
Proceedings of Machine Learning Research vol 236:1–16, 2024 3rd Conference on Causal Learning and Reasoning

Causal Layering via Conditional Entropy

Itai Feigenbaum* ITAI@ITAIFEIGENBAUM.COM
Salesforce AI Research
Lehman College, City University of New York
The Graduate Center, City University of New York

Devansh Arpit DEVANSHARPIT@GMAIL.COM

Shelby Heinecke SHELBY.HEINECKE@SALESFORCE.COM

Juan Carlos Niebles JNIEBLES@SALESFORCE.COM

Weiran Yao WEIRAN.YAO@SALESFORCE.COM

Huan Wang HUAN.WANG@SALESFORCE.COM

Caiming Xiong CXIONG@SALESFORCE.COM

Silvio Savarese SSAVARESE@SALESFORCE.COM

Salesforce AI Research

Editors: Francesco Locatello and Vanessa Didelez

Abstract
Causal discovery aims to recover information about an unobserved causal graph from the observ-
able data it generates. Layerings are orderings of the variables which place causes before effects.
In this paper, we provide ways to recover layerings of a graph by accessing the data via a condi-
tional entropy oracle, when distributions are discrete. Our algorithms work by repeatedly removing
sources or sinks from the graph. Under appropriate assumptions and conditioning, we can separate
the sources or sinks from the remainder of the nodes by comparing their conditional entropy to the
unconditional entropy of their noise. Our algorithms are provably correct and run in worst-case
quadratic time. The main assumptions are faithfulness and injective noise, and either known noise
entropies or weakly monotonically increasing noise entropies along directed paths. In addition,
we require one of either a very mild extension of faithfulness, or strictly monotonically increas-
ing noise entropies, or expanding noise injectivity to include an additional single argument in the
structural functions.
Keywords: Causal Discovery, Entropy, Information Theory, Noise

1. Introduction

In the field of causality, data is generated by a causal graph. The purpose of causal discovery is to
recover information about an unobserved causal graph via the observed data. One important task
in causal discovery is the recovery of a topological ordering of the underlying graph, which in the
context of causality is an ordering of the nodes which places causes before effects. Other than the
importance of such ordering in its own right, it is also highly useful for discovering the full graph
(Teyssier and Koller, 2005). A topological ordering which doesn’t unnecessarily break all ties is
called a layering (Tamassia, 2013).

Given a graph, repeated removal of sources or sinks yields a layering: we denote these algo-
rithms as repeatedSOUrceRemoval (SOUR) and repeatedSInkRemoval (SIR), both are simple and
probably known variants of Kahn’s Algorithm (Kahn, 1962). Of course, in causal discovery, we are

* The author is currently affiliated with the City University of New York.

© 2024 I. Feigenbaum, D. Arpit, S. Heinecke, J.C. Niebles, W. Yao, H. Wang, C. Xiong & S. Savarese.

236:1176–1191, 2024

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

not given the graph, so implementing SOUR/SIR is not straightforward. In this paper, we propose
a new method for causal discovery of layerings of discrete random variables, which implements
SOUR/SIR without direct access to the graph, but with access to a conditional entropy oracle for
the data instead. We show that, under some assumptions, we can separate sources from non-sources
and sinks from non-sinks by comparing their conditional entropy (with appropriate conditioning)
to their unconditional noise entropy. Specifically, when repeatedly removing sources and condi-
tioning on all removed variables, we show that the conditional entropy of new sources equals the
unconditional entropy of their noise, while the conditional entropy of non-sources is larger than the
entropy of their noise. On the other hand, when repeatedly removing sinks and conditioning on
all non-removed variables, we show that the conditional entropy of new sinks equals the uncondi-
tional entropy of their noise, while the conditional entropy of non-sinks is smaller than the entropy
of their noise. Under our assumptions, our algorithms are provably correct and have a polynomial
(quadratic) worst-case running-time.

