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Abstract

Image captioning offers a computational process
to understand the semantics of images and convey
them using descriptive language. However, auto-
mated captioning models may not always generate
satisfactory captions due to the complex nature
of the images and the quality/size of the train-
ing data. We propose an interactive captioning
framework to improve machine-generated cap-
tions by keeping humans in the loop and perform-
ing an online-offline knowledge acquisition (KA)
process. In particular, online KA accepts a list
of keywords specified by human users and fuses
them with the image features to generate a read-
able sentence that captures the semantics of the
image. It leverages a multimodal conditioned cap-
tion completion mechanism to ensure the appear-
ance of all user-input keywords in the generated
caption. Offline KA further learns from the user
inputs to update the model and benefits caption
generation for unseen images in the future. It is
built upon a Bayesian transformer architecture
that dynamically allocates neural resources and
supports uncertainty-aware model updates to mit-
igate overfitting. Our theoretical analysis also
proves that Offline KA automatically selects the
best model capacity to accommodate the newly
acquired knowledge. Experiments on real-world
data demonstrate the effectiveness of the proposed
framework.

1 INTRODUCTION

Image captioning is the process of understanding image se-
mantics and generating text descriptions. The former entails
extracting features of entities, scenes, and their interactions
from an image, while the latter involves integrating the
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extracted features and generating readable captions. Exist-
ing works usually focus on developing automated models,
where images are the sole input to the model at the inference
stage [Hossain et al., 2019, Al Sulaimi et al., 2021]. How-
ever, automated models may make errors, which leads to
inaccurate captions. Besides, when processing images with
multiple entities and complex scenes, the focus of automated
models may deviate from the focus of a human user, result-
ing in unsatisfactory captions. In those cases, automated
models do not allow users to control the caption genera-
tion. It hinders the broader applicability of these models,
especially in critical domains (e.g., medicine, security).

Interactive image captioning offers a solution to the above
issues by involving humans in the loop. Specifically, users
can provide a sequence of keywords (i.e., informative words
that capture the image’s important semantics) as additional
input to guide the caption generation process. Compared
with fully automated captioning, interactive captioning is
under-explored with only a few existing works [Zhang et al.,
2017, Jia and Li, 2020, Huang et al., 2021]. We provide
a high-level summary of existing approaches in Figure 1.
Specifically, the bilateral caption generation [Zhang et al.,
2017] approach predicts words before and after the user-
input keywords. However, user inputs must be consecu-
tive words, limiting the flexibility of user interaction. The
contextualized keyword encoding [Huang et al., 2021] ap-
proach encodes user-input keywords as the loose guidance
for sentence generation. However, it does not guarantee
all user-input words appear in the generated caption. The
double-ended keyword encoding [Jia and Li, 2020] approach
allows a user to specify multiple words at the beginning and
the end of a sentence and leverages a sequential decoding
network to predict other words. However, words at the
beginning of a sentence may be non-informative (e.g.,’a’,
’the’). In addition, it cannot guarantee that the user-input
words at the end will appear in the generated caption.

For human-in-the-loop image captioning, we identify two
challenges: 1) Acquiring knowledge from users through ef-
fective and natural human-machine interactions. Ideally, an
interactive model should allow users to control caption gen-
eration with minimum effort. However, existing approaches
suffers several limitations, as discussed above. 2) Encoding
such knowledge to improve the model’s performance in fu-
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Figure 1: Illustration of interactive caption generation approaches given user-input words. Compared with existing methods (e.g., Bilateral
caption generation, Contextualized keyword encoding, Double-ended keyword encoding), the proposed framework allows users to specify
keywords at any position, and user-input words are guaranteed to appear in the generated caption.

ture captioning tasks. Ideally, an interactive model should be
able to learn from the users. However, existing approaches
mainly focus on the current image for user interaction. The
knowledge is not encoded into model parameters. Given
new images, the model always requires the aid from users to
generate satisfactory captions, which may incur an excessive
burden.

To address those challenges, we propose a knowledge ac-
quisition framework for interactive captioning that signif-
icantly improves the knowledge acquisition (KA) process
from users. As shown in Figure 2, the whole process in-
cludes two stages: 1) Online KA, where the user interacts
with the model by specifying several keywords, which are
leveraged as additional inputs and fused with the image data
to generate a complete caption. 2) Offline KA, where the
keywords and generated captions are considered weak super-
vision to update model parameters. The updated model can
generate better captions in the future even without aid from
users and ultimately reduce users’ burden. An illustrative
example is provided in Figure 3.

For online KA, the proposed model introduces a multimodal
conditioned caption completion (MC3) mechanism, which
leverages user-input keywords as a starting point and inserts
other words to formulate a complete caption. The proposed
MC3 module also makes extensions to existing captioning
methods to generate controllable captions. In prior works,
user-input keywords are restricted to specific positions[Jia
and Li, 2020], or treated as soft guidance rather than hard
constraint[Huang et al., 2021], which limits the user’s flexi-
bility for knowledge sharing. In contrast, the proposed MC3

module generates sentences through insertion operations,
which guarantees user-input words to appear in the com-
pleted sentence as a hard constraint, and thus provides an
effective way for users to control the caption generation
process. In addition, the proposed model does not have
positional restrictions on keywords so that users can focus
on selecting the most informative keywords.

For offline KA, the keywords and generated captions are
used to update the model. To support effective model up-
dates, we propose an expandable Bayesian transformer as
the building block, which introduces extensions to the con-
ventional transformer architecture [Vaswani et al., 2017].
The conventional architecture uses the dot-product attention
and feedforward layers to process the input sequence. The
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Figure 2: Schematic view of the proposed framework. For online
KA, the model takes user-input keywords as hard constraints to
generate captions (If keywords are unavailable, the model automat-
ically predicts captions with no constraints). The model leverages
offline KA to update parameters and encode user knowledge.

proposed Bayesian transformer introduces an Indian buffet
process (IBP) mask to control the attended embeddings by
the attention layer and the activated neurons in the feed-
forward layer. During offline KA, the model is updated
to encode the knowledge from the user, and an IBP mask
will dynamically allocate additional neural resources. In
addition, the Bayesian transformer also supports uncertainty
estimation, which is used to filter out the noises and mitigate
overfitting during model updates. Therefore, the proposed
framework can effectively learn from the user to enhance
its capability of predicting captions in the future. Our theo-
retical analysis (See Theorem 1) shows that dynamic neural
resource allocation optimally adjusts the model capacity to
accommodate the newly acquired knowledge according to
the Bayesian Information Criterion (BIC).

