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Abstract

We propose Byzantine-robust federated learn-
ing protocols with nearly optimal statistical
rates based on recent progress in high dimen-
sional robust statistics. In contrast to prior work,
our proposed protocols improve the dimension
dependence and achieve a near-optimal statis-
tical rate for strongly convex losses. We also
provide statistical lower bound for the prob-
lem. For experiments, we benchmark against
competing protocols and show the empirical
superiority of the proposed protocols.

1 Introduction

Federated learning (FL) has drawn considerable attention
as a novel distributed learning paradigm in recent years.
In FL, users (worker machines) collaborate to train a
model using a centralized server (master machine), while
all data is stored locally to protect users’ privacy. The
privacy benefit has motivated the adoption of FL in a vari-
ety of sensitive applications, including Google GBoard,
healthcare services, and self-driving cars.

However, vanilla FL has been demonstrated to be vul-
nerable to a range of attacks (Bagdasaryan et al., 2020;
Bhagoji et al., 2019; Nasr et al., 2019; Sun et al., 2021;
Luo et al., 2021). There are two mainstream vulnerabil-
ities in FL, namely Byzantine robustness and privacy.
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In the former, a small number of clients can behave
maliciously in a large-scale FL system and influence
the jointly-trained FL model in a stealthy manner (Bag-
dasaryan et al., 2020; Bhagoji et al., 2019; Fang et al.,
2020; Sun et al., 2021). For the majority of SGD-based
FL algorithms (McMahan and Ramage, 2017), the central-
ized server averages the local updates to obtain the global
update, which is vulnerable to even a single malicious
client. Particularly, a malicious client can craft its up-
date in such a way that it prevents the global model from
converging or leads it to a sub-optimal minimum. With
respect to terms of privacy, the vulnerability is that the
centralized server can infer information about the local
data of the clients by inspecting their updates (Nasr et al.,
2019; Luo et al., 2021).

In this work, we mainly focus on the Byzantine robust-
ness of the FL protocols. Byzantine-robust FL proto-
cols (Blanchard et al., 2017; Yin et al., 2018; Fu et al.,
2019; Pillutla et al., 2019; Alistarh et al., 2018; Karim-
ireddy et al., 2021; Allen-Zhu et al., 2020; Karimireddy
et al., 2020; Gorbunov et al., 2022; Velicheti et al., 2021;
Data and Diggavi, 2021) have been proposed to sup-
press the influence of malicious clients’ updates (See
Appendix A for a full discussion and comparison). In
the most comparable work, Yin et al. (2018) apply a
coordinate-wise median/trimmed mean to aggregate local
updates. Under the assumption of bounded variance
Ep⋆ [∥g − E[g]∥22] ≤ σ̃2 and coordinate-wise bounded
skewness (or coordinate-wise sub-exponential) on the gra-
dient distribution, one can achieve a statistical error of
O(σ̃(ϵ/

√
n +

√
d/mn)), where ϵ, n,m are the fraction

of malicious nodes, number of samples in each client, and
number of clients, respectively. It has also been shown
in Yin et al. (2018) that any FL protocol cannot has a rate
better than Ω(ϵ/

√
n+

√
d/mn).

However, as is noted in (Yin et al., 2018), the term σ̃
usually depends on the dimension of the data d. As a
concrete example, σ̃ =

√
d when the noise of the gradient



is standard Gaussian with identity covariance I . And this
results in a sub-optimal rate of O(ϵ

√
d/n+

√
d2/mn).

Compared to the lower bound above, the rate is far from
optimal in terms of the dependence on the dimension of
gradients d, which is usually high for modern machine
learning architectures such as neural networks. Further-
more, they also rely on strong, hard-to-verify extra as-
sumptions, including bounded coordinate-wise skewness
or sub-exponential gradients, which are unlikely to be
satisfied in practice. Similar issues on the dimension de-
pendence and strong extra assumptions also appear in
the analysis other FL protocols with trace bound assump-
tion (Blanchard et al., 2017; Karimireddy et al., 2021,
2020; Velicheti et al., 2021), which we provide detailed
discussion in Appendix A.

In this paper, we make the only distributional assumption
that the spectral norm of the covariance of the gradient
is bounded by σ2, as in Assumption 3 (note that the as-
sumption in (Yin et al., 2018) in is equivalent to bounded
trace of the covariance, and for Gaussian with identity
covariance we have σ = 1 while σ̃ =

√
d). In this case,

we aim to propose FL protocols that achieve an optimal
statistical rate of Θ(σ(ϵ/

√
n+

√
d/mn)).

On the other hand, a standard metric for robust estima-
tors is the breakdown point, which measures the largest
fraction of Byzantine clients an algorithm is insensitive
to (Huber, 1973; Donoho, 1982). While this metric has
been neglected in most of the previous work on computa-
tionally efficient high dimensional robust estimators, it is
important for the practical performance of FL protocols.
Thus, we ask the question:

Under the assumption of bounded covariance of
gradients, can we design Byzantine-robust FL
algorithms that are near-optimal with respect
to all the parameters, ϵ, n,m, d, and achieve a
good breakdown point?

Our Contribution. In this work, we make one step to-
wards resolving the problem by providing a thorough anal-
ysis of the statistical rate and breakdown point of FL algo-
rithms. We identify the main reason for the sub-optimal
rate in (Yin et al., 2018) as the sub-optimality in the robust
aggregation algorithms. It is known that COORDINATE-
WISE MEDIAN, COORDINATE-WISE TRIMMED MEAN
and GEOMETRIC MEDIAN have an error of at least
Ω(σ
√
ϵd) under the bounded operator norm assumption

for robust mean estimation (Steinhardt, 2019; Lai et al.,
2016), which can be highly sub-optimal when the di-
mension is high. Following our lower bound analysis in
Appendix C, the lower bound for robust mean estimation
directly results in a lower bound of Ω(σ

√
ϵd/n) for the

performance of any FL protocols using either of the three

algorithms as aggregation rules.

The recent progress in statistically and computationally
efficient robust estimators in high dimension (Diakoniko-
las et al., 2016, 2017, 2019a,c,b, 2020; Steinhardt et al.,
2017, 2018; Steinhardt, 2018; Zhu et al., 2019b,a, 2022;
Lugosi, 2017; Lugosi and Mendelson, 2019; Lecué and
Lerasle, 2020; Lugosi and Mendelson, 2021; Hopkins
et al., 2020) aim to remove the extra

√
d factor in mean

estimation, and thus can be helpful in achieving near-
optimal rate for FL protocols. We propose Byzantine-
robust protocols based on various robust estimators, in-
cluding FILTERING (Diakonikolas et al., 2016; Stein-
hardt et al., 2017; Zhu et al., 2021), NO-REGRET (Zhu
et al., 2021; Hopkins et al., 2020), GAN (Zhu et al.,
2022; Gao et al., 2020), BUCKETING-NO-REGRET and
BUCKETING-FILTERING (Diakonikolas et al., 2020). We
show that these estimators improve the statistical rate re-
ported in Yin et al. (2018) in terms of the dependence
on dimension d. We provide a thorough comparison be-
tween different protocols in terms of their statistical rate,
breakdown points and computational complexity. Our
results are summarized in Table 1. Note in particular that
COORDINATE-WISE MEDIAN and COORDINATE-WISE
TRIMMED MEAN have a rate that loses an extra

√
d com-

pared to the lower bound. Moreover, the NO-REGRET or
FILTERING algorithms can improve the dimension depen-
dence in the term with ϵ and achieve a good breakdown
point, but the rate without a Byzantine adversary is still

Õ(
√

d2

mn ) instead of Õ(
√

d
mn ). On the other hand, by a

particular choice of parameters for NO-REGRET and FIL-
TERING in Equation (4) and (5), one can improve the rate

to O(
√

ϵ
n + d(log(d)+log(1+mnDL))

mn ) while possibly sac-
rificing the breakdown point (since the breakdown point is
not shown to match 1/2). Here D,L are the bounds on the
radius of the space ofW and the smoothness of f . To re-
move the log(d) factor, we further apply a bucketing step
as pre-processing, as is done in median-of-means proce-
dure (Lugosi and Mendelson, 2019) and in Diakonikolas
et al. (2020). Compared with the lower bound, we still
have an extra log(1 + mnDL) factor due to the union
bound analysis, which exists for all the bounds we consid-
ered. It remains an open problem whether one can remove
this term and achieve exactly tight rate.

Due to inconsistency in the settings and assumptions, the
table does not include the rate for (Blanchard et al., 2017;
Pillutla et al., 2019; Alistarh et al., 2018; Karimireddy
et al., 2021; Allen-Zhu et al., 2020; Karimireddy et al.,
2020; Velicheti et al., 2021). Instead, we provide a de-
tailed discussions on the setting, assumption and rate of
these Byzantine-robust protocols in Appendix A.

We evaluate all proposed protocols under five attacks over
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Algorithm Statistical rate Breakdown point Computation complexity

MEDIAN (Yin et al., 2018) Õ(
√

ϵd
n

+ d2

mn
) 1/2 Õ(md)

TRIMMED MEAN (Yin et al., 2018) Õ(
√

ϵd
n

+ d2

mn
) 1/2 Õ(md)

NO-REGRET (Eq. (1)) Õ(
√

ϵ
n
+ d2

mn
) 1/3 Õ((m+ d3)d)

FILTERING (Eq. (2)) Õ(
√

ϵ
n
+ d2

mn
) 1/2 Õ(ϵm2d3)

GAN (Eq. (3)) Õ(

√
ϵ
n
+

√
d

mn2 ) - -

NO-REGRET (Eq. (4)) O(
√

ϵ
n
+ d(log(d)+log(1+nmDL))

mn
) - Õ((m+ d3)d)

FILTERING (Eq. (5)) O(
√

ϵ
n
+ d(log(d)+log(1+nmDL))

mn
) - Õ(ϵm2d3)

BUCKETING-NO-REGRET O(
√

ϵ
n
+ d log(1+nmDL)

mn
) - Õ((m+ d3)d)

BUCKETING-FILTERING O(
√

ϵ
n
+ d log(1+nmDL)

mn
) - Õ(ϵm2d3)

Lower bound (Thm. C.1) Ω(
√

ϵ
n
+ d

mn
) 1/2 -

Table 1: Comparison of rates between different Byzantine-robust federated learning protocols for gradients with
bounded covariance and strongly convex loss function. Here we assume the desired confidence δ is some constant, and
D,L are the bounds on the radius of the space ofW and the smoothness of f . The median and trimmed mean refer to
coordinate-wise operations. Õ(·) refers to the rate when omitting logarithmic factors. We omit the communication
complexity since it is O(d) for all the algorithms. For the computational complexity, we only consider the computation
conducted in the master machine. The ‘-’ in breakdown point represents that the breakdown point has not been
completely determined for the algorithm.

two datasets and compare with six other Byzantine-robust
federated learning protocols. Evaluation results show
that the proposed protocols constantly achieve optimal or
close-to-optimal performance under all the attacks.

We also remark here that although the computational com-
plexity is higher for the new proposed algorithms com-
pared to median and trimmed mean, one can improve
them to Õ(md) without hurting the statistical rate by inte-
grating the filtering / no-regret algorithm with SDP solvers
or matrix multiplicative weights update, see e.g. (Cheng
et al., 2019; Dong et al., 2019).

In addition, the proposed protocol can be naturally inte-
grated with the secure aggregation schemes (Bonawitz
et al., 2017) to provide bidirectional defense against both a
semi-honest server and Byzantine-malicious clients, thus
achieving Byzantine robustness and privacy simultane-
ously. We provide more discussions in Appendix G.

2 Preliminaries

In this section, we collect useful notation, review the
general pipeline of FL and introduce the threat model and
the defense goal.

