 71.00
NSP 1.17 - 71.00
AAP 0.30 - 71.44

55%

CP 1.00 - 50.00
SFP 1.33 - 52.60
FPGM 0.10 - 52.60
AMC 0.90 - 50.00
SCP 0.46 - 51.50
AAP -0.63 - 52.92

ResNet-50 Params.
↓ (%) 60% AMC -0.02 60.00 -

AAP -0.86 64.81 -

loss (-0.6%), outperforming the related works by 0.59% to
2.98%. Also, with 70% of FLOPs reduction, AAP achieves
the smallest accuracy loss (0.3%), outperforming the re-
lated works by 0.87% to 2.24%. Note that the proposed
AAP also produces a pruned model that reaches 0.6% or
1.06% higher accuracy than the original model but with
only 28.43% or 46.11%, respectively, of the original pa-
rameters. Such small and accurate models are useful for
many real-world applications.

Table 3 shows the results from other model architectures.
For example, on VGG-16, without any accuracy drop, AAP
achieves the largest FLOPs reduction (61.17%), outper-
forming the related works by 0.27% to 22.1%. AAP can
also effectively compress models (MobileNet, ShuffleNet)
that are already designed to be compact. For example, on
MobileNet-V2, without an accuracy drop, AAP achieves
the largest FLOPs reduction (58.99%), speeding up this al-
ready lightweight model by more than half and outperform-
ing the related works by 12.77% to 30.28%.

4.2 Results on ImageNet and Tiny-ImageNet

Table 4 shows that AAP can also significantly outperform
the SOTA methods for various models trained on ImageNet
and Tiny-ImageNet. For example, on ResNet-50 with Ima-
geNet, for the same level of accuracy loss, AAP reduces

Table 3: Results from VGG, LetNet, MobileNet, and ShuffleNet
models on CIFAR-10. For the Acc. ↓ (%) column, a negative
value means an increase in accuracy. The baseline Top-1 accuracy
of VGG-16, VGG-19, MobileNet-V2, ShuffleNet, and LeNet-5
are 93.64%, 93.90%, 94.46%, 93.28%, and 69.67%, respectively.

Model Target Target
Level Method Acc.

↓ (%)
Params.
↓ (%)

FLOPs.
↓ (%)

VGG-16

Acc.
↓ (%) 0%

PFS -0.19 - 50.00
VCNNP 0.07 - 60.90
Hinge 0.43 - 39.07
HRank 0.53 - 53.60
AAP-F -0.16 72.85 61.17

Params.
↓ (%)

70%

IMP-Refill 0.10 67.00 -
IMP-Refill+ 0.63 70.00 -
IMP-Regroup 0.10 69.00 -
AAP -0.27 70.04 -

80%

IMP-Refill 0.55 80.00 -
IMP-Refill+ - 80.00 -
IMP-Regroup -0.05 80.00 -
AAP -0.09 81.21 -

VGG-19

Acc.
↓ (%) 0%

EigenDamage 0.19 78.18 37.13
NN Slimming 1.33 80.07 42.65
PFS -0.31 - 52.00
AAP-P -0.26 85.99 56.22
AAP-F -0.03 87.63 61.31

FLOPs.
↓ (%) 85% EigenDamage 1.88 - 86.51

AAP 1.81 - 89.02

MobileNet
-V2

Acc.
↓ (%) 0%

GDP -0.26 - 46.22
MDP -0.12 - 28.71
SCOP 0.24 - 40.30
DMC -0.26 - 40.00
AAP-P -0.28 79.68 55.67
AAP-F -0.26 76.79 58.99

ShuffleNet Acc.
↓ (%) 0% QP 0.31 28.57 -

AAP-P 0.19 50.87 26.67

LeNet-5 Params.
↓ (%) 90% ILP 10.24 89.60 -

AAP 1.85 90.38 -

significantly more parameters (6.45% to 29.61% higher
than the related works) and more FLOPs (0.82% to 17.2%
higher than the related works); For the same level of pa-
rameters or FLOPs reduction, AAP achieves the smallest
accuracy loss, lower than the related works by 0.08% to
2.61%. On VGG-19 with Tiny-ImageNet, for the same
level of parameters reduction, AAP achieves significantly
lower accuracy loss than NN Slimming [Liu et al., 2017]
by 11%. On ResNet-101 with Tiny-ImageNet, without ac-
curacy loss, AAP achieves the highest parameters reduc-
tion (92.72%), outperforming the related works by 17.72%
to 47.72%.