Our main contributions are: (i) a knowledge acquisition
framework for human-in-the-loop image captioning, where
knowledge queries are formulated as user-input keywords
to support effective knowledge sharing; (ii) an online KA
process that treats user-input words as a hard constraint
in caption generation while providing flexibility for user
interaction; (iii) an offline KA mechanism to effectively
learn from users to improve the model performance in the
future.

2 RELATED WORKS

We provide an overview of existing works that are most
relevant to the proposed work.

Image captioning. Image captioning is an integrated task of
computer vision and natural language processing, and exist-
ing models typically include a vision encoder and language
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Figure 3: An illustrative example. Given an image, the user in-
teracts with the model by providing several keywords, which are
used to generate a complete caption via online KA. The results are
used to update the model via offline KA. Given a new image, the
updated model can generate better captions without the aid of users.
In contrast, an automated model may generate less satisfactory
captions.

model. In recent years, attention-based image captioning
models are becoming popular because they consider the
spatial aspects of the image and attend to different regions
during the caption generation process. For vision encoder,
existing works develops region-based attention [Ge et al.,
2019, Cornia et al., 2018], graph-based attention [Yao et al.,
2019, Shi et al., 2020], patch-based attention [Huang et al.,
2019, Pan et al., 2020], etc. For language models, popular
architectures include recurrent neural network [Huang et al.,
2019, Zhu et al., 2020], transformer [Guo et al., 2020b, Luo
et al., 2021], etc. Different from automated captioning, in-
teractive captioning relies on multimodal text generation,
where the image captioning is conditioned on both the im-
age and the user inputs. Interactive image captioning is a
relatively under-explored research topic. Existing works
leverage keywords as additional input to generate captions
with diverse contextual emphasis, which can be applied in
an interactive setting. [Zhang et al., 2017] proposes a bilat-
eral LSTM network to generate words before and after the
user-input keyword. However, user input is restricted to ad-
jacent words. To improve the flexibility of user interaction,
[Jia and Li, 2020] allows a user to specify multiple words
at the beginning and the end of a sentence and leverages an
asynchronous bidirectional decoding network to complete
the rest of the words. [Huang et al., 2021] encodes multiple
keywords through a contextualized encoder as the loose
guidance for sentence generation. However, they cannot
guarantee all user-input words to appear in the generated
caption. In recent years, constrained text generation models
have been explored in natural language processing. Con-
strained Beam search [Anderson et al., 2017, Hokamp and
Liu, 2017] typically leverages a finite-state machine to keep
several states of enforcing the constraints over resulting out-
put sequences. However, a large number of states may incur
high computational costs. [Miao et al., 2019] involves a
sampling mechanism where the constraints are placed in

a template, and other words are added through sampling.
However, the quality of generated caption is heavily depen-
dent on the templates.

Transfer Learning. The offline knowledge acquisition in-
volves model updates to encode the new knowledge learned
from the user into model parameters. It is related to transfer
learning, where a pre-trained model is finetuned so that it
can perform better in specific tasks [Zhuang et al., 2020].
A widely-used baseline is finetuning an entire pre-trained
model, but it requires keeping a new set of network weights
for each task. For parameter-efficient model updates, one
way is to sparsely update a small subset of parameters of the
model [Guo et al., 2020a, Sung et al., 2021]. Another way
is to add new parameters to the input or model [Karimi Ma-
habadi et al., 2021, Sung et al., 2022], and the Adapter
[Houlsby et al., 2019] is a representative approach widely
used in natural language processing and computer vision.
The Adapter is a small residual module plugged into inter-
mediate layers of the model to allow finetuning only a small
set of parameters. However, for existing approaches, the
user has to manually determine the size of additional neural
resources allocated for finetuning. In contrast, the proposed
method leverages an Indian buffet process (IBP) mask to
dynamically allocate additional neural resources to encode
new knowledge from users.

Knowledge acquisition. Knowledge acquisition is a pro-
cess of acquiring information from human or other sources
and formalizing information structure to perform certain
tasks [Kidd, 2012]. For image captioning, [Zhou et al.,
2019, Huang et al., 2020] propose to extract knowledge
from external corpora and construct a graph network. [Chen
et al., 2021a, Cao et al., 2020] propose to leverage linguis-
tic knowledge transferred from the large-scale pretraining.
In summary, prior works focus on KA from static external
sources, while another important knowledge source (i.e.,
human users) is overlooked. Our work aims to fill this gap.

Bayesian neural network In Bayesian neural network
(BNN) [Goan and Fookes, 2020], the layer weights and
network outputs are treated as the variables, and the goal of
training is to find the marginal distributions that best fit the
data. A drawback of the Bayesian setting is the increased
trainable parameters. However, it should be noted that the
image encoder typically uses pre-trained weights from off-
the-shelf models. It does not have the Bayesian setting or
additional parameters.

3 METHODOLOGY

The workflow of the proposed framework includes two
stages: online KA and offline KA. We first summarize the
problem formulation, and then provide details about the two
stages. Main notations and the network architecture are
given in Appendices A and C.
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3.1 Problem Formulation

Given the input image denoted as Iraw, a user may choose
to provide several keywords denoted as Z = [z1, z2, ..., zM ].
The interactive captioning model takes those keywords as
additional inputs and generates a complete caption Ŷ . The
above process is referred to as online KA. Moreover, the
model should ideally learn from the user to perform better
in the future. To this end, we also consider Ŷ as weak
supervision to update the model. After that, if a new image
Inew in the same specialized domain is provided, the model
should automatically generate satisfactory captions as Ŷ new

even without aid from the user. The above process is referred
to as offline KA.

3.2 Online Knowledge Acquisition

We consider encoder-decoder, a typical architecture for im-
age captioning models with an encoder to extract image
features and a decoder to generate textual descriptions. For
the encoder, we leverage a pre-trained network as the image
feature extractor to generate a three-dimensional feature
map I , which is a compact representation of the input image
Iraw.

I = Encoder(Iraw) (1)

For the rest of the paper, we let f(·) denote the transforma-
tion through a feed-forward layer, fReLU(·) for additional
ReLU activation, f softmax(.) for softmax activation, fEm(·)
for embedding layer, and fLn(·) for layer normalization.