Notation. We use bold lower-case letters (e.g. a,b,c)
to denote (random) vectors, and [n] to denote the set
{1 · · ·n}. Let Covp(x) = Ep[xx

⊤] − Ep[x]Ep[x]
⊤

be the covariance of random variable x distribution

p. ∥ · ∥2 is the ℓ2 norm for vector, or the spectral
norm for matrix, i.e. ∥w∥2 = w⊤w for vector w,
∥M∥2 = sup∥v∥2≤1 ∥Mv∥2 for matrix M. We write
f(x) = O(g(x)) for x ∈ A if there exists some positive
real number M such that |f(x)| ≤Mg(x) for all x ∈ A.
If A is not specified, we have |f(x)| ≤ Mg(x) for all
x ∈ [0,+∞) (thus the notation is non-asymptotic). We
use Õ(·) to be the big-O notation ignoring logarithmic
factors.

We also introduce concepts from convex analysis for dif-
ferentiable functions h(·) : Rd → R.

Definition 2.1 (Lipschitz). h is L-Lipschitz if |h(w) −
h(w′)| ≤ L∥w −w′∥2,∀ w,w′.

Definition 2.2 (Smoothness). h is L′-smooth if
∥∇h(w)−∇h(w′)∥2 ≤ L′∥w −w′∥2,∀ w,w′.

Definition 2.3 (Strong convexity). h is λ-strongly con-
vex if h(w′) ≥ h(w) + ⟨∇h(w),w′ − w⟩ + λ

2 ∥w
′ −

w∥22,∀ w,w′.

FL Pipeline. In an FL system, there is one master ma-
chine S and m worker machines Ci, i ∈ [m]. Each client
holds n data samples drawn i.i.d. from some unknown
distribution p⋆ on the sample space Z . Let f(w; z) be the
loss as a function of the model parameter w ∈ W ⊂ Rd

and a data sample z ∈ Z , where W is the parameter
space. Let F (w) = Ez∼p⋆ [f(w; z)] be the population
risk function. Denote by zi,j the jth data point on the ith

worker machine, and Fi(w) := 1
n

∑n
j=1 f(w; zi,j) the

3



empirical risk function for the ith worker. The goal is to
learn a model w such that the population risk function is
minimized: w∗ = argminw∈W F (w).

To learn w∗, the whole system runs a T -round FL pro-
tocol. Initially, the server stores a global model w0. In
the tth round, S broadcasts the global model wt−1 to
the m clients. The clients then run the local optimizers
(e.g., SGD, Adam, RMSprop), compute the difference
gi(wt−1) between the optimized model and the global
model, and upload the difference to S. In the tth round,
S aggregate the differences and updates the global model
to wt according to some protocol (e.g. the averaging
protocol wt = wt−1 +

1
m

∑m
i=1 gi(wt−1)).

Threat Model. We assume that clients are ϵ-Byzantine
malicious, meaning that in each round, at most ϵm clients
are malicious: they can deviate arbitrarily from the pro-
tocol and tamper with their own updates for profitable or
even adversarial purposes. The master machine commu-
nicates with the worker machines using some predefined
protocol. The Byzantine machines need not obey this
protocol and can send arbitrary messages to the master; in
particular, they may have complete knowledge of the sys-
tem and learning algorithms, and can collude with each
other. We also clarify that there is no collusion between
the server and the clients. That is, the server cannot dis-
guise itself as a client or hire clients to launch colluded
attacks.

Defense objective. We would like to design some pro-
tocol which achieves a statistically optimal rate in the
presence of malicious clients with an appropriate break-
down point, communication complexity and computa-
tional complexity. For a strongly convex and smooth loss
function F , we would like to design some protocol which
outputs some parameter wT at round T such that with
high probability,

lim
T→∞

∥wT −w⋆∥ ≤ ∆(ϵ, n,m, d),

where ∆(ϵ, n,m, d) = O(
√

ϵ
n + d

mn ) is the optimal sta-
tistical rate achievable in this case, according to the lower
bound in Theorem C.1.

On the other hand, we define the breakdown point for the
estimation problem as

b⋆ = inf{ϵ | lim
T→∞

E[∥wT −w⋆∥] =∞}.

From the definition, we know that for any ϵ0 with
∆(ϵ0, n,m, d) <∞, one has b⋆ > ϵ0.

Algorithm 1 BYZANTINE-ROBUST FEDERATED
LEARNING WITH BUCKETING

Require: Initialize parameter vector w0 ∈ W , step size
ηt, local model update interval H , number of disjoint
buckets k, and total iteration T .
Master machine: send w0 to all the worker machines.
for t = 1, 2, . . . , T − 1 do

for i ∈ [m] do
Worker machine i: update local parameter via

wt
i = wt−1

i − ηt∇Fi(w
t−1
i ).

if t mod H = 0 then send local model update
gi(w

t
i) = wt

i −wt−H
i to master machine.

end if
end for
if t mod H = 0 then

Master machine: randomly bucket the m gradi-
ents into k disjoint buckets of equal size and compute
their empirical means z1, · · · , zk. set Dm = {zj}kj=1,
compute

g(wt)← RobustEstimationSubroutine(Dm).

update model parameter wt ← ΠW(wt−H +
g(wt)), send and update wt to all other worker ma-
chines by setting wt

i = wt, i ∈ [m].
end if

end for

3 Byzantine-Robust Federated Learning
Protocols

In this section, we first present the meta-protocol that
we will use throughout this paper. After that, we intro-
duce existing robust estimators as a building block for
the protocol, and provide theoretical guarantees for the
special case of the protocol without bucketing. Then we
show how bucketing helps improve the rate to exactly op-
timal. At the end of this section, we illustrate how one can
naturally combine the protocols with security guarantees
when the server is semi-honest.

3.1 Description of the main FL Protocol

Our proposed FL protocol is quite straightforward: in
each round, the honest worker machines compute the gra-
dients of their local loss functions and then perform local
update of their models. The Byzantine machines may up-
date their parameters in an arbitrary way. In every H par-
allel iteration of the algorithms, all the worker machines
send the current updates to the master machine. The mas-
ter machine, after receiving the updates from all workers,
first divides the updates into k different buckets, com-
putes the mean of each bucket, and then aggregates the
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updates according to some robust estimation subroutine.
At the end, the master machine broadcasts the updated
parameter to all worker machines. We propose to apply
the three robust estimators as aggregation subroutines for
the FL protocol. The resulting FL protocols are presented
formally in Algorithm 1.

The RobustEstimationSubroutine can be replaced with
any robust mean estimator. In this paper, we will rely
on three recently proposed robust estimators as building
blocks, namely NO-REGRET algorithm (Hopkins et al.,
2020; Zhu et al., 2021), FILTERING algorithm (Diakoniko-
las et al., 2017; Li, 2018; Steinhardt et al., 2018; Zhu
et al., 2021) and a GAN-based algorithm (Gao et al.,
2018, 2020; Zhu et al., 2022). It has been shown that
each of these algorithms are efficient with near-optimal
performance guarantee. Due to the limit of space, we
present the three algorithms and discuss their guarantee
for robust mean estimation in Appendix B. To distin-
guish between different choices of parameters for the
algorithms, we list the five choices of algorithms we will
use as RobustEstimationSubroutine here:

µ1 = NO-REGRET

(
Dm, ϵ,

η2t σ
2

n
,
( 2η + 7

3(1− (3 + η)ϵ)

)2
· (1 + d log(d/δ)

mϵ
) · η

2
t σ

2

n
, η

)
(1)

µ2 = FILTERING

(
Dm,

2(1− ϵ)

(1− 2ϵ)2
· (1 + d log(d/δ)

mϵ
) · η

2
t σ

2

n

)
(2)

µ3 = GAN
(
Dm,

η2t σ
2

n

)
(3)

µ4 = NO-REGRET

(
Dm,

η2t σ
2

n
, η,

C1

(1− C2(ϵ+
log(1/δ)

n )2)
·
(
1 +

d log(d) + log(1/δ)

mϵ

)
· η

2
t σ

2

n

)
(4)

µ5 = FILTERING

(
Dm,

C3

(1− C4(ϵ+
log(1/δ)

n )2)
·
(
1 +

d log(d) + log(1/δ)

mϵ

)
· η

2
t σ

2

n

)
,

(5)

where the definition of FILTERING, NO-REGRET and
GAN can be found in Appendix B.

3.2 Theoretical Analysis for Byzantine-Robust
Federated Learning Protocol

We begin with the most basic case of Algorithm 1, where
no bucketing is used and the master machine commu-
nicates with the worker machines in each round, i.e.,
k = m,H = 1. Throughout the paper, we make the
following assumptions about the parameter space and loss
function. First, we assume that the parameter space is
convex and compact.

Assumption 1 (Convex and compact parameter space).
The parameter spaceW is convex and compact with di-
ameter D, i.e, ∀w,w′ ∈ W , one has ∥w −w′∥2 ≤ D.

Second, we assume that each loss function f(w; z) is
L-smooth, which also implies that the population risk
function is L-smooth.

Assumption 2 (Smoothness of f and F ). For any z ∈
Z , f(·; z) is L-smooth: ∥∇f(w1; z) − ∇f(w2; z)∥ ≤

L∥w1 −w2∥.

Third, we impose the assumption that the distribution
of the gradient of the loss function f(·; z) has bounded
covariance:

Assumption 3 (Bounded covariance of gradient). For
any w ∈ W , ∥Covp⋆(∇f(w; z))∥2 ≤ σ2.

Note that this assumption considers the spectral norm
of the covariance matrix. The corresponding up-
per bound σ2 is usually dimension-free and is dif-
ferent from the bounded variance assumption in Yin
et al. (2018), which assumes that the trace of co-
variance Tr(Covp⋆(∇f(w; z))) = Ep⋆ [∥∇f(w; z)) −
Ep⋆ [∇f(w; z))]∥22] is bounded by σ̃2. As a concrete
example, when the distribution of the gradient is stan-
dard Gaussian with covariance I . We have σ2 = 1 while
σ̃2 = d. In the worst case, when Assumption 3 is satisfied,
one has Tr(Covp⋆(∇f(w; z))) ≤ dσ2, which introduces
an extra dimension factor. We provide more discussions
in Appendix A.

In this paper, we consider three different categories of
population risk function F , namely strongly convex, non-
strongly convex and smooth non-convex functions. We
also include the extra assumptions that are necessary for
analysis in each case.

Assumption 4. Consider the following three options of
assumptions on loss function F .

(a) (Strongly convex) F (·) is λ-strongly convex. The min-
imizer of F (·) inW , w⋆, is also the minimizer of F (·)
in Rd, i.e.,∇F (w∗) = 0.

(b) (Convex) F (·) is convex. The minimizer of F (·) in
W , w⋆, is also the minimizer of F (·) in Rd, i.e.,
∇F (w∗) = 0. The parameter space W contains
the following f2 ball centered at w∗: {w ∈ Rd :
∥w −w∗∥2 ≤ 2∥w0 −w∗∥2}.

(c) (Non-convex) Suppose that ∀w ∈ W , ∥∇F (w)∥2 ≤
M . We assume that W contains the f2 ball {w ∈
Rd : ∥w−w0∥2 ≤ 2

∆2 (M+∆)(F (w0)−F (w∗))},
where ∆ is defined later as in Equation (6), (7), (8),
(9) or (10), depending on the subroutine used.

