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Abstract

Value function approximation is important in
modern reinforcement learning (RL) problems
especially when the state space is (infinitely)
large. Despite the importance and wide applica-
bility of value function approximation, its theo-
retical understanding is still not as sophisticated
as its empirical success, especially in the con-
text of general function approximation. In this
paper, we propose a provably efficient RL al-
gorithm (both computationally and statistically)
with general value function approximations. We
show that if the value functions can be approx-
imated by a function class F which satisfies
the Bellman-completeness assumption, our algo-
rithm achieves an Õ(poly(ιH)

√
T ) regret bound

where ι is the product of the surprise bound and
log-covering numbers, H is the planning hori-
zon, K is the number of episodes and T = HK
is the total number of steps the agent interacts
with the environment. Our algorithm achieves
reasonable regret bounds when applied to both
the linear setting and the sparse high-dimensional
linear setting. Moreover, our algorithm only
needs to solve O(H logK) empirical risk min-
imization (ERM) problems, which is far more
efficient than previous algorithms that need to
solve ERM problems for Ω(HK) times.

1 INTRODUCTION

Modern Reinforcement Learning (RL) problems are of-
ten challenging due to the huge state spaces, and in prac-
tice, value function approximation schemes are usually em-
ployed to tackle this issue. Empirically, combining various
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reinforcement learning algorithms with function approxi-
mation schemes has led to tremendous success on various
tasks (Mnih et al., 2013, 2015; Silver et al., 2017). How-
ever, despite the great empirical success, our theoretical un-
derstanding of RL with function approximation is still not
as sophisticated as its empirical counterpart. Until recently,
most existing theoretical work in RL has been focusing on
the tabular setting or the linear setting (Azar et al., 2017; Jin
et al., 2018; Yang and Wang, 2019; Wang et al., 2019; Du
et al., 2019b,a; Agarwal et al., 2020; Wang et al., 2020a; Du
et al., 2020; Jin et al., 2020; Zanette et al., 2020; Li et al.,
2020), while in practice, complex function approximators
like neural networks are usually employed. Over the years,
understanding conditions on the function class that permit
sample-efficient RL has evolved into an important open re-
search problem in machine learning theory.

Existing provably efficient RL algorithms that can handle
general function approximation (Jiang et al., 2017; Sun
et al., 2019; Ayoub et al., 2020; Jin et al., 2021; Du et al.,
2021) usually require solving computationally intractable
optimization problems and are therefore computationally
inefficient. Recently, Wang et al. (2020b) proposed a prov-
ably efficient RL algorithm with general function approx-
imation for function classes with bounded eluder dimen-
sions. The algorithm by Wang et al. (2020b) is based on
Least Squares Value Iteration (LSVI) and the principle of
“optimism in the face of uncertainty”. There are two short-
comings in the work of Wang et al. (2020b). First, in order
to calculate the exploration bonus, their algorithm applies
sensitivity sampling (Langberg and Schulman, 2010; Feld-
man and Langberg, 2011; Feldman et al., 2013) to reduce
the size of the replay buffer. Using a replay buffer with
bounded complexity to calculate the exploration bonus is
crucial for the correctness of their algorithm. On the other
hand, such a step is complicated in nature and could be
hard to implement in practice. Therefore, to make the algo-
rithm practical, it is much more desirable to use simpler di-
mensionality reduction techniques (like uniform sampling)
without sacrificing the theoretical guarantee. Second, as
mentioned in Foster et al. (2018), showing examples with
a small eluder dimension beyond linearly parameterized
functions is challenging. In addition, taking the worst-case
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over all histories, as in the definition of the eluder dimen-
sion, is usually overly pessimistic in practice. In contextual
bandits, it is known that provable efficiency can be estab-
lished by assuming distributional conditions on the prob-
lem. For example, Foster et al. (2018) establishes regret
bound for an optimism-based contextual bandits algorithm
by assuming bounded surprise bound. It is natural to ask
whether similar conditions can be used to establish prov-
able efficiencies of RL algorithms.

Recently, Foster et al. (2020) established instance-
dependent regret bounds for contextual bandits and rein-
forcement learning problems by assuming a bounded dis-
agreement coefficient, which is a distribution-dependent
assumption. Foster et al. (2020) show that the disagree-
ment coefficient is always upper bounded by the eluder di-
mension of the function class. The RL algorithm in Foster
et al. (2020), which is also based on Least Squares Value
Iteration (LSVI) and the principle of “optimism in the face
of uncertainty”, has two drawbacks. First, their algorithm
achieves provable guarantees only in the block MDP set-
ting which might not be realistic in practice. Second, when
calculating the exploration bonus, their algorithm uses the
star hull to reduce the complexity of the replay buffer,
which is also complicated in nature and therefore difficult
to implement in practice.

In this paper, we develop a novel provably efficient RL
algorithm with general function approximation. Similar
to previous algorithms (Wang et al., 2020b; Foster et al.,
2020), our algorithm is an optimistic version of LSVI.
Compared to previous ones, our algorithm has the follow-
ing advantages:

• The regret bound of our algorithm is based on a vari-
ant of surprise bound proposed in (Foster et al., 2018),
which is a distribution-dependent quantity and could
therefore be smaller than the eluder dimension which
considers the worst-case over all histories. Moreover,
our theory does not rely on the block MDP assump-
tion. Furthermore, the surprise bound can be upper
bounded in the tabular setting, the linear setting and
the high dimensional sparse linear setting, which im-
plies our algorithm achieves reasonable regret bound
in all these three settings.

• The dimensionality reduction technique for reducing
the complexity of the replay buffer is based on uni-
form sampling. This is much simpler than the sensi-
tivity sampling framework in Wang et al. (2020b) and
the method based on star hull in Foster et al. (2020).

• Our algorithm requires solving only O(H logK) em-
pirical risk minimization (ERM) problems, while pre-
vious algorithms (Wang et al., 2020b; Foster et al.,
2020) require solving Ω(HK) ERM problems.

1.1 Related Work

Tabular reinforcement learning. Tabular RL is well stud-
ied in the context of sample complexity and regret bound
in numerous literature (Kearns and Singh, 2002; Kakade,
2003; Strehl et al., 2006, 2009; Jaksch et al., 2010; Azar
et al., 2013; Lattimore and Hutter, 2014; Dann and Brun-
skill, 2015; Agrawal and Jia, 2017; Azar et al., 2017; Jin
et al., 2018; Dann et al., 2019; Zanette and Brunskill,
2019; Zhang et al., 2020; Wang et al., 2020a; Yang et al.,
2021). In particular, for episodic MDP without further as-
sumptions, the best regret bound is Õ(

√
H2SAT ) for both

model-based (Azar et al., 2017) and model-free (Zhang
et al., 2020) algorithms, which matches the lower bound
Ω
(√

H2SAT
)

proved by Jin et al. (2018). Recently,
Yang et al. (2021) propose an RL algorithm with a regret
bound ofO

(
SApoly(H)

∆min
log(SAT )

)
assuming the existence

of a positive sub-optimality gap. However, all algorithms
mentioned above cannot be applied to RL problems with
huge or infinite state spaces due to the polynomial depen-
dence on

√
S in the regret bound. Therefore, in this pa-

per, we assume the value function lies in a function class
with bounded complexity and design a provably efficient
algorithm whose regret bound depends polynomially on the
complexity of the function class instead of the size of the
state space.

Bandits. There is also rich literature studying stochastic
(contextual) bandits, which can be viewed as a special case
of MDP without state transitions (Auer, 2002; Dani et al.,
2008; Li et al., 2010; Rusmevichientong and Tsitsiklis,
2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Fos-
ter et al., 2018, 2020; Li et al., 2019). In particular, Foster
et al. (2018) study contextual bandit problems with general
value function approximation, and prove their algorithms
could achieve a regret bound depending polynomially on
the surprise bound and the implicit exploration coefficient
(IEC). In this paper, we study RL with general value func-
tion approximation, and prove that the regret bound of our
algorithm also depends on the (slightly modified) surprise
bound as well as the log-covering numbers. However, we
note that the RL setting is much more complicated than the
contextual bandits setting since there is no state transition
in bandit problems.

Reinforcement learning with function approximation.
In the setting of linear function approximation, there has
been great interest recently in the theoretical analysis of
the sample complexity of RL algorithms (Yang and Wang,
2019, 2020; Jin et al., 2020; Cai et al., 2020; Du et al.,
2019b, 2020; Wang et al., 2019; Zanette et al., 2020; Zhou
et al., 2021). Compared to linear function approximation,
however, many current provably efficient algorithms for
general value function approximation are relatively imprac-
tical. For example, algorithms in Jiang et al. (2017); Sun
et al. (2019); Dong et al. (2020) achieve regret bound in
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terms of the witness rank or the Bellman rank, but they
are not computationally efficient. Foster et al. (2020) de-
vise REGRL algorithm which is both computationally and
statistically efficient. However, it requires the block MDP
assumption which greatly alleviates the difficulty of (in-
finitely) huge state space and might not be realistic in prac-
tice. Ayoub et al. (2020) propose a model-based algorithm
and Wang et al. (2020b) propose a model-free algorithm for
general value function approximation, and the regret bound
of both algorithms depend on the eluder dimension. Kong
et al. (2021) propose an efficient algorithm both compu-
tationally and statistically for general value function ap-
proximation, of which the regret bound also depends on
the eluder dimension. However, the eluder dimension con-
siders the worst-case over all histories and is thus often
overly pessimistic. Instead, the regret bound of our algo-
rithm depends polynomially on the surprise bound which is
a distribution-dependent quantity and thus could be smaller
than the eluder dimension for practical scenarios.

2 PRELIMINARIES

In this paper, we study episodic Markov Decision Pro-
cess (MDP)M = (S,A, H, P, r, µ), where S is the state
space, A is the finite action space, H ∈ N+ is the plan-
ning horizon, P : S × A → ∆(S) is the transition kernel
which maps a state-action pair to a distribution over the
state space, r : S × A → [0, 1] is the reward function and
µ ∈ ∆(S) is the initial state distribution 1.

A (stochastic) policy

π = {πh}Hh=1 : S × [H]→ ∆(A)

maps any state s to a distribution over the action space
at each step h, where we use [N ] to denote the set
{1, 2, . . . , N} for any positive integer N . A trajectory

(s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH)

is induced by a policy π if s1 ∼ µ, ah ∼ πh(sh), rh =
r(sh, ah),∀h ∈ [H] and sh+1 ∼ P (sh, ah),∀h ∈ [H − 1].
Furthermore, a policy π = {πh}Hh=1 is deterministic if for
each step h ∈ [H], πh : S → A maps a state to only one
action.

For any policy π, the expected cumulative reward starting
from state s at step h is defined as the value function

V πh (s) = Eπ

[
H∑

h′=h

rh′ |sh = s

]
,

where we use superscript π to denote that the trajectory is
induced by π. Similarly, the expected cumulative reward

1Our analysis can be naturally extended to the time-
inhomogeneous settings where the reward function and the tran-
sition kernel are different for each h ∈ [H].

starting from state-action pair (s, a) at step h is defined as
the Q-function

Qπh(s, a) = Eπ[

H∑
h′=h

rh′ |sh = s, ah = a].