We use an Bayesian transformer as the backbone of the de-
coder. Specifically, each word xn in the current incomplete
caption and its position n are transformed into an embedding
vector bn = fEm(xn) + fEm(n).

bn is then processed by the expandable Bayesian trans-
former for decoding. The proposed framework dynamically
allocates neural resources to encode ever-growing knowl-
edge learned from users. To this end, we leverage the ex-
pandable embedding and the expandable feedforward layer.
Intuitively, the expandable embeddings are learnable em-
bedding vectors of pseudo tokens, which contain additional
information not captured by actual word tokens. The model
can attend to both the pseudo tokens’ embeddings and actual
words’ embeddings. The pseudo tokens are organized as a
two-dimensional matrix S. Each column of S is considered
a pseudo token that the model can selectively attend to, and
a column-wise mask v is deployed to control whether a
specific column (i.e., pseudo token) can be attended. The
output is

βr,c = Sr,cvc (2)

where (r, c) are row and column indices. The expandable
embeddings have a Bayesian setting. Every entry of S has a
Gaussian prior:

Sr,c ∼ N (µ0, σ0) (3)

and the mask v has an Indian buffet process (IBP) prior
[Ghahramani and Griffiths, 2006]

uc ∼ Beta(a0, b0), πc =
∏c

c′=1
uc′ , vc ∼ Bern(πc)

(4)
For simplicity, Eq (4) can be re-written as

vc ∼ IBP(a0, b0) (5)

Intuitively, if vc = 1, the model’s attention to column c is
enabled, and if vc = 0 the attention is disabled. The expand-
able embedding offers a few benefits: 1) It allows encoding
additional information not captured in actual words’ embed-
dings; 2) It encourages only a few columns to be enabled for
attention at the beginning, but more columns to be enabled
when the model acquires knowledge, and thus essentially
allocates more neural resources. We then transform b and
β into query, key, and value variables:

cQ =WQb, cK =WKconcat[b,β],

cV =WV concat[b,β]
(6)

where {WQ,WK ,WV } are weight matrices, and
concat[·, ·] denotes concatenation. A dot-product self at-
tention with normalization is applied in a similar way to the
conventional transformer.

õn = selfAttn(concat[b,β])

= fLn(softmax(
(cQn )

⊤cK√
d

)cV + bn)
(7)

where d is the length of vector. Intuitively, Eqs (6) integrates
the semantic information of a word with other words and
the expandable embeddings through the attention from cQ

to cV and cK . õn is then processed by an expandable
feedforward layer f ex. The expandable feedforward layer
also introduces a Bayesian setting. Denote the output of
dot-product attention as õn, the layer’s weight matrix as W
and column-wise mask as ζ, the output is calculated as

f(õn) = (W ◦ ζ)õn

where Wr,c ∼ N(θ0, s0), ζc ∼ IBP(α0, β0)
(8)

where ◦ denotes column-wise multiplication. Again, ζ con-
trols the dynamic neural resource allocation. If ζc = 0,
the c-th column of the weight matrix W is deactivated and
makes no contribution to the output. As more knowledge
is acquired, additional columns will be activated through
model updates. The output on of the expandable Bayesian
transformer is calculated as

on = fLn(õn(1 + f(õn))) (9)

Multimodal Conditioned Caption Completion (MC3)
In an interactive setting, the user provides keywords to
guide the model to generate captions. Ideally, user-input
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Figure 4: The expandable Bayesian transformer

Figure 5: An example of caption completion

keywords shall appear in the generated captions. We design
the MC3 module with insertion operations to achieve this
goal. It takes user-input keywords as hard constraints and
keeps inserting words until the output is a complete caption.
Specifically, during caption generation, we maintain two
sequences: the incomplete caption and the constraint list.
Two special tokens are introduced as ‘<start>’ and ‘<end>’,
denoting the start and end of a caption. The initial incom-
plete caption contains only the ‘<start>’ token. The initial
constraint list contains all user-input keywords, and it is
then appended by the ‘<end>’ token for convenience. The
model sequentially predicts the next word to be inserted
between the current incomplete caption and the first word in
the constraint list. We also introduce another special token
‘<null>’, which indicates no actual words to be inserted into
the slot. Once the model predicts ‘<null>’, the first word in
the constraint list is added to the incomplete caption. Since
this word as a constraint is satisfied, it is removed from the
constraint list. The model keeps predicting the words to
be inserted until the constraint list is empty. An illustrative
example of insertion-based caption completion is provided
in Figure 5.

Denote the incomplete caption at the current iteration as X
and the constraint list as Z = [z1, ..., zM ] where zm is the
m-th keyword. The inserted word ŷ is predicted by

ŷ = MC3(I,X,Z) (10)

Eq. (10) summarizes the process at a high level, and the
details are provided as follows. First, each word xn in
the current incomplete caption, along with its position n
is transformed into an embedding vector bn. We use the
Bayesian transformer as the backbone for decoding.

on = selfAttn(bn) (11)

Second, multimodal information (user-input keywords and

the image) are integrated by cross-attention.

ωn = crossAttn(on, Z̃),

where Z̃ = concat[fEm(Z), I]
(12)

Intuitively, Z̃ manifests all the information from user-
input keywords Z and the image I . The calculation of
crossAttn(o, Z̃) is generally similar to self-attention, but
the keys, values are calculated using Z̃. The model predicts
words based on probability

p(yn|Y ) = f softmax(fReLU(ωn)) (13)

Training of MC3. We use public image-captioning
datasets that contain images and ground-truth captions and
extract keywords to prepare (image, keywords, caption) tu-
ple to train MC3. The proposed model uses the Bayesian
network and let Φ = {W ,S,v, ζ} denote the trainable
weights. The training of Bayesian layers aims to optimize
the posterior distribution of the weights, denoted as q(Φ).
During the forward pass, the weights of layer i are ran-
domly sampled from q(ϕi), and the corresponding opera-
tion is performed to map the layer’s input to output. During
back-propagation, the gradients with respect to the posterior
parameters are propagated.