Note that we do not make any explicit assumption on the
convexity of the individual loss functions f(·; z). We also
remark here that for the simplicity of analysis, we focus
on the case of H = 1 in the main text, which means that
the worker machine communicates gradient information
with the master machine in each round. We show in Ap-
pendix F how to extend the analysis to multi-round local
model updates and present the corresponding theorem
there. Our main technical results on the FL protocol are
stated as below.
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Theorem 3.1. Let wt
i , i ∈ {1, 2, 3, 4, 5} denote the out-

put of Algorithm 1 with H = 1, k = m and step-size ηt =
1/L at round t when the RobustEstimationSubroutine
takes the algorithm in Equation (1), (2), (3), (4), (5),
respectively. Under Assumption 1, 2, 3 and 4(a), with
probability at least 1− δ,

∥wT
i −w∗∥2 ≤ (1− λ

L+ λ
)T ∥w0 −w∗∥2 +

2

λ
∆i,

where for some universal constants Ci,

∆1 := O

(
σ

(1− 3ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 + nmDL) + d log(d/δ)

m

))
, (6)

∆2 := O

(
σ

(1− 2ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 + nmDL) + d log(d/δ)

m

))
, (7)

∆3 := O

 σ

(1− C1ϵ)
√
n
·

√ϵ+

√
d log(1 + nmDL) + log(1/δ)

m

 , (8)

∆4 := O

(
σ

1− C2(ϵ+ log(1/δ)/m)
·

(
√
ϵ+

√
d(log(d) + log(1 + nmDL)) + log(1/δ)

m

))
,

(9)

∆5 := O

(
σ

1− C3(ϵ+ log(1/δ)/m)
·

(
√
ϵ+

√
d(log(d) + log(1 + nmDL)) + log(1/δ)

m

))
,

(10)

Under Assumption 1, 2, 3 and 4(b), with probability at
least 1− δ, after T = L

∆i
∥w0−w∗∥2 parallel iterations,

we have

F (wT
i )− F (w∗) ≤ 16∥w0 −w∗∥2∆i

(
1 +

1

2L
∆i

)
.

Under Assumption 1, 2, 3 and 4(c), with probability at
least 1− δ, we have

min
t=0,1,...,T

∥∇F (wt
i)∥22 ≤

2L

T
(F (w0)− F (w∗)) + ∆2

i .

We prove Theorem 3.1 in Appendix D. We also provide
the analysis for the case of multi-round updates (H > 1)
in Appendix F. We can see from the statement that the
conclusion takes a similar form as that in Yin et al. (2018)
except that our results come with a tighter statistical error
bound under weaker distributional assumptions. Under
the same assumption, the best rate achieved by Yin et al.

(2018) as T → ∞ is Õ(
√

ϵd
n + d2

mn ), while our algo-

rithm improves to O(
√

ϵ
n + d log(d)

mn ). For convex losses,
we show that the excess risk converges at a rate of ∆i.
For the non-convex case, we show that it approaches the
critical point with a rate of ∆i. In Section C, we provide
a lower bound showing that the worst-case statistical rate
of parameter estimation error under strongly convex loss

is at least Ω(
√

ϵ
n + d

mn ), matching our upper bound for
the strongly convex case.

For the five different estimators, we can see that the first
two estimators based on NO-REGRET and FILTERING

in Equation (1) and (2) have high breakdown point 1/3
and 1/2, respectively. But the rate is sub-optimal in terms
of the dependence in d. Technically, this is from the

covering argument when applied to
√

d log(1/δ)
mn instead

of
√

d+log(1/δ)
mn . This shows the importance of achiev-

ing sub-Gaussian rate in robust estimation. The GAN
estimator in Equation (3) is usually easier to compute in
high dimension. However, the rate is sub-optimal due to
the (d/m)1/4 factors. We can improve the rate of NO-
REGRET and FILTERING by taking different parameters as
in Equation (4) and (5). However, the breakdown point is
not as high. It is an open problem whether one can design
estimators that are statistically optimal, computationally
efficient, and have optimal breakdown point.

Computationally, the proposed estimators are inferior to
coordinate-wise median or trimmed mean due to the query
of second moment. On one hand, one can improve the
implementation by combining the no-regret and filtering
algorithm with covering / packing SDP solver or quantum
entropy scoring to improve the computational complexity
to linear, see e.g. (Cheng et al., 2019; Dong et al., 2019).
Furthermore, one can also split the data dimension into
K groups, thus increasing the sample complexity by a√
K factor while reducing the computational complexity

significantly. We omit the details here since the paper
mainly focuses on the statistical part.

3.3 Improved Protocol via Bucketing

We can improve the rate and remove the extra log(d) fac-
tor in Theorem 3.1 by setting a nontrivial bucket size
k in Algorithm 1. The idea of bucketing was first in-
troduced in the median-of-means procedure (Lecué and
Lerasle, 2020). Diakonikolas et al. (2020) showed that
the bucketing procedure, combined with FILTERING or
NO-REGRET algorithm, can achieve a sub-Gaussian rate,
which is mini-max rate-optimal with respect to all param-
eters. The concrete subroutine in Algorithm 1 is chosen
to be one of the following based on algorithms in Ap-
pendix B.1:

µ1 = NO-REGRET

(
Dm, 0.1,

kσ2

mn
,O
(
(d+ k)η2t σ

2

mn

)
, 0.1

)
,

(11)

µ2 = FILTERING

(
Dm,O

(
η2t (d+ k)σ2

mn

))
. (12)

With the bucketing step, one can improve the statistical
bound to near-optimal, as stated in the following theorem.

Theorem 3.2. Let wt denote the output of Algorithm 1
with step-size η = 1/L, H = 1 and k = ⌊2ϵm +
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log(1/δ)⌋. Under Assumption 1, 2, 3 and 4(a), with prob-
ability at least 1− δ, we have

∥wT −w∗∥2 ≤ (1− λ

L+ λ
)T ∥w0 −w∗∥2 +

2

λ
∆,

where for some universal constant C,

∆ := O

(
σ

(1− Cϵ)
√
n
·

(
√
ϵ+

√
d log(1 + nmDL) + log(1/δ)

m

))
(13)

Under Assumption 1, 2, 3 and 4(b), with probability at
least 1− δ, after T = L

∆∥w
0 −w∗∥2 iterations,

F (wT
i )− F (w∗) ≤ 16∥w0 −w∗∥2∆

(
1 +

1

2L
∆
)
.

Under Assumption 1, 2, 3 and 4(c), with probability at
least 1− δ, we have

min
t=0,1,...,T

∥∇F (wt)∥22 ≤
2L

T
(F (w0)− F (w∗)) + ∆2.

The proof is deferred to Appendix E. Compared to The-
orem 3.1, the extra log(d) factor is removed and the rate
exactly matches the lower bound in Theorem C.1 when
nmDL = O(1). A similar idea of bucketing also appears
in Karimireddy et al. (2020), motivated from heteroge-
neous clients. Our results establish the benefit of the
bucketing even when the clients are homogeneous.

4 Evaluation

4.1 Experiment Setup

Datasets, Models & Runtime. We evaluated the ro-
bust aggregators on two datasets, MNIST under CC BY-
SA 3.0 License (LeCun et al., 2010) and F-MNIST un-
der MIT License (Xiao et al., 2017). The training and
testing is by default as implemented in PyTorch. The
models used in most experiments are a convolutional
network with two convolutional layers followed by two
fully connected layers with ReLU. In each round, each
client runs 5 local epochs with batch size 10 before sub-
mitting the updated local model to the server. All the
experiments were conducted on Ubuntu18.04 LTS servers
with 56 2.6GHz Intel Xeon CPUs, 252G RAM and 8
Geforce GTX 1080 Ti. The code for evaluation is pro-
vided in https://github.com/wanglun1996/
secure-robust-federated-learning.

Attacks. We chose the following attacks to evaluate the
robust estimators: Krum Attack (KA) (Fang et al., 2020),
Trimmed Mean Attack (TMA) (Fang et al., 2020), Model
Poisoning Attack (MPA) (Bhagoji et al., 2019), Model

Replacement Attack (MRA) (Bagdasaryan et al., 2020),
Distributed Backdoor Attack (DBA) (Xie et al., 2019) and
Inner-Production Manipulation Attack (IMA) (Xie et al.,
2020). We report model accuracy for all attacks and also
report attack success rate for backdoor attacks (i.e. MPA,
MRA and DBA.)

Robust Aggregators. We also chose nine other
Byzantine-robust FL protocols as baselines: (1)
Krum (Blanchard et al., 2017); (2) Trimmed Mean (Yin
et al., 2018); (3) Median (Yin et al., 2018); (4) Bulyan
Krum (El El Mhamdi et al., 2018); (5) Bulyan Trimmed
Mean (El El Mhamdi et al., 2018); (6) Bulyan Me-
dian (El El Mhamdi et al., 2018); (7) protocol in Karim-
ireddy et al. (2021); (8) protocol in Karimireddy et al.
(2020); (9) protocol in Velicheti et al. (2021). As
Sever (Diakonikolas et al., 2019a) requires much more
rounds than other aggregators, we defer the evaluation of
Sever to Appendix I. For FILTERING, NO-REGRET, and
the bucketing variants, it is computationally expensive to
calculate the operator norm of the covariance matrix of
the whole model. Hence, we cut each layer of the model
into several intervals and run the above robust aggregators
on each interval. For bucketing variants, we set the bucket
size to 2.

4.2 Evaluation Results

FILTERING, NO-REGRET and BUCKETING Variants.
In this part, the data is randomly distributed to the 100
federated clients, out of which 20 are malicious. For
all attacks except DBA, we set the learning rate to 10−3

and the bounded variance as 10−5. For DBA, we set the
learning rate to 0.1 and the bounded variance to 10−4

because DBA is launched on a pre-trained model. For the
proposed algorithms, the parameters are cut into intervals
of size 1000.

As shown in Fig. 1, we observe that FILTERING and
NO-REGRET achieve consistently good performance un-
der all the chosen attacks, while all the other aggre-
gators fail on at least one attack. For instance, Krum
and Bulyan Krum’s accuracy drops on KA and typically
cannot achieve as good accuracy as other estimators;
Trimmed Mean fails on TMA and MPA; Median, Bulyan
Trimmed Mean and Bulyan Median fail on MPA. We also
observe that the Bucketing variants do not perform as well
as FILTERING and NO-REGRET. We conjecture this is
due to their low breaking point.

GAN. In this part, we evaluate the performance of the
GAN. Because GAN needs a large amount of training
data, we increase the number of clients to 1000, out of
which 200 are malicious. The learning rate is 0.1. For
the proposed algorithms, we set the bounded variance to
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(a) MNIST w/o attack.
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(b) MNIST under KA.
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(c) MNIST under TMA.
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(d) MNIST under MPA.

0 10 20 30 40 50

20

40

60

80

100

# Epoch

M
od

el
A

cc
ur

ac
y

(%
)

(e) MNIST under MPA.
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(f) MNIST under MRA.
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(g) MNIST under MRA.
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(h) MNIST under DBA.
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(i) MNIST under DBA.
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(j) MNIST under IMA.
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(k) F-MNIST w/o attack.
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(l) F-MNIST under KA.
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(m) F-MNIST under TMA.

0 10 20 30 40 50

0

20

40

60

80

100

# Epoch

A
tta

ck
Su

cc
es

s
R

at
e

(%
)

(n) F-MNIST under MPA.
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(o) F-MNIST under MPA.
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(p) F-MNIST under MRA.
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(q) F-MNIST under MRA.
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(r) F-MNIST under DBA.
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(s) F-MNIST under DBA.
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(t) F-MNIST under IMA.
FILTERING NO-REGRET BUCKETING-FILTERING

BUCKETING-NO-REGRET AVERAGE KRUM

TRIMMED MEAN MEDIAN BULYAN KRUM

BULYAN TRIMMED MEAN BULYAN MEDIAN KARIMIREDDY ET AL. (2021)
KARIMIREDDY ET AL. (2020) VELICHETI ET AL. (2021)

Figure 1: Robust estimators’ performance under attacks.
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Figure 2: GAN’s performance under attack. Please refer
to Fig. 1 for the complete legend.

10−3 and the parameters are cut into intervals of size 100.
We also do not evaluate the Bulyan aggregators because
of their impractically long running time (e.g. ∼ 200 hours
per round for Bulyan Krum).

As shown in Fig. 2, GAN does not achieve as good per-
formance as FILTERING and NO-REGRET. During the
experiments, we observe that although GAN is usually
faster in running time than FILTERING and NO-REGRET,
it can be sensitive to hyper-parameters. This makes it
hard to deploy in real-world applications compared to
other proposed methods. Consistent with Fig. 1, KRUM,
Karimireddy et al. (2020) and Karimireddy et al. (2021)
cannot achieve as good performance as other aggregators
when there is no attack, and this phenomenon becomes
more significant when the client number is larger.

