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Abstract

Weather forecasting is one of the cornerstones of
meteorological work. In this paper, we present
a new benchmark dataset named Weather2K,
which aims to make up for the deficiencies of
existing weather forecasting datasets in terms of
real-time, reliability, and diversity, as well as the
key bottleneck of data quality. To be specific,
our Weather2K is featured from the following as-
pects: 1) Reliable and real-time data. The data is
hourly collected from 2,130 ground weather sta-
tions covering an area of 6 million square kilo-
meters. 2) Multivariate meteorological variables.
20 meteorological factors and 3 constants for po-
sition information are provided with a length of
40,896 time steps. 3) Applicable to diverse tasks.
We conduct a set of baseline tests on time series
forecasting and spatio-temporal forecasting. To
the best of our knowledge, our Weather2K is the
first attempt to tackle weather forecasting task by
taking full advantage of the strengths of observa-
tion data from ground weather stations. Based on
Weather2K, we further propose Meteorological
Factors based Multi-Graph Convolution Network
(MFMGCN), which can effectively construct the
intrinsic correlation among geographic locations
based on meteorological factors. Sufficient ex-
periments show that MFMGCN improves both
the forecasting performance and temporal ro-
bustness. We hope our Weather2K can signifi-
cantly motivate researchers to develop efficient
and accurate algorithms to advance the task of
weather forecasting. The dataset can be available
at https://github.com/bycnfz/weather2k/.
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1 INTRODUCTION

The changing weather has been profoundly affecting peo-
ple’s lives since the beginning of mankind. Weather con-
ditions play a crucial role in production and economic in-
dustries such as transportation, tourism, agriculture and en-
ergy. Therefore, reliable and efficient weather forecasting
is of great economic, scientific and social significance. The
weather forecasting task deserves extensive attention.

Meteorological factors, such as temperature, humidity, vis-
ibility, and precipitation, can provide strong support and
historical information for researchers to analyze the vari-
ation tendency of weather. For the past few decades, Nu-
merical Weather Prediction (NWP) is the widely used tra-
ditional method, which utilizes physical models to simulate
and predict meteorological dynamics in the atmosphere or
on the Earth’s surface (Müller and Scheichl, 2014). How-
ever, the prediction of NWP may not be accurate enough
due to the uncertainty of the initial conditions of the dif-
ferential equation (Tolstykh and Frolov, 2005), especially
in complex atmospheric processes. In addition, NWP has
high requirements on computing power.

In recent years, meteorological researchers have achieved
considerable breakthroughs and successes in introducing
data-driven approaches, most prominently deep learning
methods, to the task of weather forecasting. Data-driven
approaches exploit the historical meteorological observa-
tion data aggregated over years to model patterns to learn
the input-output mapping. In the task of time series fore-
casting, Transformers have shown great modeling ability
for long-term dependencies and interactions in sequential
data benefiting from the self-attention mechanism. In the
more challenging task of spatio-temporal forecasting, the
classical Convolutional Neural Networks (CNNs) which
work well on regular grid data in Euclidean domain have
been greatly challenged to handle this problem due to the ir-
regular sampling of most spatio-temporal data. The Graph
Neural Networks (GNNs), which have already been exten-
sively applied to traffic forecasting, yield effective and ef-
ficient performance by properly treating the variables and
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the connections among them as graph nodes and edges, re-
spectively. However, studies focusing on the field of mete-
orology are relatively scarce, while the demand for weather
forecasting is increasing dramatically.

For data-centric deep learning method, the performance
of the model heavily depends on the quality of the avail-
able training data. High-quality benchmark datasets can
serve as “catalysts” for quantitative comparison between
different algorithms and promote constructive competition
(Ebert-Uphoff et al., 2017). In the field of meteorologi-
cal science, reanalysis dataset cannot ensure the authentic-
ity of the data. Remote sensing dataset cannot reliably re-
flect complexities of near-surface weather conditions. Fu-
sion dataset cannot guarantee real-time performance. In-
adequacies of existing datasets also include diversity of
meteorological factors and applicable tasks. In this work,
we present a new benchmark dataset named Weather2K,
aiming at advancing the progress on weather forecasting
tasks based on deep learning methods. As far as we know,
our Weather2K is the first attempt to tackle the challeng-
ing weather forecasting task by entirely using the observa-
tion data from the ground weather stations. Concretely, our
Weather2K has the following characteristics:

Reliable and Real-time Data The raw data is built on
the one-hourly observation data of 2,130 ground weather
stations from the China Meteorological Administration
(CMA), which can be updated hourly in real-time. We have
spent considerable time on data processing to ensure con-
tinuous temporal coverage and consistent data quality.

Multivariate Meteorological Variables Based on meteo-
rological consideration, 20 important near-surface meteo-
rological factors and 3 time-invariant constants for position
information are provided in the Weather2K.

Applicable to Diverse Tasks We provide two versions of
Weather2K for different application directions: time series
forecasting and spatio-temporal forecasting. Well-arranged
spatio-temporal sequences can be easily selected and ac-
cessed for different tasks of weather forecasting.

As a benchmark, we conduct a set of baseline tests on
two application directions to validate the performance of
our Weather2K. 4 representative transformer-based mod-
els and 8 state-of-the-art spatio-temporal GNN models are
set up for comparison in time series forecasting and spatio-
temporal forecasting, respectively. We further propose Me-
teorological Factors based Multi-Graph Convolution Net-
work (MFMGCN). Considering utilizing multivariate me-
teorological information, MFMGCN fuses 4 static graphs
representing different types of spatio-temporal informa-
tion and 1 dynamic graph to model correlations among
geographic locations, and also uses a complete convolu-
tional structure followed time-space consistency. We val-
idate both the improvement and temporal robustness of
MFMGCN on Weather2K through extensive experiments.

We hope our Weather2K can significantly motivate more
researchers to develop efficient and accurate algorithms and
help ease future research in weather forecasting task.

2 PREVIOUS WORK

2.1 Meteorological Science Datasets

There are many types and sources of data commonly used
in the meteorological science community. Tropical Rain-
fall Measuring Mission (TRMM) precipitation rate dataset
(Kummerow et al., 2000) and the Integrated Multi-satellite
Retrievals for GPM (IMERG) (Huffman et al., 2015) are
developed on remote sensing data from satellites. Multi-
Source Weighted-Ensemble Precipitation (MSWEP) (Beck
et al., 2017) merges satellite and reanalysis data. The ERA5
(Hersbach et al., 2020) is the most advanced global reanal-
ysis product created by the European Center for Medium
Weather Forecasting (ECMWF). The Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004) and
the Canadian Land Data Assimilation System (CaLDAS)
(Carrera et al., 2015) are well-known gridded datasets at
global and regional scales, respectively. It is worth not-
ing that the China Meteorological Forcing Dataset (CMFD)
(He et al., 2020) is the first gridded near-surface meteoro-
logical dataset with high spatio-temporal resolution. Dif-
ferently, our Weather2K is the first truly meaningful mete-
orological science dataset entirely based on the observation
data from ground weather stations in China.

2.2 Weather Forecasting Datasets

In the task of weather forecasting, different datasets are
constructed in various ways. And the number of involved
meteorological factors varies widely. ExtremeWeather
(Racah et al., 2017) is an image dataset for detection, lo-
calization, and understanding of extreme weather events.
CloudCast (Nielsen et al., 2021) is a satellite-based im-
age dataset for forecasting 10 different cloud types. Jena
Climate (https://www.bgc-jena.mpg.de/wetter/) is made up
of 14 meteorological factors recorded over several years at
the weather station of the Max Planck Institute for Biogeo-
chemistry. Climate Change (http://berkeleyearth.org/data/)
provided by the Berkeley Earth focuses on global land
and ocean temperature data. WeatherBench (Rasp et al.,
2020) is a benchmark dataset for data-driven medium-
range weather forecasting, specifically 3–5 days. Notably,
our Weather2K is a spatio-temporal dataset with 20 op-
tional multivariate meteorological factors, which can be ap-
plied to different directions of weather forecasting.

2.3 Transformers in Time Series Forecasting

Due to the special characteristics of time series forecast-
ing task, the innovation of Transformer (Vaswani et al.,
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Table 1: Definitions and physical descriptions of the variables in the Weather2K dataset.