Let π∗ denote the optimal policy which maximizes
Es1∼µ[V π1 (s1)]. Also, let V ∗h (s) = V π

∗

h (s) and
Q∗h(s, a) = Qπ

∗

h (s, a).

The agent interacts with the environment for K episodes.
At the beginning of each episode k ∈ [K], the agent speci-
fies a policy πk based on previous trajectories and interacts
with the environment using πk for H steps. We assume
the agent knows the number of episodes K, and we define
T = KH to be the total number of steps that the agent
interacts with the environment. The regret of an algorithm
after K episodes is defined as

Reg(K) =

K∑
k=1

(
V ∗1 (sk1)− V π

k

1 (sk1)
)
,

which compares the accumulated rewards between the
agent’s policy and the optimal policy. The goal of the agent
is to minimize the regret. In this paper, we consider the
typical regime that H is fixed while K grows to infinity.

Width function and norms. For notation convenience, we
define the width function for any function class F ⊆ {f :
S × A → R} and several norms for any function f : S ×
A → R. The width function is defined as

w(F , s, a) = max
f,f ′∈F

(f(s, a)− f ′(s, a)) ,

∀(s, a) ∈ S × A. For any dataset Z ⊆ S × A and D ⊆
S ×A× R, define Z-norm

‖f‖Z =

√ ∑
(s,a)∈Z

f2(s, a),

D-norm

‖f‖D =

√ ∑
(s,a,r)∈D

(f(s, a)− r)2,

and infinite norm

‖f‖∞ = max
(s,a)∈S×A

|f(s, a)|

respectively. In addition, define ‖v‖∞ = maxs∈S |v(s)|
for any v : S → R.

Additional notations for algorithms. For any finite mul-
tiset X , let Unif(X ) denote the uniform distribution over
X and Cardd(X ) denote the number of distinct elements in
X . For any x ∈ R+, let bxc denote the integer part of x and
define dxe = bxc + 1 if x is not an integer and otherwise
dxe = x. We use the standard O(·),Ω(·) notations to hide
constants and use Õ(·), Ω̃(·) to suppress log factors. Also,
we use x . y to denote that there exists a constant c > 0
s.t. x ≤ cy, and use x & y if y . x.
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3 ALGORITHM

In this section, we first introduce the assumptions for the
algorithm and then present our main algorithm (Algo-
rithm 1). The theoretical guarantee of our algorithm is pre-
sented in Section 4.

3.1 Assumptions

Assume our algorithm (Algorithm 1) receives a function
class F ⊆ {f : S × A → [0, H + 1]} as part of the input.
Since the complexity of F determines the efficiency of the
algorithm, it is natural and necessary to require bounded
complexities of the function class under appropriate mea-
sures. We make the following assumptions on the function
class F .

Assumption 3.1 (Bellman-completeness). For any func-
tion V : S → [0, H], there exists a function fV ∈ F ,
s.t.

fV (·, ·) = r(·, ·) +
∑
s′∈S

P (s′|·, ·)V (s′).

Assumption 3.1 indicates the closedness under Bellman
equations. This is a general assumption that summarizes
many previous assumptions in special settings and is com-
monly adopted in previous literature for general value func-
tion approximation (Wang et al., 2020b; Foster et al., 2020;
Kong et al., 2021). For tabular RL, F can be chosen as the
set of all functions mapping from S × A to [0, H + 1]. In
the linear MDP setting (Bradtke and Barto, 1996; Jin et al.,
2020; Yang and Wang, 2019, 2020; Wang et al., 2019)
where the transition kernel and the reward function are both
linear in a feature map φ : S × A → Rd, F can be the set
of all linear functions with respect to φ. In sparse high-
dimensional linear MDP settings where the transition ker-
nel and the reward function are both s-sparse linear func-
tions in φ, F can be the set of all (2s)-sparse linear func-
tions with respect to φ. Furthermore, Assumption 3.1 ap-
proximately holds in practice as long as F is rich enough
(e.g., deep neural networks) and we show in Section 5 that
our algorithm is robust to model misspecification.

Assumption 3.2 (Bounded covering number). Given any
ε > 0, there exist covering sets C(F , ε) ⊆ F and C(S ×
A, ε) ⊆ S×Awith bounded sizeN (F , ε) andN (S×A, ε)
respectively, where

• ∀f ∈ F , ∃f ′ ∈ C(F , ε), s.t. ‖f − f ′‖∞ ≤ ε.

• ∀(s, a) ∈ S × A, ∃(s′, a′) ∈ C(S × A, ε), s.t.
maxf∈F |f(s, a)− f(s′, a′)| ≤ ε.

Assumption 3.2 requires bounded covering numbers
N (·, ε) for both F and S × A, and the regret bound of

our algorithm depends only logarithmically on the cov-
ering numbers (Theorem 4.1). In the tabular RL set-
ting, lnN (F , ε) = Õ(|S||A|) and lnN (S × A, ε) =
O(ln(|S||A|)). In d-dimensional linear MDP set-
tings, lnN (F , ε) = Õ(d) and lnN (S × A, ε) =

Õ(d). In s-sparse high-dimensional linear MDP settings,
lnN (F , ε) = Õ(s). If we further assume that φ(s, a) is s-
sparse for all (s, a) ∈ S×A, then lnN (S×A, ε) = Õ(s).

Surprise bound. Another important complexity measure
in this paper is surprise bound, which was first introduced
in Foster et al. (2018) to characterize the complexity of the
function class in the contextual bandit setting.

Definition 3.3 (Surprise bound). The surprise bound is the
smallest positive constant L1 s.t.

(f(s, a)− f ′(s, a))2

≤L1Es′∼Dh(π)Ea′∼πh(s′)

[
(f(s′, a′)− f ′(s′, a′))2

]
for all f, f ′ ∈ F , s ∈ S, a ∈ A, h ∈ [H] and any policy π,
where Dh(π) is the distribution of sh when the policy is π.

Intuitively, the surprise bound is small if all pairs of func-
tions with a small expected squared error with respect to
any policy, do not encounter a much larger squared error
on any state-action pair. The following proposition gives
upper bounds of the surprise bound for linear and sparse
linear settings (see Appendix C for the proof).

Proposition 3.4. In the (sparse) linear MDP setting with a
fixed feature map φ : S × A → Rd, consider the function
class F = {(s, a) 7→ wTφ(s, a)|w ∈ W} for some W ⊆
Rd.

• If ‖φ(s, a)‖2 ≤ 1,∀(s, a) ∈ S × A and ‖w‖2 ≤
2H
√
d,∀w ∈ W , then L1 is upper bounded by

sup
π,h∈[H]

1

λmin

(
Es∼Dh(π),a∼πh(s) [φ(s, a)φ(s, a)T]

) .
• If ‖φ(s, a)‖∞ ≤ 1,∀(s, a) ∈ S × A and ‖w‖∞ ≤

2H
√
d, ‖w‖0 ≤ 2s,∀w ∈ W , then L1 is upper

bounded by

sup
π,h∈[H]

4s

ψmin

(
Es∼Dh(π),a∼πh(s) [φ(s, a)φ(s, a)T]

) ,
where ψmin(A) = minw 6=0:‖w‖0≤4s w

TAw/wTw is
the minimum restricted eigenvalue for (4s)-sparse
predictors (Raskutti et al., 2010).

3.2 Algorithm

In this section, we present our main algorithm (Algo-
rithm 1) and discuss in detail several important components
of our algorithm.
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Algorithm 1 Optimistic LSVI with doubling epoch sched-
ule

1: Input: number of epochs M , number of warm-start
epochs M0, failure probability δ ∈ (0, 1)

2: for episode k = 1, 2, . . . , τM0
− 1 do

3: Receive initial state sk1 ∼ µ
4: for h = 1, 2, . . . ,H do
5: Take action akh ∼ Unif(A), observe skh+1 ∼

P (·|skh, akh) and receive rkh = r(skh, a
k
h)

6: end for
7: end for
8: for epoch m = M0,M0 + 1, . . . ,M do
9: QmH+1(·, ·)← 0 and V mH+1(·)← 0

10: Zm ←
{

(skh, a
k
h)
}

(h,k)∈[H]×[τm−1]

11: for h = H,H − 1, . . . , 1 do
12: Dmh ←

{(
skh′ , a

k
h′ , r

k
h′ + V mh+1(skh′+1)

)}
,

∀(h′, k) ∈ [H]× [τm]
13: fmh ← arg minf∈F ‖f‖2Dm

h

14: bmh (·, ·)← Bonus(F , fmh ,Zm, δ) (Algorithm 3)
15: Qmh (·, ·)← min {fmh (·, ·) + bmh (·, ·), H}
16: V mh (·)← maxa∈AQ

m
h (·, a)

17: πmh (·)← arg maxa∈AQ
m
h (·, a)

18: end for
19: for episode k = τm, τm + 1, . . . , τm+1 − 1 do
20: Receive initial state sk1 ∼ µ
21: for h = 1, 2, . . . ,H do
22: Take action akh ← πmh (skh), observe skh+1 ∼

P (·|skh, akh) and receive rkh = r(skh, a
k
h)

23: end for
24: end for
25: end for

3.2.1 Doubling Epoch Schedule

Our algorithm consists of M epochs where each epoch
m ∈ [M ] starts at the beginning of episode τm = 2m−1

and consists of Tm = 2m−1 episodes. Thus, the total
number of episodes K = 2M − 1 and M = O(logK).
At the beginning of epoch m, the algorithm fixes a policy
πm = {πmh }Hh=1 and the agent executes πm for all episodes
k ∈ [τm, τm +Tm− 1]. The M epochs can be divided into
two phases.

• Phase 1: Warm-up epochs. For the first (M0 − 1)
epochs, the agent plays a uniformly random policy.
These warm-up epochs are designed to encourage ex-
ploration at the initial episodes.

• Phase 2: Optimistic LSVI. Starting from epoch M0,
we use an optimistic version of Least Squares Value
Iteration (LSVI) similar to Jin et al. (2020); Wang
et al. (2019, 2020b); Foster et al. (2020). At the be-
ginning of each epoch m ≥ M0, we maintain all pre-
vious trajectories as a replay buffer, and find the best
fit fm = {fmh }Hh=1 ∈ FH with respect to the replay
buffer in the sense of mean squared error (MSE), i.e.,

fmh ← arg min
f∈F
‖f‖2Dm

h

where Dmh is the replay buffer (see definition in Al-
gorithm 1). To avoid overfitting and encourage explo-
ration, we design a bonus function bmh (·, ·) which we
will discuss later in Section 3.2.2, and approximate the
optimal Q function Q∗h(·, ·) by

Qmh (·, ·) = min {fmh (·, ·) + bmh (·, ·), H} .

Our design of the bonus function ensures that Qmh
is an optimistic estimator of Q∗h with high proba-
bility (Lemma B.3). Finally, for each episode k ∈
[τm, τm+1−1] in epoch m, the agent plays the greedy
policy with respect to Qmh and collect the trajectory in
episode k.