5 Conclusion

In this paper, we propose Byzantine-robust FL proto-
cols with optimal statistical rate and privacy guarantees.
Furthermore, we show on benchmark data that the pro-
posed protocols achieve consistently good performance
under different attacks. This work leaves two main open
questions: Can one design simple and practically imple-
mentable Byzantine-robust FL protocol with optimal sta-
tistical rate and linear computational complexity? Besides
these two properties, can a Byzantine-robust FL protocol
also achieve high breakdown point simultaneously?
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Jinhyun So, Başak Güler, and A Salman Avestimehr.
Byzantine-resilient secure federated learning. IEEE
Journal on Selected Areas in Communications, 2020.

Jacob Steinhardt. Robust learning: Information theory
and algorithms. PhD thesis, Stanford University, 2018.

Jacob Steinhardt. Lecture notes for stat260 (robust statis-
tics). 2019.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang.
Certified defenses for data poisoning attacks. In Ad-
vances in neural information processing systems, pages
3517–3529, 2017.

Jacob Steinhardt, Moses Charikar, and Gregory Valiant.
Resilience: A criterion for learning in the presence of
arbitrary outliers. In 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018), volume 94,
page 45. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2018.

Gan Sun, Yang Cong, Jiahua Dong, Qiang Wang,
Lingjuan Lyu, and Ji Liu. Data poisoning attacks on
federated machine learning. IEEE Internet of Things
Journal, 2021.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and
H Brendan McMahan. Can you really backdoor fed-
erated learning? arXiv preprint arXiv:1911.07963,
2019.

Raj Kiriti Velicheti, Derek Xia, and Oluwasanmi Koyejo.
Secure byzantine-robust distributed learning via clus-
tering. arXiv preprint arXiv:2110.02940, 2021.

Roman Vershynin. Introduction to the non-asymptotic
analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,
Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack
of the tails: Yes, you really can backdoor federated
learning. Advances in Neural Information Processing
Systems, 33:16070–16084, 2020.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song,
Qian Wang, and Hairong Qi. Beyond inferring class
representatives: User-level privacy leakage from feder-
ated learning. In IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications, pages 2512–2520.
IEEE, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

11

https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6


Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.
In International Conference on Learning Representa-
tions, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall
of empires: Breaking byzantine-tolerant sgd by inner
product manipulation. In Uncertainty in Artificial In-
telligence, pages 261–270. PMLR, 2020.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Pe-
ter Bartlett. Byzantine-robust distributed learning: To-
wards optimal statistical rates. In International Confer-
ence on Machine Learning, pages 5650–5659. PMLR,
2018.

Dong Yin, Yudong Chen, Ramchandran Kannan, and
Peter Bartlett. Defending against saddle point attack in
byzantine-robust distributed learning. In International
Conference on Machine Learning, pages 7074–7084.
PMLR, 2019.

Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Gener-
alized resilience and robust statistics. arXiv preprint
arXiv:1909.08755, 2019a.

Banghua Zhu, Jiantao Jiao, and David Tse. Deconstruct-
ing generative adversarial networks. arXiv preprint
arXiv:1901.09465, 2019b.

Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Ro-
bust estimation via generalized quasi-gradients. In-
formation and Inference: A Journal of the IMA,
08 2021. ISSN 2049-8772. doi: 10.1093/imaiai/
iaab018. URL https://doi.org/10.1093/
imaiai/iaab018. iaab018.

Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Robust
estimation for nonparametric families via generative
adversarial networks. arXiv preprint arXiv:2202.01269,
2022.

Zheng Zizhan, Shen Wen, and Henger Li. Learning to
attack distributionally robust federated learning. 2020.

12

https://doi.org/10.1093/imaiai/iaab018
https://doi.org/10.1093/imaiai/iaab018


Supplementary Material for Byzantine-Robust Federated Learning with
Optimal Statistical Rates

A Related Work

We now review the client-side privacy vulnerabilities and Byzantine-malicious attacks in FL. Existing defenses and
their limitations are also discussed to motivate the present work. Other attacks and defenses in FL are covered in this
comprehensive surveys (Kairouz et al., 2019).

Byzantine Malicious Clients. Byzantine-robust aggregation has drawn enormous attention over the past few years
due to the emergence of various distributed attacks in FL. Fang et al. (2020) formalize the attack as an optimization
problem and successfully migrate the data poisoning attack to FL. The proposed attacks even work under Byzantine-
robust FL. Sun et al. (2021) manage to launch data poisoning attacks on the multi-task FL framework. Bhagoji et al.
(2019) and Bagdasaryan et al. (2020) manage to insert backdoors into the model via local model poisoning or local
model replacement. Xie et al. (2019) propose to segment one backdoor into several parts and insert it into the global
model. Chen et al. (2020) and Zizhan et al. (2020) migrate backdoor attacks to federated meta-learning and federated
reinforcement learning, respectively. Meanwhile, Sun et al. (2019) show that norm clipping and “weak” differential
privacy mitigate backdoor attacks in FL without impairing overall performance. Wang et al. (2020) refute this claim
and illustrate that robustness to backdoors requires model robustness to adversarial examples, an open problem widely
regarded to be difficult.

Byzantine-Robust Protocols. A variety of Byzantine-robust FL protocols are proposed to defend against malicious
clients. Krum (Blanchard et al., 2017) selects and averages the subset of updates that have a sufficient number of close
neighbors. Yin et al. (2018) uses robust estimators like trimmed mean or median to estimate the gradient, and claims to
achieve order-optimal statistical error rates. Fung et al. (2018); Alistarh et al. (2018) proposes a similar robust estimator
relying on a robust secure aggregation oracle based on the geometric median. Yin et al. (2019) proposes to use robust
mean estimators to defend against saddle point attacks. Fung et al. (2020) studies Sybil attacks in FL and propose a
defense based on the diversity of client updates. Ozdayi et al. (2020) designs a defense against backdoor attacks in FL
by adjusting the server-side learning rate. El El Mhamdi et al. (2018) points out that Krum, trimmed mean, and median
all suffer from O(

√
d) (d is the model size) estimation error and propose a general framework Bulyan for reducing the

error to O(1).

Client Privacy Leakage and Mitigation. Inference attacks against centralized learning (Shokri et al., 2017) aim to
infer the private information of the model training data. (Wang et al., 2019) explore the feasibility of recovering user
privacy from a malicious server in FL. (Nasr et al., 2019) show that a malicious server can perform highly accurate
membership inference attacks against clients.

Orchestrating Robustness and Privacy. Several recent works (So et al., 2020; He et al., 2020) attempt to address
the challenge through the use of secure multi-party computation (MPC). (So et al., 2020) propose to run multi-party
distance-based filtering among clients to remove potentially malicious updates. This, however, needs clients to be online
consistently, which is impractical for cross-device FL and also incurs significant communication cost. (He et al., 2020)
propose a two-server protocol to provide bi-directional protection, but in real-world use scenarios, two non-colluding
servers are uncommon. Due to the lack of universal and effective two-way protection, user trust in FL systems is
significantly eroded, preventing them from being employed in a wide variety of security-related applications such as
home monitoring and autonomous driving.
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A.1 Comparison with existing Byzantine-Robust Protocols

Comparison with Yin et al. (2018). Yin et al. (2018) first analyzes the statistical rate for Byzantine-robust distributed
learning when using coordinate-wise median or trimmed-mean as robust gradient estimators. They show that under the
assumption of bounded variance Ep⋆ [∥g − E[g]∥22] ≤ σ̃2 and coordinate-wise bounded skewness (or coordinate-wise
sub-exponential) on the gradient distribution, one can achieve a statistical error of O(σ̃(ϵ/

√
n+

√
d/mn)). Notably,

under our assumption of bounded spectral norm of covariance in Assumption 3, one has σ̃2 = σ2d in the worst
case, and their rate becomes O(σ(ϵ

√
d +

√
d2/mn)), which is

√
d worse than the lower bound. Although the rate

achieved is better than ours in terms of the dependence on ϵ, this is from the strong assumption of coordinate-wise
bounded skewness (or coordinate-wise sub-exponential). With only bounded covariance assumption as in our paper,
coordinate-wise median or coordinate-wise trimmed mean must suffer a rate of σ

√
ϵd (see e.g. (Steinhardt, 2019)), and

thus is far from the optimal rate σ
√
ϵ achieved by the robust estimators proposed in this paper.

Comparison with Karimireddy et al. (2020) and Karimireddy et al. (2021)

Similar to Yin et al. (2018), the analysis of Karimireddy et al. (2020) and Karimireddy et al. (2021) are based on
the assumption of bounded trace of the covariance, leading to an extra

√
d factor under our spectral norm bound

assumption. Karimireddy et al. (2020) has shown that the dimension dependence of coordinate-wise median combined
with bucketing is worse than that of Krum and geometric median. However, as we have discussed in the introduction,
coordinate-wise median, coordinate-wise trimmed mean and geometric median all have an error of at least Ω(σ

√
ϵd)

under our setting. This motivates the application of modern high dimensional robust estimators, as we proposed in this
paper.

On the other hand, the robust aggregation algorithm with momentum is shown to achieve a rate O(
√

dσ2

T · (
1
m + ϵ),

which seems to contradict our lower bound in Appendix C since the lower bound suggests that the rate does not vanish
as T goes to infinity. The reason for this inconsistency is that Karimireddy et al. (2021) assumes that the gradient
in each round is mutually independent and the malicious clients are fixed. However, this assumption does not hold
in our setting when each client has n fixed samples and computes gradients out of (a mini-batch of) the samples.
Intuitively, the assumption of independent gradient holds when each client gets fresh sample in a new iteration, thus can
be approximately viewed as our parameter n. Furthermore, the assumption of independent gradient avoids the union
bound argument in our analysis and Yin et al. (2018), thus an extra

√
d factor is avoided in the rate of Karimireddy et al.

(2021).

Furthermore, Karimireddy et al. (2020) also proposes a similar idea of bucketing as pre-processing from a different
motivation. In our analysis, bucketing is necessary to remove the logarithmic factor and achieve exactly tight rate in
homogeneous setting. In Karimireddy et al. (2020), it is mainly motivated by reducing the variance in heterogeneous
data.

Comparison with ByzantineSGD (Alistarh et al., 2018) and SafeguardSGD (Allen-Zhu et al., 2020)

ByzantineSGD (Alistarh et al., 2018) and SafeguardSGD (Allen-Zhu et al., 2020) analyze the rate of convergence
for non-strongly convex and non-convex objectives via maintaining a set of good machines and detecting malicious
machines in each round. However, their results are based on a stronger assumption that the norm of the difference
between the gradient and its mean ∥g − E[g]∥ is always bounded. Thus the result is not comparable to our setting,
which only assumes the second central moment is bounded.

Comparison with Draco (Chen et al., 2018), BULYAN (El El Mhamdi et al., 2018) and Krum (Blanchard et al.,
2017)

Draco (Chen et al., 2018) and BULYAN (El El Mhamdi et al., 2018) state to provide dimension-free estimation error for
Byzantine-Robust Federated Learning. However, Draco is incompatible with FL as it requires redundant updates from
each worker. Bulyan are based on much stronger assumptions than other contemporary works. When the assumptions
are relaxed to the common case, Bulyan estimation errors still scale up with the square root of the model size. In
particular, Bulyan assumes that the expectation of the distance between two benign updates is bounded by a constant
σ1, while Krum assumes that the distance is bounded by σ2

√
d. We can easily see that if σ1 = σ2

√
d, Bulyan falls back

to the same order of estimation error as Krum. As a result, the protocols fail to achieve near-optimal statistical rate
under the only assumption of bounded operator norm of covariance that can be used to mitigate Byzantine adversaries.
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The proposed protocols overcomes limitations of existing Byzantine-robust FL protocols by employing and calibrating
well-established robust mean estimators (Diakonikolas et al., 2016, 2017, 2019b, 2020; Steinhardt et al., 2017, 2018;
Zhu et al., 2019b,a, 2022) in FL scenarios.