Long Name Short Name Unit Physical Description

Latitude lat (°) The latitude of the ground observation station
Longitude lon (°) The longitude of the ground observation station
Altitude alt (m) The altitude of the air pressure sensor

Air pressure ap hpa Instantaneous atmospheric pressure at 2 meters above the ground
Water vapor pressure wvp hpa Instantaneous partial pressure of water vapor in the air
Air Temperature t (°C) Instantaneous temperature of the air at 2.5 meters above the ground where sheltered from direct solar radiation
Maximum / Minimum temperature mxt / mnt (°C) Maximum / Minimum air temperature in the last one hour
Dewpoint temperature dt (°C) Instantaneous temperature at which the water vapor saturates and begins to condense
Land surface temperature st (°C) Instantaneous temperature of bare soil at the ground surface
Relative humidity rh (%) Instantaneous humidity relative to saturation at 2.5 meters above the ground
Wind speed ws (ms−1) The average speed of the wind at 10 meters above the ground in a 10-minute period
Maximum wind speed mws (ms−1) Maximum wind speed in the last one hour
Wind direction wd (°) The direction of the wind speed. (Wind direction is 0 if wind speed is less than or equal to 0.2)
Maximum wind direction mwd (°) Maximum wind speed’s direction in the last one hour
Vertical visibility vv (m) Instantaneous vertical visibility
Horizontal visibility in 1 min / 10 min hv1 / hv2 (m) 1 / 10 minute(s) mean horizontal visibility at 2.8 meters above the ground
Precipitation in 1h / 3h / 6h / 12h / 24h p1 / p2 / p3 / p4 / p5 (mm) Cumulative precipitation in the last 1 / 3 / 6 / 12 / 24 hour(s)

2017) and its variants based on the self-attention mecha-
nism shows great capability in sequential data. MetNet
(Sønderby et al., 2020) uses axial self-attention to aggre-
gate the global context from radar and satellite data for pre-
cipitation forecasting. LogTrans (Li et al., 2019b) and Re-
former (Kitaev et al., 2020) propose the LogSparse atten-
tion and the local-sensitive hashing attention to reduce the
complexity of both memory and time, respectively. AST
(Wu et al., 2020a) utilizes a generative adversarial encoder-
decoder pipeline. Autoformer (Wu et al., 2021) proposes
a seasonal-trend decomposition architecture with an auto-
correlation mechanism. Informer (Zhou et al., 2021) uti-
lizes Kullback-Leibler divergence based the ProbSparse
attention. Pyraformer (Liu et al., 2021) captures differ-
ent ranges of temporal dependencies in a compact, multi-
resolution fashion. FEDformer (Zhou et al., 2022) uses
Fourier transform and wavelet transform to consider the
characteristics of time series in the frequency domain.

2.4 Spatio-temporal Graph Neural Networks.

Spatio-temporal forecasting models are mostly based on
GNNs due to their ability to learn representations of spa-
tial irregular distributed signals by aggregating or diffus-
ing messages from or to neighborhoods. GNNs have al-
ready brought a huge boost in traffic forecasting, such as
STGCN (Yu et al., 2017), DCRNN (Li et al., 2017), MST-
GCN (Guo et al., 2019), ASTGCN (Guo et al., 2019),
TGCN (Zhao et al., 2019), AGCRN (Bai et al., 2020),
and GMAN (Zheng et al., 2020). Moreover, LRGCN (Li
et al., 2019a), 2s-AGCN (Shi et al., 2019) and MPNN
(Panagopoulos et al., 2021) highlight the usefulness of
GNNs in path failure in a telecommunication network,
skeleton-based action recognition and epidemiological pre-
diction, respectively. In the field of meteorological science,
DeepSphere(Defferrard et al., 2020) introduces a method
based on a graph representation of the sampled spheri-
cal meteorological data. PM2.5-GNN (Wang et al., 2020)

and CLCRN (Lin et al., 2022) are used to predict PM2.5
concentrations and meteorological factors including tem-
perature, cloud cover, humidity, and surface wind compo-
nent. In general, researches on the application of GNNs to
weather forecasting are relatively scarce.

3 THE DATASET OF WEATHER2K

The raw data comes from CMA’s observation data of
China’s ground weather stations. Observation instruments
and sensors of different weather stations all follow the stan-
dard of Specifications for surface meteorological observa-
tion—General (GB/T 35221-2017) and Quality control of
surface meteorological observation data (QX/T 118-2010).
While collecting the original data, basic quality control
(QC) technologies are first used for different meteorolog-
ical factors to correct for sensor noise, bias, and external
factors. Focusing on missing values, defaults, outliers, we
performed rigorous filtering and processing to ensure the
quality of our dataset. The main steps of our data process-
ing procedure are provided in Supplementary Material C.1.

3.1 Dataset Statistics

Weather2K contains the observation data from 2,130
ground weather stations throughout China, covering an
area of more than 6 million square kilometers. The data are
available from January 2017 to August 2021 with a tem-
poral resolution of 1 hour, in which we can ensure the use
of unified meteorological observation instruments and sen-
sors for data collection. All stations use CST time (UTC +
8h). Based on the consideration of building a representative
and comprehensive dataset for meteorological forecasting,
Weather2K contains 3 time-invariant constants: latitude,
longitude, and altitude to provide position information and
20 important meteorological factors with a length of 40,896
time steps. The definitions and physical descriptions of
the chosen variables are listed in Table 1. The current
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Figure 1: The distribution of the 2,130 ground weather sta-
tions that supply observation data for Weather2K.

version of our open source Weather2K is Weather2K-R,
which contains 1866 ground weather stations and is stored
in Numpy format. Weather2K-N, which contains the rest
of the stations, is temporarily reserved for confidentiality
reasons. In addition, we further provide a special version
of the Weather2K (Weather2K-S), which contains 15 rep-
resentative ground weather stations distributed in different
regions and is stored in CSV format files. As shown in Fig-
ure 1, the red stars, blue squares, and black squares repre-
sent the stations that make up Weather2K-S, Weather2K-R,
and Weather2K-N, respectively. See more detailed statis-
tics on Weather2K in Supplementary Material C.2.

3.2 Comparison with Other Datasets

Our Weather2K is a novel attempt to solve the task of
weather forecasting by entirely using the observation data
from the ground weather stations. Although CMFD (He
et al., 2020) also uses approximately 700 stations of CMA
as its primary data source, it must incorporate several grid-
ded datasets from remote sensing and reanalysis. Jena Cli-
mate (https://www.bgc-jena.mpg.de/wetter/) only records
the data of 1 weather station in Jena, Germany.

Most of the existing multivariate datasets cover a long time
range. For example, CMFD (He et al., 2020) and Weath-
erBench (Rasp et al., 2020) are both from 1979 to 2018.
Limited by the purpose of data collection using unified
meteorological observation instruments and sensors, our
Weather2K begins in January 2017 and is ongoing.

The most attractive advantage of our Weather2K is the real-
time and reliability of the data. The combination of high
precision sensor and high-quality data control ensures the
accuracy of the data to the greatest extent. The efficient and
practical data processing can obtain hourly real-time data.
In comparison, CMFD (He et al., 2020), ERA5 (Hersbach
et al., 2020), and WeatherBench (Rasp et al., 2020) have a
latency of at least 3 months because they are limited by the
release time of the raw data.

In terms of meteorological factors, our Weather2K pro-
vides a total number of 20 optional variables. By contrast,
Climate Change (http://berkeleyearth.org/data/) focuses on
meteorological factors related to temperature. CMFD (He
et al., 2020) provides 7 near-surface meteorological fac-
tors. WeatherBench (Rasp et al., 2020) contains 14 me-
teorological factors, 8 of which have multiple vertical lev-
els. Moreover, our Weather2K can be applied to weather
forecasting tasks in different directions. Weather2K-S and
Weather2K-R are designed for the task of time series fore-
casting and spatio-temporal forecasting, respectively, while
existing datasets mainly focus on solving a single task.