The training of the model requires the inference of posterior
parameters for the corresponding layers. Since the exact
inference of the posterior is usually intractable, a variational
distribution q is introduced to approximate those posteriors.
Let Y denote the ground-truth captions, and Z denote the or-
dered keywords extracted from Y . For variational inference,
q(Φ) is factorized as

q(Φ) =
∏

i
q(Si)

∏
i′
q(W i′)∏

j
q(uj)q(vj |uj)

∏
j′
q(ϵj

′
)q(ζj

′
|ϵj

′
)

(14)

The overall objective function is defined as the negative
evidence lower bound

Ltrain =KL[q(Φ)||p(Φ)]− Eq(Φ)[ln p(Y |Φ, Z,X)]

− Eq(Φ)[ln p(Z|Φ, X)]
(15)

where the first term is the Kullback–Leibler divergence that
quantifies the difference between the prior and posterior dis-
tribution, and the other terms are the expectation of the log-
likelihood empirically estimated via Monte-Carlo sampling.
During the forward pass, the Beta distribution is relaxed as
the Kumaraswamy distribution [Kumaraswamy, 1980] and
the Bernoulli distribution is relaxed as the concrete Bernoulli
distribution [Maddison et al., 2016]. KL[q(Φ)||p(Φ)] can
be expanded as the sum of Kullback–Leibler divergence
terms of {W ,S,v, ζ}. The term KL(q(Si)||p(Si)) can be
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expanded as

KL(q(Si)||p(Si))

=
∑
r,c

[lnσ0 − lnσi
r,c +

(σi
r,c)

2 + (µi
r,c − µ0)

2

2(σ0)2
− 1

2
]

(16)
where (µi

r,c, σ
i
r,c) are the posterior parameters. The term

KL(q(uj)||p(uj)) can be expanded as

KL(q(uj)||p(uj))

=
∑
c

ln
B(a0, b0)

B(ajc, b
j
c)

+ (ajc − a0)ψ(a
j
c) + (bjc − b0)ψ(b

j
c)

+ (a0 + b0 − ajc − bjc)ψ(a
j
c + bjc)

(17)
where B and ψ denote beta and digamma functions, respec-
tively, and (ajc, b

j
c) are the posterior parameters. The term

KL(q(vj |uj)||p(vj |uj) can be expanded as

KL(q(vj |uj)||p(vj |uj) =
∑
c

κjc(lnκ
j
c − lnπj

c)

+ (1− lnκjc)(ln(1− lnκjc)− ln(1− lnπj
c))

(18)

where κjc is the posterior parameter. Other terms can be
expanded in the same way.

3.3 Off-Line Knowledge Acquisition

It would be ideal if the model could learn from the user
and perform better in the future. To this end, we introduce
offline KA to perform uncertainty-aware model updates.
There are several issues to be addressed. 1) Although the
user provides keywords for the corresponding images during
online KA, no ground truth captions are provided. 2) The
images that receive user interaction are typically on a small
scale, which incurs the challenge of retraining the model
while mitigating overfitting.

To address the first challenge, we leverage the keywords
and the predicted captions as weak supervision. However,
predicted captions are noisy, and the model is not equally
confident in predicting each word in the caption. To this
end, we leverage uncertainty estimation and down-weigh
the predicted words with high uncertainty during retraining.
The Bayesian architecture provides a natural way to quantify
uncertainty. At inference, we sample network weights from
the posterior distribution q(Φ) to generate multiple Monte-
Carlo (MC) samples of predictions. The uncertainty of the
n-th predicted word is evaluated using the entropy:

un = −(ξ̄n)
⊤ ln ξ̄n, where ξ̄n = 1/J ×

∑J

j=1
pj(ŷ)

(19)
where pj(·) denotes the predicted probability from one MC
sample, and ξ̄n is the averaged probability vector, which
can be considered as uncertainty-augmented probability.
If the predicted probability vector is consistently far from

some one-hot vector over multiple MC samples, it implies
a high un. In a different situation, if the model provides
inconsistent predictions over multiple MC samples, it also
results in a high un, indicating the model is uncertain about
its predictions due to inconsistency.

In addition, an image can usually be described in multiple
ways. To encourage diversification, we leverage multiple
caption candidates generated by the Beam search for model
updates. (Beam search is an algorithm to generate a sentence
word by word while keeping a fixed beam of candidate
sentences at each step) Specifically, in the Beam search at
online KA, we can record multiple predicted captions in the
Beam as {Ŷ1, Ŷ2, ...ŶB} where B is the Beam size.

To address the second challenge, we propose to leverage the
Bayesian architecture to preserve the existing knowledge
learned from pre-training and encode the new knowledge
learned from the user. Recall that during the pre-training,
the model learns the posterior distribution of MC3, denoted
as q(Φ). During offline KA, q(Φ) is considered as the
prior knowledge (i.e., prior distribution), and our goal is
to infer the updated posterior distribution q(Φnew) while
using q(Φ) as regularization. In addition, the expandable
Bayesian transformer allows new neural resources to be
allocated to the expandable embeddings and the expandable
feedforward layers. The loss function used for retraining is

L =KL[q(Φnew)||q(Φ)]

− Eq(Φ)

∑
b,n

λb,n ln p(ŷb,n|Φ, X, Z)
NB


λb,n = 1− ub,n/ lnV

(20)

where KL denotes KL divergence. ŷb,n is the of n-th word
in b-th candidate caption, ub,n is the corresponding entropy,
and V is the size of vocabulary. λb,n is the weighting factor
with λb,n → 1 for confident predictions and λb,n → 0 for
uncertain predictions. N is the length of a caption.

Automated Prediction Without user interaction, the pro-
posed framework can make automated caption generation.
In this case, the constraint list only contains ’<end>’ token
(no user-input keywords). Therefore, a complete caption
can be predicted by the proposed MC3 in the same way.

3.4 Theoretical Analysis

The proposed framework leverages the Indian buffet process
to dynamically allocate neural resources to make the model
learn from users. The mask variable controls whether a
neuron is activated or not. Our theoretical result below
shows that when optimizing the loss in Eq. (20), we also
select the best model based on the Bayesian Information
Criterion (BIC).
Theorem 1. Denote W ∗ as the optimized network param-
eters, ζ and v as the corresponding mask variables of
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the expandable feedforward layer and expandable embed-
ding. Optimizing the evidence lower bound is equivalent to
BIC = ln p(y|ζ,v,W ∗)− 1

2 (Af +Ae) lnD, where D is
the number of data instances andAf andAe are the number
of activated neurons in expandable feedforward layer and
expandable embedding.

Proof Sketch. If the mask variables are close to zero, the
corresponding neurons do not affect the prediction and can
be pruned. Therefore, we gather all activated neurons from
the expandable feedforward layer and the expandable em-
bedding, and flatten as θ. The unnormalized log posterior
can be approximated at an optimized θ∗ as

ln[p(y|θ)p(θ)] ≈ ln[p(y|θ∗)p(θ∗)] + (θ − θ∗)∇θ

+
1

2
(θ − θ∗)⊤Hθ(θ − θ∗)

(21)

where ∇θ and Hθ are the gradient and the Heissian. We
then calculate p(y), the likelihood with respect to the model
as

p(y) =

∫
p(y|θ)p(θ)dθ ≈ p(y|θ∗)p(θ∗)2π

|θ∗|
2

|Hθ|
1
2

(22)

Assume the observations are independent and identically
distributed, using the weak law of large numbers, |Hθ| =
NAe+Af |Fθ| where |Fθ| is the Fisher information matrix
for a single observation. With the above results, we show
that

ln p(y) = ln p(y|θ∗) + ln p(θ∗)

+
1

2
(Ae +Af )

(
ln

2π

D

)
− ln |Fθ|

≈ ln p(y|θ∗)− 1

2
(Ae +Af ) lnD

(23)

The detailed proof is provided in Appendix B. In addition,
the proposed framework provides several favorable prop-
erties when compared with existing constrained sentence
generation methods (e.g., faster inference than constrained
Beam search). The detailed discussion is provided in Ap-
pendix D.