Comparison with Velicheti et al. (2021)

The protocol in Velicheti et al. (2021) studies the combination of secure aggregation and Byzantine-robust estimators,
similar to our bucketing idea. However, for the theoretical analysis, the authors make the assumption of bounded
dissimilarity of the true gradient and bounded trace norm of the covariance of the gradients, which is the same as that
in (Yin et al., 2018) and thus stronger than our spectral norm bound. The paper also assumes a performance bound on
the performance of aggregation algorithm, which does not have dependence on the sample size. Thus there is no sample
complexity analyzed, but only the convergence rate.

B Robust Estimation Subroutines

We begin with introducing necessary notations and settings in robust mean estimation. Assume that we observe m
samples from true distribution xi ∼ p⋆, i ∈ [m]. Denote the true empirical distribution as p̂⋆m = 1

m

∑
i∈[m] δxi

. The
adversary observes the samples and may add, delete, or modify at most ϵm samples, resulting in a corrupted dataset
Dm. We let the resulting empirical distribution be p̂m, which satisfies that TV(p̂⋆m, p̂m) ≤ ϵ. Assume that the true
distribution satisfies ∥Covp⋆(x)∥2 ≤ σ2. Let µq = Eq[x] be the mean of distribution q. We define the quasi-gradient for
∥Covq(x)∥ with respect to distribution q as g(q;x) = (v⊤(x− µq))

2, where v ∈ argmax∥v∥≤1 Eq[(v
⊤(x− µq))

2] is
any of the supremum-achieving direction.

B.1 Algorithm Descriptions

Now we are ready to present the three algorithms we used in the paper, namely NO-REGRET ALGORITHM (Hopkins
et al., 2020; Zhu et al., 2021), FILTERING ALGORITHM (Diakonikolas et al., 2017; Li, 2018; Steinhardt, 2018; Zhu
et al., 2021) and GAN based algorithm (Gao et al., 2018, 2020; Zhu et al., 2022).

Algorithm 2 NO-REGRET ALGORITHM (Dm, ϵ, σ2, ξ, η)

Input: corrupted datasetDm = {x1,x2, · · · ,xm}, fraction of corrupted samples ϵ, spectral norm bound of covariance
σ2, threshold for termination ξ, step size constant η ∈ (0, 1).
Set di,j = ∥xi − xj∥2 for all i, j ∈ [m], remove all xi with |{j ∈ [m] : di,j > Ω(

√
d log(m))}| > 2ϵm. Let

x′
1,x

′
2, · · · ,x′

m′ be the remaining samples. Initialize uniform distribution on the remaining samples q(0)i = 1/m′,
i ∈ [m′].
for k = 0, 1, . . . do

if ∥Covq(k)(x)∥2 ≤ ξ then
Return Eq(k) [x] =

∑n
i=1 q

(k)
i xi

else
Compute g

(k)
i = g(q(k);xi), q̃

(k+1)
i = q

(k)
i · (1− ηϵ

2σ2d · g
(k)
i ) for all i ∈ [m]

Update q(k+1) = argminq∈∆m′,ϵ
DKL(q||q̃(k+1)), where ∆m′,ϵ = {q |

∑
qi = 1, qi ≤ 1

(1−ϵ)m′ }.
end if

end for

We remark here that in Algorithm 2, one needs to first naively filter some samples so that the maximum distances
between samples are bounded, and then proceed with the multiplicative weights update method where learning rate
is inverse proportional to the square of maximum distances between samples. This naive filtering procedure can be
replaced with any heuristic-based methods, as long as the maximum distances between samples are controlled. The
projection step in Algorithm 2 can be done within O(m) time. For Algorithm 4, the distance A(p, q) can be optimized
by a Generative Adversarial Network. One can replace the discriminator with any deep neural network with sigmoid
activation. In order to guarantee that q ∈ G = {q | ∥Σq∥2 ≤ σ2}, one may either add a regularization term in the
discriminator, or constrain the norm of parameters in the generator.
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Algorithm 3 FILTERING ALGORITHM (Dm, ξ)

Input: corrupted dataset Dm = {x1,x2, · · · ,xm}, threshold for termination ξ.
Initialize q

(0)
i = 1/m, i ∈ [m].

for k = 0, 1, . . . do
if ∥Covq(k)(x)∥2 ≤ ξ then

Return Eq(k) [x] =
∑n

i=1 q
(k)
i xi

else
Compute g

(k)
i = g(q(k);xi), q̃

(k+1)
i = q

(k)
i · (1− g

(k)
i

maxj∈[m] g
(k)
j

) for all i ∈ [m].

Update q(k+1) = ProjKL
∆m

(q̃(k+1)) = q̃(k+1)/
∑

i∈[m] q̃
(k+1)
i .

Remove samples with q(k+1) = 0.
end if

end for

Algorithm 4 GAN (Dm, σ2)

Input: corrupted dataset Dm = {x1,x2, · · · ,xm}, spectral norm bound of covariance σ2.
Let p̂m = 1

m

∑m
i=1 δxi be the empirical distribution of dataset Dm.

Find q = argminq∈G(σ2) A(q, pm), where G(σ2) = {q | ∥Σq∥2 ≤ σ2}, and

A(p, q) = sup
∥w∥1≤1,∥vj∥2≤1,tj∈R

∣∣∣∣∣Ep

sigmoid

∑
j≤l

wjsigmoid(v⊤
j x+ t)


− Eq

sigmoid

∑
j≤l

wjsigmoid(v⊤
j x+ t)

 ∣∣∣∣∣ (14)

B.2 Guarantees

For all the three robust estimators provided in the paper (Algorithm 2, 3 and 4), the resulting guarantee is that one can

find an estimator with estimation error controlled by O(
√
ϵ+

√
d/m) (or O(

√
ϵ+

√
d/m) for Algorithm 4).

Theorem B.1. Assume that ∥Covp⋆(x)∥ ≤ σ2 and that we are given a corrupted dataset Dm from where at most ϵ
fraction of samples are corrupted by adversary, the rest of samples follow the distribution of p⋆. Let

µ1 = NO-REGRET

(
Dm, ϵ, σ2,

( 2η + 7

3(1− (6 + 2η)ϵ)

)2
· (1 + d log(d/δ)

mϵ
) · σ2, η

)
(15)

µ2 = FILTERING

(
Dm,

2(1− ϵ)

(1− 2ϵ)2
· (1 + d log(d/δ)

mϵ
) · σ2

)
(16)

µ3 = GAN
(
Dm, σ2

)
(17)

µ4 = NO-REGRET

(
Dm, σ2, η,

C1

(1− C2(ϵ+ log(1/δ)/n)2)
·
(
1 +

d log(d) + log(1/δ)

mϵ

)
· σ2

)
(18)

µ5 = FILTERING

(
Dm,

C3

(1− C4(ϵ+ log(1/δ)/n)2)
·
(
1 +

d log(d) + log(1/δ)

mϵ

)
· σ2

)
(19)
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We know that each of the following holds with probability at least 1− δ:

∥µ1 − µp⋆∥ ≤ O

(
σ ·

( √
ϵ

1− (6 + 2η)ϵ
+

√
d log(d/δ)

m

))
,

∥µ2 − µp⋆∥ ≤ O

(
σ ·

( √
ϵ

1− 2ϵ
+

√
d log(d/δ)

m

))
,

∥µ3 − µp⋆∥ ≤ O
(

σ

1− C5ϵ
·
(√

ϵ+
√

(d+ log(1/δ))/m

))
,

∥µ4 − µp⋆∥ ≤ O

(
σ

1− C6(ϵ+ log(1/δ)/m)
·

(
√
ϵ+

√
d log(d) + log(1/δ)

m

))
,

∥µ5 − µp⋆∥ ≤ O

(
σ

1− C7(ϵ+ log(1/δ)/m)
·

(
√
ϵ+

√
d log(d) + log(1/δ)

m

))
,

where Ci > 2 are some universal constants.

Proof. The guarantee for µ1 comes from a combination of the statistical analysis (see e.g. Zhu et al. (2019a, Theorem
G.3), Diakonikolas et al. (2017), (Steinhardt et al., 2017)) and computational analysis (see e.g. Zhu et al. (2021, Theorem
4.1)). The guarantee for µ1 comes from a combination of the same statistical analysis and a different computational
analysis (see Zhu et al. (2021, Theorem 4.2)). The guarantee for µ3 comes from Zhu et al. (2022, Corollary 1). The
guarantee for µ4 and µ5 comes from Diakonikolas et al. (2020, Proposition 1.6).

As a sharp contrast, COORDINATE-WISE MEDIAN, COORDINATE-WISE TRIMMED MEAN and GEOMETRIC MEDIAN
have an error of at least Ω(σ

√
ϵd) under the same assumption, which can be highly sub-optimal when the dimension is

high. Following our lower bound analysis in the next section, the lower bound for robust mean estimation also directly
results in a lower bound of Ω(σ

√
ϵd/n) for the performance of the FL protocols using either of the three algorithms as

aggregation rules.

C Lower Bound

Now we present a formal lower bound for the Federated Learning setting using the lower bound for robust mean
estimation. LetF be the sets of loss functions ℓ and distribution p⋆ that satisfies Assumption 2, 3 and 4(a). Let P :W×
Rm×d 7→ W be any FL protocol which receive the current parameter w ∈ W and corresponding gradient information
for m clients under the parameter w, and outputs an updated parameter w′ ∈ W according to the observation. We
denote the set of such protocols as P . For any (f, p⋆) ∈ F , we let w⋆(f, p⋆) = argminw∈W Ez∼p⋆ [f(w; z)] be the
minimizer of the loss function. Let Dm,n,T (P ) be the set of all possible distributions of observations we may see when
executing P ∈ P after T rounds. At round t, conditioned on the current parameter wt, the distribution of observed
distribution is within ϵ-TV distance to the true distribution of∇Fi(w) due to possible corruptions by Byzantine workers.
Let ŵT : P ×Dm,n,T (·) 7→ W be the output of the protocol P ∈ P given all the observations from Dm,n,T (P ).

Theorem C.1 (Lower Bound). For any protocol with infinite computation power, there exists some loss function f and
sample distribution p⋆ that satisfies Assumption 2, 3 and 4(a), such that the output of the protocol ŵ incurs a loss that

is at least Ω(
√

ϵ
n + d

mn ). Formally, we have for any T > 0, with constant probability,

inf
P∈P

sup
(f,p⋆)∈F,p̂∈Dm,n,T (P )

∥w⋆(f, p⋆)− ŵT (P, p̂)∥2 = Ω

(
σ

√
ϵ

n
+

d

mn

)
.

Proof. Consider the set of problems of mean estimation under ℓ2 norm, where we fix f(w; z) = ∥w−z∥22, and let p⋆ to
be any distribution with bounded covariance, i.e. we take Fσ2 = {(f, p⋆) | f(w; z) = ∥w − z∥22, ∥Covp⋆(z)∥2 ≤ σ2}.
In this case, we know that w⋆(f, p⋆) = Ep⋆ [z], and the gradient from each client is ∇Fi(w) =

2
∑n

i=1(w−zi)

n =

2(w−
∑n

j=1 zij

n ). Consider another protocol P ′ where the server can directly query the mean
∑n

j=1 zij

n from each honest
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client. One can see that for the fixed squared loss f , any protocol in P can be converted into a protocol in P ′ since the
mean

∑n
j=1 zij

n can be directly computed from the gradient ∇Fi(w) on any given w (and thus any multiple-round local
model updates in FL can be also directly computed from the mean). Similarly, we can also convert any protocol in P ′

to a protocol in P . Thus the two protocols are equivalent, and we have

inf
P∈P

sup
(f,p⋆)∈Fσ2 ,
p̂∈Dm,n,T (P )

∥w⋆(f, p⋆)− ŵT (P, p̂)∥2 = inf
P∈P′

sup
(f,p⋆)∈Fσ2 ,
p̂∈Dm,n,T (P )

∥w⋆(f, p⋆)− ŵT (P, p̂)∥2.