4 APPLICATIONS

In this section, we mainly introduce the application of the
Weather2K in two important directions of weather fore-
casting, namely time series forecasting and spatio-temporal
forecasting. For the convenience of expression, the temper-
ature, visibility, and humidity mentioned in section 4 and
section 5 refer to air temperature, horizontal visibility in 10
min, and relative humidity, respectively. These 3 meteoro-
logical factors are also selected as our forecasting targets.
See more details about baseline models and implementa-
tion in Supplementary Material D.1 and D.2, respectively.

4.1 Time Series Forecasting

Weather2K-S is the special version of Weather2K designed
for the task of time series forecasting, which contains 15
representative and geographically diverse ground weather
stations distributed throughout China. We conduct three
types of experiments on Weather2K-S: univariate forecast-
ing, multivariate forecasting, and multivariate to univariate
forecasting. 4 representative transformer-based baselines
are set up for comparison, i.e., Transformer (Vaswani et al.,
2017), Reformer (Kitaev et al., 2020), Informer (Zhou
et al., 2021), and Autoformer (Wu et al., 2021). In meteo-
rological science, short-term, medium-term, and long-term
forecasting can be divided into 0-3 days, 3-15 days, and
more than 15 days, respectively. For better comparison, we
set the prediction time lengths for both training and evalua-
tion to 24 (1 day), 72 (3 days), 168 (7 days), 336 (14 days),
and 720 (30 days) steps, while the input time length is fixed
to 72 (3 days) steps. We evaluate the performance of pre-
dictive models by two widely used metrics, including Mean
Square Error (MSE) and Mean Absolute Error (MAE).

Table 2 shows the forecasting performance of temperature,
visibility, and humidity under different baselines and pre-
diction lengths. In univariate forecasting and multivariate
forecasting, both the input and output are the single and
multiple meteorological factors we specify, respectively.
By comparison, we can intuitively find that multivariate
forecasting is more complex than univariate forecasting.
Meteorological forecasting becomes more challenging as
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Table 2: Univariate results and multivariate results under different baselines with different prediction lengths of 24, 72,
168, 336, and 720 steps. The input time length is 72 steps. The reported results of mean and standard deviation are obtained
through experiments under 15 different ground weather stations in Weather2K-S. Results with bold and underlines are the
best and worst performance achieved by baselines, respectively.

Models Transformer Reformer Informer Autoformer

Factors Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Temperature

24 0.0740±0.0214 0.2000±0.0284 0.0897±0.0241 0.2306±0.0289 0.0758±0.0229 0.2031±0.0299 0.0978±0.0290 0.2367±0.0342
72 0.1246±0.0396 0.2656±0.0440 0.1294±0.0393 0.2797±0.0400 0.1272±0.0355 0.2711±0.0386 0.1384±0.0474 0.2832±0.0464
168 0.1560±0.0513 0.2999±0.0502 0.1431±0.0528 0.2926±0.0529 0.1699±0.0529 0.3162±0.0660 0.1574±0.0583 0.3002±0.0544
336 0.1709±0.0635 0.3148±0.0587 0.1451±0.0562 0.2947±0.0576 0.2118±0.0660 0.3586±0.0508 0.1655±0.0630 0.3092±0.0575
720 0.1603±0.0671 0.3058±0.0630 0.1481±0.0532 0.2968±0.0544 0.2119±0.0665 0.3637±0.0536 0.2011±0.0602 0.3453±0.0510

Visibility

24 0.7105±0.1155 0.6536±0.1151 0.6623±0.1108 0.6288±0.1175 0.7007±0.1198 0.6390±0.1218 0.8014±0.1589 0.6929±0.1013
72 0.8722±0.1945 0.7475±0.1487 0.8304±0.1843 0.7440±0.1526 0.8847±0.2079 0.7503±0.1400 0.9350±0.2215 0.7585±0.1336
168 0.9153±0.1969 0.7802±0.1439 0.9083±0.2380 0.7795±0.1441 0.9428±0.1942 0.7943±0.1523 0.9911±0.2273 0.7834±0.1289
336 0.9952±0.2766 0.8059±0.1855 0.9219±0.2713 0.7810±0.1706 1.0232±0.2336 0.8388±0.1720 0.9919±0.2311 0.7832±0.1415
720 0.9963±0.2570 0.8090±0.1755 0.9506±0.2853 0.7946±0.1763 1.0235±0.2618 0.8438±0.0789 1.0651±0.2591 0.8145±0.1553

Humidity

24 0.3746±0.0820 0.4607±0.0548 0.3618±0.0725 0.4529±0.0438 0.3749±0.0848 0.4563±0.0529 0.4291±0.1058 0.4941±0.0625
72 0.5228±0.1310 0.5603±0.0782 0.4932±0.1074 0.5455±0.0621 0.5232±0.1234 0.5619±0.0769 0.5511±0.1209 0.5721±0.0651
168 0.5935±0.1533 0.6004±0.0814 0.5421±0.1254 0.5759±0.0688 0.6221±0.1567 0.6163±0.0884 0.6111±0.1304 0.6042±0.0651
336 0.6107±0.1643 0.6142±0.0815 0.5761±0.1456 0.5938±0.0749 0.6965±0.1845 0.6653±0.1051 0.6514±0.1567 0.6258±0.0737
720 0.6177±0.1638 0.6146±0.0833 0.5864±0.1399 0.6009±0.0737 0.7979±0.1538 0.7285±0.0789 0.7145±0.1631 0.6599±0.0741

Multivariate

24 0.7134±0.1796 0.4597±0.0418 0.6342±0.1700 0.4177±0.0178 0.6838±0.1777 0.4381±0.0338 0.7525±0.1968 0.4868±0.0300
72 0.8143±0.2071 0.5179±0.0469 0.7616±0.1877 0.4914±0.0330 0.8142±0.1967 0.5128±0.0391 0.8585±0.2132 0.5390±0.0314
168 0.8462±0.2076 0.5261±0.0430 0.8029±0.1979 0.5075±0.0339 0.8641±0.2004 0.5543±0.0311 0.8945±0.2160 0.5455±0.0390
336 0.8507±0.2044 0.5450±0.0396 0.8251±0.2057 0.5173±0.0337 0.9040±0.2129 0.5750±0.0307 0.9298±0.2222 0.5575±0.0381
720 0.8967±0.2308 0.5543±0.0446 0.8501±0.2279 0.5240±0.0335 0.9242±0.2241 0.5833±0.0329 0.9379±0.2553 0.5731±0.0432

Table 3: Univariate results with 8 spatio-temporal GNN models in prediction time length of 12 steps on Weather2K-R. The
input time length is 12 steps. Results with bold and underlines are the best and worst performance, respectively.

Factors Metrics STGCN ASTGCN MSTGCN DCRNN GCGRU TGCN A3TGCN CLCRN

Temperature MAE 3.1297 2.6942 3.6827 5.0457 1.8823 2.6429 2.9372 1.6498
RMSE 4.7154 3.6383 4.9195 6.4070 2.7491 3.6189 4.0045 2.4328

Visibility MAE 7.7568 5.7311 5.9053 7.6464 4.4863 6.0115 5.7731 4.1252
RMSE 9.0896 7.5523 7.8016 9.0035 6.8236 8.4893 7.5974 6.4660

Humidity MAE 9.8479 12.0332 14.4780 16.3467 7.7008 10.7045 12.1034 7.8056
RMSE 14.5123 15.9847 18.7188 21.2517 10.9422 14.3170 15.9838 11.1326

the length of the predicted time series increases. On
Weather2K-S, Reformer (Kitaev et al., 2020) have the best
performance most of the time due to its efficient locality-
sensitive hashing attention. The poor performance of Auto-
former (Wu et al., 2021) may be that it attempts to construct
a series-level connection based on the process similarity de-
rived by series periodicity, whereas meteorological data in
Weather2K-S change dynamically and irregularly.

We further explore to use the multivariate data to forecast
the target univariate meteorological factor. However, multi-
variate information is underutilized in existing transformer-
based time series forecasting baselines. The performance
of multivariate to univariate forecasting is provided in Sup-
plementary Material D.3. To make the evaluation more
complete and informative, we also present the univariate
forecasting results of the persistent model and some classi-
cal nonparametric methods in Supplementary Material D.4.