The advantages of the doubling epoch schedule are two
folded:

• Computationally efficient. Since our algorithm only
conducts large amount of computation at the begin-
ning of each epoch (computing fmh by empirical risk
minimization and bmh by the width function as in Sec-
tion 3.2.2, which can often be solved efficiently by
appropriate optimization methods or assuming access
to appropriate regression oracles (Wang et al., 2020b;
Foster et al., 2018)) and there are only O(logK)
epochs, our algorithm is much more computationally
efficient than previous methods (Wang et al., 2020b;
Foster et al., 2020) which require to solve Ω(HK)
equivalent optimization problems.
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Recently, Kong et al. (2021) proposes an online sub-
sampling technique which improves the computa-
tional complexity of Wang et al. (2020b). However,
our algorithm is still much more computationally ef-
ficient than Kong et al. (2021). The algorithm of
Kong et al. (2021) adopts sensitivity sampling, which
requires computing sensitivities for each state action
pair (skh, a

k
h). Since the calculation of sensitivity re-

quires solving a regression oracle for Ω(log(TH))
times (see Section 4.4. in Kong et al. (2021)), and
there are T = KH such state-action pairs, their al-
gorithm needs to solve Ω(KH log(TH)) regression
oracles to calculate sensitivities and subsample the
dataset. While in our algorithm, we use uniform sam-
pling to avoid the complex and time-consuming sen-
sitivity calculation and thus does not need any oracle
to perform the subsampling procedure.

• Stabilizing adjacent trajectories. The doubling
epoch schedule together with the warm-up epochs sta-
bilizes the adjacent trajectories by ensuring that at the
beginning of each epoch, at least half of the histori-
cal trajectories in the replay buffer are induced by the
same policy. This property enables us to adopt uni-
form sampling (Algorithm 2) to reduce the complexity
of the replay buffer.

3.2.2 Uniform Sampling

An important technical novelty of our algorithm is the de-
sign of the bonus function via uniform sampling. To ensure
optimism of our estimator Qmh , we can choose bmh as the
upper bound of the difference between Q∗h and fmh . If we
are able to obtain a confidence region Fmh which contains
both fmh and Q∗h, it suffices to define the bonus function as
the width function of Fmh .

A naive way to choose the confidence region is Fmh ={
f ∈ F

∣∣‖f − fmh ‖2Zm ≤ β
}

with a carefully selected β.
However, since the confidence region depends on the whole
replay buffer with size at most T , the confidence region and
thus the bonus function would suffer extremely high com-
plexity. This implies that β needs to be set extremely large
to ensure the accuracy of the confidence region. To obtain
a bonus function with low complexity, we reduce the com-
plexity of the replay buffer by uniform sampling, which is
formally stated in Algorithm 2.

Comparison to previous methods. Actually, the algo-
rithms in Wang et al. (2020b); Foster et al. (2020) also
suffer the high complexity of the bonus function and ad-
dress the issue by sensitivity sampling and star hull re-
spectively. However, sensitivity sampling requires estimat-
ing the sensitivity of each state-action pair, which is time-
consuming; the star hull is complicated in nature and thus
is hard to implement in practice. In contrast, our uniform
sampling is conceptually simple and easy to implement.

Algorithm 2 Uniform-Sampling(F ,Z, λ, ε, δ)
1: Input: function class F , dataset Z , parameters λ, ε >

0 and failure probability δ ∈ (0, 1)
2: Set ε0 ← ε/72 ·

√
λδ/|Z|

3: Set p−1 ← max
{

1,
⌊

1
384L1·ln(4N (F,ε0)/δ)/(ε2·|Z|)

⌋}
4: Initialize Z ′ ← {}
5: for z ∈ Z do
6: Add 1/p copies of z to Z ′ with probability p
7: end for
8: Output: Z ′

Note that there is only one single parameter p to be de-
termined in Algorithm 2. When the surprise bound L1 is
known in advance, we can directly calculate the value of
p. When L1 is unknown, we can perform a grid-search
in a log-space of L1. Specifically, we can set a small
value Lmin as the lower bound of L1 and a large value
Lmax as the upper bound, and perform Algorithm 1 for
L1 ∈ L , {Lmin, 2Lmin, 2

2Lmin, . . . , Lmax}. Then we
can pick the policy with the best performance under differ-
ent choices of L1.

Theorem 4.1 shows that the regret of our main algorithm
(Algorithm 1) is Õ(

√
T ) in T dependence. We also em-

phasize that the above grid-search procedure won’t result
in higher total regret, since one can first try each possible
L1 ∈ L for O(

√
T ) times, and then exploit the best L1 for

the remainingO(T−
√
T log(Lmax/Lmin)) = O(T ) steps.

The resulting total regret is still Õ(
√
T ).

Algorithm 3 Bonus(F , f̄ ,Z, δ)
1: Input: function class F , reference function f̄ , dataset
Z and failure probability δ ∈ (0, 1)

2: Z ′ ← Uniform-Sampling(F ,Z, δ
(16T )2 ,

1
2 ,

δ
16T )

(Algorithm 2)
3: if |Z ′| > 64T 2/δ or Cardd(Z ′) ≥ 9216L1 ·

ln(64TN (F , δ/(9216T 2))/δ) then
4: Z ′ ← {}
5: end if
6: Let f̂ ∈ C(F , 1/(8

√
64T 2/δ)) such that ‖f̂ − f̄‖∞ ≤

1/(8
√

64T 2/δ)

7: Ẑ ← {}
8: for z ∈ Z ′ do
9: Let ẑ ∈ C(S × A, 1/(8

√
64T 2/δ)) such that

supf∈F |f(z)− f(ẑ)| ≤ 1/(8
√

64T 2/δ)

10: Ẑ ← Ẑ ∪ {ẑ}
11: end for
12: β , β(F , δ)← c′·L1H

2 ln3(T/δ) ln(N (F , δ/T 3))×
ln(N (S ×A, δ/T 2)) for some constant c′ > 0

13: F̂ ←
{
f ∈ F | ‖f − f̂‖2

Ẑ
≤ 3β + 2

}
14: Output: ŵ(·, ·)← w(F̂ , ·, ·)
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Design of the bonus function via uniform sampling.
Now we are able to design a bonus function with low com-
plexity as in Algorithm 3 via uniform sampling. After ob-
taining the reduced dataset Z ′, we round each data in Z ′
and the reference function f̄ to their nearest neighbors in
covering sets. The confidence region and the bonus func-
tion is then defined by the rounded reference function and
the rounded dataset. Note that in Algorithm 3, the rounding
operation does not need to be performed explicitly since all
the data are stored in computers with bounded precision,
and thus all the data will be implicitly rounded. For the
choice of β, we can use the same grid-search method of L1

since β is also determined by L1.

Efficient computation of the bonus function. The com-
putation of the bonus function is equivalent to an optimiza-
tion problem of the following form:

max
f1,f2∈F

f1(s, a)− f2(s, a)

s.t. ‖f1 − f2‖Z ≤ ε.

This problem can be solved efficiently by either assuming
access to an optimization oracle, or assuming access to only
a regression oracle (which is a milder assumption than opti-
mization oracles) as mentioned in Section 4.4 of Kong et al.
(2021).

4 THEORETICAL RESULTS

In this section, we formally present our main theorem of
the regret bound and defer the proof to Appendix B.

Theorem 4.1 (Main theorem). Under Assumptions 3.1
and 3.2, let M0 =

⌈
ln
(

16L2
1 ln 128TN (F,δ/(9216T 2))2

δ

)⌉
where the number of total steps T = H · (2M − 1) is suf-
ficiently large. With probability at least 1− δ, the regret of
Algorithm 1 is at most

O(ι ·H3/2 ·
√
T ),

where ι = L1 ·ln2(T/δ)·max(ln(N (F , δ/T 3)), ln(N (S×
A, δ/T 2))).

Proof sketch. In this proof sketch, we ignore the rounding
operation in Algorithm 3 for convenience. The proof can
be decomposed into three main steps.

• Step 1: Bounding the complexity of the bonus func-
tion. First, we show that our bonus function has low
complexity (Proposition A.5). Note that the bonus
function is defined as the width function of the con-
fidence region

F̂mh =
{
f ∈ F

∣∣∣‖f − f̂mh ‖2Ẑm ≤ β
}
.

Since the reduced dataset Ẑm has bounded size
(Lemma A.1) and bounded number of distinct ele-
ments (Lemma A.3), our bonus function which is de-
fined by Ẑm also has low complexity. Now it re-
mains to show that the bonus function defined over
the reduced dataset Ẑm is (almost) the same as the
bonus function defined over the original dataset Zm.
It is equivalent to show that the confidence region
remains (almost) unchanged after uniform sampling.
This can be proved by showing that for any function
pairs f, f ′ ∈ F , the Z ′-norm of f − f ′ approximates
well the Z-norm of f − f ′ (Lemma A.2). For a fixed
function pair (f, f ′), ‖f − f ′‖2Z′ is an unbiased esti-
mator of ‖f−f ′‖2Z and its variance can be controlled,
since the trajectories in the replay buffer are stabilized
by the doubling epoch and thusZ ′ has low complexity
after uniform sampling. Then we can apply the Bern-
stein inequality to a fixed function pair (f, f ′) to show
that ‖f−f ′‖2Z′ is close to ‖f−f ′‖2Z with high proba-
bility. Applying a union bound over all function pairs
in the covering set of F , we can obtain the desired
result.

• Step 2: Optimism of the estimated Q-function. The
next step is to show that the estimated Q-function
is an optimistic version of the true Q-function of
the optimal policy (Lemma B.3). To achieve this,
we need to show that the best fit fmh is close to
r(·, ·) +

∑
s′∈S P (s′|·, ·)V mh+1(s′). If fmh and V mh+1

are independent, a standard concentration argument
concludes the result. However, V mh+1 and fmh are sub-
tly dependent since they are both determined by the
previous dataset. To address the difficulty, we first
apply the standard concentration result on a fixed V
(Lemma B.1), and then apply a union bound over all
V in a covering set (Lemma B.2) to obtain the result.
This method is similar to Wang et al. (2020b).

• Step 3: Regret decomposition. Finally, we decom-
pose the regret by the summation of the bonus func-
tions (Lemma B.4). Then, we use similar arguments
as in Foster et al. (2018) to bound each bonus term by
the surprise bound separately since the bonus function
is defined as the (approximate) width function of the
confidence region.

Remark 4.2. Recently, Foster et al. (2021) proposes a
high-level algorithm E2D. When applying E2D algorithm
to our settings, one can show that it also achieves a similar
regret bound Õ(poly(L1)

√
T ) (other parameters omitted).

However, we want to emphasize that E2D algorithm is too
high-level to implement in practice. The implementation
of E2D algorithm requires an online estimation oracle (see
Algorithm 1 in Foster et al. (2021)), which is a very strong
assumption in RL settings. While in our algorithm, we only
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require a ERM oracle and a regression oracle, which are
mild and common assumptions in machine learning prob-
lems.

While our algorithm works for general value function class,
it also achieves reasonable regret in special cases.

Tabular settings. In the tabular RL setting, it holds
that lnN (F , ε) = Õ(|S||A|) and lnN (S × A, ε) =
O(ln(|S||A|)). When µ(s) ≥ ε and P (s′|s, a) ≥ ε for
all s, s′ ∈ S , a ∈ A for a (not too) small positive value
ε, L1 = O(poly(|S||A|)), which implies that the regret
bound is Õ(poly(|S||A|)H3/2

√
T ). This is a reasonable

regret bound since it is optimal in terms of T , the most
important term in the regret bound, and has polynomial de-
pendency in other parameters.