4.3 Results on MNIST

Table 5 shows that AAP can also significantly outperform
the related works for LeNet-5 and LetNet-300-100 trained
on MNIST. On LeNet-5, with 99% of parameters reduction,
AAP achieves the smallest accuracy loss (-0.01%), outper-
forming the related works by 0.01% to 0.36%. Note that
ADMM-NN-S [Ma et al., 2021] applies quantization after
pruning, and AAP can also be further improved using quan-
tization. Even without quantization, with the same level of
parameters reduction, AAP achieves a lower accuracy loss
than ADMM-NN-S by 0.21%. On LeNet-300-100, with
90% of parameters reduction, AAP achieves a lower accu-
racy loss than PFP [Liebenwein et al., 2019] by 0.03%.

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

Table 4: Results from ResNet-50 on ImageNet, and VGG-
19 and ResNet-101 on Tiny-ImageNet. For the Acc. ↓ (%)
column, a negative value means an increase in accuracy. The
baseline Top-1 accuracy of ResNet-50 (ImageNet), VGG-19
(Tiny-ImageNet), and ResNet-101 (Tiny-ImageNet) are 75.06%,
59.64%, and 52.93%, respectively.

Model Target Target
Level Method Acc.

↓ (%)
Params.
↓ (%)

FLOPs.
↓ (%)

ResNet-50

Acc.
↓ (%)

0%
PFP-A 0.22 18.10 10.80
AAP-P -0.12 24.55 11.26
AAP-F 0.18 24.09 11.62

1%

SSS-41 0.68 0.78 15.06
ILP 1.00 11.50 -
AAP-P 0.64 30.39 22.70
AAP-F 0.83 29.26 32.26

Params.
↓ (%)

40%
SSS-26 4.30 38.82 -
Hrank 1.17 36.70 -
AAP 1.69 40.85 -

30% PFP-B 0.92 30.10 -
AAP 0.80 31.19 -

FLOPs.
↓ (%) 30% SSS-32 1.94 - 31.08

AAP 0.57 - 31.88

VGG-19

Acc.
↓ (%)

3% EigenDamage 3.36 61.87 66.21
AAP-P 2.75 73.69 79.87
AAP-F 2.61 72.58 78.97

Params.
↓ (%) 60%

NN Slimming 10.66 60.14 -
AAP -0.34 60.21 -

ResNet-101 Acc.
↓ (%)

0%

NN Slimming 1.36 75.00 75.00
GAL 0.50 45.00 76.00
DHP 0.01 50.00 75.00
ACTD -0.44 51.00 75.00
AAP-P -0.57 92.72 76.58

Table 5: Results from LetNet-5 and LetNet-300-100 on MNIST.
For the Acc. ↓ (%) column, a negative value means an increase
in accuracy. The baseline Top-1 accuracy of LetNet-5 and LeNet-
300-100 are 99.11% and 97.34%, respectively.

Model Target Target
Level Method Acc.

↓ (%)
Params.
↓ (%)

LeNet-300-100 Params.
↓ (%) 90% PFP 0.41 84.32

AAP 0.38 89.94

LeNet-5 Params.
↓ (%) 99%

PFP 0.35 92.37
AP+Coreset-K 0.00 99.39
AP+Coreset-S 0.01 99.48
AP+Coreset-A 0.01 99.48
ADMM-NN-S 0.20 98.86
AAP -0.01 99.34

4.4 Ablation Study

The effect of attention-based iterative pruning. We fix
the percentage of filters that the pruning process removes
in each round, which is non-adaptive iterative pruning,
and compare using our proposed attention values (termed
IAP) with 1) using the conventional weight values, e.g.
the L1-Norm of filters (as in Iterative L1-Norm Prun-
ing (ILP) [Renda et al., 2020]), and 2) using the L1-Norm
of filters divided by the filter size (termed ILP-Mean) to
choose which filters to remove. Figure 2a shows the Top-
1 accuracy of VGG-16 with the parameters reduction of
9.92%, 57.73% and 69.56% pruned by IAP, ILP, and ILP-
Mean on CIFAR-10. IAP leads to a higher accuracy than
the others by 0.1% to 0.58%.

The effect of attention mapping functions. Using VGG-
16 on CIFAR-10 as an example, first, we analyze differ-
ent types of attention mapping functions (discussed in Sec-
tion 3.1), i.e., Attention Mean (p “ 1), Attention Sum

(p “ 1), and Attention Max (p “ 1), when used in one-
shot attention-based pruning. With a parameter reduction
of 57.73%, Attention Mean leads to the lowest top-1 accu-
racy loss, lower than Attention Sum and Attention Max by
0.25% and 0.13%, respectively. Then, we analyze Atten-
tion Mean with different values of p. When p is set to 1,
it leads to the lowest accuracy loss: 0.38% when p “ 1 vs
0.42% when p “ 2 and 0.47% when p “ 4. This confirms
our choice of Attention Mean with p “ 1 in our evaluation.