We divide our assumptions to two: (i) assumptions not on noise entropies and (ii) assumptions
on noise entropies. (i) includes faithfulness and injective noise (weaker than additive noise), while
(ii) requires either that the noise entropies are known to us in advance, or—if the noise entropies
are unknown—that the noise entropies are weakly monotonically increasing along directed paths.
In addition, we require one of either a very mild extension of faithfulness, or strictly monotonically
increasing noise entropies, or expanding noise injectivity to include an additional single argument
in the structural functions. The known noise entropy assumption is of course much weaker than
assuming known noise distribution. The weak monotonicity assumption is much weaker than the
i.i.d. noise assumption, which received some attention in literature (Peters and Bühlmann, 2014;
Peters et al., 2009; Xie et al., 2019). The assumptions we are not making are as important as those
made: unlike many other existing methods of causal discovery, we are making no assumption about
the topology of the causal graph such as sparsity, we do not assume any particular functional form
such as linearity, and we do not assume any particular noise distribution.

The rest of the paper is organized as follows. Section 1.1 reviews related literature. Section 2
provides necessary definitions and preliminaries. Section 3 collates all of the assumptions made in
the paper. Section 4 shows how to bound the conditional entropy of a variable with its unconditional
noise entropy. Section 5 translates those bounds into causal discovery implementations of SOUR
and SIR. Section 6 concludes.

1.1. Related Literature

Causal discovery is a rich and evolving field. Several detailed surveys of causal discovery exist
(Zanga et al., 2022; Vowels et al., 2022; Nogueira et al., 2022; Spirtes and Zhang, 2016), as well
as a book on the subject (Peters et al., 2017). As it is known that full causal discovery becomes
much easier given a layering, finding such a layering plays a key role in many papers (Ruiz et al.,
2022; Sanchez et al., 2022; Montagna et al., 2023; Teyssier and Koller, 2005). Information theory
has been used in causal discovery for a variety of purposes (Kocaoglu et al., 2020; Branchini et al.,
2023; Cabeli et al.; Runge, 2018; Marx, 2021).

There is some existing work which implements SOUR by using entropy. A somewhat related
approach to ours is entropic causal inference (ECI) (Compton et al., 2022). Like our method, ECI
also implements SOUR by considering noise entropy, but in a very different way. First, the main
assumption ECI makes on noise entropy is that it is small, as opposed to our assumption of either

21177

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

known or monotonic noise entropy. Second, ECI assumes access to both a conditional indepen-
dence oracle and a minimum entropy coupling oracle, unlike our method which assumes access to a
conditional entropy oracle. An interesting similarity is that ECI’s conditional independence testing
uses the same conditioning set we use for conditional entropy in SOUR. Another somewhat related
work is by Xie et al. (2019), which studies the much more specific case of a linear model with i.i.d.
noise. They too identify sources in SOUR using entropy minimization. Their method seems very
different than ours, but it is possible—although we haven’t been able to determine this—that it is a
special case of our more general method (applied to linear models with i.i.d. noise). We note that
a potential advantage of using entropy for discrete variables is its invariance under scaling, which
means that our methods are not sensitive to data standardization. This stands in contrast to some ex-
isting algorithms which inadvertently (implicitly or explicitly) discover layerings by using patterns
in the marginal variance in non-standardized simulated data (Reisach et al., 2021).

Post acceptance of our paper to the conference, we were made aware of relevant work by Gao
and Aragam (2021), which has interesting connections to our causal SOUR implementation (their
work does not include an implementation of SIR). Like us, the authors implement SOUR via a
conditional entropy oracle, with a different algorithm and under different assumptions. In every
iteration, both implementations compute the entropy of each variable conditional on all removed
variables. However, while our algorithm uses these conditional entropies directly to discover new
sources to be removed, their algorithm uses them to generate a sequence of conditional indepen-
dence tests via additional calls to the oracle. Their algorithm has the advantage of working under a
weaker form of our increasing noise entropies assumption, while our algorithm has the advantage of
working under the known noise entropies assumption (and being somewhat simpler conceptually).
There are therefore two cases where both algorithms work, in which we can try and compare their
behavior. The first case is when both their weaker variant of the increasing noise entropies assump-
tion and the known noise entropies assumption hold. In that case, if we make our algorithm remove
all sources it detects immediately, both algorithms have the exact same output, but our algorithm
performs fewer oracle calls compared to their algorithm. The second case is when (our stronger
variant of) the increasing noise entropies assumption holds, in which case the two algorithms may
output different layerings, and neither algorithm dominates the other in terms of the number of
oracle calls.