Linear settings. When F is a d-dimensional linear func-
tion class, we have lnN (F , ε) = lnN (S ×A, ε) = Õ(d).
When

λmin

(
Es′∼Dh(π)Ea′∼πh(s′)

[
φ(s′, a′)φ(s′, a′)T

])
is lower bounded (of order Ω(1/d)) and thus L1 = O(d)

by Proposition 3.4, the regret bound is Õ(d2 · H3/2 ·
√
T ),

which is optimal in T -dependency and matches the result
of Wang et al. (2020b) in d-dependency.

Sparse linear settings. Furthermore, when F is an s-
sparse high-dimensional linear function class where typi-
cally d ≥ T � s , we have lnN (F , ε) = Õ(s). When

ψmin

(
Es′∼Dh(π)Ea′∼πh(s′)

[
φ(s′, a′)φ(s′, a′)T

])
is lower bounded (of order Ω(1)) and thus L1 is O(s) by
Proposition 3.4, the regret bound is Õ(s ·max(s, ln(N (S×
A, δ/T 2)))·H3/2 ·

√
T ). If we further assume that φ(s′, a′)

is s-sparse for all (s′, a′) ∈ S × A, we have lnN (S ×
A, ε) = Õ(s) and thus obtain an Õ(s2 ·H3/2 ·

√
T ) regret

bound. However, directly applying the result in linear set-
tings of Wang et al. (2020b) can only obtain a linear regret
when d ≥ T . This shows the superiority of our algorithm
since we can provide theoretical guarantee for more gen-
eral function classes, and thus it is an important step toward
studying general value function approximation beyond the
tabular and linear settings.

We also emphasize a subtle difference between lin-
ear and sparse linear settings. In linear settings,
when λmin

(
Es′∼Dh(π)Ea′∼πh(s′)

[
φ(s′, a′)φ(s′, a′)T

])
is lower bounded, we typically expect it to be
of order Ω(1/d) since we assume the 2-norm
‖φ‖2 ≤ 1. While for sparse linear settings, when
ψmin

(
Es′∼Dh(π)Ea′∼πh(s′)

[
φ(s′, a′)φ(s′, a′)T

])
is lower

bounded, we typically expect it to be of order Ω(1) since
we assume the infinity norm ‖φ‖∞ ≤ 1 in this setting.

5 MODEL MISSPECIFICATION

Our main theorem (Theorem 4.1) requires Bellman-
completeness assumption (Assumption 3.1). Although the
Bellman-completeness assumption is fairly common in the-
oretical analysis, especially in the presence of general value
function approximation, the ground truth model together
with the function class might slightly violate this assump-
tion in real-world scenario. This phenomenon is known
as model misspecification (Jin et al., 2020; Wang et al.,
2020b).

In this section, we show that as long as the violation of the
Bellman-completeness assumption is small, the regret of
our algorithm is still bounded. To state the result formally,
we first introduce the following assumption, which can be
viewed as a model misspecification version of the Bellman-
completeness assumption.
Assumption 5.1 (Model misspecification). There exists a
constant ζ > 0 satisfying that for any function V : S →
[0, H], there exists a function fV ∈ F , s.t.∥∥∥∥∥fV (·, ·)− r(·, ·) +

∑
s′∈S

P (s′|·, ·)V (s′)

∥∥∥∥∥
∞

≤ ζ.

Under Assumption 5.1, one can directly apply Algorithm 1
to the model misspecification setting with only a different
choice of the parameter β in Algorithm 3. Specifically, for
some constant c′ > 0 we set

β =c′(L1H
2 ln3(T/δ) ln(N (F , δ/T 3))

· ln(N (S ×A, δ/T 2)) +HTζ).
(1)

Note that when Assumption 3.1 holds, it is equivalent to
Assumption 5.1 with ζ = 0, and thus the parameter β is
exactly the same as the one in our original algorithm. The
following theorem provides theoretical guarantees of our
algorithm for model misspecification, and the proof is at-
tached in Appendix D, which is very similar to the proof of
Theorem 4.1.
Theorem 5.2 (Theoretical guarantee for model misspec-
ification). Under Assumptions 3.2 and 5.1, let M0 =⌈
ln
(

16L2
1 ln 128TN (F,δ/(9216T 2))2

δ

)⌉
and the number of

total steps T = H · (2M − 1). With probability at least
1 − δ, the regret of Algorithm 1 (where the parameter β
is defined as in (1)) is at most

O(ι ·H3/2 ·
√
T +

√
L1 ·H2 · ζ · log T · T ),

where ι = L1 ·ln2(T/δ)·max(ln(N (F , δ/T 3)), ln(N (S×
A, δ/T 2))).

6 CONCLUSION

In this paper, we propose a provably efficient RL algorithm
(both computationally and statistically) with general value



Hanlin Zhu, Ruosong Wang, Jason D. Lee

function approximation. The regret bound of our algorithm
depends on the surprise bound, which is a distribution-
dependent quantity and could therefore be smaller than the
eluder dimension considered in previous work. Our algo-
rithm achieves reasonable regret bound when instantiating
to special function classes.

As a future direction, it would be interesting to see if
it is possible to establish the provable efficiency of RL
algorithms using other distribution-dependent complexity
measures. For example, it would be interesting to study
whether it is possible to design a provably efficient RL al-
gorithm by assuming a bounded disagreement coefficient
(as in Foster et al. (2020)) but without the block MDP as-
sumption.
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A ANALYSIS OF THE BONUS FUNCTION

In this section, we analyze our bonus function, and the main proposition is presented in Proposition A.5.

A.1 Analysis of Algorithm 2

Note that the notation δ in Algorithm 3 and Algorithm 2 are different. In this subsection, all the notation δ refer to δ in
Algorithm 2, and therefore, λ = δ/(16T ). Also, let ε0 = ε/72 ·

√
λδ/|Z| throughout this subsection.

We assume that the input dataset of Algorithm 2 is Z = {(skh, akh)}(h,k)∈[H]×[t] where more than half of the trajectories
are induced by the same policy and the number of trajectories

t ≥ 4L2
1 ln

8N (F , ε0)2

δ

which is satisfied if t ≥ τM0 and M0 is chosen as in Theorem 4.1.

The first lemma gives an upper bound on the size of the dataset produced by uniform sampling.

Lemma A.1. With probability at least 1− δ/4, |Z ′| ≤ 4|Z|/δ.

Proof. We define random variable

Xz =

{
1/p z is added into Z ′ for 1/p times
0 otherwise

.

Since |Z ′| =
∑
z∈Z Xz and E[Xz] = 1, we can obtain

Pr{|Z ′| > 4|Z|/δ} ≤ δ/4

by Markov inequality.

The next lemma proves that after uniform sampling, the norms of difference of any function pairs are approximately
preserved with high probability.

Lemma A.2. With probability at least 1− δ/2, for any f, f ′ ∈ F ,

(1− ε)‖f − f ′‖2Z − 2λ ≤ ‖f − f ′‖2Z′ ≤ (1 + ε)‖f − f ′‖2Z + 8|Z|λ/δ.

Proof. When p = 1, Z = Z ′, the result directly holds. So we only consider the case when p < 1, which means

p ≥ 384L1 · ln(4N (F , ε0)/δ)/(ε2 · |Z|).

We separately consider the cases when ‖f − f ′‖2Z < 2λ and ‖f − f ′‖2Z ≥ 2λ.

For any function pair f, f ′ ∈ F where ‖f − f ′‖2Z < 2λ, conditioned on the event in Lemma A.1 which holds with
probability at least 1− δ/4, we can obtain that ‖f − f ′‖2Z′ ≤ |Z ′|‖f − f ′‖2Z ≤ 4|Z|/δ · ‖f − f ′‖2Z ≤ 8|Z|λ/δ. Also, by
the fact that ‖f − f ′‖2Z < 2λ and ‖f − f ′‖2Z′ ≥ 0, we can conclude that

(1− ε)‖f − f ′‖2Z − 2λ ≤ ‖f − f ′‖2Z′ ≤ (1 + ε)‖f − f ′‖2Z + 8|Z|λ/δ.

In the remaining part of the proof, we consider the case that ‖f − f ′‖2Z ≥ 2λ.

We first fix any pair of distinct functions f, f ′ ∈ C(F , ε0). Assume the first u = b(t+ 1)/2c trajectories are all induced by
the same policy π. Also, for any 1 ≤ k ≤ u, let

gk =

H∑
h=1

(f(skh, a
k
h)− f ′(skh, akh))2.
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Therefore,

E [gk] =

H∑
h=1

Es∼Dh(π)Ea∼πh(s)

[
(f(s, a)− f ′(s, a))2

]
.

Note that

0 ≤ gk ≤ H × max
(s,a)∈S×A

(f(s, a)− f ′(s, a))2 = H‖f − f ′‖2∞.

Also, by Definition 3.3,

E [gk] ≥ H

L1
max

s∈S,a∈A
(f(s, a)− f ′(s, a))2 =

H

L1
‖f − f ′‖2∞.

Therefore, by Hoeffding’s inequality,

Pr

{
1

u

u∑
k=1

(gk − E [gk]) ≤ −vE [g1]

}
≤ exp

(
− 2u2v2E [g1]

2

uH2‖f − f ′‖4∞

)

≤ exp

(
− 2uv2

H2‖f − f ′‖4∞
· H

2‖f − f ′‖4∞
L2

1

)
≤ exp

(
− tv

2

L2
1

)
≤ exp

(
− v

2

L2
1

· 4L2
1 ln

8N (F , ε0)2

δ

)
≤ exp

(
−4v2 ln

8N (F , ε0)2

δ

)
.

Setting v = 1
2 , we can obtain

Pr

{
1

u

u∑
k=1

gk ≤
1

2
E [g1]

}
≤ δ

8N (F , ε0)2
.

Let E1 denote the event that

1

u

u∑
k=1

gk ≥
1

2
E [g1] ,

then Pr{E1} ≥ 1− δ
8N (F,ε0)2 .

Now, we condition on E1 for the following analysis. For each z ∈ Z , define

Xz =

{
1
p (f(z)− f ′(z))2 z is added into Z ′ for 1/p times
0 otherwise

.