In this case, we can see that for honest clients, the output in each round will always be the mean
∑n

j=1 zij

n . We further
restrict the behavior of adversary by considering a fixed set of adversary, and force the adversary to output the same
mean in each round. Thus we know that this minimax rate can be further lower bounded by that of single-round
robust mean estimation problem where the queried sample from honest client is an average of n samples from the true
distribution p⋆. Formally, let p⋆n be the distribution of

∑n
j=1 zij

n where each zij ∼ p⋆, we have

inf
P∈P

sup
(f,p⋆)∈Fσ2 ,
p̂∈Dm,n,T (P )

∥w⋆(f, p⋆)− ŵT (P, p̂)∥2 ≥ inf
P∈P

sup
(p⋆,p̂):∥Covp⋆ (z)∥≤σ2,TV(p⋆

n,p̂)≤ϵ

∥Ep⋆ [x]− ŵT (P, p̂)∥2.

From the argument of modulus of continuity (see e.g. Theorem 3.2 in (Chen et al., 2016), Lemma D.4 in (Zhu et al.,
2019a)), we know that with constant probability,

inf
P∈P

sup
(p⋆,p̂):∥Covp⋆ (z)∥≤σ2,

TV(p⋆
n,p̂)≤ϵ

∥Ep⋆ [x]− ŵT (P, p̂)∥2 ≥ sup
(p⋆,p⋆′):∥Covp⋆ (z)∥≤σ2,

∥Covp⋆′ (z)∥≤σ2,TV(p⋆
n,p

⋆
n
′)≤ϵ

∥Ep⋆ [x]− Ep⋆′ [x]∥2 + σ

√
d

mn
.

We further lower bound the first term. Let ϵ′ = 1− (1− ϵ)1/n. We construct two one-dimensional distributions p⋆, p⋆′

as follows:

Pp⋆(x) =

ϵ′, x = σ
3

√
1−ϵ′

ϵ′ ,

1− ϵ′, x = 0,

Pp⋆′(0) = 1.

One can verify that both p⋆ and p⋆′ has spectral norm of its covariance bounded by σ2, and furthermore, TV(p⋆n, p
⋆
n
′) =

(1− ϵ′)n = ϵ. In the meantime, one has

∥Ep⋆ [x]− Ep⋆′ [x]∥2 ≳ σ
√
ϵ′ ≳ σ

√
ϵ

n
,

where the last inequality uses the fact that 1− (1− ϵ)1/n ≳ ϵ/n.

D Proof of Theorem 3.1

Since H = 1, we have wt = wt
i for all i ∈ [m]. Given that each machine has n samples, the variance of the returned

local update gi(wt) = −ηt∇Fi(w
t) satisfies

∥Covp⋆(gi(wt))∥ ≤ η2t σ
2

n
.

Let µp⋆(w), µi(w) denote the true mean of local updates under parameter w and the output of the i-th algorithm
in Equation (1), (2), (3), (4), (5), respectively. We first show that the three robust estimators are Lipschitz with respect
to w in the following lemma.
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Lemma D.1. For any w1,w2 ∈ W with ∥w1 − w2∥2 ≤ γ, one has for any i ∈ {1, 2, 3, 4, 5}, there exists some
universal constants Cj such that

∥µ1(w1)− µ1(w2)∥2 ≤
C1ηt

√
ϵ

1− 3ϵ

(
σ√
n
+ Lγ

)
+

C1ηtσ

1− 3ϵ
·
√

d log(d/δ)

mn
+ ηtLγ,

∥µ2(w1)− µ2(w2)∥2 ≤
C2ηt

√
ϵ

1− 2ϵ

(
σ√
n
+ Lγ

)
+

C2ηtσ

1− 2ϵ
·
√

d log(d/δ)

mn
+ ηtLγ,

∥µ3(w1)− µ3(w2)∥2 ≤
C3ηt

√
ϵ+

√
d+ log(1/δ)/n

1− C4(ϵ+
√
d+ log(1/δ)/n)

(
σ√
n
+ Lγ

)
+ ηtLγ.

∥µ4(w1)− µ4(w2)∥2 ≤
C5ηt

√
ϵ

1− C6ϵ

(
σ√
n
+ Lγ

)
+

C5ηtσ

1− C6ϵ
·
√

d log(d) + log(1/δ)

mn
+ ηtLγ,

∥µ5(w1)− µ5(w2)∥2 ≤
C7ηt

√
ϵ

1− C8ϵ

(
σ√
n
+ Lγ

)
+

C7ηtσ

1− C8ϵ
·
√

d log(d) + log(1/δ)

mn
+ ηtLγ.

Proof. We first prove the result for Algorithm 2 in Equation (1). From the smoothness assumption in Assumption 2, we
know that ∥w1 −w2∥2 ≤ γ implies that for any z,

∥∇f(w1; z)−∇f(w2; z)∥2 ≤ Lγ. (20)

Assume without loss of generality that the first (1 − ϵ)m clients are honest while the rest ϵm clients are adversar-
ial. Denote the local gradient −ηt∇f(w1; z) for i-th client as gi, and −ηt∇f(w2; z) for i-th client as g′

i. Since
µ1(w1), µ1(w2) are the output of the algorithm in Equation (1), we know that for any ∥g1−g′

1∥ ≤ ηtLγ, ∥g2−g′
2∥ ≤

ηtLγ, · · · , ∥g(1−ϵ)m − g′
(1−ϵ)m∥ ≤ ηtLγ,g(1−ϵ)m+1 = g′

(1−ϵ)m+1, · · · ,gm = g′
m, one can find some distribution

q1, q
′
1 ∈ ∆m,2ϵ such that µ1(w1) = Eq1 [g], µ1(w2) = Eq′1

[g′], and for some universal constant C,

∥Covq1(g)∥2 = sup
∥v∥2≤1

Eq1 [(v
⊤(g − µ1(w1)))

2] ≤
( C

1− 3ϵ

)2
·
(
1 +

d log(d/δ)

mϵ

)
· η

2
t σ

2

n
,

∥Covq′1(g
′)∥2 = sup

∥v∥2≤1

Eq′1
[(v⊤(g′ − µ2(w2)))

2] ≤
( C

1− 3ϵ

)2
·
(
1 +

d log(d/δ)

mϵ

)
· η

2
t σ

2

n
.

This implies that

∥Covq′1(g)∥2 = sup
∥v∥2≤1

Eq′1
[(v⊤(g − Eq′1

[g]))2]

≤ sup
∥v∥2≤1

Eq′1
[(v⊤(g′ − Eq′1

[g′]))2] + 2η2tL
2γ2

≤
( C

1− 3ϵ

)2
·
(
1 +

d log(d/δ)

mϵ

)
· η

2
t σ

2

n
+ 2η2tL

2γ2.

Since TV(q1, q′1) ≤ 2ϵ
1−3ϵ and ϵ < 1/3, from e.g. Steinhardt (2018, Proposition 2.3) and Zhu et al. (2019a, Lemma E.2)

we know that for some different universal constant C,

∥Eq1 [g]− Eq′1
[g]∥2 ≤

Cηt
√
ϵ

1− 3ϵ

(√
1

n
+

d log(d/δ)

mnϵ
σ + Lγ

)

=
Cηt
√
ϵ

1− 3ϵ

(
σ√
n
+ Lγ

)
+

Cηtσ

1− 3ϵ
·
√

d log(d/δ)

mn
.

And thus

∥µ1(w1)− µ1(w2)∥2 = ∥Eq1 [g]− Eq′1
[g′]∥2

≤ ∥Eq1 [g]− Eq′1
[g]∥2 + ∥Eq′1

[g]− Eq′1
[g′]∥2

=
Cηt
√
ϵ

1− 3ϵ

(
σ√
n
+ Lγ

)
+

Cηtσ

1− 3ϵ
·
√

d log(d/δ)

mn
+ ηtLγ.
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The results for other algorithms follows the same line of argument.

Consider a γ-covering in ℓ2 distance for the setW , denoted asWγ . From (Vershynin, 2010), we know that |Wγ | ≤
(1 + D

γ )
d. By union bound and Theorem B.1, we know that each of the following holds with probability at least

1− (1 +D/γ)dδ,

sup
wγ∈Wγ

∥ − µ1(wγ)− ηt∇F (wγ)∥2 ≤ O

(
ηtσ√
n
·

( √
ϵ

1− 3ϵ
+

√
d log(d/δ)

m

))
,

sup
wγ∈Wγ

∥ − µ2(wγ)− ηt∇F (wγ)∥2 ≤ O

(
ηtσ√
n
·

( √
ϵ

1− 2ϵ
+

√
d log(d/δ)

m

))
,

sup
wγ∈Wγ

∥ − µ3(wγ)− ηt∇F (wγ)∥2 ≤ O

ηtσ√
n
·


√

ϵ+
√

(d+ log(1/δ))/m

1− Cϵ

 ,

sup
wγ∈Wγ

∥ − µ4(wγ)− ηt∇F (wγ)∥2 ≤ O

(
ηtσ

1− C(ϵ+ log(1/δ)/m)
·

(
√
ϵ+

√
d log(d) + log(1/δ)

m

))

sup
wγ∈Wγ

∥ − µ5(wγ)− ηt∇F (wγ)∥2 ≤ O

(
ηtσ

1− C(ϵ+ log(1/δ)/m)
·

(
√
ϵ+

√
d log(d) + log(1/δ)

m

))
Since both µ1(wγ) and∇F (wγ) are Lipschitz (from Lemma D.1 and Assumption 2), we know that with probability at
least 1− δ,

sup
w∈W

∥ − µ1(w)− ηt∇F (w)∥2 ≤ sup
wγ∈Wγ

∥ − µ1(wγ)− ηt∇F (wγ)∥2 + ηtLγ +
Cηt
√
ϵ

1− 3ϵ

(
σ√
n
+ Lγ

)
+

Cηtσ

1− 3ϵ
·
√

d log(d/δ)

mn

≤O

(
ηtσ

(1− 3ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 +D/γ) + d log(d/δ)

m

)
+

ηtLγ

1− 3ϵ

)
,

By taking γ = 1/nmL, we know that with probability at least 1− δ,

sup
w∈W

∥ − µ1(w)− ηt∇F (w)∥2 ≤ O

(
ηtσ

(1− 3ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 + nmDL) + d log(d/δ)

m

))
. (21)

Similarly, we can get for Algorithm 3, 4 that with probability at least 1− δ,

sup
w∈W

∥ − µ2(w)− ηt∇F (w)∥2 ≤ O

(
ηtσ

(1− 2ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 + nmDL) + d log(d/δ)

m

))
, (22)

sup
w∈W

∥ − µ3(w)− ηt∇F (w)∥2 ≤ O

 ηtσ

(1− Cϵ)
√
n
·

√ϵ+

√
d log(1 + nmDL) + log(1/δ)

m

 (23)

sup
w∈W

∥ − µ4(w)− ηt∇F (w)∥2 ≤ O

(
ηtσ

1− C(ϵ+ log(1/δ)
m )

·

(
√
ϵ+

√
d(log(d) + log(1 + nmDL)) + log(1/δ)

m

))
(24)

sup
w∈W

∥ − µ5(w)− ηt∇F (w)∥2 ≤ O

(
ηtσ

1− C(ϵ+ log(1/δ)
m )

·

(
√
ϵ+

√
d(log(d) + log(1 + nmDL)) + log(1/δ)

m

))
(25)

Then, we proceed to analyze the convergence of the robust distributed gradient descent algorithm. This part follows
directly with the analysis in (Yin et al., 2018). For completeness we include the proof here.
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Convergence analysis for strongly convex case. We condition on the event that the bound above is satisfied for all
w ∈ W . Then, in the t-th iteration, let the updated parameter before projection step be ŵt+1 = wt + g(wt). Thus, we
have wt+1 = ΠW(ŵt+1). From the property of Euclidean projection, we know that

∥wt+1 −w∗∥2 ≤ ∥ŵt+1 −w∗∥2
= ∥wt + g(wt)−w∗∥2
≤ ∥wt − ηt∇F (wt)−w∗∥2 + ∥ − g(wt)− ηt∇F (wt)∥2. (26)

For the first term, we have

∥wt − ηt∇F (wt)−w∗∥22 = ∥wt −w∗∥22 − 2ηt⟨wt −w∗,∇F (wt)⟩+ η2t ∥∇F (wt)∥22. (27)

Since F (w) is λ-strongly convex, by the co-coercivity of strongly convex functions (see e.g. Lemma 3.11 in (Bubeck
et al., 2015)), we obtain

⟨wt −w∗,∇F (wt)⟩ ≥ Lλ

L+ λ
∥wt −w∗∥22 +

1

L+ λ
∥∇F (wt)∥22.