4 EXPERIMENTS

We evaluate the proposed method on natural and medical
image captioning datasets, including MS-COCO [Young
et al., 2014] and PEIR dataset[Library, 2022]. The former is
for natural image captioning, while the latter is for medical
image captioning. We use EfficientNet [Tan and Le, 2019]
to extract image features. Based on image categories, we
split the dataset in a way following [Del Chiaro et al., 2020]
into sub-groups ‘animals’, ‘transportation’, and ‘sports’.

For PEIR, images are split into groups ‘cardiovascular’,
‘respiratory’ and ‘nervous’. For each group, only one-third
is used for pre-training, and the rest are used for testing. In
this setting, automated captioning models are unlikely to
perform well because the model is not trained with sufficient
data for each task, and it would be beneficial to involve user
interactions.

The proposed framework involves two stages, online and of-
fline KA. 1) Online KA: We use the keyword extraction crite-
ria discussed in the next paragraph and select 1-5 keywords
from each caption in training set for model pre-training. For
each group in the test set, we randomly selected 50 images
for user interactions. A group of college students partici-
pated as volunteers in evaluating model predictions. Users
are instructed to type 1-5 keywords relevant to the image
into a textbox. Then the model predicts complete captions,
which are compared with the ground-truth captions to evalu-
ate how the model leverages user-input keywords to generate
better captions. We set the Beam size for Beam search to 4
and record the generated captions and uncertainty. 2) Offline
KA. The generated captions and uncertainty information
are used for model updates. After the model is updated,
the remaining images from each group are used for testing.
We make the model generate automated caption predictions
and compare them with the ground truth to evaluate how
the model learns from users to improve its performance on
unseen images.

For hyperparameters, we follow the convention of BNN
[Goan and Fookes, 2020] by setting µ0 = θ0 = 0, σ0 =
s0 = 1, a0 = α0 = 1, , b0 = β0 = 1. The word embedding
layer is plugged in with the GLOVE embedding [Pennington
et al., 2014] and the corresponding d = 300. The proposed
method and baselines are trained with Intel Core i7-3820
CPU and NVIDIA GeForce RTX2070 GPU. The proposed
framework needs to be trained before online knowledge
acquisition. We use public image-captioning datasets that
contain images and ground-truth captions and extract key-
words to prepare (image, keywords, ground-truth caption)
tuple to train the model. The keywords are considered the
most informative words that capture the semantics of the
image. The criteria for extracting keywords from ground-
truth captions are: 1) part-of-speech, which is considered
an essential factor in quantifying the importance of words.
Usually, nouns and verbs are considered more important
than others, such as pronouns. Therefore, we require the
selected keywords to be nouns or verbs. 2) the frequency
of a specific word occurring in the captions. We require
the frequency to be smaller than a preset threshold (0.1)
to remove stopwords. It should be noted that the ground-
truth keywords for medical images are provided in the PEIR
dataset. Therefore, for the PEIR dataset, we directly use
the ground-truth keywords for model training. Additional
details (e.g., user interface, training-evaluation protocol) are
provided in Appendix E.
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Figure 6: Quantitative comparison with different annotation budget (online knowledge acquisition)

Figure 7: Illustrative examples of generated captions based on user inputs (online KA)

Baselines and evaluation metrics. We compare with base-
lines including ABD [Jia and Li, 2020], DCE [Huang et al.,
2021] and CDB [Zhang et al., 2017]. ABD is a method
based on double-ended keyword encoding. It allows a user
to specify multiple words at the beginning and the end of
a sentence and uses an asynchronous bidirectional decod-
ing network to generate other words. CDB is a baseline
based on bilateral caption generation. It leverages a bilateral
LSTM network to generate words before and after the key-
words. DCE is a method based on contextualized keyword
encoding. It leverages an LSTM-based multimodal input en-
coder to process keywords as soft guidance and feed it into
another LSTM for sentence generation. For evaluating the
effectiveness of an interactive system, one important aspect
is the quality of generated results given a limited annotation
budget of users. In the context of interactive captioning,
the annotation budget is the number of words specified
by users. The numbers of user-input keywords are 1 to 5,
and we report the average quality of generated captions. For
offline KA, it should be noted that all the above caption-
ing baselines do not involve model updates. Therefore, we
extend those baselines by integrating with representative
transfer learning methods, including fully Finetune [Tsim-
poukelli et al., 2021] and Adapter [Chen et al., 2021b] (as
discussed in Related Work section). For evaluation metrics,
we use BLEU-4, METEOR, and ROUGE-L. Those metrics
measure the similarity of a predicted text against one or
more ground truth texts mainly based on n-gram matchings.
Generally speaking, BLEU captures modified n-gram preci-
sion, ROUGE-L captures the longest common subsequence,

and METEOR attempts to balance both modified precision
and recall. A detailed explanation of the metrics can be
found at [Hossain et al., 2019].

Results. We first present the results for online KA. Quanti-
tative comparisons are provided in Figure 6. The proposed
framework outperforms other baselines. The results can
be intuitively explained by the difference in model design.
CDB only allows consecutive words to be specified by the
user, which may be insufficient to generate captions in the
desired form by the user. DCE does not enforce a hard
constraint of user-input words in the generated captions, and
thus the user has limited control over the caption generation
process. ABD first encodes user-input words at the end of a
sentence through backward LSTM, then generates the com-
plete caption with a forward LSTM with user-input words
at the beginning of the sentence. However, backward LSTM
provides an encoding rather than enforcing a hard constraint.
In addition, a caption may start from non-informative words,
which spend the budget but provide little information to the
subsequent generation process. Qualitative examples are
provided in Figure 7. (Note that ABD requires keywords to
be at the beginning and the end of a sentence, and CDB re-
quires keywords to be consecutive) In general, the proposed
method leverages user-input keywords more effectively.