Obviously, ‖f − f ′‖2Z′ =
∑
z∈Z Xz, and E[Xz] = (f(z)− f ′(z))2. Also,∑

z∈Z
Var[Xz] ≤

∑
z∈Z

E[X2
z ] ≤ max

z∈Z
(f(z)− f ′(z))2/p ·

∑
z∈Z

(f(z)− f ′(z))2

=
‖f − f ′‖4Z

p
· maxz∈Z(f(z)− f ′(z))2∑

z∈Z(f(z)− f ′(z))2

≤‖f − f
′‖4Z

p
·

1
H

∑H
h=1 L1Es∼Dh(π)Ea∼πh(s)

[
(f(s, a)− f ′(s, a))2

]∑u
k=1

∑H
h=1(f(skh, a

k
h)− f ′(skh, akh))2

≤‖f − f
′‖4Z

p · uH
· L1E[g1]

1
u

∑u
k=1 gk

≤2L1‖f − f ′‖4Z
pu ·H

≤ ‖f − f ′‖4Z · ε2

96 · ln(4N (F , ε0)/δ)
.
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Moreover,

max
z∈Z

Xz = max
z∈Z

(f(z)− f ′(z))2

p

≤‖f − f
′‖2Z

p
· maxz∈Z(f(z)− f ′(z))2∑

z∈Z(f(z)− f ′(z))2

=
ε2‖f − f ′‖2Z

96 · ln(4N (F , ε0)/δ)

Then, by Azuma-Bernstein’s Inequality,

Pr
{
|‖f − f ′‖2Z − ‖f − f ′‖2Z′ | ≥ ε/4 · ‖f − f ′‖2Z |E1

}
= Pr

{∣∣∣∣∣∑
z∈Z

E[Xz]−
∑
z∈Z

Xz

∣∣∣∣∣ ≥ ε/4 · ‖f − f ′‖2Z
∣∣∣∣∣ E1
}

≤2 exp

(
− ε2/16 · ‖f − f ′‖4Z

2
∑
z∈Z Var[Xz] + 2/3 maxz∈Z Xz · ε/4 · ‖f − f ′‖2Z

)
≤2 exp

(
− ε2/16 · ‖f − f ′‖4Z · ln(4N (F , ε0)/δ)

‖f − f ′‖4Z · ε2/48 + ‖f − f ′‖4Z · ε2/576

)
≤2 exp (−2 ln(4N (F , ε0)/δ))

≤(δ/8)/ (N (F , ε0))
2
.

Since the above inequality holds conditioned on E1, if we do not condition on E1,

Pr
{
|‖f − f ′‖2Z − ‖f − f ′‖2Z′ | ≥ ε/4 · ‖f − f ′‖2Z

}
≤ (δ/4)/ (N (F , ε0))

2
.

By union bound, the inequality above implies that with probability at least 1− δ/4, for any f, f ′ ∈ C(F , ε0),

(1− ε/4)‖f − f ′‖2Z ≤ ‖f − f ′‖2Z′ ≤ (1 + ε/4)‖f − f ′‖2Z .

Denote the event above and the event in Lemma A.1 by E2, where

E2 = {|Z ′| ≤ 4|Z|/δ}
∩
{

(1− ε/4)‖f − f ′‖2Z ≤ ‖f − f ′‖2Z′ ≤ (1 + ε/4)‖f − f ′‖2Z ,∀f, f ′ ∈ C(F , ε0)
}
.

Now we condition on E2 where Pr{E2} ≥ 1 − δ/2. For any function pair f, f ′ ∈ F where ‖f − f ′‖2Z ≥ 2λ, there exists
f̂ , f̂ ′ ∈ C(F , ε0), s.t.

‖f − f̂‖∞ ≤ ε0 = ε/72 ·
√
λδ/|Z| ≤

√
λ/(25|Z|), ‖f ′ − f̂ ′‖∞ ≤

√
λ/(25|Z|).

Therefore,

(1− ε/4)‖f̂ − f̂ ′‖2Z ≤ ‖f̂ − f̂ ′‖2Z′ ≤ (1 + ε/4)‖f̂ − f̂ ′‖2Z
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by E2. Then we can obtain that

‖f − f ′‖2Z′ ≤
(
‖f − f̂‖Z′ + ‖f̂ − f̂ ′‖Z′ + ‖f̂ ′ − f ′‖Z′

)2

≤
(

(1 + ε/8)‖f̂ − f̂ ′‖Z + 2
√
|Z ′| · ε0

)2

=
(

(1 + ε/8)‖f̂ − f̂ ′‖Z + 2
√
|Z ′| · ε/72 ·

√
λδ/|Z|

)2

|Z′|≤4|Z|/δ
≤

(
(1 + ε/8)‖f̂ − f̂ ′‖Z +

√
λ · ε/18

)2

≤
(

(1 + ε/8)‖f − f ′‖Z +
√
λ · ε/18 + 2‖f̂ − f‖Z + 2‖f̂ ′ − f ′‖Z

)2

≤
(

(1 + ε/8)‖f − f ′‖Z +
√
λ · ε/18 + 4

√
|Z| · ε/72 ·

√
λδ/|Z|

)2

≤
(

(1 + ε/8)‖f − f ′‖Z +
√
λ · ε/9

)2

‖f−f ′‖Z≥
√
λ

≤ (1 + ε)‖f − f ′‖2Z .

By similar methods, we can also obtain that

‖f − f ′‖2Z′ ≥
(
‖f̂ − f̂ ′‖Z′ − ‖f − f̂‖Z′ − ‖f̂ ′ − f ′‖Z′

)2

≥
(

(1− ε/6)‖f̂ − f̂ ′‖Z − 2
√
|Z ′| · ε/72 ·

√
λδ/|Z|

)2

|Z′|≤4|Z|/δ
≥

(
(1− ε/6)‖f̂ − f̂ ′‖Z −

√
λ · ε/18

)2

≥
(

(1− ε/6)‖f − f ′‖Z −
√
λ · ε/18− ‖f̂ − f‖Z − ‖f̂ ′ − f ′‖Z

)2

≥
(

(1− ε/6)‖f − f ′‖Z −
√
λ · ε/18− 2

√
|Z| · ε/72 ·

√
λδ/|Z|

)2

≥
(

(1− ε/6)‖f − f ′‖Z −
√
λ · ε/12

)2

‖f−f ′‖Z≥
√
λ

≥ (1− ε)‖f − f ′‖2Z .

We also give the bound of the number of distinct elements in Z ′.
Lemma A.3. With probability at least 1− δ/4, Cardd(Z ′) ≤ 2304L1 · ln(4N (F , ε0)/δ)/ε2.

Proof. First, note that

p ≤ 768L1 · ln(4N (F , ε0)/δ)/(ε2 · |Z|)

since for any 0 < x < 1, there must exists x̂ ∈ [x, 2x] s.t. 1/x̂ is an integer.

When p = 1, which means Z = Z ′ and

768L1 · ln(4N (F , ε0)/δ)/(ε2 · |Z|) ≥ 1,

we have

|Z ′| = |Z| ≤ 768L1 · ln(4N (F , ε0)/δ)/ε2.

When p < 1, we have p ≥ 384L1 · ln(4N (F , ε0)/δ)/(ε2 · |Z|). Now, For each z ∈ Z , define

Xz =

{
1 z is added into Z ′ for 1/p times
0 otherwise

.



Provably Efficient Reinforcement Learning via Surprise Bound

Then the number of distinct elements in Z ′ is upper bounded by
∑
z∈Z Xz . Since E[Xz] = p,∑

z∈Z
E[Xz] = p · |Z| ≤ 768L1 · ln(4N (F , ε0)/δ)/ε2.

By Chernoff bound,

Pr

{∑
z∈Z

Xz ≥ 3× 768L1 · ln(4N (F , ε0)/δ)/ε2

}
≤ Pr

{∑
z∈Z

Xz ≥ 3
∑
z∈Z

E[Xz]

}
≤ exp {−p · |Z|} ≤ exp

{
−384L1 · ln(4N (F , ε0)/δ)/ε2

}
≤ exp {− ln(4/δ)} = δ/4.

A.2 Analysis of Algorithm 3

In this subsection, all the notation δ refer to δ in Algorithm 3. In other words, we replace all the δ in Appendix A.1 by
δ/(16T ). Also, we still assume that the input dataset of Algorithm 3 is Z = {(skh, akh)}(h,k)∈[H]×[t] where more than half
of the trajectories are induced by the same policy and the number of trajectories t satisfies

4L2
1 ln

128TN (F , δ/(9216T 2))2

δ
≤ t ≤ K = T/H,

which is satisfied if t ≥ τM0
and M0 is chosen as in Theorem 4.1.

Combining the three lemmas in Appendix A.1 with a union bound, we can obtain the following proposition.

Proposition A.4. LetZ ′ denote the dataset returned by Algorithm 2. With probability at least 1−δ/(16T ), |Z ′| ≤ 64T 2/δ,
the number of distinct elements in Z ′ does not exceed

9216L1 · ln(64TN (F , δ/(9216T 2))/δ),

and for any f, f ′ ∈ F ,
‖f − f ′‖2Z/2− 1/2 ≤ ‖f − f ′‖2Z′ ≤ 3‖f − f ′‖2Z/2 + 1/2.

By Proposition A.4, we can deduce the following proposition.

Proposition A.5. For Algorithm 3, the following holds.

1. With probability at least 1− δ/(16T ),

w(F , s, a) ≤ ŵ(s, a) ≤ w(F , s, a),

where F =
{
f ∈ F | ‖f − f̄‖2Z ≤ β(F , δ)

}
and F =

{
f ∈ F | ‖f − f̄‖2Z ≤ 12β(F , δ) + 12

}
.

2. There exists a function setW s.t. ŵ(·, ·) ∈ W and

ln |W| ≤9216L1 · ln
(
64TN (F , δ/(9216T 2))/δ

)
ln
(
N (S ×A, 1/(8

√
64T 2/δ))× 64T 2/δ

)
+ ln

(
N (F , 1/(8

√
64T 2/δ))

)
+ 1

≤C · L1 · ln
(
N (F , δ/T 3)× T/δ

)
ln
(
N (S ×A, δ/T 2)× T/δ

)
for some absolute constant C > 0 when T is sufficiently large.

Proof. For the first part, we condition on the event defined in Proposition A.4. We only need to prove that F ⊆ F̂ ⊆ F ,
where F̂ is defined in Algorithm 3. For any f ∈ F , we have

‖f − f̄‖2Z/2− 1/2 ≤ ‖f − f̄‖2Z′ ≤ 3‖f − f̄‖2Z/2 + 1/2.
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Therefore,

‖f − f̂‖2Ẑ ≤
(
‖f − f̂‖Z′ +

√
64T 2/δ/(4

√
64T 2/δ)

)2

≤
(
‖f − f̄‖Z′ +

√
64T 2/δ/(8

√
64T 2/δ) +

√
64T 2/δ/(4

√
64T 2/δ)

)2

≤2‖f − f̄‖2Z′ + 1/2 ≤ 3‖f − f̄‖2Z + 2.

This means for any f ∈ F , we have ‖f− f̄‖2Z ≤ β(F , δ), which implies ‖f− f̂‖2
Ẑ
≤ 3β(F , δ)+2, i.e., f ∈ F̂ . Similarly,

‖f − f̂‖2Ẑ ≥
(
‖f − f̂‖Z′ −

√
64T 2/δ/(4

√
64T 2/δ)

)2

≥
(
‖f − f̄‖Z′ −

√
64T 2/δ/(8

√
64T 2/δ)−

√
64T 2/δ/(4

√
64T 2/δ)

)2

≥‖f − f̄‖2Z′/2− 1/4 ≥ ‖f − f̄‖2Z/4− 1.

So for any f ∈ F̂ , we have ‖f − f̂‖2
Ẑ
≤ 3β(F , δ) + 2, which implies ‖f − f̄‖2Z ≤ 12β(F , δ) + 12, i.e., f ∈ F .