4.2 Spatio-Temporal Forecasting

Unlike time series forecasting that only targets a single
selected ground weather station, spatio-temporal forecast-

ing that can cover the entire region is more challenging
and meaningful in the meteorological domain due to the
highly nonlinear temporal dynamics and complex location-
characterized patterns. We conduct experiments for uni-
variate forecasting on Weather2K-R. We select 8 state-of-
the-art spatio-temporal GNN models as baselines: STGCN
(Yu et al., 2017), ASTGCN (Guo et al., 2019), MSTGCN
(Guo et al., 2019), DCRNN (Li et al., 2017), GCGRU (Seo
et al., 2018), TGCN (Zhao et al., 2019), A3TGCN (Bai
et al., 2021), and CLCRN (Lin et al., 2022). We construct a
neighbor graph based on distance as one of the GNN mod-
els’ inputs by utilizing three time-invariant constants that
provide position information including latitude, longitude,
and altitude. We set both the input time length and predic-
tion time length as 12 steps. We evaluate the performance
by two commonly used metrics in spatio-temporal forecast-
ing, including MAE, Root Mean Square Error (RMSE).

Table 3 summarizes the univariate forecasting results of
8 spatio-temporal GNN models based on Weather2K-R.
Since most of the compared models are established for the
task of traffic forecasting, it is not surprising that they show
significant degradation in performance for meteorological
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Figure 2: (a) The overview of Meteorological Factors based Multi-Graph Convolution Network (MFMGCN). (b) The
architecture of spatio-temporal block (ST-block). (c) The architecture of the multi-branch temporal convolution.

forecasting, such as DCRNN (Li et al., 2017) and MST-
GCN (Guo et al., 2019). Moreover, the performance of 8
spatio-temporal GNN models in forecasting different mete-
orological factors varies widely. For example, STGCN (Yu
et al., 2017) ranks third in humidity forecasting, but worst
in visibility forecasting. CLCRN (Lin et al., 2022) achieves
the best performance because the conditional local kernel
is specifically designed to capture the meteorological lo-
cal spatial patterns. In addition, the current GNN baselines
focus on the univariate forecasting and do not consider cor-
related multiple variables as cooperative inputs, which may
have important impacts on weather forecasting.

Therefore, there are two urgent problems in the applica-
tion of spatio-temporal forecasting in the meteorological
domain: (1) A novel and general GNN framework designed
specifically for the task of weather forecasting. (2) Make
effective use of the multivariate meteorological factors.

5 MFMGCN

It is insufficient to simply use distance similarity to rep-
resent the correlations among observed data with spatio-
temporal attributes (Geng et al., 2019). Modeling with a
single graph usually brings unexpected bias, while multi-
ple graphs can attenuate and offset the bias. To solve the
above problems, we introduce MFMGCN, which combines
several static graphs with the dynamic graph to effectively
construct the intrinsic correlation among geographic loca-
tions based on meteorological factors. The framework of
MFMGCN is shown in Figure 2. Through extensive ex-
periments and ablation studies, we have demonstrated that
MFMGCN achieves considerable forecasting performance
gain and shows great robustness in the temporal dimension
compared with previous methods on Weather2K-R.

5.1 Problem Setting

In this section, we describe the problem setting of the
spatio-temporal weather forecasting. The meteorological

network can be represented by a graph G = (V , E, A),
where V denotes the set of locations, E is a set of edges
indicating the connectivity between the nodes and A ∈
RN×N is the adjacency matrix. Let X(t) ∈ RN×D rep-
resent the value of meteorological factors in all locations at
the t-th interval,where N and D is the number of locations
and factors, respectively. The spatio-temporal weather
forecasting problem is to learn a function P that maps his-
torical W

′
observed signals to the future W signals:[

X(t−W ′+1), . . . ,X(t);G
]

P−→
[
X(t+1), . . . ,X(t+W );G

]
(1)

We set D = 1 for univariate forecasting in this study. We
set W

′
= W = 12, which means both the input time length

and forecasting time length are 12 steps.

5.2 Static Graph Construction

In this section, we describe in detail 4 static graphs used
in MFMGCN that represent different types of correlations
among geographic locations, including: (1) The distance
graph GD = (V , E, AD). (2) The neighbor graph GN =
(V , E, AN ). (3) The pattern similarity graph GP =
(V , E, AP ). (4) The learnable graph GL = (V , E, AL).

5.2.1 Distance Graph

The distance-based graph describes the topological struc-
ture of the ground weather station network. Our distance
graph GD is constructed based on the spherical distance of
stations’ spatial location with thresholded Gaussian kernel
(Shuman et al., 2013). The element of distance matrix AD

is defined as follows:

AD,ij =

{
exp

(
− d2

ij

σ2
D

)
, for i ̸= j and exp

(
− d2

ij

σ2
D

)
≥ ε

0 , otherwise
(2)

where dij represents the spherical distance between vi and
vj . ε and σ2

D are used to control the sparsity and distribu-
tion of AD, respectively.
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5.2.2 Neighbor Graph

We construct the neighbor graph GN by simply connecting
a location to its adjacent NA stations. The element of the
neighbor matrix AN is defined as follows:

AN,ij =

{
1 , vi and vj are adjacent
0 , otherwise

(3)

The influence of the selection value of NA is discussed in
Supplementary Material D.5.

5.2.3 Pattern Similarity Graph

Since distant stations may also have highly consistent mete-
orological characteristics, it is essential to establish a graph
by mining pattern similarity between nodes based on our
multivariate dataset. The element of pattern similarity ma-
trix AP is defined as follows:

Af
P,ij =


∑P

p=1

(
tfi,p−T f

i

)(
tfj,p−T f

j

)
√∑p

i=1

(
tfi,p−T f

i

)2
√∑p

j=1

(
tfj,p−T f

j

)2
, if i ̸= j

0 , otherwise

(4)

Note that the pattern similarity graph can be constructed
using Pearson correlation coefficients (Zhang et al., 2020)
based on any meteorological factor f ∈ F , where F de-
notes the set of all factors in Weather2K. For a specific fea-
ture f , T f

i =
{
tfi,1, t

f
i,2, · · · , t

f
i,p, · · · , t

f
i,P

}
describe the

time-series sequence of vi used for training, where P is the
length of the series, and tfi,p is the time-series data value of
the vertex vi at time step p. To model the correlation be-
tween any geographic location comprehensively, we build
pattern graphs on temperature, visibility, and humidity.

5.2.4 Learnable Graph

The meteorological data need not only the accumulation of
long time series for historical vertical comparative study,
but also the horizontal comparative study of global regions.
Despite the above graphs can capture spatial dependencies
in detail, the information of the node itself is not suffi-
ciently utilized due to the lack of historical level and geo-
graphic information which is challenging to predefine. In-
spired by Wu et al. (2020b), we propose static node embed-
ding E ∈ RD which is learnable to encode meteorological
statistics for each node and compute:

Mi = tanh (αEiΘ1) (5)

Mj = tanh (αEjΘ2) (6)

AL,ij = ReLU (tanh (α (Mi ·Mj −Mj ·Mi))) (7)

where Ei and Ej represents randomly initialized node em-
beddings of node vi and vj , respectively. Θ1,Θ2 are linear
layers and α is a hyper-parameter for controlling the sat-
uration rate of the activation function. To make GL more

applicable to the meteorological field, each node of GL has
more connections with other nodes in different geographic
locations, rather than selecting only the top-k closest nodes
as its connections. And the edges of GL are not limited to
uni-directional because the geographical situation has two-
way effects under different conditions.

5.3 Dynamic Graph Construction

In this section, the construction of the dynamic graph is
presented. A node may have different types and degrees
of weather, leading to dynamic changes in the relationship
with other nodes. However, it is still hard to model such dy-
namic characteristics by static adjacency matrix based on
distance or neighbor. Attention mechanism methods make
computation and memory grow quadratically with the in-
crease of graph size while RNN-based methods are lim-
ited by the length of the input sequence. Both of them
need to be carefully modified to ensure successful train-
ing on Weather2K-R. We dynamically construct a graph
GK = (V,E,AK) to model nonlinear spatio-temporal
correlations in a efficient way.