We then present the experiment results for offline KA. Quan-
titative comparisons are provided in Table 1, where all inter-
active captioning baselines are integrated with the Adapter
method. We also include additional baselines, including
the constrained Beam search method (CBS) and the Point-
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Table 1: Quantitative comparison for automated caption predictions after offline KA
PEIR Cardiovascular Respiratory Nervous

BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR
ABD+Adapter 0.144 0.242 0.148 0.132 0.232 0.139 0.125 0.237 0.151
CDB+Adapter 0.130 0.237 0.136 0.123 0.224 0.134 0.123 0.234 0.137
DCE+Adapter 0.135 0.251 0.152 0.127 0.228 0.137 0.128 0.240 0.140

Pointing+Adapter 0.140 0.228 0.130 0.121 0.215 0.128 0.119 0.225 0.134
CBS+Adapter 0.126 0.209 0.115 0.119 0.197 0.115 0.117 0.204 0.129

Proposed 0.152 0.268 0.170 0.138 0.249 0.153 0.140 0.252 0.160
MS-COCO Animal Transport Sport

BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR
ABD+Adapter 0.145 0.357 0.168 0.148 0.362 0.167 0.169 0.375 0.173
CDB+Adapter 0.134 0.342 0.147 0.139 0.346 0.153 0.140 0.351 0.158
DCE+Adapter 0.145 0.346 0.159 0.155 0.349 0.159 0.152 0.362 0.166

Pointing+Adapter 0.132 0.327 0.139 0.137 0.295 0.149 0.129 0.328 0.149
CBS+Adapter 0.125 0.305 0.129 0.124 0.281 0.136 0.115 0.295 0.134

Proposed 0.157 0.390 0.184 0.168 0.387 0.191 0.183 0.384 0.185

Figure 8: Illustrative examples of automatically generated captions after model updates (offline KA)

ing method. Those methods were not originally proposed
for interactive captioning but can be applied in an offline
KA setting. Specifically, the pointing method leverages a
pointing mechanism on the output layer of the network to di-
rectly modify the predicted probability. Constrained Beam
search converts the keyword constraints into many states,
each maintaining a Beam of candidate captions during cap-
tion generation. The proposed framework outperforms other
baselines. A possible reason is that the proposed framework
is a unified model with a more efficient way of preserving
existing knowledge and encoding new knowledge. In con-
trast, the baselines may still be prone to overfitting and thus
forget prior knowledge during model updates. Qualitative
examples are provided in Figure 8.

Ablation study. For the ablation study, we note that the
proposed framework leverages the expandable embedding
and the expandable feedforward layer to encode the knowl-
edge from the user to improve model performance in the
future. Alternative design choices include using only the
expandable embedding, only the expandable feedforward
layer, or none of them. For those alternative choices, we
report the results for offline knowledge acquisition in Figure
9, which indicates that both components contribute to better
performance. We also provide a qualitative analysis of acti-
vated neurons. Once the model is pre-trained on the PEIR
dataset, we plot the activated neurons of different layers (i.e.,
expandable embeddings or expandable feedforward layer)
in Figure 10 where each row corresponds to a layer, and
each column corresponds to a neuron. A dark grid indicates
that the neuron is activated. After the model is updated for
offline KA for cardiovascular images, we plot the activated
neurons, which shows more neurons are activated to encode
the new knowledge from the user.
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Figure 9: Ablation study on alternative architecture
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Figure 10: Visualization of activated neurons before (left)
and after offline knowledge acquisition (right).

5 CONCLUSION

In this paper, we propose a knowledge acquisition frame-
work for interactive image captioning by acquiring knowl-
edge from user-input keywords to improve the quality of
predicted captions. A multimodal conditioned caption com-
pletion module is developed to fuse the image data with
user-input keywords and ensure all keywords appear in the
updated image caption. Moreover, the framework effectively
encodes the newly acquired knowledge through dynamic
neural resource allocation to benefit future caption predic-
tions even without aid from users. The proposed model can
be potentially applied to human-in-the-loop image caption-
ing in specialized domains (e.g., medicine), where accurate
technical concepts and text descriptions are difficult to gen-
erate by conventional captioning algorithms.
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Appendix

Organization of Appendix. In this Appendix, we first summarize the main notations used throughout the paper in
Section A. We provide the proof to Theorem 1 in Section B. We then visualize the architecture and provide the pseudo code
for the knowledge acquisition process in Section C. We discuss several favorable properties of the proposed framework when
compared with existing constrained sentence generation methods in Section D. We provide additional experiment results in
Section E. We discuss broader impacts and limitations in Section F. The link to the source code is provided in Section G.

A Summary of Main Notations

Table 2: Summary of Main Notations

I image feature map extracted by image encoder
Y ground-truth caption
ŷn predicted word at position n
X incomplete caption
xn word at position n in X
Z constraint list of user-input keywords
zm m-th keyword in Z
bn the embedding vector of word token at position n
b the embedding vectors of all word tokens in the sequence

cQn ,cKn ,cVn the query, key and value vectors for token at position n
cQ,cK ,cV the query, key and value vectors for all tokens in the sequence

on the output of transformer block with self attention at position n
v mask vector of expandable embeddings
ζ mask vector of expandable feedforward layer
S pseudo token embedding matrix
β the pseudo tokens embedding matrix multiplied by Indian buffet process mask
W weight matrix of expandable feedforward layer
Z̃ concatenation of keyword embeddings and image feature vectors
ωn the output of transformer block with cross attention at position n
Φ the set of trainable parameters

ub,n uncertainty estimation for prediction of n-th word in b-th candidate caption
ξ̄n the averaged probability vector at position n
B the size of beam for Beam search
Ae the number of activated neurons in expandable embeddings
Af the number of activated neurons in expandable feedforward layer

B Proof of Theorem 1

Proof. We first consider the expandable feedforward layer. Denote the set of mask variables that are close to zero as vAf

0

and the corresponding layer weights as WAf

0 . Also denote non-zero mask variables as vAf and the corresponding layer
weights as WAf . Given the input to the expandable feedforward layer xin, The output xout can be expressed as

xout = ([vAf ; v
Af

0 ]⊙ [WAf ;W
Af

0 ])⊤xin = (vAf ⊙WAf )⊤xin (24)

where ⊙ denotes the operation of applying mask to the weight matrix. We then consider expandable embedding and the self
attention. Denote the set of mask variables that are close to zero as ζAe

0 and the corresponding embedding as βAe
0 . Also

denote non-zero mask variables as ζAe and the corresponding embedding as βAe , and the embedding of actual token as b.
The logit smn before softmax in self attention can be expressed as

cQ =WQb, cK =WK [b; ζAeβAe ; ζAe
0 βAe

0 ], cV =WV [b; ζAeβAe ; ζAe
0 βAe

0 ],

xout = fLn[softmax(
(cQ)T cK√

d
)cV + b] = fLn[softmax(

(WQb)⊤WK [b; ζAeβAe ]√
d

)WV [b; ζAeβAe ] + b]
(25)