For the second part, since function ŵ(·, ·) is uniquely defined by F̂ , we only need to analyze the maximal number of
different possible function classes F̂ . When |Z ′| > 64T 2/δ or the number of distinct elements in Z ′ is larger than

9216L1 · ln(64TN (F , δ/(9216T 2))/δ),

|Z ′| = 0 and thus F̂ = F . Otherwise, F̂ is determined by Ẑ and f̂ . Since f̂ ∈ C(F , 1/(8
√

64T 2/δ)), the number of
different f̂ does not exceed N (F , 1/(8

√
64T 2/δ)). Moreover, since there are at most

9216L1 · ln(64TN (F , δ/(9216T 2))/δ)

distinct elements in Ẑ , where |Ẑ| ≤ 64T 2/δ and each element belongs to C(S × A, 1/(8
√

64T 2/δ)), the number of
different Ẑ is upper bounded by(

N (S ×A, 1/(8
√

64T 2/δ))× 64T 2/δ
)9216L1·ln(64TN (F,δ/(9216T 2))/δ)

.

B ANALYSIS OF THE MAIN ALGORITHM

Now we start to prove the regret bound of Algorithm 1. The following lemma provides a bound on the estimation of a
single backup.

Lemma B.1 (Single step optimization error). Consider a fixed epoch m ∈ [M ]\[M0]. We define

Zm =
{

(skh, a
k
h)
}

(h,k)∈[H]×[τm−1]

as in Algorithm 1. Also, for any function V : S → [0, H], we define

DmV =
{(
skh, a

k
h, r

k
h + V (skh+1)

)}
(h,k)∈[H]×[τm−1]

and

f̂V = arg min
f∈F
‖f‖2Dm

V
.

Then, for any function V : S → [0, H] and δ ∈ (0, 1), there exists an event EV,δ where Pr{EV,δ} ≥ 1− δ, s.t. conditioned
on EV,δ , for any V ′ : S → [0, H] with ‖V − V ′‖∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′(·, ·)− r(·, ·)−∑

s′∈S
P (s′|·, ·)V ′(s′)

∥∥∥∥∥
Zm

≤ c′H
√

ln(T/δ) + lnN (F , 1/T ).

for some constant c′ > 0.
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Proof. For any V : S → [0, H], we define

fV (·, ·) = r(·, ·) +
∑
s′∈S

P (s′|·, ·)V (s′),

and now we consider a fixed V . For any f ∈ F , define

ξkh(f) = 2(f(skh, a
k
h)− fV (skh, a

k
h)) · (fV (skh, a

k
h)− rkh − V (skh+1)),∀(h, k) ∈ [H]× [τm − 1].

Also, for any (h, k) ∈ [H]× [τm − 1], define Fkh as the filtration induced by

{(sk
′

h′ , a
k′

h′ , r
k′

h′)}(h′,k′)∈[H]×[k−1] ∪ {(skh′ , akh′ , rkh′)}h′∈[h].

Then we have E[ξkh(f)|Fkh] = 0 and E[(ξkh(f))2|Fkh] ≤ 4(H + 1)2(f(skh, a
k
h) − fV (skh, a

k
h))2. Applying Lemma 10 of

Kirschner and Krause (2018) by setting {Xt} = {ξkh(f)}, we can obtain that with probability at least 1− δ,

∑
(h,k)∈[H]×[τm−1]

ξkh(f) ≤ 8(H + 1)2 log
2T + 2

δ
+ 4(H + 1)‖f − fV ‖Zm

√
log

2T + 2

δ
.

Applying a union bound of ξkh(f),−ξkh(f) over all f ∈ C(F , 1/T ), we can further obtain that with probability at least
1− δ,∣∣∣∣∣∣

∑
(h,k)∈[H]×[τm−1]

ξkh(f)

∣∣∣∣∣∣ ≤ O
(
H2(ln(T/δ) + lnN (F , 1/T )) +H‖f − fV ‖Zm

√
ln(T/δ) + lnN (F , 1/T )

)
holds for all f ∈ C(F , 1/T ).

Let EV,δ denote the above event, and for the rest of the proof, we condition on EV,δ .

Now, for any f ∈ F , there exists a function g ∈ C(F , 1/T ), s.t. ‖f − g‖∞ ≤ 1/T . Therefore,∣∣∣∣∣∣
∑

(h,k)∈[H]×[τm−1]

ξkh(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
(h,k)∈[H]×[τm−1]

ξkh(g)

∣∣∣∣∣∣+ 2(H + 1)‖f − g‖∞|Zm|

.H2(ln(T/δ) + lnN (F , 1/T )) +H‖g − fV ‖Zm

√
ln(T/δ) + lnN (F , 1/T )

.H2(ln(T/δ) + lnN (F , 1/T )) +H‖f − fV ‖Zm

√
ln(T/δ) + lnN (F , 1/T ).

For any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we can obtain that

‖fV ′ − fV ‖∞ =

∥∥∥∥∥∑
s′∈S

P (s′|·, ·)(V ′(s′)− V (s′))

∥∥∥∥∥
∞

≤ ‖V ′ − V ‖∞ ≤ 1/T.

Furthermore, for any f ∈ F ,

‖f‖2Dm
V ′
− ‖fV ′‖2Dm

V ′
− ‖f − fV ′‖2Zm

=2
∑

(skh,a
k
h)∈Zm

(f(skh, a
k
h)− fV ′(skh, akh)) · (fV ′(skh, akh)− rkh − V ′(skh+1))

≥2
∑

(skh,a
k
h)∈Zm

(f(skh, a
k
h)− fV (skh, a

k
h)) · (fV (skh, a

k
h)− rkh − V (skh+1))− 6(H + 1)

=
∑

(h,k)∈[H]×[τm−1]

ξkh(f)− 6(H + 1)

&−H2(ln(T/δ) + lnN (F , 1/T ))−H‖f − fV ‖Zm

√
ln(T/δ) + lnN (F , 1/T )

&−H2(ln(T/δ) + lnN (F , 1/T ))−H‖f − fV ′‖Zm

√
ln(T/δ) + lnN (F , 1/T ).
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If we let f = f̂V ′ , since f̂V ′ = arg minf∈F ‖f‖Dm
V ′

, we have

0 ≥‖f̂V ′‖2Dm
V ′
− ‖fV ′‖2Dm

V ′

&‖f̂V ′ − fV ′‖2Zm −H2(ln(T/δ) + lnN (F , 1/T ))−H‖f̂V ′ − fV ′‖Zm

√
ln(T/δ) + lnN (F , 1/T ),

which implies

‖f̂V ′ − fV ′‖Zm ≤ c′H
√

ln(T/δ) + lnN (F , 1/T ).

for some constant c′ > 0.

Lemma B.2 (Confidence region). In Algorithm 1, for m > M0, define confidence region

Fmh =
{
f ∈ F

∣∣‖f − fmh ‖2Zm ≤ β(F , δ)
}
.

Then with probability at least 1− δ/16, for all (h,m) ∈ [H]× ([M ]\[M0]),

r(·, ·) +
∑
s′∈S

P (s′|·, ·)V mh+1(s′) ∈ Fmh ,

given

β(F , δ) ≥ c′H2(ln(T/δ) + lnN (F , 1/T ) + ln |W|).

for some constant c′ > 0. Here,W is given in Proposition A.5.

Proof. By Proposition A.5, bmh (·, ·) ∈ W,∀(h,m) ∈ [H]× ([M ]\[M0]). Note that

Q = {min{f(·, ·) + w(·, ·), H}|f ∈ C(F , 1/T ), w ∈ W} ∪ {0}

is a (1/T )-cover of

Qmh+1(·, ·) =

{
min{fmh+1(·, ·) + bmh+1(·, ·), H}, h < H

0, h = H
,

i.e., there exists q ∈ Q, s.t. ‖q −Qmh+1‖∞ ≤ 1/T . Therefore,

V =

{
max
a∈A

q(·, a)|q ∈ Q
}

is a (1/T )-cover of V mh+1 with ln |V| ≤ ln |W|+ lnN (F , 1/T ) + 1.

Now, for each V ∈ V , let EV,δ/(16|V|T ) denote the event defined in Lemma B.1. By union bound,
Pr{
⋂
V ∈V EV,δ/(16|V|T )} ≥ 1− δ/(16T ). In the rest of the proof, we condition on the event

⋂
V ∈V EV,δ/(16|V|T ).

Since fmh = arg minf∈F ‖f‖2Dm
h

, and there exists V ∈ V s.t. ‖V − V mh+1‖∞ ≤ 1/T , by Lemma B.1, we have∥∥∥∥∥fmh (·, ·)− r(·, ·)−
∑
s′∈S

P (s′|·, ·)V mh+1(s′)

∥∥∥∥∥
Zm

≤ c′H
√

ln(T/δ) + lnN (F , 1/T ) + ln |W|

for some constant c′ > 0. Applying a union bound over all (h,m) ∈ [H] × ([M ]\[M0]), we have that with probability at
least 1− δ/16,

r(·, ·) +
∑
s′∈S

P (s′|·, ·)V mh+1(s′) ∈ Fmh ,∀(h,m) ∈ [H]× ([M ]\[M0]).

The above lemma proves that the confidence region contains r(·, ·)+
∑
s′∈S P (s′|·, ·)V mh+1(s′) with high probability, which

implies that all the estimated Q-function Qmh are optimistic with high probability as well. We formally state the conclusion
in the next lemma.
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Lemma B.3 (Optimistic Q-function). With probability at least 1− δ/8,

Q∗h(s, a) ≤ Qmh (s, a) ≤ r(s, a) +
∑
s′∈S

P (s′|s, a)V mh+1(s′) + 2bmh (s, a)

for all (h,m) ∈ [H]× ([M ]\[M0]) and (s, a) ∈ S ×A.

Proof. Let Fmh be the confidence region as defined in Lemma B.2. Let E1 denote the event that

r(·, ·) +
∑
s′∈S

P (s′|·, ·)V mh+1(s′) ∈ Fmh ,∀(h,m) ∈ [H]× ([M ]\[M0]).

By Lemma B.2, Pr{E1} ≥ 1− δ/16. Let E2 denote the event that

bmh (s, a) ≥ w(Fmh , s, a),∀(h,m) ∈ [H]× ([M ]\[M0]), (s, a) ∈ S ×A.

By Proposition A.5 and union bound over all (h,m) ∈ [H]× ([M ]\[M0]), Pr{E2} ≥ 1− δ/16. We condition on E1 ∩ E2
in the rest of the proof, which holds with failure probability at most δ/8.

By the definition of width function,

max
f∈Fm

h

|f(s, a)− fmh (s, a)| ≤ w(Fmh , s, a) ≤ bmh (s, a),∀(s, a) ∈ S ×A.

Since r(·, ·) +
∑
s′∈S P (s′|·, ·)V mh+1(s′) ∈ Fmh , we have∣∣∣∣∣r(s, a) +

∑
s′∈S

P (s′|s, a)V mh+1(s′)− fmh (s, a)

∣∣∣∣∣ ≤ bmh (s, a),∀(s, a) ∈ S ×A. (2)

Therefore, for all (s, a) ∈ S ×A,

Qmh (s, a) ≤ fmh (s, a) + bmh (s, a) ≤ r(s, a) +
∑
s′∈S

P (s′|s, a)V mh+1(s′) + 2bmh (s, a).