The effect of adaptive pruning. Using ResNet-56 on
CIFAR-10 as an example, we show in Figure 2b how
the adaptation of the pruning threshold (following Algo-
rithm 2) affects accuracy loss and parameters reduction
over the pruning rounds. From Round 1 to Round 24, the
accuracy loss of the pruned model is lower than the target
accuracy loss (1%), so the algorithm increases the pruning
aggressiveness gradually by increasing the threshold. At
Round 25, the accuracy loss exceeds the target, so the algo-
rithm rolls back the model weights and the pruning thresh-
old back to Round 24, and restarts the pruning from there
more conservatively. The above process repeats until af-
ter Round 39, the model size converges, and the algorithm
terminates at reducing 88.23% of parameters.

The effect of Layer-aware Threshold Adjustment. AAP
considers the importance of each layer by adjusting dif-
ferentiated layer-specific thresholds. Figure 2c shows the
layer-wise sparsity of a pruned VGG-19 with a total pa-
rameters reduction of 85.99% on CIFAR-10. More filters
are pruned from higher layers than lower layers.

The effect of inputs for evaluating attention values. The
importance of each filter is evaluated by its attention value,
which is calculated by one batch of randomly chosen train-
ing data after each pruning round (Line 7 in Algorithm 1).
The attention values are not sensitive to the inputs because
the model is converged from the training phase. As an ex-
ample, Figure 3 shows the attention value of each filter of 4
convolution layers of ResNet-50 on ImageNet, given eight
different batches of inputs, including randomly chosen real
images and arbitrary random vectors. The attention value
of each filter is consistent across different batches.

4.5 Discussions

Comparison to related works. The above results
validate that 1) the proposed activation-based atten-
tion pruning is more effective than weight-magnitude-
based pruning (e.g., EigenDamage [Wang et al., 2019], ILP
[Renda et al., 2020], NSP [Zhuang et al., 2020]) in finding
unimportant filters; 2) the proposed activation-based at-
tention pruning is better than other activation-based prun-
ing techniques that are based on different forms of activa-
tion feature maps, such as NN Slimming [Liu et al., 2017],
HRank [Lin et al., 2020], AP+Coreset [Dubey et al., 2018]

Kaiqi Zhao, Animesh Jain, Ming Zhao

9.92 57.73 69.56
Param eters Reduct ion (%)

92.4

92.6

92.8

93.0

93.2

93.4

93.6

93.8

94.0

To
p

-1
Te

st
 A

cc
u

ra
y

 (
%

) Method
IAP (Ours)

ILP

ILP-Mean

(a) Effect of Attention Pruning (b) Effect of Adaptive Pruning

1 2 3 4 5 6 7 8 9 10111213141516
Layer Num ber

0

10

20

30

40

50

60

70

80

90

La
y

e
rw

is
e

 P
a

ra
m

.
R

e
d

u
ct

io
n

 (
%

)

(c) Layer-wise Sparsity

Figure 2: (a) Top-1 accuracy of VGG-16 iteratively pruned by the proposed attention pruning vs. L1-Norm based pruning on CIFAR-
10. (b) Accuracy loss and parameter reduction over the pruning rounds as the pruning threshold is adapted following Algorithm 2. (c)
Layer-wise sparsity of a pruned VGG-19 on CIFAR-10.

0 10 20 30 40 50 60
Filter Num ber

0
2500
5000
7500

10000
12500
15000

A
tt

e
n

ti
o

n

Real 1

Real 2

Real 3

Real 4

Random 1

Random 2

Random 3

Random 4

(a) Conv1

0 50 100 150 200 250
Filter Num ber

0

500

1000

1500

2000

A
tt

e
n

ti
o

n

Real 1

Real 2

Real 3

Real 4

Random 1

Random 2

Random 3

Random 4

(b) Group1.Block2.Conv3

0 100 200 300 400 500
Filter Num ber

0
100
200
300
400
500
600

A
tt

e
n

ti
o

n

Real 1

Real 2

Real 3

Real 4

Random 1

Random 2

Random 3

Random 4

(c) Group2.Block3.Conv3

0 200 400 600 8001000
Filter Num ber

0
20
40
60
80

100

A
tt

e
n

ti
o

n

Real 1

Real 2

Real 3

Real 4

Random 1

Random 2

Random 3

Random 4

(d) Group3.Block5.Conv3

Figure 3: Attention values of filters from 4 convolution lay-
ers of ResNet-50 on ImageNet, given 8 different batches of
inputs, including randomly chosen real images and arbi-
trary random vectors.

and PFP [Liebenwein et al., 2019]; and 3) the proposed
adaptive pruning can achieve better results than other au-
tomatic pruning methods (e.g., AMC [He et al., 2018b] and
GAL [Lin et al., 2019]).