Let ηt = 1
L . Then we get

∥wt − ηt∇F (wt)−w∗∥22 ≤ (1− 2λ

L+ λ
)∥wt −w∗∥22 −

2

L(L+ λ)
∥∇F (wt)∥22 +

1

L2
∥∇F (wt)∥22

≤ (1− 2λ

L+ λ
)∥wt −w∗∥22,

where in the second inequality we use the fact that λ ≤ L. Using the fact
√
1− x ≤ 1− x

2 , we get

∥wt − ηt∇F (wt)−w∗∥2 ≤ (1− λ

L+ λ
)∥wt −w∗∥2. (28)

Combining Equation (26) and Equation (28), we get

∥wt+1 −w∗∥2 ≤ (1− λ

L+ λ
)∥wt −w∗∥2 +

1

L
∆i, (29)

where ∆i is defined as in Equation (6), (7), (8), (9), or (10), respectively. Then we can complete the proof by
iterating Equation (29).

Convergence analysis for non-strongly Convex Losses: Let g̃(wt) = −g(wt)/ηt be the virtual gradient at round t.
We first show that when Assumption 4(b) is satisfied and we choose ηt =

1
L , the iterates wt stays inW without using

projection. Namely, let wt+1 = wt − ηtg̃(w
t),for T = 0, 1, . . . , T − 1, then wt ∈ W for all t = 0, 1, . . . , T . To see

this, we have
∥wt+1 −w∗∥2 ≤ ∥wt − ηt∇F (wt)−w∗∥2 + ηt∥g̃(wt)−∇F (wt)∥2,

and

∥wt − ηt∇F (wt)−w∗∥22 = ∥wt −w∗∥22 − 2ηt⟨∇F (wt),wt −w∗⟩+ η2t ∥∇F (wt)∥22

≤ ∥wt −w∗∥22 − 2ηt
1

L
∥∇F (wt)∥22 + η2t ∥∇F (wt)∥22

= ∥wt −w∗∥22 −
1

L2
∥∇F (wt)∥22

≤ ∥wt −w∗∥22

where the inequality is due to the co-coercivity of convex functions. Thus, we get

∥wt+1 −w∗∥2 ≤ ∥wt −w∗∥2 +
∆i

L
.
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Let Dt := ∥w0 − w∗∥2 + tγ
L for t = 0, 1, . . . , T . Since T = LD0

γ , according to Assumption 4(b) we know that
wt ∈ W for all t = 0, 1, . . . , T . Then, we proceed to study the algorithm without projection.

Using the smoothness of F (w), we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+ L

2
∥wt+1 −wt∥22

= F (wt) + ηt⟨∇F (wt),−g̃(wt) +∇F (wt)−∇F (wt)⟩+ η2t
L

2
∥g̃(wt)−∇F (wt) +∇F (wt)∥22.

Since ηt =
1
L and ∥g̃(wt)−∇F (wt)∥2 ≤ γ, by simple algebra, we obtain

F (wt+1) ≤ F (wt)− 1

2L
∥∇F (wt)∥22 +

1

2L
γ2. (30)

We state the following lemma from (Yin et al., 2018) without proof.

Lemma D.2. Condition on the event that Equation (21), (22), (23), (24) or (25) holds for all w ∈ W . When F (w) is
convex, by running T = LD0

∆ parallel iterations, there exists t ∈ {0, 1, 2, . . . , T} such that

F (wt)− F (w∗) ≤ 16D0∆i.

for some i ∈ {1, 2, 3, 4, 5}.

Next, we show that F (wT ) − F (w∗) ≤ 16D0∆i +
1
2L∆

2
i . More specifically, let t = t0 be the first time that

F (wt)−F (w∗) ≤ 16D0∆i, and we show that for any t > t0, F (wt)−F (w∗) ≤ 16D0∆i +
1
2L∆

2
i . If this statement

is not true, then we let t1 > t0 be the first time that F (wt) − F (w∗) > 16D0∆i +
1
2L∆

2
i . Then there must be

F (wt1−1) < F (wt1). According to Equation (30), there should also be

F (wt1−1)− F (w∗) ≥ F (wt1)− F (w∗)− 1

2L
∆2

i > 16D0∆i.

Then, according to the first order optimality of convex functions, for any w,

F (w)− F (w∗) ≤ ⟨∇F (w),w −w∗⟩ ≤ ∥∇F (w)∥2∥w −w∗∥2,

and thus

∥∇F (w)∥2 ≥
F (w)− F (w∗)

∥w −w∗∥2
.

This gives that

∥∇F (wt1−1)∥2 ≥
F (wt1−1)− F (w∗)

∥wt1−1 −w∗∥2
> 8∆i.

Then according to Equation (30), this implies F (wt1) ≤ F (wt1−1), which contradicts with the fact that F (wt1−1) <
F (wt1).

Convergence analysis for non-convex Losses: We condition on the event that Equation (21), (22), (23), (24) or (25)
holds for all w ∈ W (for Algorithm 2, 3, 4 respectively). We first show that when Assumption 4(c) is satisfied and we
choose ηt =

1
L , the iterates wt stays inW without using projection. Since we have

∥wt+1 −w∗∥2 ≤ ∥wt −w∗∥2 + ηt(∥∇F (wt)∥2 + ∥g̃(wt)−∇F (wt)∥2) ≤ ∥wt −w∗∥2 +
1

L
(M +∆i).

Then, we know that by running T = 2L
∆2

i
(F (w0)− F (w∗)) parallel iterations, using Assumption 4(c), we know that

wt ∈ W for t = 0, 1, . . . , T without projection.

We proceed to study the convergence rate of the algorithm. By the smoothness of F (w), we know that when choosing
ηt =

1
L , the inequality Equation (30) still holds. More specifically, for all t = 0, 1, . . . , T − 1,

F (wt+1)− F (w∗) ≤ F (wt)− F (w∗)− 1

2L
∥∇F (wt)∥22 +

1

2L
∆2

i . (31)
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Sum up Equation (31) for t = 0, 1, . . . , T − 1. Then, we get

0 ≤ F (wT )− F (w∗) ≤ F (w0)− F (w∗)− 1

2L

T−1∑
t=0

∥∇F (wt)∥22 +
T

2L
∆2

i .

This implies that

min
t=0,1,...,T

∥∇F (wt)∥22 ≤
2L

T
(F (w0)− F (w∗)) + ∆2

i ,

which completes the proof.

E Proof of Theorem 3.2

The proof follows the same route as of Theorem 3.1, except that we utilize the result of sub-Gaussian rate for the new
procedure. In particular, we rely on the following lemma that appears in (Diakonikolas et al., 2020).

Lemma E.1 (Proposition 1.6, (Diakonikolas et al., 2020)). Assume that ∥Covp⋆(x)∥ ≤ σ2. Consider the procedure
which first randomly bucket m samples from p⋆ into k = ⌊ϵm+ log(1/δ)⌋ disjoint buckets of equal size, compute their
empirical means z1, · · · , zk, and apply Equation (11) or (12) onto the empirical means. Let the output be µ. Then with
probability at least 1− δ:

∥µ− µp⋆∥ ≤ O

(
σ

(1− Cϵ)
·

(
√
ϵ+

√
d+ log(1/δ)

m

))
.

The rest of the proof follows the same as that in Appendix D.

F Analysis for multi-round local model update

In this section, we analyze the FL protocol in Algorithm 1 with k = m when H ≥ 2 total rounds are updated locally
before aggregation in central server. Similar analysis can also be applied to convex and non-convex cases, along with
the case of k < m.

In this case, we have the local update for the i-th honest machine be

gi(w
Ht) = −

H(t+1)−1∑
s=Ht

ηt∇Fi(w
s
i )

In this case, we slightly modify our Assumption 3 to consider the H-round local model update:

Assumption 5. Assume that for any fixed wHt ∈ W and any ηt < 1/(2H), i ∈ [m], ∥Cov(gi(w
Ht))∥2 ≤ O(η

2
tσ

2
H

n ).

Note that the distribution of gj(w
Ht) has complex dependence: for any l ∈ [H], the randomness of wHt+l

i depends on
both the randomness of noise zi,jHt+l and the parameter in the previous step wHt+l−1

i . However, one can still verify that
in the simple case of mean estimation with f(w; z) = ∥w − z∥22. Assumption 3 implies Assumption 5 with σH = Hσ.

23



This is from that

∥Cov(gi(w
Ht))∥2 = η2t

∥∥∥∥∥∥Cov
 1

n

n∑
j=1

H(t+1)−1∑
s=Ht

∇f(ws
i ; z

i,j
s )

∥∥∥∥∥∥
2

= 4η2t

∥∥∥∥∥∥Cov
 1

n

n∑
j=1

H(t+1)−1∑
s=Ht

(ws
i − zi,js )

∥∥∥∥∥∥
2

= 4η2t

∥∥∥∥∥∥Cov
 1

n

n∑
j=1

H(t+1)−1∑
s=Ht

(wHt
i − zi,js − ηt

s∑
l=Ht

(wl
i − zi,jl ))

∥∥∥∥∥∥
2

= 4η2t

∥∥∥∥∥∥Cov
 1

n

n∑
j=1

H(t+1)−1∑
s=Ht

−zi,js − ηt

s−1∑
l=Ht

(wl
i − zi,jl )

∥∥∥∥∥∥
2

≤ 4η2t

∥∥∥∥∥∥Cov
 1

n

n∑
j=1

H(t+1)−1∑
s=Ht

(

H∑
k=s−Ht

(ηtH)k)zi,js

∥∥∥∥∥∥
2

≤ O
(
η2tH

2σ2

n

)
.

The last inequality is from the independence between zi,js . Similarly, one can also show that under mild regularization
conditions on the parameter space, Assumption 5 is satisfied in linear regression.

Now we are ready to prove the main theorem as below.

Theorem F.1. Let wt
i , i ∈ {1, 2, 3, 4, 5} denote the output of Algorithm 1 with H ≥ 2 and step-size ηt = a/L(t+ a)

at round t when the RobustEstimationsubroutine takes the algorithm in Equation (1), (2), (3), (4), (5), respectively,
where σ2 is replaced with σ2

H . Here a = (L+ λ)/λ. Under Assumption 1, 2, 5 and 4(a), with probability at least 1− δ,
we have

∥wHT −w∗∥2 ≤
(

a

T + a− 1

)H

∥w0 −w⋆∥2 +
C1a

2H2D

(T + a− 1)2
+ C2∆i,

where

∆1 := O

(
σH

(1− 6ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 + nmL) + d log(d/δ)

m

))
, (32)

∆2 := O

(
σH

(1− 2ϵ)
√
n
·

(
√
ϵ+

√
d2 log(1 + nmL) + d log(d/δ)

m

))
, (33)

∆3 := O

 σH

(1− C1ϵ)
√
n
·

√ϵ+

√
d log(1 + nmL) + log(1/δ)

m

 , (34)

∆4 := O

(
σH

(1− C2(ϵ+ log(1/δ)/m))
√
n
·

(
√
ϵ+

√
d log(d) + log(1 + nmL) + log(1/δ)

m

))
, (35)

∆5 := O

(
σH

(1− C3(ϵ+ log(1/δ)/m))
√
n
·

(
√
ϵ+

√
d log(d) + log(1 + nmL) + log(1/δ)

m

))
, (36)

and Ci are universal constants.