Next, we start to prove Q∗h(·, ·) ≤ Qmh (·, ·) by induction on h. When h = H + 1, the inequality directly holds since
Q∗H+1(·, ·) = QmH+1(·, ·) = 0. Now for any h ∈ [H], assume Q∗h+1(·, ·) ≤ Qmh+1(·, ·). This also implies V ∗h+1(·) ≤
V mh+1(·). Therefore, for any (s, a) ∈ S ×A,

Q∗h(s, a) =r(s, a) +
∑
s′∈S

P (s′|s, a)V ∗h+1(s′)

≤min

{
H, r(s, a) +

∑
s′∈S

P (s′|s, a)V mh+1(s′)

}
(2)
≤min {H, fmh (s, a) + bmh (s, a)} = Qmh (s, a),

which completes the proof.

Now, we can decompose the regret and bound it by the summation of bonus functions.

Lemma B.4 (Regret decomposition). With probability at least 1− δ/4,

Reg(K) ≤ τM0+1 ·H + 2

M∑
m=M0+1

τm+1−1∑
k=τm

H∑
h=1

bmh (skh, a
k
h) + 8H

√
T ln(16/δ)

Proof. For any step h ∈ [H], epoch m ∈ [M ]\[M0] and episode k in epoch m, define

ξkh =
∑
s′∈S

P (s′|skh, akh)
(
V mh+1(s′)− V π

m

h+1(s′)
)
−
(
V mh+1(skh+1)− V π

m

h+1(skh+1)
)
,



Hanlin Zhu, Ruosong Wang, Jason D. Lee

and define Fkh as the filtration induced by

{(sk
′

h′ , a
k′

h′ , r
k′

h′)}(h′,k′)∈[H]×[k−1] ∪ {(skh′ , akh′ , rkh′)}h′∈[h−1].

Then E[ξkh|Fkh] = 0 and |ξkh| ≤ 2H . By Azuma-Hoeffding inequality, with probability at least 1− δ/8,

M∑
m=M0+1

τm+1−1∑
k=τm

H∑
h=1

ξkh ≤ 8H
√
T ln(16/δ).

We condition on both this event and the event defined in Lemma B.3 which also holds with probability at least 1− δ/8 in
the rest of the proof.

Let π0 denote the uniformly random policy adopted in the first (M0 − 1) epochs. By Lemma B.3,

Reg(K) =

τM0−1∑
k=1

(
V ∗1 (sk1)− V π

0

1 (sk1)
)

+

M∑
m=M0

τm+1−1∑
k=τm

(
V ∗1 (sk1)− V π

m

1 (sk1)
)

≤τM0+1 ·H +

M∑
m=M0+1

τm+1−1∑
k=τm

(
V m1 (sk1)− V π

m

1 (sk1)
)
.

For each k and corresponding m, we have

V m1 (sk1)− V π
m

1 (sk1)

=Qm1 (sk1 , a
k
1)− r(sk1 , ak1)−

∑
s′∈S

P (s′|sk1 , ak1)V π
m

2 (s′)

≤r(sk1 , ak1) +
∑
s′∈S

P (s′|sk1 , ak1)V m2 (s′) + 2bm1 (sk1 , a
k
1)− r(sk1 , ak1)−

∑
s′∈S

P (s′|sk1 , ak1)V π
m

2 (s′)

=
∑
s′∈S

P (s′|sk1 , ak1)(V m2 (s′)− V π
m

2 (s′)) + 2bm1 (sk1 , a
k
1)

=(V m2 (sk2)− V π
m

2 (sk2)) + ξk1 + 2bm1 (sk1 , a
k
1)

≤(V m3 (sk3)− V π
m

3 (sk3)) + ξk1 + ξk2 + 2bm1 (sk1 , a
k
1) + 2bm2 (sk2 , a

k
2)

≤ · · ·

≤
H∑
h=1

(
ξkh + 2bmh (skh, a

k
h)
)
.

Therefore,

Reg(K) ≤ τM0+1 ·H + 2

M∑
m=M0+1

τm+1−1∑
k=τm

H∑
h=1

bmh (skh, a
k
h) + 8H

√
T ln(16/δ).

To prove the main theorem, we also need the next lemma.

Lemma B.5. With probability at least 1− δ/2, for all (h,m) ∈ [H]× ([M ]\[M0]) and any f, f ′ ∈ F ,

Tm−1Es∼Dh(πm−1),a∼πm−1
h (s)[(f(s, a)− f ′(s, a))2] ≤ 4

τm−1∑
k=τm−1

(f(skh, a
k
h)− f ′(skh, akh))2 + 64.

Proof. We first fix any (h,m) ∈ [H]× ([M ]\[M0]). Define dataset

Zmh = {(skh, akh)}k∈[τm−1,τm−1].
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Now we fix any pair of distinct functions f, f ′ ∈ C(F , 1/T ). Also, for any episode k ∈ [τm−1, τm − 1 ] , let

ξkh = (f(skh, a
k
h)− f ′(skh, akh))2.

Therefore,

E
[
ξkh
]

= Es∼Dh(πm−1),a∼πm−1
h (s)

[
(f(s, a)− f ′(s, a))2

]
.

Note that

0 ≤ ξkh ≤ max
(s,a)∈S×A

(f(s, a)− f ′(s, a))2 = ‖f − f ′‖2∞.

Also, by Definition 3.3,

E
[
ξkh
]
≥ 1

L1
max

s∈S,a∈A
(f(s, a)− f ′(s, a))2 =

1

L1
‖f − f ′‖2∞.

Therefore, by Hoeffding’s inequality,

Pr

 1

Tm−1

τm−1∑
k=τm−1

(
ξkh − E

[
ξkh
])
≤ −vE

[
ξ
τm−1

h

] ≤ exp

(
−

2T 2
m−1v

2E
[
ξ
τm−1

h

]2
Tm−1‖f − f ′‖4∞

)

≤ exp

(
− 2Tm−1v

2

‖f − f ′‖4∞
· ‖f − f

′‖4∞
L2

1

)
≤ exp

(
−2Tm−1v

2

L2
1

)
.

Since

Tm−1 = 2m−2 ≥ 2M0−1 ≥ 8L2
1 ln

128TN (F , δ/(9216T 2))2

δ
≥ 2L2

1 ln
2TN (F , 1/T )2

δ
,

by setting v = 1
2 , we can obtain that

Pr

{
1

Tm−1

u∑
k=1

ξkh ≤
1

2
E
[
ξ
τm−1

h

]}
≤ exp

(
− v

2

L2
1

· 4L2
1 ln

2TN (F , 1/T )2

δ

)
≤ exp

(
− ln

2TN (F , 1/T )2

δ

)
≤ δ

2TN (F , 1/T )2
.

By a union bound over all such function pairs (f, f ′), this implies that with probaiblity at least 1 − δ/(2T ), for any
f, f ′ ∈ C(F , 1/T ),

Tm−1Es∼Dh(πm−1),a∼πm−1
h (s)

[
(f(s, a)− f ′(s, a))2

]
≤ 2‖f − f ′‖2Zm

h
.

Now we condition on the event above in the following part of the proof.

To simplify the notation, we denote

‖f − f ′‖2
πm−1
h

= Es∼Dh(πm−1),a∼πm−1
h (s)

[
(f(s, a)− f ′(s, a))2

]
,∀f, f ′ ∈ F .

For any pair of functions f, f ′ ∈ F , there exists f̂ , f̂ ′ ∈ C(F , 1/T ), s.t. ‖f − f̂‖∞ ≤ 1/T and ‖f ′ − f̂ ′‖∞ ≤ 1/T . When
‖f − f ′‖2

πm−1
h

≤ 64/Tm−1, we can directly obtain that

Tm−1‖f − f ′‖2πm−1
h

≤ 4‖f − f ′‖2Zm
h

+ 64.

So we only consider the case when ‖f − f ′‖2
πm−1
h

≥ 64/Tm−1. Then, we have

‖f − f ′‖Zm
h
≥‖f̂ − f̂ ′‖Zm

h
− ‖f − f̂‖Zm

h
− ‖f ′ − f̂ ′‖Zm

h

≥
√
Tm−1/2‖f̂ − f̂ ′‖πm−1

h
− 2/
√
T

≥
√
Tm−1/2

(
‖f − f ′‖πm−1

h
− ‖f − f̂‖πm−1

h
− ‖f ′ − f̂ ′‖πm−1

h

)
− 2/

√
T

≥
√
Tm−1/2

(
‖f − f ′‖πm−1

h
− 2/T

)
− 2/
√
T

≥
√
Tm−1/2‖f − f ′‖πm−1

h
− 4/
√
T ≥ 0.
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Therefore,

‖f − f ′‖2Zm
h
≥(Tm−1/4) · ‖f − f ′‖2

πm−1
h

− 16/T ≥ (Tm−1/4) · ‖f − f ′‖2
πm−1
h

− 16,

which means

Tm−1Es∼Dh(πm−1),a∼πm−1
h (s)[(f(s, a)− f ′(s, a))2] ≤ 4

τm−1∑
k=τm−1

(f(skh, a
k
h)− f ′(skh, akh))2 + 64.

Finally, we complete the proof by directly applying a union bound over all (h,m) ∈ [H]× ([M ]\[M0]).

Now we are ready to prove the main theorem.

Proof of Theorem 4.1. We condition on the event defined in Lemma B.2, Lemma B.3, Lemma B.4 and Lemma B.5. Also,
we condition on the event in Proposition A.5 after applying a union bound over all (h,m) ∈ [H] × ([M ]\[M0]). With
probability at least 1− δ, all the above events hold.

By Lemma B.4, we have

Reg(K) ≤ τM0+1 ·H + 2

M∑
m=M0+1

τm+1−1∑
k=τm

H∑
h=1

bmh (skh, a
k
h) + 8H

√
T ln(16/δ).

For any (h,m) ∈ [H]× ([M ]\[M0]), we define

Fmh =
{
f ∈ F | ‖f − fmh ‖2Zm ≤ 12β(F , δ) + 12

}
,

where

Zm =
{

(skh, a
k
h)
}

(h,k)∈[H]×[τm−1]

as defined in Algorithm 1. Let

HIGHFm
h

(s, a) = max
f∈Fm

h

f(s, a), LOWFm
h

(s, a) = min
f∈Fm

h

f(s, a).