Inference speedup. The reduction in model complexity in
FLOPs that AAP achieves does translate to real speedup
in model inference. We conducted inference experiments
using PyTorch framework on Raspberry Pi 3B+, a widely
used Internet-of-Things (IoT) platform. Table 6 shows our
method significantly improves the inference speed.

Extension to multi-objective optimization. Our method
can be readily extended to support multiple objectives and
multiple constraints for optimizing the pruned model in
terms of accuracy, size, and/or speed simultaneously. Ta-
ble 7 shows two examples from pruning VGG-19 with
CIFAR-10. In the first example, the objective is to mini-

Table 6: Inference speedup on Raspberry Pi. For each type of
model, the two rows are two pruned models from the same un-
compressed model with different levels of parameters reduction.

Model and Dataset Target Acc. ↓ (%) FLOPs. ↓ (%) Speedup
ResNet-56
(CIFAR-10) 0% -0.10 33.77 1.20ˆ

-0.09 56.33 1.49ˆ

VGG-16
(CIFAR-10) 1% -0.17 59.51 2.13ˆ

0.59 73.89 3.60ˆ

ResNet-50
(Tiny-ImageNet) 5% -3.92 35.06 1.01ˆ

-1.62 58.16 1.49ˆ

Table 7: Multi-objective optimization on VGG-19 (CIFAR-10).

Optimization Objectives Constraints Acc.
↓ (%)

Params.
↓ (%)

FLOPs
↓ (%)

Minimize Accuracy Loss Params. ↓ >80% 1.20 83.11 80.60and FLOPs ↓ >80%
Maximize FLOP Reduction Acc. ↓ <1% 0.15 89.11 62.51and Params. Reduction

mize the accuracy loss under the constraints of 80% reduc-
tion in both FLOPs and parameters. In the second example,
the objective is to maximize both the FLOPs reduction and
parameters reduction given no more than 1% accuracy loss.

5 Conclusions

This paper proposes Automatic Attention Pruning (AAP),
an adaptive, attention-based, structured pruning solution
to automatically and efficiently generate small, accurate,
and hardware-efficient models that meet diverse user re-
quirements. We show that activation-based attention is a
more precise indicator for identifying unimportant filters
to prune than the commonly used weight magnitude value.
We also offer an effective way to perform structured prun-
ing in an adaptive process and find small and accurate sub-
networks that are at the same time hardware efficient. Fi-
nally, we argue that automatic pruning is essential for prun-
ing to be useful in practice, and propose an adaptive method
that can automatically meet diverse user objectives in terms
of model accuracy, size, and inference speed but without
user intervention. Our results confirm that our solution out-
performs existing structured pruning approaches by a large
margin.

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

6 Acknowledgments

We thank the anonymous reviewers for their feedback. This
work is partly supported by National Science Foundation
awards CNS-1955593 and OAC-2126291 and an Amazon
Machine Learning Research Award.

References

[Ashok et al., 2017] Ashok, A., Rhinehart, N., Beainy, F.,
and Kitani, K. M. (2017). N2n learning: Network to
network compression via policy gradient reinforcement
learning. arXiv preprint arXiv:1709.06030.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Ben-
gio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[Cai et al.,] Cai, H., Chen, T., Zhang, W., Yu, Y., and
Wang, J. Reinforcement learning for architecture search
by network transformation. corr abs/1707.04873 (2017).

[Chen et al., 2022] Chen, T., Chen, X., Ma, X., Wang, Y.,
and Wang, Z. (2022). Coarsening the granularity: To-
wards structurally sparse lottery tickets. In International
Conference on Machine Learning, pages 3025–3039.
PMLR.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-
J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In 2009 IEEE confer-
ence on computer vision and pattern recognition, pages
248–255. Ieee.

[Dubey et al., 2018] Dubey, A., Chatterjee, M., and Ahuja,
N. (2018). Coreset-based neural network compression.
In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 454–470.

[Frankle and Carbin, 2018] Frankle, J. and Carbin, M.
(2018). The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635.