Note that Xt,i = {xt−W+1,i, · · · , xt−1,i, · · · , xt,i} ∈
RW×D is an input temporal sequence of vertex vi at time
t, where W is the sequence length and D is the number of
factors. We then simply flatten the vector to Zi ∈ RWD

to represent the characteristics on the input temporal scale.
Similar to the way of building the learnable graph, the ele-
ment of matrix AK is defined as follows:

Di = tanh (βZiW1) (8)

Dj = tanh (βZjW2) (9)

AK,ij = ReLU (tanh (β (Di ·Dj −Dj ·Di))) (10)

where W1 and W2 are linear layers and β is a hyper-
parameter for controlling the saturation rate of the activa-
tion function. Different from the learnable graph based on
static node embedding, GK is generated dynamically both
in the training and inference stages.

5.4 Multi-graph Fusion

Since different graphs contain specific spatio-temporal in-
formation and make unequal contributions to the forecast-
ing result of every single node, it is inappropriate to sim-
ply merge them using weighted sum or other averaging
approaches in a unified way. Therefore, we use learn-
able weights Ws ∈ RN×N to describe the importance of
graph s for each node, where N presents the number of
nodes and s ∈ S = {D,N,P, L,K} is one of the pro-
posed graphs. Finally, the result of multi-graph fusion is
Gfused = (V,E,Afused):

Afused =
∑
s∈S

Ws ⊙As (11)

where ⊙ indicates the element-wise Hadamard product.
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5.5 Spatio-Temporal Graph Neural Network

Considering the time-space consistency is important in
weather forecasting, we build a model by stacking spatio-
temporal blocks (ST-block) which are complete convolu-
tional structures. As shown in Figure 2 (b), the ST-block
adopts a residual learning framework which consists of a
spatial convolution and a temporal convolution in order.
Then, a fully-connected output layer is used to generate the
final prediction Ŷ.

5.5.1 Graph Convolution in Spatial Dimension

Following Yu et al. (2017), we adopt the spectral graph con-
volution to directly process the signals at each time slice.
In spectral graph analysis, taking the weather conditions
of factor f at time t as an example, the signal all over the
graph is x = xf

t ∈ RN , then the signal on the graph G is
filtered by a kernel gθ:

gθ ∗G x = gθ(L)x = gθ
(
UΛUT

)
x = Ugθ(Λ)UTx (12)

where graph Fourier basis U ∈ RN×N is the matrix of
eigenvectors of the normalized graph Laplacian L = IN −
D− 1

2AD− 1
2 = UΛUT ∈ RN×N . Note that IN is an

identity matrix and D ∈ RN×N is the diagonal degree
matrix with Dii = ΣjAij (A is the adjacent matrix). Λ ∈
RN×N is the diagonal matrix of eigenvalues of L and filter
gθ(Λ) is also a diagonal matrix. The above formula can be
understood as Fourier transforming gθ and x respectively
into the spectral domain, and multiplying their transformed
results, and doing the inverse Fourier transform to get the
output of the graph convolution (Shuman et al., 2013).

In practice, Chebyshev polynomials are adopted to solve
the efficiency problem of performing the eigenvalue de-
composition since the scale of our graph is large (Ham-
mond et al., 2011):

gθ ∗G x = gθ(L)x =

K−1∑
k=0

θkTk(L̃)x (13)

where Tk(L̃) ∈ RN×N is the Chebyshev polynomial of
order k evaluated at the scaled Laplacian L̃ = 2L/λmax −
IN , and λmax denotes the largest eigenvalue of L. Note that
K is the kernel size of graph convolution, which determines
the maximum radius of the convolution from central nodes.

5.5.2 Convolution in Temporal Dimension

Although RNN-based methods have superiority over CNN-
based methods in capturing temporal dependency, the time-
consuming problem of recurrent networks is nonnegligible,
especially in the field of long-term weather forecasting.

In MFMGCN, a multi-branch convolution layer on the time
axis is further stacked to model the temporal dynamic be-
haviors of meteorological data. As shown in Figure 2 (c),

the convolution layer of each branch has different receptive
fields for extracting information at different scales. Infor-
mation of different scales is then fused through concatena-
tion and a 1x1 convolution layer.

5.5.3 Time-space Consistency

The time-space consistency in weather forecasting means
that the larger the time scale of the data, the wider the spa-
tial range that can be predicted. Inspired by this rule, we
balance the span of space and time by setting appropri-
ate parameters in ST-blocks. The kernel size K of graph
convolution and receptive field in temporal convolution are
increased linearly with the stacking of blocks. By doing
so, our model can integrate spatio-temporal information or-
derly and avoid imbalance between both sides.

5.6 Experiments

5.6.1 Ablation Study

In this section, we conduct ablation studies to show the
effects of different fusion selections and discuss whether
each graph works as intended in forecasting temperature,
visibility, and humidity. We first evaluate the performance
of each graph separately. Secondly, we set distance graph
GD as the base input, which is the same as baseline models,
to verify whether the stack of more graphs (i.e. more infor-
mation) leads to better performance. And then we compare
the performance of all graphs but one (i.e. 4-graph fusion).
Finally, we show the performance of 5-graph fusion.

From Table 4, we can conclude that: (1) GD and GN is
similar in results because they are both constructed based
on location relationships, and it’s better to combine the two

Table 4: The results of ablation studies.

GD GN GP GL GK

Temperature Visibility Humidity

MAE RMSE MAE RMSE MAE RMSE

" 1.7190 2.5056 4.2625 6.3809 8.1178 11.6013

" 1.7420 2.5211 4.2724 6.4342 8.0778 11.6008

" 2.3651 3.1726 4.8104 6.5291 8.6860 12.2008

" 1.5842 2.2753 4.1551 6.1609 7.2361 10.4721

" 1.8267 2.5691 4.4877 6.3925 7.9877 11.5218

" " 1.7430 2.5342 4.2403 6.3334 7.9565 11.4717

" " " 1.6559 2.3834 4.1486 6.1512 7.7309 11.1712

" " " " 1.5540 2.2448 3.9409 6.0163 7.1181 10.3577

" " " " 1.5266 2.1925 3.9374 6.0278 7.1326 10.4074

" " " " 1.5046 2.1769 3.9361 6.0685 7.2506 10.5775

" " " " 1.5893 2.2887 4.4932 6.4680 7.4027 10.7293

" " " " 1.5053 2.1677 4.0174 6.0701 7.1858 10.4025

" " " " " 1.4418 2.0574 3.9277 6.0132 7.1125 10.3512
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Figure 3: Overall method comparison in forecasting (a)
temperature, (b) visibility, and (c) humidity.

graphs to make more efficient use of geographical distribu-
tion. (2) Using GP separately yields a quite poor result.
However, GP brings a positive influence in multi-graph fu-
sion. (3) GL is the optimal single graph, and it also brings
considerable performance gain in multi-graph fusion. (4)
Using GK separately does not work as well because it lacks
the stable correlation provided by the static graph. But it
can be complementary to the static graph and brings ex-
pected gain. (5) Whether forecasting temperature, visibil-
ity, or humidity, the effects of different fusion selections
have similar trend on performance, which indicates that the
multi-graph method is universal to meteorological factors.

5.6.2 Overall Method Comparison

To avoid complicated and verbose plots, we give the com-
parison of methods with the overall top three performances
on MAE and RMSE: GCGRU (Seo et al., 2018), CLCRN
(Lin et al., 2022), and our MFMGCN in Figure 3. With
the increase of the forecasting horizon from the first time
step to 12 time steps, the gap between MFMGCN and
other methods gradually widened. It can be concluded
that MFMGCN improves both the forecasting performance
and temporal robustness, which is of great significance for
real-world practical applications. In addition, MFMGCN
achieves the state-of-the-art performance in different me-
teorological factors, which further verifies it is a general
framework for the task of weather forecasting.