2. Preliminaries

2.1. Graph Theory

Before we move to causal discovery, let us begin with the realm of graph theory, where the graph
is known. For a directed acyclic graph (DAG) G = (V,E), we denote the edge (vi, vj) as vi → vj
(or equivalently vj ← vi). Note that in a DAG, at most one of the edges vi → vj and vi ← vj can
exist: we write vi−vj when we want to refer to one of the edges vi → vj or vi ← vj but not specify
the direction, so the statement vi − vj ∈ E should be read as “vi → vj ∈ E or vi ← vj ∈ E”.
For v ∈ V , we define Par(v,G) = {v′ ∈ V : v′ → v ∈ E} as the set of parents of v, and
Des(v,G) = {v′ ∈ V : v′ ̸= v and ∃ a directed path from v to v′ in G} as the set of descendants of
v. For any subsets X,Y, S ⊆ V , we denote as X ⊢G Y |S the event where X and Y are d-separated
in G conditional on S (for information about d-separation, see Geiger et al. (1990)). For any V̂ ⊆ V ,
we define the induced subgraph w.r.t. V̂ as GV̂ = (V̂ , {v → v′ ∈ E : v ∈ V̂ and v′ ∈ V̂ }) as the
subgraph of G corresponding to the nodes in V̂ and the edges between them. For a node v ∈ V ,

31178

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

a parent v′ ∈ Par(v) that doesn’t have any other parent as a descendant Des(v′) ∩ Par(v) = ∅
is called an unmediated parent of v. Nodes with only outgoing or only incoming edges are called
sources and and sinks, respectively:

Definition 1 (sources and sinks) Let G = (V,E) be a DAG. v ∈ V is called a source in G if v
has no incoming edges, and a sink if v has no outgoing edges. We denote the sets of all sources and
sinks in G respectively as SRC(G) and SNK(G).

Next, we define layerings (Tamassia, 2013), which are simply DAG topological orderings that
allow for unbroken ties:

Definition 2 (layerings) Let G = (V,E) be a digraph. Let L = (L1, . . . , Lm) be a tuple of
mutually exclusive non-empty subsets of V (Li ∩ Lj = ∅ whenever i ̸= j); we slightly abuse
notation and overload L to also mean L = ∪mi=1Li when clear from context. We write Li < Lj iff
i < j (and similarly define >,=,≤,≥). For every v ∈ V , if v ∈ Li, define L(v) = Li. L is a
layering iff it is a partition of V and for all v, v′ ∈ V , v → v′ ∈ E ⇒ L(v) < L(v′).

A digraph has a layering iff it is a DAG. Repeated removal of sets of sources and/or sinks yields a
layering; we precisely define this process and prove its correctness in Algorithm 5 and Theorem 5
in Appendix A.1 We refer to the special case where only sources (but not necessarily all sources)
are removed in each iteration as the repeatedSOUrceRemoval (SOUR) Algorithm. Alternatively,
we refer to the case where only sinks are removed as repeatedSInkRemoval (SIR) Algorithm. We
provide the pseudocode for SOUR and SIR as Algorithms 1 and 2 respectively.