Eqs. (24) and (25) shows that if the mask variable is zero, the corresponding neuron does not affect the prediction and can
be pruned. Therefore, we gather all activated neurons from expandable feedforward layer and the expandable embedding,
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Figure 11: Architecture of the proposed framework

and denote them as θ. Using Taylor’s expansion, we approximate the log unnormalized posterior as

f = ln[p(y|θ)p(θ)] ≈ ln[p(y|θ∗)p(θ∗)] + (θ − θ∗)∇θf +
1

2
(θ − θ∗)⊤Hθ(θ − θ∗) (26)

where ∇θ and Hθ are the gradient and the Heissian. We then calculate p(y), the likelihood with respect to model M as

p(y) =

∫
p(y|θ)p(θ)dθ ≈

∫
exp[f + (θ − θ∗)∇θf +

1

2
(θ − θ∗)⊤Hθ(θ − θ∗)]dθ

≈ p(y|θ∗)p(θ∗)
∫

exp[
1

2
(θ − θ∗)⊤Hθ(θ − θ∗)]dθ ≈ p(y|θ∗)p(θ∗)2π

|θ∗|
2

|Hθ|
1
2

(27)

The above derivation uses the fact that the gradient is zero because θ∗ is the optimized parameter, and Hθ is negative definite
at θ∗.

For simplification, p(θ) is assumed an non-informative prior with constant density. Then the Heissian can be shown as

Hij =
∂2

∂θi∂θj
ln p(y|θ) = ∂2

∂θi∂θj

∑
d

ln p(xd|θ) (28)

Assume the observations are independent and identically distributed, using the weak law of large numbers,

Hij =
∂2

∂θi∂θj

1

D

∑
d

Dp(xd|θ) ≈
∂2

∂θi∂θj
E[D ln p(xd|θ)], |Hθ| = NAe+Af |Fθ| (29)

where |Fθ| is the Fisher information matrix for a single observation. With the above results, we show that

ln p(y) = ln p(y|θ∗) + ln p(θ∗) +
1

2
(Ae +Af )(ln 2π − lnD)− ln |Fθ| ≈ ln p(y|θ∗)− 1

2
(Ae +Af ) lnD (30)

Note that the terms ln |Fθ| and ln p(θ∗) are negligible compared to other terms when the number of data instances D is
large. Since Eq. (30) follows the form of Bayesian Information Criterion (BIC), we prove that when optimizing the loss in
Eq. (20), we also select the best model based on the Bayesian Information Criterion.

C Network Architecture and the Workflow

The proposed framework consists of the pre-trained image feature extractor (i.e., EfficientNet [Tan and Le, 2019] architecture),
and the multimodal conditional caption completion module with trainable layers. The architecture is summarized in Figure
11. The whole process is summarized in Algorithm 1.

D Comparison with Constrained Beam Search

The constrained Beam search is a sentence generation method that satisfies keyword constraints. Specifically, it leverages
a sequential language model to generate sentence word by word. To enforce keyword constraints, the constrained Beam
search maintains many states. Each state corresponds to a subset of keywords and stores a Beam of candidate sentences
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during sentence generation. The candidate sentences in the state that corresponds to the complete set of keywords satisfy all
the constraints. And practically, we can pick the top-K candidate sentence from that state with the highest joint probability
of all words as the model output. An illustrative example of the states for constrained Beam search is provided in Figure 12.
The constrained Beam search method was not originally proposed for human-in-the-loop image captioning, but it can be
applied to the human-in-the-loop setting.

Algorithm 1 Key stages of the proposed framework

1: Given parameters Φ and beam size B;
2: Given an image Iraw;
3: Online Knowledge Acquisition:
4: User specifies a list of keywords to guide caption generation;
5: Initialize incomplete caption with ’<start>’ token;
6: Construct a constraint list of user-input keywords and append ’<end>’ token;
7: Generate feature map I via Eq.(1);
8: while Constraint list Z is not empty do
9: Calculate embedding bn of incomplete caption;

10: Calculate õn using self-attention via Eq.(11);
11: Calculate on using cross-attention via Eq.(12);
12: Predict word for insertion ŷ via Eq.(13), estimate uncertainty via Eq.(19);
13: if ŷ is ’<null>’ token then
14: Move word z1 from constraint list to the current incomplete caption;
15: else
16: Add ŷ to the current incomplete caption;
17: end if
18: end while
19: Keep B candidate captions sequence using Beam search and record corresponding uncertainty;
20: Off-line knowledge acquisition:
21: Collect candidate captions sequence and uncertainty estimation during online knowledge acquisition stage;
22: Reset the constraint list Z to empty and append ’<end>’ token;
23: Calculate weighting factor λb,n via Eq.(20);
24: Calculate ŷ through feed-forward similar to online knowledge acquisition;
25: Back-propagate to update trainable parameters via Eq.(20);

State 0:

A beam of candidate cap!ons that do 

not contain keyword1 or keyword2

State 1:

A beam of candidate cap!ons that 

contain keyword1 but not keyword2

State 3:

A beam of candidate cap!ons that 

contain keyword1 and keyword2

State 2:

A beam of candidate cap!ons that 

contain keyword2 but not keyword1

Constraints = {keyword1, keyword2}

If predicted word = keyword1,

the cap!on is transferred to State 1

If predicted word = keyword1,

the cap!on is transferred to State 3

If predicted word = keyword1,

the cap!on is transferred to State3

If predicted word = keyword2,

the cap!on is transferred to State2

Cap!ons from State 3

sa!sfy all constraints

Figure 12: Example of constrained Beam search (assume there are two user-input keywords).