[Frankle et al., 2019] Frankle, J., Dziugaite, G. K., Roy,
D. M., and Carbin, M. (2019). Stabilizing the lottery
ticket hypothesis. arXiv preprint arXiv:1903.01611.

[Gao et al., 2020] Gao, S., Huang, F., Pei, J., and Huang,
H. (2020). Discrete model compression with resource
constraint for deep neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1899–1908.

[Guo et al., 2020] Guo, J., Ouyang, W., and Xu, D. (2020).
Multi-dimensional pruning: A unified framework for
model compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 1508–1517.

[Guo et al., 2021] Guo, Y., Yuan, H., Tan, J., Wang, Z.,
Yang, S., and Liu, J. (2021). Gdp: Stabilized neural net-
work pruning via gates with differentiable polarization.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5239–5250.

[Han et al., 2015a] Han, S., Mao, H., and Dally, W. J.
(2015a). Deep compression: Compressing deep neural
networks with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

[Han et al., 2015b] Han, S., Pool, J., Tran, J., and Dally,
W. (2015b). Learning both weights and connections for
efficient neural network. In Advances in neural infor-
mation processing systems, pages 1135–1143.

[He et al., 2018a] He, Y., Kang, G., Dong, X., Fu, Y.,
and Yang, Y. (2018a). Soft filter pruning for accelerat-
ing deep convolutional neural networks. arXiv preprint
arXiv:1808.06866.

[He et al., 2018b] He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-
J., and Han, S. (2018b). Amc: Automl for model com-
pression and acceleration on mobile devices. In Pro-
ceedings of the European Conference on Computer Vi-
sion (ECCV), pages 784–800.

[He et al., 2019] He, Y., Liu, P., Wang, Z., Hu, Z., and
Yang, Y. (2019). Filter pruning via geometric median
for deep convolutional neural networks acceleration. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4340–4349.

[He et al., 2017] He, Y., Zhang, X., and Sun, J. (2017).
Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1389–1397.

[Hill et al., 2017] Hill, P., Jain, A., Hill, M., Zamirai, B.,
Hsu, C., Laurenzano, M. A., Mahlke, S., Tang, L., and
Mars, J. (2017). Deftnn: Addressing bottlenecks for
dnn execution on gpus via synapse vector elimination
and near-compute data fission. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 786–799.

[Huang and Wang, 2018] Huang, Z. and Wang, N. (2018).
Data-driven sparse structure selection for deep neural
networks. In Proceedings of the European conference
on computer vision (ECCV), pages 304–320.

[Kang and Han, 2020] Kang, M. and Han, B. (2020).
Operation-aware soft channel pruning using differen-
tiable masks. In International Conference on Machine
Learning, pages 5122–5131. PMLR.

[Krizhevsky et al., 2009] Krizhevsky, A., Hinton, G., et al.
(2009). Learning multiple layers of features from tiny
images. Technical report, Citeseer.

Kaiqi Zhao, Animesh Jain, Ming Zhao

[Le and Yang, 2015] Le, Y. and Yang, X. (2015). Tiny im-
agenet visual recognition challenge. CS 231N, 7(7):3.

[LeCun et al., 1990] LeCun, Y., Denker, J. S., and Solla,
S. A. (1990). Optimal brain damage. In Advances in
neural information processing systems, pages 598–605.

[Li et al., 2020a] Li, B., Wu, B., Su, J., and Wang, G.
(2020a). Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In European Conference on
Computer Vision, pages 639–654. Springer.

[Li et al., 2020b] Li, Y., Gu, S., Mayer, C., Gool, L. V.,
and Timofte, R. (2020b). Group sparsity: The hinge
between filter pruning and decomposition for network
compression. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
8018–8027.

[Liebenwein et al., 2019] Liebenwein, L., Baykal, C.,
Lang, H., Feldman, D., and Rus, D. (2019). Provable fil-
ter pruning for efficient neural networks. arXiv preprint
arXiv:1911.07412.

[Lin et al., 2020] Lin, M., Ji, R., Wang, Y., Zhang, Y.,
Zhang, B., Tian, Y., and Shao, L. (2020). Hrank: Filter
pruning using high-rank feature map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1529–1538.

[Lin et al., 2019] Lin, S., Ji, R., Yan, C., Zhang, B., Cao,
L., Ye, Q., Huang, F., and Doermann, D. (2019). To-
wards optimal structured cnn pruning via generative ad-
versarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 2790–2799.

[Liu et al., 2017] Liu, Z., Li, J., Shen, Z., Huang, G., Yan,
S., and Zhang, C. (2017). Learning efficient convolu-
tional networks through network slimming. In Proceed-
ings of the IEEE international conference on computer
vision, pages 2736–2744.