By Proposition A.5, bmh (·, ·) ≤ w(Fmh , ·, ·). Then, for any episode k ∈ [τm, τm+1 − 1],(
bmh (skh, a

k
h)
)2 ≤ (w(Fmh , skh, akh)

)2

≤
(

HIGHFm
h

(skh, a
k
h)− LOWFm

h
(skh, a

k
h)
)2

≤
(

HIGHFm
h

(skh, a
k
h)− fmh (skh, a

k
h) + fmh (skh, a

k
h)− LOWFm

h
(skh, a

k
h)
)2

≤2
(

HIGHFm
h

(skh, a
k
h)− fmh (skh, a

k
h)
)2

+ 2
(
fmh (skh, a

k
h)− LOWFm

h
(skh, a

k
h)
)2

≤4 sup
f∈Fm

h

(
f(skh, a

k
h)− fmh (skh, a

k
h)
)2

≤4L1 sup
f∈Fm

h

Es∼Dh(πm−1)Ea∼πm−1
h (s)

[
(f(s, a)− fmh (s, a))2

]
Lemma B.5
≤ 4L1

Tm−1
· sup
f∈Fm

h

4

τm−1∑
k′=τm−1

(f(sk
′

h , a
k′

h )− fmh (sk
′

h , a
k′

h ))2 + 64


≤ 4L1

Tm−1
· sup
f∈Fm

h

(
4‖f − fmh ‖2Zm + 64

)
≤ 4L1

Tm−1
· (4× (12β(F , δ) + 12) + 64)

=
64L1

Tm−1
· (3β(F , δ) + 7) .
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Therefore,

(
M∑

m=M0+1

τm+1−1∑
k=τm

H∑
h=1

bmh (skh, a
k
h)

)2

≤

(
M∑

m=M0+1

τm+1−1∑
k=τm

H∑
h=1

(
bmh (skh, a

k
h)
)2) · T

≤64TL1

M∑
m=M0+1

τm+1−1∑
k=τm

H∑
h=1

3β(F , δ) + 7

Tm−1

≤128TL1HM(3β(F , δ) + 7),

which implies

2
M∑

m=M0+1

τm+1−1∑
k=τm

H∑
h=1

bmh (skh, a
k
h) ≤ 32

√
L1THM(3β(F , δ) + 7).

Then, we can obtain that

Reg(K)

≤2M0 ·H + 32
√
L1THM(3β(F , δ) + 7) + 8H

√
T ln(16/δ)

≤64L2
1H ln

128TN (F , δ/(9216T 2))2

δ
+ 32

√
L1THM(3β(F , δ) + 7) + 8H

√
T ln(16/δ)

≤O(L2
1H(ln(T/δ) + ln(N (F , δ/T 2)))) +O(L2

1H
3/2 ln2(T/δ) ·max(ln(N (F , δ/T 3)), ln(N (S ×A, δ/T 2))) ·

√
T )

≤O(L1H
3/2 ln2(T/δ) ·max(ln(N (F , δ/T 3)), ln(N (S ×A, δ/T 2))) ·

√
T )

C PROOF OF PROPOSITION 3.4

In this section, we provide the proof of Proposition 3.4.

Proof of Proposition 3.4. For linear settings, letW∗ = {w − w′|w,w′ ∈ W}, then by Definition 3.3,

L1 ≤ sup
π

max
h∈[H]

sup
w,w′∈W

sup(s,a)∈S×A(wTφ(s, a)− w′Tφ(s, a))2

Es′∼Dh(π)Ea′∼πh(s′) [(wTφ(s′, a′)− w′Tφ(s′, a′))2]

≤ sup
π

max
h∈[H]

sup
w∈W∗

sup(s,a)∈S×A(wTφ(s, a))2

Es′∼Dh(π)Ea′∼πh(s′) [(wTφ(s′, a′))2]

≤ sup
π

max
h∈[H]

sup
w∈W∗

‖w‖22
Es′∼Dh(π)Ea′∼πh(s′) [(wTφ(s′, a′))2]

≤ sup
π

max
h∈[H]

sup
w∈W∗

‖w‖22
wTEs′∼Dh(π)Ea′∼πh(s′) [φ(s′, a′)φ(s′, a′)T]w

≤ sup
π

max
h∈[H]

sup
w∈W∗

‖w‖22
‖w‖22λmin

(
Es′∼Dh(π)Ea′∼πh(s′) [φ(s′, a′)φ(s′, a′)T]

)
≤ sup

π
max
h∈[H]

1

λmin

(
Es′∼Dh(π)Ea′∼πh(s′) [φ(s′, a′)φ(s′, a′)T]

)
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For sparse high-dimensional linear settings, letW∗ = {w − w′|w,w′ ∈ W}, then by Definition 3.3,

L1 ≤ sup
π

max
h∈[H]

sup
w,w′∈W

sup(s,a)∈S×A(wTφ(s, a)− w′Tφ(s, a))2

Es′∼Dh(π)Ea′∼πh(s′) [(wTφ(s′, a′)− w′Tφ(s′, a′))2]

≤ sup
π

max
h∈[H]

sup
w∈W∗

sup(s,a)∈S×A(wTφ(s, a))2

Es′∼Dh(π)Ea′∼πh(s′) [(wTφ(s′, a′))2]

≤ sup
π

max
h∈[H]

sup
w∈W∗

4s‖w‖22
Es′∼Dh(π)Ea′∼πh(s′) [(wTφ(s′, a′))2]

≤ sup
π

max
h∈[H]

sup
w∈W∗

4s‖w‖22
wTEs′∼Dh(π)Ea′∼πh(s′) [φ(s′, a′)φ(s′, a′)T]w

≤ sup
π

max
h∈[H]

sup
w∈W∗

4s‖w‖22
‖w‖22ψmin

(
Es′∼Dh(π)Ea′∼πh(s′) [φ(s′, a′)φ(s′, a′)T]

)
≤ sup

π
max
h∈[H]

4s

ψmin

(
Es′∼Dh(π)Ea′∼πh(s′) [φ(s′, a′)φ(s′, a′)T]

) .

D PROOF OF THEOREM 5.2

In this section, we provide the proof of Theorem 5.2 for model misspecification. First, we slightly modify Lemma B.1 and
reprove it in model misspecification case.

Lemma D.1 (Single step optimization error for misspecification). Assume that our function class F satisfies Assump-
tion 5.1. Consider a fixed epoch m ∈ [M ]\[M0]. We define

Zm =
{

(skh, a
k
h)
}

(h,k)∈[H]×[τm−1]

as in Algorithm 1. Also, for any function V : S → [0, H], we define

DmV =
{(
skh, a

k
h, r

k
h + V (skh+1)

)}
(h,k)∈[H]×[τm−1]

and

f̂V = arg min
f∈F
‖f‖2Dm

V
.

Then, for any function V : S → [0, H] and δ ∈ (0, 1), there exists an event EV,δ where Pr{EV,δ} ≥ 1− δ, s.t. conditioned
on EV,δ , for any V ′ : S → [0, H] with ‖V − V ′‖∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′(·, ·)− r(·, ·)−∑

s′∈S
P (s′|·, ·)V ′(s′)

∥∥∥∥∥
Zm

≤ c′
√
H2(ln(T/δ) + lnN (F , 1/T )) +HTζ.

for some constant c′ > 0.

Proof. For any V : S → [0, H], we define

fV (·, ·) = r(·, ·) +
∑
s′∈S

P (s′|·, ·)V (s′),

and now we consider a fixed V . Note that under Assumption 5.1, it does not necessary hold that fV ∈ F , but it can be
ensured that

min
f∈F
‖f − fV ‖2Zm ≤ |Zm|ζ2 ≤ Tζ2.

For any f ∈ F , define

ξkh(f) = 2(f(skh, a
k
h)− fV (skh, a

k
h)) · (fV (skh, a

k
h)− rkh − V (skh+1)), ∀(h, k) ∈ [H]× [τm − 1].



Provably Efficient Reinforcement Learning via Surprise Bound

By the same method as in Lemma B.1, we can prove that with probability at least 1− δ,∣∣∣∣∣∣
∑

(h,k)∈[H]×[τm−1]

ξkh(f)

∣∣∣∣∣∣ . 8(H + 1)2 log
2T + 2

δ
+ 4(H + 1)‖f − fV ‖Zm

√
log

2T + 2

δ
.

Let EV,δ denote the above event, and for the rest of the proof, we condition on EV,δ .

Similarly, by the same method as in Lemma B.1, for any f ∈ F , we have∣∣∣∣∣∣
∑

(h,k)∈[H]×[τm−1]

ξkh(f)

∣∣∣∣∣∣ .H2(ln(T/δ) + lnN (F , 1/T )) +H‖f − fV ‖Zm

√
ln(T/δ) + lnN (F , 1/T ).

For any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we can obtain that

‖fV ′ − fV ‖∞ =

∥∥∥∥∥∑
s′∈S

P (s′|·, ·)(V ′(s′)− V (s′))

∥∥∥∥∥
∞

≤ ‖V ′ − V ‖∞ ≤ 1/T.

Furthermore, again by the same method as in Lemma B.1, we can obtain that for any f ∈ F ,

‖f‖2Dm
V ′
− ‖fV ′‖2Dm

V ′

&‖f − fV ′‖2Zm −H2(ln(T/δ) + lnN (F , 1/T ))−H‖f − fV ′‖Zm

√
ln(T/δ) + lnN (F , 1/T ).

If we let f = f̂V ′ = arg minf∈F ‖f‖Dm
V ′

, we have

‖f̂V ′‖2Dm
V ′
− ‖fV ′‖2Dm

V ′

&‖f̂V ′ − fV ′‖2Zm −H2(ln(T/δ) + lnN (F , 1/T ))−H‖f̂V ′ − fV ′‖Zm

√
ln(T/δ) + lnN (F , 1/T ).

Now let f̃V ′ = arg minf∈F‖f − fV ′‖2Zm , then

‖f̂V ′‖Dm
V ′
≤ ‖f̃V ′‖Dm

V ′
≤ ‖fV ′‖Dm

V ′
+ ‖fV ′ − f̃V ′‖Zm ≤ ‖fV ′‖Dm

V ′
+
√
Tζ

=⇒‖f̂V ′‖Dm
V ′
− ‖fV ′‖Dm

V ′
≤
√
Tζ

=⇒‖f̂V ′‖2Dm
V ′
− ‖fV ′‖2Dm

V ′
≤
√
Tζ(‖f̂V ′‖Dm

V ′
+ ‖fV ′‖Dm

V ′
) ≤
√
Tζ · 4

√
TH = 4HTζ.

Therefore,

‖f̂V ′ − fV ′‖2Zm . H2(ln(T/δ) + lnN (F , 1/T )) +H‖f̂V ′ − fV ′‖Zm

√
ln(T/δ) + lnN (F , 1/T ) + 4HTζ.

which implies

‖f̂V ′ − fV ′‖Zm ≤ c′
√
H2(ln(T/δ) + lnN (F , 1/T )) +HTζ.

for some constant c′ > 0.

Using the above lemma, we can obtain the following lemma similar to Lemma B.2.
Lemma D.2 (Confidence region for misspecification). Assume that our function class F satisfies Assumption 5.1. In
Algorithm 1, for m > M0, define confidence region

Fmh =
{
f ∈ F

∣∣‖f − fmh ‖2Zm ≤ β(F , δ)
}
.

Then with probability at least 1− δ/16, for all (h,m) ∈ [H]× ([M ]\[M0]),

r(·, ·) +
∑
s′∈S

P (s′|·, ·)V mh+1(s′) ∈ Fmh ,

given

β(F , δ) ≥ c′(H2(ln(T/δ) + lnN (F , 1/T ) + ln |W|) +HTζ).

for some constant c′ > 0. Here,W is given in Proposition A.5.
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Proof. The proof is almost identical to that of Lemma B.2.

Proof of Theorem 5.2. By Lemma D.2, Lemma B.3, Lemma B.4, Lemma B.5, the proof is almost the same as the proof of
Theorem 4.1.
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