The proposed framework provides several favorable properties when compared with the constrained Beam search. First,
the proposed framework considers keywords as the additional input and the constraint, while the constrained Beam search
considers keywords as only the constraint. Therefore, when selecting top-K candidate sentences with the highest joint
probability, the selection criteria are different. Specifically, the joint probability evaluated by the proposed method is

p(Ŷ |I, Z) =
∏

n
p(ŷn|ŷ1:n−1, I, Z)

where Ŷ is the predicted sentence, ŷn is the predicted word at position n, I is image features, and Z is the set of user-input
keywords. Naturally, user-input keywords manifest useful information, and the caption generation should be conditioned on
both the keywords and image features.
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However, the joint probability evaluated by constrained Beam search is

p(Ŷ |I) =
∏

n
p(ŷn|ŷ1:n−1, I)

It does not leverage the information from keywords, which is a weakness. The proposed framework offers faster inference
than constrained Beam search. In constrained Beam search, the number of states grows exponentially with respect to the
number of keywords. Denote L as the maximum length of sentence, B as the Beam sizes, M as the number of keywords,
and V as the size of the vocabulary. The complexity of constrained Beam search is O(2MBLV ) while the proposed caption
generation with Beam search is O(BLV ). For constraint Beam search, each state is represented by a binary vector of length
M . If the i-th entry is 0, it indicates the i-th keyword is missing in all the candidate captions in this state. If the j-th entry
is 0, it indicates the j-th keyword exists in all the candidate captions in this state. There are a total of 2M states. During
inference, any candidate caption start from state s0 = [0, 0, ..., 0]. Once a keyword is generated during the process, the
candidate caption is transferred to the corresponding state. To get the complete captions that contain all keywords, constraint
Beam search focus on the last state s2M−1 = [1, 1, ..., 1]. Each state keeps B candidate captions, and when predicting each
word, the model evaluates the probability of all words in the vocabulary. Therefore, the complexity is O(2MBLV ). In
contrast, the proposed model does not need to maintain 2M states, and thus the complexity is O(BLV ).

Figure 13: Illustrative example of user interface for collecting input (left) and showing output (right)

E Additional Experiment Details, Results, and Ablation Study

The proposed framework involves two stages, online and offline knowledge acquisition. As discussed in the main paper,
in each stage, the proposed framework and the baselines are trained and evaluated. A high-level summary of the training-
evaluation protocol is provided below.

Step Online Knowledge Acquisition
1 Pre-train model using paired image-caption data from the training set.
2 For each category from the testing set, randomly select 50 images for user interaction.
3 Collect user-input keywords and predict complete captions.
4 Evaluate the quality of predicted captions using ground-truth captions.
5 Record keywords and predicted captions for offline knowledge acquisition.

Offline Knowledge Acquisition
6 Update the model using the data prepared in Step 5.
7 Use the remaining images from each category to predict captions without user interaction.
8 Evaluate the quality of predicted captions using ground-truth captions.

For user interaction, the image is displayed in a pop-up window, and the user can type the keywords into the textbox. An
illustration of the user interface is provided in Figure 13.

We include the results for online knowledge acquisition in Table 3. A statistical testing of METEOR score is conducted on
the proposed method versus the second-best method across testing cases. For the 3 subgroups in COCO dataset, p-values are
0.008, 0.020, 0.017, which are considered significant with α = 0.05. For PEIR, p-values are 0.025, 0.032, 0.040. Before
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online knowledge acquisition (KA) (corresponding to no user inputs), all methods achieve similar results, as reported in
Table 4.

Table 3: Quantitative comparison for online KA
PEIR Cardiovascular Respiratory Nervous

BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR
ABD 0.142 0.257 0.173 0.141 0.240 0.141 0.145 0.246 0.165
CDB 0.128 0.247 0.156 0.136 0.236 0.127 0.131 0.239 0.148
DCE 0.135 0.253 0.161 0.139 0.238 0.130 0.135 0.245 0.151

Pointing 0.130 0.251 0.158 0.129 0.230 0.126 0.119 0.235 0.137
CBS 0.122 0.245 0.150 0.125 0.211 0.115 0.108 0.219 0.131

Proposed 0.151 0.273 0.181 0.149 0.253 0.152 0.150 0.259 0.172
MS-COCO Animal Transport Sport

BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR
ABD 0.229 0.438 0.234 0.224 0.434 0.232 0.254 0.473 0.261
CDB 0.224 0.428 0.219 0.210 0.421 0.217 0.239 0.461 0.227
DCE 0.225 0.441 0.231 0.219 0.437 0.225 0.258 0.476 0.235

Pointing 0.211 0.419 0.225 0.207 0.426 0.199 0.221 0.415 0.234
CBS 0.168 0.374 0.171 0.188 0.381 0.193 0.205 0.409 0.201

Proposed 0.245 0.465 0.248 0.238 0.462 0.246 0.275 0.491 0.272

We then present the experiment results for offline KA to evaluate how the model learns from user interactions to improve
its performance in the future. In other words, we make the retrained model generate automated predictions for images
on the hold-out test set. Quantitative comparisons are provided in Table 1. The proposed framework outperforms other
baselines. A possible reason is that the proposed framework is a unified model with a more efficient way of preserving
existing knowledge and encoding new knowledge.

Table 4: Quantitative comparison with no keywords
ABD CDB CDE Proposed ABD CDB CDE Proposed ABD CDB CDE Proposed

PEIR Cardiovascular Respiratory Nervous
0.124 0.127 0.119 0.129 0.104 0.111 0.108 0.115 0.121 0.119 0.122 0.126

MS-COCO Animal Transport Sport
0.152 0.157 0.148 0.160 0.161 0.155 0.152 0.164 0.168 0.171 0.173 0.175

Table 5: User Evaluation (percentage of generated captions where the proposed method is preferred over the baselines)
Model Online KA Offline KA

Animal Transportation Sport Animal Transportation Sport
Proposed vs ABD 76.0% 84.0% 64.0% 64.1% 67.1% 56.2%
Proposed vs CDB 82.0% 88.0% 78.0% 73.4% 79.6% 76.5%
Proposed vs DCE 66.0% 78.0% 72.0% 65.6% 64.0% 59.3%

We also performed an evaluation based on human judgments of the quality of generated captions. For the natural image
dataset, we generate captions for the testing images after online and offline knowledge acquisition, and present the generated
captions by the proposed method and baselines to the user. Users were asked to select the caption that best describes the
image semantics. We calculate the percentage of users who chose the proposed method over baselines, as shown in Table 5.

F Broader Impact and Limitations

The proposed framework involves humans in the loop for image captioning tasks, where users specify a sequence of
keywords (i.e., informative words that capture the image’s important semantics) as additional input to guide the caption
generation process. The model can be potentially applied to specialized domains (e.g., medicine), where accurate technical
concepts and descriptions are difficult to generate by automated captioning. Since the proposed framework is interactive, the
model may be misguided if the user provides irrelevant or wrong keywords. One possible solution to this issue is to make the
model evaluate the quality of the user-specified keyword and alert the user to double-check the keywords when necessary.

G Link to the Source Code

The source code is available at https://github.com/ritmininglab/KA-HITP.

https://github.com/ritmininglab/KA-HITP
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