6 CONCLUSION

This paper contributes a new benchmark dataset named
Weather2K, which aims to make up for the deficiencies of
existing weather forecasting datasets in terms of real-time,
reliability, and diversity. The data of Weather2K is hourly
collected from 2,130 ground weather stations, which con-
tain 20 meteorological factors and 3 constants for posi-
tion information. Weather2K is applicable to diverse tasks
such as time series forecasting and spatio-temporal fore-
casting. As far as we know, Weather2K is the first at-
tempt to tackle weather forecasting task by taking full ad-
vantage of the strengths of observation data from ground
weather stations. Besides, we further propose MFMGCN,
a novel and general framework designed specifically for the
weather forecasting task, to effectively construct the intrin-
sic correlation among geographic locations based on me-
teorological factors by combining the static graph and the
dynamic graph, which significantly outperforms previous
spatio-temporal GNN methods on Weather2K. We hope
that the release of Weather2K can provide a foundation for
accelerated research in this area and foster collaboration
between atmospheric and data scientists.
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Supplementary Materials: Weather2K: A Multivariate Spatio-Temporal
Benchmark Dataset for Meteorological Forecasting Based on Real-Time

Observation Data from Ground Weather Stations

A NOTATION DEFINITION

Table 5 shows the glossary of notations used in this paper.

Table 5: Glossary of notations.

Symbol Meaning

G = (V , E, A) Graph represented nodes, edges and adjacency matrix respectively.

vi The i-th node.

N The number of geographic locations.

D The number of used factors.

X(t) The value of meteorological factors in all locations at the t-th interval.

W
′

The input time length.

W The forecasting time length.

F The set of all factors in Weather2K.

f A specific factor in F .

tfi,p The time-series data value of the vertex vi at time step p of factor f .

T f
i The time-series sequence of vi used for training of factor f .

α, β A hyper-parameter for controlling the saturation rate of the activation function.

Θ The linear layer.

Ei The static node embedding of vi.

Zi The dynamic node embedding of vi.

S The set of proposed graphs.

s A specific graph in S.

Ws Learnable weights which describe the importance of graph s for each node.

Y(t,W ) The ground truth at time t.

Ŷ(t,W ) The final prediction at time t.

xf
t The signal of factor f at time t all over the graph.

gθ A kernel to filter the signal.

L The normalized graph Laplacian.

U The matrix of eigenvectors of L.

IN An identity matrix.

D The diagonal degree matrix.

Λ The diagonal matrix of eigenvalues of L

L̃ The scaled Laplacian.

Tk(L̃) The Chebyshev polynomial of order k evaluated at the scaled Laplacian L̃.
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B METRICS COMPUTATION

For time series forecasting, let Ti ∈ RL×C be the ground truth, and T̂i be the predictions given by neural networks, where
L denotes the forecasting time length and C is the number of forecasting factors. The two metrics including MAE, MSE
are calculated as:

MAE
(
Ti, T̂i

)
=

1

LC

∣∣∣T̂i −Ti

∣∣∣ (14)

MSE
(
Ti, T̂i

)
=

1

LC

(
T̂i −Ti

)2

(15)

For spatio-temporal weather forecasting, let Y(t,W ) =
[
X(t+1), . . . ,X(t+W )

]
be the ground truth, and Ŷ(t,W ) =[

X̂(t+1), . . . , X̂(t+W )
]

be the predictions given by graph models. The two metrics including MAE, RMSE are calcu-
lated as:

MAE
(
Y(t,W ), Ŷ(t,W )

)
=

1

WND

t+W∑
i=t+1

∣∣∣X̂(i) −X(i)
∣∣∣ (16)

RMSE
(
Y(t,W ), Ŷ(t,W )

)
=

√√√√ 1

WND

t+W∑
i=t+1

(
X̂(i) −X(i)

)2

(17)

where D,N is the number of forecasting factors and geographic locations respectively, W is the forecasting time length.

C MORE DETAILS ON THE DATASET OF WEATHER2K

C.1 The Data Processing

For sensor noise, bias and external effects when collecting data, CMA’s QC technologies mainly include numerical range
check, climatic range check, main change range check, internal consistency check, temporal consistency check, spatial
consistency check. Moreover, there are six main steps in our procedure of data processing, which are listed as follows:

(1) Acquisition of the Raw Data The raw data comes from CMA’s observation data of China’s ground weather stations.
The hourly updated data contains a total of 105 variables from approximately 2,500 ground weather stations covering an
area of 6 million square kilometers. We select the time period from January 2017 to August 2021, in which we can ensure
the use of unified meteorological observation instruments and sensors for data collection.

(2) Screening of the Meteorological Factors Based on the consideration of building a representative and comprehensive
dataset for meteorological forecasting, we select 3 time-invariant constants: latitude, longitude, and altitude to provide
position information and 20 important meteorological factors such as air pressure, air temperature, dewpoint temperature,
water vapor pressure, relative humidity, wind speed, wind direction, vertical visibility, horizontal visibility, precipitation,
etc. The definitions and physical descriptions of the chosen variables are listed in Table 1.

(3) Screening of the Time Series In this step, we mainly ensure the integrity of the time series of each ground weather
station. According to the chosen time range, the length of the time series should be 40,896 steps for a single ground weather
station. We discard the whole data of a single weather station with a missing proportion above the upper limit, which is set
to 1% of the entire time steps. For the remaining data, we use linear interpolation. After this step, the number of eligible
ground weather stations drops to 2,373.

(4) Screening of the Default Values There are default values for meteorological factors represented by certain numbers,
such as 999,999 for visibility. For a single ground weather station, if the default value proportion for any one of the 20
meteorological factors exceeds 1%, we will discard the entire data. We also use linear interpolation for the default values
in the remaining data. After this step, the number of eligible ground weather stations falls further to 2,130.
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(5) Manual Tuning of the Outliers Despite CMA’s QC technologies for the data, we found some unexpected outliers.
We use box plots to make statistics for each meteorological factor. We focus on discrete individual points in the box plot
that are above the upper whisker or below the lower whisker. The opinions of 3 experts in the field of meteorological
science help us decide whether these points are outliers for recording errors or acceptable extremes.

(6) Storage of the Data We use a huge Numpy format file to store the processed data. The historical data of each
individual ground weather station constitutes the time series of multivariate meteorological factors. Thousands of stations
form the spatial sequences, each of which is assigned a fixed index number based on the original station number. In the
release version of the dataset, we give the index correspondence in a text file.

C.2 Dataset Statistics

C.2.1 Statistics of Meteorological Factors by Box Plot

(m/s) (m/s) 

(m) (m) (m) 

(mm) (mm) (mm) (mm) 

(mm) (%) (hpa) 

(hpa) 

(°) (°) 

(°C)

(°C) (°C) 
Air Pressure Air Temperature Maximum Temperature Minimum Temperature

Dewpoint Temperature Relative Humidity Water Vapor Pressure Precipitation in 1h

Precipitation in 3h Precipitation in 6h Precipitation in 12h Precipitation in 24h

Wind Direction Wind Speed Maximum Wind Direction Maximum Wind Speed

Land Surface Temperature Horizontal Visibility in 1 min Horizontal Visibility in 10 min Vertical Visibility

(°C)

(°C)

Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S

Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S

Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S

Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S

Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S Weather2K-R Weather2K-S

Figure 4: Box plots of 20 meteorological factors in Weather2K-R and Weather2K-S.
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In descriptive statistics, the box plot is a method for graphically reflecting the overall characteristics of numerical data
distribution through their quartiles. Although we cannot apply a simple Gaussian distribution for modelling various weather
properties, such as precipitation and wind, it can also play an auxiliary role in outlier processing. Figure 4 shows the box
plots of 20 meteorological factors in Weather2K-R and Weather2K-S. The top and bottom boundaries of a box are the
upper and lower quartiles of the statistic indices at these stations, while the line and the cross inside the box are the median
and the mean value, respectively. The vertical dashed lines extending from the box represent the minimum and maximum
of the corresponding indices. ”Outliers” (acceptable after expert discussion) are plotted as individual black points.

C.2.2 Statistics of Weather2K-S by Cumulative Distribution Function

In probability theory and statistics, the Cumulative Distribution Function (CDF) can completely describes the probability
distribution of a real-valued variable. Figure 5 shows the CDF of 20 meteorological factors in Weather2K-S. Lines 1-15
denote the different ground weather stations in Weather2K-S, which can be intuitively found that the stations we select are
representative and diverse.