Proof. We condition on the event that the bound above is satisfied for all w ∈ W . Then, in the t-th iteration, let the
updated parameter before projection step be ŵH(t+1) = wHt + g(wHt) (note that g is the local model update which
can be viewed as negative of gradient). Thus, we have wH(t+1) = ΠW(ŵH(t+1)). For the sake of analysis, we create
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an artificial sequence of w̄Ht+l, l ∈ [H], such that w̄Ht = wHt, w̄Ht+l+1 = w̄Ht+l − ηt∇F (w̄Ht+l), ∀l ∈ [H].
From the property of Euclidean projection, we know that

∥wH(t+1) −w∗∥2 ≤ ∥ŵH(t+1) −w∗∥2
= ∥wHt + g(wHt)−w∗∥2

≤ ∥wHt − ηt

H−1∑
l=0

∇F (w̄Ht+l)−w∗∥2 + ∥ − g(wHt)− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2

= ∥w̄Ht − ηt

H−1∑
l=0

∇F (w̄Ht+l)−w∗∥2 + ∥ − g(wHt)− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2

= ∥w̄H(t+1) −w⋆∥2 + ∥ − g(wHt)− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2 (37)

Following the same analysis as in Equation (28), we know that when ηt ≤ 1/L, for any l ∈ [H],

∥w̄Ht+l+1 −w∗∥2 ≤ (1− ηtLλ

L+ λ
)∥w̄Ht+l −w∗∥2

Thus we know that

∥w̄H(t+1) −w∗∥2 ≤ (1− ηtLλ

L+ λ
)H∥w̄Ht −w∗∥2 (38)

For the second term, we know that

∥ − g(wHt)− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2 ≤ ∥g(wHt)− E[gi(w
Ht)|wHt]∥2

+ ∥ − E[gi(w
Ht)|wHt]− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2.

From Assumption 5 and Theorem B.1, we know that the first term satisfies w.p. 1− δ

∥g(wHt)− E[gi(w
Ht)|wHt]∥2 ≤ ∆i. (39)

For the second term, we have

∥E[−gi(w
Ht)|wHt]− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2 = ∥ηt
H−1∑
l=0

(E[∇Fi(w
Ht+l
i )|wHt]−∇F (w̄Ht+l))∥2

Note that for any l ∈ [H − 1], we have

∥E[∇Fi(w
Ht+l+1
i )|wHt]−∇F (w̄Ht+l+1)∥2 = ∥E[∇Fi(w

Ht+l
i − ηt∇Fi(w

Ht+l
i ))|wHt]

−∇F (w̄Ht+l − ηt∇F (w̄Ht+l))∥2
(i)

≤ ∥E[∇Fi(w
Ht+l
i )|wHt]−∇F (w̄Ht+l)∥2

+ ηtL(∥∇F (w̄Ht+l)∥2 + ∥E[∇Fi(w
Ht+l
i )|wHt

i ]∥2)
(ii)

≤ ∥E[∇Fi(w
Ht+l
i )|wHt]−∇F (w̄Ht+l)∥2 + 2ηtL

2D. (40)

Here (i) is from the Lipschitzness of E[∇Fi(w)] and ∇F (w), and (ii) uses the fact that the parameter space is compact
with diameter D, and the function is smoothness with minimizer insideW , as in Assumption 1, 2, and 4(a).

By iteratively applying Equation (40), we know that

∥E[∇Fi(w
Ht+l+1
i )|wHt]−∇F (w̄Ht+l+1)∥2 ≤ ∥E[∇Fi(w

Ht
i )|wHt]−∇F (w̄Ht)∥2 + 2lηtL

2D

= 2lηtL
2D.
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The last equality uses the fact that∇Fi(w) is unbiased. This leads to

∥E[gi(w
Ht)|wHt]− ηt

H−1∑
l=0

∇F (w̄Ht+l)∥2 = ∥ηt
H−1∑
l=0

(E[∇Fi(w
Ht+l
i )|wHt]−∇F (w̄Ht+l))∥2

≤ H2η2tL
2D. (41)

Combining Equation (37), (38), (39), and (41), we get

∥wH(t+1) −w∗∥2 ≤ (1− ηtLλ

L+ λ
)H∥wHt −w∗∥2 + ηt∆i +H2η2tL

2D. (42)

By taking ηt =
a

L(t+a) where a = L+λ
λ , we can verify that ηt ≤ 1/L. Now we multiply (t+ a)H−1/ηt on both sides,

which gives

(t+ a)H−1∥wH(t+1) −w∗∥2
ηt

≤ (
t+ a− 1

t+ a
)H

(t+ a)H−1

ηt
∥wHt −w∗∥2 + (t+ a)H−1∆i + (t+ a)H−1ηtH

2L2D

=
(t+ a− 1)H−1

ηt−1
∥wHt −w∗∥2 + (t+ a)H−1∆i + (t+ a)H−1ηtH

2L2D.

By recursively applying the above inequality, we get

(T + a− 1)H−1∥wHT −w∗∥2
ηT−1

≤ aH−1L∥w0 −w⋆∥2 + (

T−1∑
t=1

(t+ a)H−1∆i + a(t+ a)H−2H2LD).

Rearranging the above formula gives

∥wHT −w∗∥2 ≤
(

a

T + a− 1

)H

∥w0 −w⋆∥2 +
C1a

2H2D

(T + a− 1)2
+ C2∆i.

G Incorporating the Privacy Guarantee

Secure aggregation techniques (Bonawitz et al., 2017; Bell et al., 2020) are designed to conceal individual client’s
updates and reveal only the aggregated global update to a semi-honest server that attempts to infer the clients’ privacy
from their updates. In addition to Byzantine robustness, we aim to achieve privacy guarantees. Orchestrating robust
FL estimators (to mitigate malicious clients) with secure aggregation schemes (to mitigate semi-honest servers) is
challenging, as robust estimators require access to local updates, whereas secure aggregation schemes normally
hide them from the server. Consequently, most de facto FL protocols cannot protect both the server and the clients
simultaneously, but must aim to satisfy only one of the two criteria. Two recent works (So et al., 2020; He et al., 2020)
attempt to address this challenge through the use of secure multi-party computation (MPC) but they either incur high
communication cost or rely on non-colluding servers. This does not fit in the FL setting (see Appendix A for further
discussion). Thus we are motivated to consider the following question:

Can we achieve robustness and privacy simultaneously in FL protocols?

The idea of bucketing can also be used to reconcile robust FL with secure aggregation. Similar idea of adding secure
aggregation in the bucketing procedure has also been proposed and analyzed in (Velicheti et al., 2021; Burkhalter et al.,
2021). Secure aggregation (Bonawitz et al., 2017; Bell et al., 2020) is a class of cryptographic protocols designed to
augment user privacy in FL. Concretely, secure aggregation conceals all the unnecessary information (i.e. the gradient
from each client) from the server and only reveals the minimum information needed to update the global model (i.e the
summed gradient). Thus, it was considered to be incompatible with robust FL because robust FL requires each client’s
gradient to filter out the malicious ones.

26



However, with the idea of bucketing, we no longer require all the client’s gradients. Instead, we only need the sums
of gradients for the buckets. This leaves space for secure aggregation within each bucket and thus reconciles the two
originally incompatible techniques to support bidirectional protection in federated learning. A subtlety is that in order
to apply secure aggregation, we need to clip and quantize the clients’ local updates to fit them in a finite field. As a
result, the operator norm of the clients’ updates are changed. However, it is easy to show that the difference will only be
in the constants so the asymptotic results will remain the same.

Theorem G.1 (Security against semi-honest server). Let Π be an instantiation of the proposed protocols, there exists
a PPT (probabilistic polynomial Turing machine) simulator SIM which can only see the averaged updates from the
shards. For all clients C, the output of SIM is computationally indistinguishable from the view of that real server ΠC in
that execution, i.e., ΠC ≈ SIM({gHj

t }j∈[p]).

Proof for Theorem G.1. The transcript of the server is the updates from the sharded clients {gHj

t }j∈[p]. Hence, Theo-
rem G.1 is equivalent to the following lemma since the SIM can split the aggregated updates into several random shards
which is computationally indistinguishable from the true transcript.

Lemma G.1 (Lemma 6.1 in (Bonawitz et al., 2017)). Given any shard Hk formed by a set of clients Ck, the parameter
size d, the group size q, and the updates g(i) where ∀i ∈ Ck, g(i) ∈ Zd

q , we have

{{uij
$← Zd

q}i<j ,uij := −uji ∀ i, j ∈ Ck, i > j : {g(i) +
∑

j∈Ck/i

uij (mod q)}i∈Ck
}

≡ {{vi
$← Zd

q}i∈Ck
s.t.

∑
i∈Ck

vi =
∑
i∈Ck

g(i) (mod q) : {vi}i∈Ck
}

, where uij is the random mask shared between client i and j, $← donates uniformly sampling from some field, and ≡
denotes that the distributions are identical.

Lemma G.1 illustrates that the distribution of updates with random masks added is identical to uniformly sampling from
Zd
q . Thus, individual clients’ updates are securely concealed behind the random masks added by secure aggregation,

and a semi-honest server can infer zero information about individual clients from the aggregated updates alone. In the
following, we prove Lemma G.1 via induction on n, where n is the size of the clients set Ck, n = |Ck|.

Base Case: When n = 2, assume Ck = {i, j}, i < j, and
∑

i∈Ck
g(i) (mod q) = c, c is a constant. The first elements

of two distributions are g(i) + uij (mod q) and vi, respectively, both of which are uniformly random sampled from
Zd
q . The second elements are g(j) + uji (mod q) = c− (g(i) + uij) (mod q) and vj = c− vi (mod q), respectively,

which are the sum c minus the corresponding first elements. As a result, the distributions are identical.

Inductive Hypothesis: When n = k, the lemma holds.

Inductive Step: According to the inductive hypothesis, the left and right distributions of the first k clients are indistin-
guishable. We follow the protocol to generate the left transcript when the (k + 1)th client is added to the shard. To deal
with the right-hand-side transcript, we first add the same randomness as for the left-hand-side to the first k updates and
then subtract them from the total sum to obtain the (k + 1)th update. It’s easy to prove that the first k updates on both
sides follow the same uniformly random distribution, and that the (k + 1)th update is the difference between the total
sum and the sum of the first k updates. Hence, the left and right transcripts are indistinguishable.

In case the readers are not familiar with the simulation proof technique, please refer to (Lindell, 2017) for more
information about simulation-based security proof.
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H Evaluation on Breaking Points

To empirically evaluate the breaking point of the proposed robust aggregators, we test FILTERING and NO-REGRET
on MNIST with different number of malicious clients as shown in Figure 3. We can tell that when ϵ <= 0.4, both
FILTERING and NO-REGRET works well. Only when ϵ reaches 0.5, NO-REGRET breaks down because the number of
malicious clients is the same as the benign ones and no robust aggregator can work under such settings.
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Figure 3: Evaluation w/ different number of malicious clients.

I Evaluation of Sever

We also evaluate the performance of Sever (Diakonikolas et al., 2019a) in federated learning. Sever requires that the
clients’ updates are from a γ-approximate learner. Thus, we invoke Sever after the model converges (i.e., Epoch 20 in
Fig. 4). Sever computes outlier scores for the clients’ updates and filters the malicious clients. And then, we retrain the
model and invoke Sever after convergence till we reach a stationary point. We evaluate the performance of Sever on
MNIST under MPA attack. As shown in Fig. 4, Sever cannot successfully mitigate MPA.
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(a) MNIST w/o attack.
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(b) MNIST under MPA.
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(c) MNIST under MPA.

Figure 4: Performance of Sever on MNIST without attack and with MPA.
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