[Ma et al., 2021] Ma, X., Lin, S., Ye, S., He, Z., Zhang,
L., Yuan, G., Tan, S. H., Li, Z., Fan, D., Qian, X., et al.
(2021). Non-structured dnn weight pruning—is it ben-
eficial in any platform? IEEE transactions on neural
networks and learning systems, 33(9):4930–4944.

[Meng et al., 2020] Meng, F., Cheng, H., Li, K., Luo, H.,
Guo, X., Lu, G., and Sun, X. (2020). Pruning filter in
filter. arXiv preprint arXiv:2009.14410.

[Molchanov et al., 2017] Molchanov, D., Ashukha, A.,
and Vetrov, D. (2017). Variational dropout sparsifies
deep neural networks. In International Conference on
Machine Learning, pages 2498–2507. PMLR.

[Oquab et al., 2015] Oquab, M., Bottou, L., Laptev, I., and
Sivic, J. (2015). Is object localization for free?-weakly-
supervised learning with convolutional neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 685–694.

[Paupamah et al., 2020] Paupamah, K., James, S., and
Klein, R. (2020). Quantisation and pruning for neural
network compression and regularisation. In 2020 Inter-
national SAUPEC/RobMech/PRASA Conference, pages
1–6. IEEE.

[Renda et al., 2020] Renda, A., Frankle, J., and Carbin, M.
(2020). Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389.

[Simonyan et al., 2013] Simonyan, K., Vedaldi, A., and
Zisserman, A. (2013). Deep inside convolutional net-
works: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034.

[Springenberg et al., 2014] Springenberg, J. T., Dosovit-
skiy, A., Brox, T., and Riedmiller, M. (2014). Striving
for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806.

[Tanaka et al., 2020] Tanaka, H., Kunin, D., Yamins,
D. L., and Ganguli, S. (2020). Pruning neural net-
works without any data by iteratively conserving synap-
tic flow. Advances in neural information processing sys-
tems, 33:6377–6389.

[Tang et al., 2020] Tang, Y., Wang, Y., Xu, Y., Tao, D., Xu,
C., Xu, C., and Xu, C. (2020). Scop: Scientific con-
trol for reliable neural network pruning. arXiv preprint
arXiv:2010.10732.

[Wang et al., 2019] Wang, C., Grosse, R., Fidler, S., and
Zhang, G. (2019). Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In International
Conference on Machine Learning, pages 6566–6575.
PMLR.

[Wang et al., 2021] Wang, W., Chen, M., Zhao, S., Chen,
L., Hu, J., Liu, H., Cai, D., He, X., and Liu, W. (2021).
Accelerate cnns from three dimensions: a comprehen-
sive pruning framework. In International Conference
on Machine Learning, pages 10717–10726. PMLR.

[Wang et al., 2020] Wang, Y., Zhang, X., Xie, L., Zhou, J.,
Su, H., Zhang, B., and Hu, X. (2020). Pruning from
scratch. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 34, pages 12273–12280.

[Xiao et al., 2017] Xiao, H., Rasul, K., and Vollgraf, R.
(2017). Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint
arXiv:1708.07747.

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

[Yang et al., 2019] Yang, H., Wen, W., and Li, H. D.
(2019). Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. arXiv preprint
arXiv:1908.09979.

[You et al., 2019] You, Z., Yan, K., Ye, J., Ma, M., and
Wang, P. (2019). Gate decorator: Global filter pruning
method for accelerating deep convolutional neural net-
works. arXiv preprint arXiv:1909.08174.

[Zagoruyko and Komodakis, 2016] Zagoruyko, S. and
Komodakis, N. (2016). Paying more attention to
attention: Improving the performance of convolutional
neural networks via attention transfer. arXiv preprint
arXiv:1612.03928.

[Zhao et al., 2019] Zhao, C., Ni, B., Zhang, J., Zhao, Q.,
Zhang, W., and Tian, Q. (2019). Variational convolu-
tional neural network pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2780–2789.

[Zhou et al., 2016] Zhou, B., Khosla, A., Lapedriza, A.,
Oliva, A., and Torralba, A. (2016). Learning deep fea-
tures for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2921–2929.

[Zhuang et al., 2020] Zhuang, T., Zhang, Z., Huang, Y.,
Zeng, X., Shuang, K., and Li, X. (2020). Neuron-level
structured pruning using polarization regularizer. Ad-
vances in Neural Information Processing Systems, 33.