(m/s) (m/s) 

(m) (m) (m) 

(mm) (mm) (mm) (mm) 

(mm) (%) (hpa) 

(hpa) 

(°) (°) 

(°C)

(°C) (°C) 

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

Air Pressure Air Temperature Maximum Temperature Minimum Temperature

Dewpoint Temperature Relative Humidity Water Vapor Pressure Precipitation in 1h

Precipitation in 3h Precipitation in 6h Precipitation in 12h Precipitation in 24h

Wind Direction Wind Speed Maximum Wind Direction Maximum Wind Speed

Land Surface Temperature Horizontal Visibility in 1 min Horizontal Visibility in 10 min Vertical Visibility

(°C)

(°C)

Figure 5: CDF of 20 meteorological factors in Weather2K-S.
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C.2.3 Statistics of Weather2K-R by Administrative Region

Figure 6 shows the statistics of ground weather stations of each province in Weather2K-R to facilitate the potential use
of specific audiences. Weather2K-R covers 31 provinces in China and contains 1,866 ground weather stations, with an
average of more than 60 ground weather stations per province. Among them, Hebei has the largest number of 132 stations,
while Shanghai and Tianjin have the smallest number of 10 stations.
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Figure 6: The statistics of ground weather stations of each province in Weather2K-R.

D EXPERIMENT

D.1 Baseline Models

In the application direction of time series forecasting, four representative transformer-based baselines are set up for com-
parison on Weather2K-S.

Transformer Vaswani et al. (2017) propose a simple network architecture, the Transformer, based on the self-attention
mechanism. Transformers show great modeling ability for long-range dependencies and interactions in sequential data
and thus are attractive in time series modeling. However, it is computationally prohibitive to applying self-attention to
long-term time series forecasting due to the quadratic complexity of sequence length L in both memory and time. Many
Transformer variants have been proposed to adapt to long-term time series forecasting in a efficient way.

Reformer Kitaev et al. (2020) introduce two techniques to improve the efficiency of Transformers. For one, Reformer re-
places dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L2) to O(L logL).
Furthermore, Reformer uses reversible residual layers instead of the standard residuals, which allows storing activations
only once in the training process instead of N times, where N is the number of layers.

Informer Zhou et al. (2021) propose ProbSparse self-attention mechanism to efficiently replace the canonical self-
attention, which use the Kullback-Leibler divergence distribution measurement between queries and keys to select
O(logL) dominant queries. Informer achieves the O(L logL) time complexity and memory usage on dependency align-
ments. It also designs a generative style decoder to produce long sequence output with only one forward step to avoid
accumulation error.

Autoformer Wu et al. (2021) devise a seasonal-trend decomposition architecture with an auto-correlation mechanism
working as an attention module. The auto-correlation block measures the time-delay similarity between inputs signal and
aggregate the top-k similar sub-series to produce the output. Autoformer achieves O(L logL) complexity and breaks the
information utilization bottleneck by expanding the point-wise representation aggregation to sub-series level.

In the application direction of spatio-temporal forecasting, eight state-of-the-art spatio-temporal GNN models are set up
for comparison on Weather2K-R.

STGCN Yu et al. (2017) propose a deep learning framework for traffic prediction, integrating graph convolution and gated
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temporal convolution through spatio-temporal convolutional blocks. The model is entirely composed of convolutional
structures and therefore achieves parallelization over input with fewer parameters and faster training speed.

DCRNN Li et al. (2017) study the traffic forecasting problem and model the spatial dependency of traffic as a diffusion
process on a directed graph. DCRNN captures both spatial and temporal dependencies among time series using diffusion
convolution and the sequence to sequence learning framework together with scheduled sampling.

GCGRU Seo et al. (2018) combine convolutional neural networks on graphs to identify spatial structures and recur-
rent neural networks to find dynamic patterns. GCGRU shows that exploiting simultaneously graph spatial and dynamic
information about data can improve both precision and learning speed.

ASTGCN Guo et al. (2019) develop a attention mechanism to learn the dynamic spatio-temporal correlations of traffic
data. The spatio-temporal convolution module consists of graph convolutions for capturing spatial features from the traffic
network structure and convolutions in the temporal dimension for describing dependencies from nearby time slices.

MSTGCN Guo et al. (2019) propose a degraded version of ASTGCN, which gets rid of the spatio-temporal attention.

TGCN Zhao et al. (2019) propose the TGCN model by combining the graph convolutional network and gated recurrent
unit, which are used to capture the topological structure of the road network to model spatial dependence and the dynamic
change of traffic data on the roads to model temporal dependence, respectively.

A3TGCN Bai et al. (2021) propose the A3TGCN model to simultaneously capture global temporal dynamics and spatial
correlations. The attention mechanism was introduced to adjust the importance of different time points and assemble global
temporal information to improve prediction accuracy.

CLCRN Based on the assumption of smoothness of location-characterized patterns, Lin et al. (2022) propose the con-
ditional local kernel and embed it in a graph-convolution-based recurrent network to model the temporal dynamics for
spatio-temporal meteorological forecasting.

D.2 Implementation Details

All the deep learning networks mentioned in this paper are implemented in PyTorch (Paszke et al., 2019) of version 1.8.0
with CUDA version 11.1. For the hyper-parameters that are not specifically mentioned in each model, we use the default
settings from their original proposals. Every single experiment is executed on a server with 4 NVIDIA GeForce RTX3090
GPUs with 24GB of video memory.

D.2.1 Transformers in Time Series Forecasting

Experiments are carried out on Weather2K-S with the temporal scale from January 1, 2019 to December 31, 2020. The
data is divided into the training set, validation set, and test set according to the ratio of 3:1:2. The batch size is set to 32.
The global seed is set to 2021 for the experiment repeat. The train epoch is set to 30, while the training process is early
stopped within 5 epochs if no loss degradation on the validation set is observed. All the models are trained with L2 loss,
using the Adam (Kingma and Ba, 2014) optimizer with the learning rate of 1e−4.

D.2.2 GNNs in Spatio-Temporal Forecasting

We truncate Weather2K-R with the temporal scale from January 1, 2017 to December 31, 2019. The baselines are all
implemented according to PyTorch Geometric Temporal (Rozemberczki et al., 2021). We construct a distance graph as one
of the GNN models’ inputs by utilizing three time-invariant constants in Weather2K-R that provide position information
including latitude, longitude, and altitude. The data for training, validation, and testing are all non-overlapping one-year
time, while the random seed is set to 2022. The batch size for training is set to 32. All the models are trained with the
target function of MAE and optimized by Adam optimizer (Kingma and Ba, 2014) for 100 epochs. Early-stopping epoch
is set to 50 according to the validation set. The initial learning rate is set to 1e−2, and it decays with the ratio 5e−2 per 10
epochs in the first 50 epochs.

D.3 The Results of Multivariate to Univariate Forecasting with Transformer Baselines

To take full advantage of multivariate data in Weather2K-S, we explore and attempt to use the multivariate data to forecast
the target univariate meteorological factor. We conduct experiments on the assumption that there are some underlying
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correlations between different meteorological factors. Without any prior knowledge, we use all 20 dimensional meteoro-
logical factors as input data. Table 6 shows the performance of multivariate to univariate forecasting. The number in the
parenthesis is the difference value from the univariate result, where the better result is highlighted in bold. However, mul-
tivariate to univariate forecasting does not result in stable performance gain and even brought performance degradation in
most cases compared to univariate forecasting. It can be concluded that multivariate information of meteorological factors
is underutilized in existing transformer-based time series forecasting baselines.

Table 6: Multivariate to univariate results with different prediction lengths of 24, 72, 168, 336, and 720 on Weather2K-S.
The input time length is 72 steps. The better results compared to univariate results are highlighted in bold.

Models Transformer Reformer Informer Autoformer

Factors Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Te
m

pe
ra

tu
re 24 0.0874 (+0.0134) 0.2256 (+0.0256) 0.0820 (-0.0077) 0.2173 (-0.0133) 0.0953 (+0.0195) 0.2322 (+0.0291) 0.1114 (+0.0136) 0.2539 (+0.0172)

72 0.1379 (+0.0133) 0.2843 (+0.0187) 0.1200 (-0.0094) 0.2669 (-0.0128) 0.1575 (+0.0303) 0.3033 (+0.0322) 0.1505 (+0.0121) 0.2968 (+0.0136)
168 0.1624 (+0.0064) 0.3090 (+0.0091) 0.1354 (-0.0077) 0.2841 (-0.0085) 0.2002 (+0.0303) 0.3450 (+0.0288) 0.1642 (+0.0068) 0.3078 (+0.0076)
336 0.1757 (+0.0048) 0.3224 (+0.0076) 0.1398 (-0.0053) 0.2886 (-0.0061) 0.2298 (+0.0180) 0.3785 (+0.0199) 0.1734 (+0.0079) 0.3180 (+0.0088)
720 0.1939 (+0.0336) 0.3399 (+0.0341) 0.1468 (-0.0013) 0.2940 (-0.0028) 0.2550 (+0.0431) 0.3978 (+0.0341) 0.2037 (+0.0026) 0.3486 (+0.0033)

V
is

ib
ili

ty

24 0.7300 (+0.0195) 0.6696 (+0.0160) 0.6355 (-0.0268) 0.6101 (-0.0187) 0.7316 (+0.0309) 0.6555 (+0.0165) 0.8596 (+0.0582) 0.7188 (+0.0259)
72 0.8943 (+0.0221) 0.7548 (+0.0073) 0.8072 (-0.0232) 0.7219 (-0.0221) 0.9388 (+0.0541) 0.7587 (+0.0084) 1.0087 (+0.0737) 0.7838 (+0.0253)

168 0.9101 (-0.0052) 0.7721 (-0.0081) 0.9067 (-0.0016) 0.7672 (-0.0123) 0.9853 (+0.0425) 0.8014 (+0.0071) 1.0108 (+0.0197) 0.7873 (+0.0039)
336 0.9883 (-0.0069) 0.7989 (-0.0070) 0.9203 (-0.0016) 0.7787 (-0.0023) 1.0229 (-0.0003) 0.8304 (-0.0084) 1.0135 (+0.0216) 0.7907 (+0.0075)
720 1.0143 (+0.0180) 0.8117 (+0.0027) 0.9453 (-0.0053) 0.7964 (+0.0018) 1.0736 (+0.0501) 0.8539 (+0.0101) 1.0596 (-0.0055) 0.8092 (-0.0053)

H
um

id
ity

24 0.4307 (+0.0561) 0.5010 (+0.0403) 0.3632 (+0.0014) 0.4551 (+0.0022) 0.4318 (+0.0569) 0.5024 (+0.0461) 0.5217 (+0.0926) 0.5539 (+0.0598)
72 0.5741 (+0.0513) 0.5863 (+0.0260) 0.4941 (+0.0009) 0.5454 (-0.0001) 0.5989 (+0.0757) 0.5985 (+0.0366) 0.6215 (+0.0704) 0.6140 (+0.0419)

168 0.6427 (+0.0492) 0.6242 (+0.0238) 0.5457 (+0.0036) 0.5767 (+0.0008) 0.7281 (+0.1060) 0.6617 (+0.0454) 0.6536 (+0.0425) 0.6283 (+0.0241)
336 0.6620 (+0.0513) 0.6354 (+0.0212) 0.5856 (+0.0095) 0.5992 (+0.0054) 0.8020 (+0.1055) 0.7129 (+0.0476) 0.6896 (+0.0382) 0.6456 (+0.0198)
720 0.6668 (+0.0491) 0.6359 (+0.0213) 0.5819 (-0.0045) 0.5963 (-0.0046) 0.8803 (+0.0824) 0.7711 (+0.0426) 0.7358 (+0.0213) 0.6719 (+0.0120)

D.4 The Univariate Results of the Persistent Model and Classical Nonparametric Methods

In order to perform a meaningful comparison for the forecasting results, the persistent model should be introduced to
quantify the improvement given by advanced forecasting techniques. The persistent model is the most cost-effective
forecasting model (De Felice et al., 2013) which assumes that the conditions will not change, which means “today’s
weather is tomorrow’s forecast”. So it is often called the naive forecast. In addition, we present the univariate forecasting
results of 3 classical nonparametric methods including linear regression (Su et al., 2012), ridge regression (McDonald,
2009), and kernel ridge regression (Vovk, 2013) on Weather2K-S in Table 7. Different from transformer baselines, we use
all the data of Weather2K-S, with a 3:1 ratio of the training set to the test set.

Table 7: Univariate results of the persistent model and nonparametric methods with different prediction lengths of 24, 72,
168, 336, and 720 steps. The input time length is 72 steps. The reported results of mean and standard deviation are obtained
through experiments on Weather2K-S. Results with bold and underlines are the best and worst performance, respectively.

Models Persistent Model Linear Regression Ridge Regression Kernel Ridge Regression

Factors Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Temperature

24 0.2610±0.1253 0.3771±0.0883 0.0712±0.0222 0.1892±0.0269 0.0713±0.0222 0.1893±0.0269 0.0713±0.0222 0.1893±0.0269
72 0.3219±0.1336 0.4285±0.0855 0.1237±0.0417 0.2548±0.0389 0.1237±0.0418 0.2549±0.0389 0.1237±0.0418 0.2550±0.0390

168 0.3793±0.1501 0.4697±0.0892 0.1653±0.0608 0.3003±0.0510 0.1655±0.0608 0.3005±0.0510 0.1654±0.0609 0.3006±0.0514
336 0.4179±0.1595 0.4968±0.0909 0.1962±0.0689 0.3329±0.0538 0.1963±0.0689 0.3331±0.0538 0.1964±0.0691 0.3332±0.0544
720 0.4951±0.1598 0.5463±0.0847 0.2632±0.0696 0.3931±0.0472 0.2634±0.0696 0.3932±0.0472 0.2635±0.0701 0.3943±0.0478

Visibility

24 1.0079±0.2200 0.6662±0.1353 0.6355±0.1253 0.6147±0.1007 0.6350±0.1261 0.6162±0.1009 0.6357±0.1255 0.6148±0.1009
72 1.3548±0.3239 0.8147±0.1712 0.8115±0.1815 0.7355±0.1210 0.8114±0.1821 0.7366±0.1214 0.8121±0.1820 0.7357±0.1213

168 1.5628±0.3818 0.8998±0.1939 0.9038±0.2073 0.7948±0.1260 0.9037±0.2077 0.7954±0.1262 0.9047±0.2083 0.7950±0.1265
336 1.6512±0.4031 0.9364±0.2027 0.9434±0.2298 0.8207±0.1317 0.9447±0.2312 0.8233±0.1323 0.9446±0.2308 0.8210±0.1322
720 1.7290±0.4237 0.9665±0.2113 0.9801±0.2481 0.8417±0.1366 0.9812±0.2488 0.8444±0.1367 0.9810±0.2485 0.8418±0.1369

Humidity

24 1.0022±0.1534 0.7505±0.0610 0.3548±0.0796 0.4378±0.0529 0.3547±0.0796 0.4380±0.0529 0.3547±0.0796 0.4378±0.0528
72 1.2302±0.1741 0.8504±0.0608 0.4939±0.1060 0.5356±0.0625 0.4940±0.1060 0.5357±0.0625 0.4939±0.1060 0.5356±0.0625

168 1.3995±0.2021 0.9172±0.0619 0.5770±0.1179 0.5909±0.0647 0.5776±0.1180 0.5918±0.0648 0.5769±0.1178 0.5908±0.0646
336 1.5181±0.2296 0.9608±0.0656 0.6281±0.1240 0.6233±0.0663 0.6285±0.1240 0.6239±0.0664 0.6278±0.1239 0.6231±0.0662
720 1.6328±0.2538 1.0030±0.0707 0.6723±0.1316 0.6500±0.0693 0.6726±0.1316 0.6505±0.0693 0.6718±0.1316 0.6496±0.0691
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D.5 Discussion of the value of NA in Neighbor Graph

When we use the neighbor graph GN separately, the influence of the selection value of NA should be discussed. In Figure 7,
we respectively set NA as 5, 10, 15, 20, and 25 to verify the variation trend of MAE and RMSE when the forecasting time
step is 12. The performance will not be significantly improved when the number exceeds 10. Therefore, we consistently
set NA to 10 in the following ablation studies.
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Figure 7: The selection of NA in neighbor graph in forecasting (a) temperature, (b) visibility, and (c) humidity.