[Zhuang et al., 2018] Zhuang, Z., Tan, M., Zhuang, B.,
Liu, J., Guo, Y., Wu, Q., Huang, J., and Zhu, J. (2018).
Discrimination-aware channel pruning for deep neural
networks. arXiv preprint arXiv:1810.11809.

[Zoph et al., 2018] Zoph, B., Vasudevan, V., Shlens, J.,
and Le, Q. V. (2018). Learning transferable architec-
tures for scalable image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710.

Kaiqi Zhao, Animesh Jain, Ming Zhao

A Appendix

In the supplementary materials, we first discuss the adaptive pruning policy with memory and FLOPs targets in Section A.1.
Then we introduce the results of the additional experiments in Section A.2.

A.1 Adaptive Pruning Policy

A.1.1 Memory-constrained Adaptive Pruning

The Memory-constrained Adaptive Pruning Algorithm is shown in Algorithm 3.

Algorithm 3 Memory-constrained Adaptive Pruning
1: Input: Target Parameters Reduction ParamTarget
2: Output: A small pruned model with an acceptable model size
3: Initialize: T “ 0.0, λ “ 0.01.
4: for pruning round r (r ě 1) do
5: Prune the model using T rrs

6: Rewind weights and the learning rate
7: Train the pruned model, and calculate its remaining number of parameters Paramrrs

8: Calculate the parameter reduction: ParamRedrrs: ParamRedrrs “ Paramr0s ´ Paramrrs

9: if ParamRedrrs ă ParamTarget then
10: if the changes of model size are within 0.1% for several rounds then
11: Terminate
12: else
13: λrr ` 1s “ λrrs

14: T rr ` 1s “ T rrs ` λrr ` 1s

15: end if
16: else
17: Find the last acceptable round k
18: if k has been used to roll back for several times then
19: Mark k as unacceptable
20: Go to Step 17
21: else
22: Roll back model weights to round k
23: λrr ` 1s “ λrrs{2.0pC`1q (C is the number of times for rolling back to round k)
24: T rr ` 1s “ T rks ` λrr ` 1s

25: end if
26: end if
27: end for

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

A.1.2 FLOPs-constrained Adaptive Pruning

The FLOPs-constrained Adaptive Pruning Algorithm is shown in Algorithm 4.

Algorithm 4 FLOPs-constrained Adaptive Pruning
1: Input: Target FLOPs Reduction FLOPsTarget
2: Output: A small pruned model with an acceptable FLOPs
3: Initialize: T “ 0.0, λ “ 0.01.
4: for pruning round r (r ě 1) do
5: Prune the model using T rrs

6: Rewind weights and the learning rate
7: Train the pruned model, and calculate its remaining FLOPs FLOPsrrs

8: Calculate the parameters reduction: FLOPsRedrrs: FLOPsRedrrs “ FLOPsr0s ´ FLOPsrrs

9: if FLOPsRedrrs ă FLOPsTarget then
10: if the changes of FLOPs are within 0.1% for several rounds then
11: Terminate
12: else
13: λrr ` 1s “ λrrs

14: T rr ` 1s “ T rrs ` λrr ` 1s

15: end if
16: else
17: Find the last acceptable round k
18: if k has been used to roll back for several times then
19: Mark k as unacceptable
20: Go to Step 17
21: else
22: Roll back model weights to round k
23: λrr ` 1s “ λrrs{2.0pC`1q (C is the number of times for rolling back to round k)
24: T rr ` 1s “ T rks ` λrr ` 1s

25: end if
26: end if
27: end for

Kaiqi Zhao, Animesh Jain, Ming Zhao

A.2 Additional Experiments

A.2.1 The Effect of Rewinding Epoch

To understand how the rewinding impacts the accuracy of the pruned models, we analyze stability to pruning, which is
defined as the L2 distance between the masked weights of the pruned network and the original network at the end of
training. We validate the observations that for deep networks, rewinding to very early stages is sub-optimal as the network
has not learned considerably by then; and rewinding to very late training stages is also sub-optimal because there is not
enough time to retrain. Specifically, Figure 4a shows the Top-1 test accuracy of the pruned ResNet-50 with a parameter
reduction of 16.26% on ImageNet when the learning rate is rewound to different epochs, and Figure 4b shows the stability
values at the corresponding rewinding epochs. We observe that there is a region, 65 to 80 epochs, where the resulting
accuracy is high. We find that the L2 distance closely follows this pattern, showing a large distance for early training
epochs and a small distance for later training epochs. Our findings show that rewinding to 75%-90% of training time leads
to good accuracy.

25 55 65 70 80 85 88
Rewinding Epoch

69

70

71

72

73

74

75

To
p

-1
 T

e
st

 A
cc

u
ra

cy

IAP

(a) Top-1 Test Accuracy

25 55 65 70 80 85 88
Rewinding Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

L2
 D

is
ta

n
ce

IAP

(b) Stability to Pruning

Figure 4: The effect of the rewinding epoch (x-axis) on (a) Top-1 test accuracy, and (b) pruning stability, for pruned
ResNet-50 with a parameter reduction of 16.26% on ImageNet.

A.2.2 The Effect of Attentions

Figure 5 shows the attention of each filter of the first convolution layer of ResNet-50 on ImageNet with different values
of p (p=1, 2, 4). The setting where p is equal to 1 tends to be best since it promotes the effectiveness of the pruning by
enabling the gap between the mean values of the useful and useless filters to be large.

(a) p=1 (b) p=2 (c) p=4

Figure 5: Attentions of each filter of the first convolution layer of ResNet-50 on ImageNet with different values of p
(p “ 1, 2, 4).

Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions

A.2.3 Inference Speedup on CPU

Figure 6 shows the speedup of ResNet-50 with a parameter reduction of 34.54% and 57.07%, respectively, on one Intel(R)
Xeon(R) Silver 4215R CPU. We run it for 10 trails. The input image size is 224 ˆ 224. The average throughput of the
original ResNet-50 for 10 trails is 3.67fps.

(a) Speedup (b) Throughput

Figure 6: The illustration of (a) the speedup and (b) the throughput of ResNet-50 with a parameter reduction of 34.54%
and 57.07%, respectively, on one Intel(R) Xeon(R) Silver 4215R CPU. We run it for 10 trails. The input image size is
224 ˆ 224. The average throughput of the original ResNet-50 is 3.67fps.

A.2.4 Inference Speedup on Raspberry Pi

ResNet-56 on CIFAR-10. Figure 7 shows the speedup of ResNet-56 with a FLOP reduction of 33.77% and 56.33%,
respectively, on Raspberry Pi 3B+. We run it for 10 trails. The input image size is 32 ˆ 32. The average throughput of the
original ResNet-56 for 10 trails is 17.63fps.

(a) Speedup (b) Throughput

Figure 7: The illustration of (a) the speedup and (b) the throughput of ResNet-56 with a FLOP reduction of 33.77% and
56.33%, respectively, on Raspberry Pi 3B+. We run it for 10 trails. The input image size is 32ˆ32. The average throughput
of the original ResNet-56 is 17.63fps.

VGG-16 on CIFAR-10. Figure 8 shows the speedup of VGG-16 with a FLOPs reduction of 59.51% and 73.89%, respec-
tively, on Raspberry Pi 3B+. We run it for 10 trails. The input image size is 32ˆ32. The average throughput of the original
VGG-16 for 10 trails is 1.77fps.

(a) Speedup (b) Throughput

Figure 8: The illustration of (a) the speedup and (b) the throughput of VGG-16 with a FLOP reduction of 59.51% and
73.89%, respectively, on Raspberry Pi 3B+. We run it for 10 trails. The input image size is 32 ˆ 32. The average
throughput of the original VGG-16 is 1.77fps.

Kaiqi Zhao, Animesh Jain, Ming Zhao

A.2.5 Attention Distributions

Figure 9 shows the distribution of the attention values of each convolutional layer of the original ResNet-50 and pruned
ResNet-50 with a parameter reduction of 96.31% on ImageNet. Specifically, given one batch of images, the models do the
inference once. We first measure the attention value (p “ 1) of each filter for each image, and then we calculate its average
attention values for one batch of images.

Original Model

Original Model
Pruned Model

Pruned Model

Figure 9: The the distribution of the attention values of each convolutional layer of the original ResNet-50 and the pruned
ResNet-50 with a parameter reduction of 96.31% on ImageNet.

	Introduction
	Background and Related Works
	Methodology
	Attention-based Filter Pruning
	Adaptive Iterative Pruning
	Layer-aware Threshold Adjustment

	Evaluation
	Results on CIFAR-10
	Results on ImageNet and Tiny-ImageNet
	Results on MNIST
	Ablation Study
	Discussions

	Conclusions
	Acknowledgments
	Appendix
	Adaptive Pruning Policy
	Memory-constrained Adaptive Pruning
	FLOPs-constrained Adaptive Pruning

	Additional Experiments
	The Effect of Rewinding Epoch
	The Effect of Attentions
	Inference Speedup on CPU
	Inference Speedup on Raspberry Pi
	Attention Distributions