Algorithm 1 repeatedSOUrceRemoval (SOUR)

Input: DAG G = (V,E)
Output: Layering L of G

1: Vcur ← V
2: L← empty sequence
3: while Vcur ̸= ∅ do
4: SR← non-∅ subset of SRC(GVcur)
5: L.append(SR)
6: Vcur ← Vcur − SR
7: end while
8: return L

Algorithm 2 repeatedSInkRemoval (SIR)

Input: DAG G = (V,E)
Output: Layering L of G

1: Vcur ← V
2: L← empty sequence
3: while Vcur ̸= ∅ do
4: SN ← non-∅ subset of SNK(GVcur)
5: L.prepend(SN)
6: Vcur ← Vcur − SN
7: end while
8: return L

2.2. Causality

Our goal in this paper is to recover a causal DAG’s layering without knowing the graph, but with
access—via a conditional entropy oracle—to data generated by it. As we will show, under some
assumptions, SOUR and SIR can be implemented in this scenario. Throughout this paper, let Gc =
(Vc, Ec) be a DAG, which we refer to as the causal graph. We slightly abuse notation and consider
the nodes in Vc also as random variables. We assume that the variables in Vc are connected through
a structural causal model (SCM), meaning that for each v ∈ Vc, v = fv(Par(v,Gc) ∪ {Nv})

1. The literature we found technically describes special cases of Algorithm 5, but their correctness proofs very easily
extend to it; we provide this extension in the appendix for the reader’s convenience. We believe it is highly likely that
Algorithm 5 as we wrote it already exists in literature, but we could not find a reference.

41179

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

for some function fv and noise variable Nv independent of all other noise variables. To clarify,
fv(Par(v,Gc) ∪ {Nv}) is also a slight abuse of notation, which when Par(v,Gc) = {p1, . . . , pt}
means fv(p1, . . . , pt, Nv) (using the appropriate order of arguments). We assume that all noise
variables (and hence all variables) are discrete, so the definitions of entropy and conditional entropy
apply.

Gc is unknown to us, but we assume access to a conditional entropy oracle H . For sets of
random variables X , Y and S, let H (X|S) be the conditional entropy of X conditional on S. We
denote as X ⊥⊥ Y |S the case where X and Y are independent conditional on S. In the notations
H (X|S), X ⊥⊥ Y |S, and X ⊢G Y |S, we allow replacing singleton sets with their element (e.g. if
X = {x} then H (x|S) = H (X|S) etc.), and when S = ∅ we allow dropping it from the notation
(e.g. H (X) = H (X|∅) etc.). Whenever we drop the graph from notation, the underlying graph
we refer to is Gc (e.g. we allow writing Par(v) instead of Par(v,Gc), ⊢ instead of ⊢Gc , etc.). We
also define the explicit noise graph, which makes the noise terms into explicit nodes:

Definition 3 (explicit noise graph) The explicit noise graph GN
c = (V N

c , EN
c) is obtained from

Gc by adding a node Nv for each v ∈ Vc, with exactly one adjacent edge Nv → v. That is,
V N
c = Vc ∪ {Nv : v ∈ Vc} and EN

c = Ec ∪ {Nv → v : v ∈ Vc}.

We point out that d-separation implies conditional independence (Pearl, 2000):

Theorem 1 For X,Y, S ⊆ Vc, X ⊢Gc Y |S ⇒ X ⊥⊥ Y |S and similarly for every X,Y, S ⊆ V N
c ,

X ⊢GN
c
Y |S ⇒ X ⊥⊥ Y |S.

3. Assumptions

Our layering discovery method requires some assumptions, which we list here. We break our as-
sumptions to three sets. Assumption Collection 1 contains global assumptions, which we implicitly
make throughout the rest of the paper from this point on. Assumption Collections 2 and 3 contain
local assumptions, which are not implicitly assumed but instead are only assumed when explic-
itly stated; we collate them here as a convenient reference point. Let us first introduce our global
assumptions:

Assumption Collection 1 (global assumptions) We always make the following assumptions.

1.1 Faithfulness: For X,Y, S ⊆ Vc, X ⊥⊥ Y |S ⇒ X ⊢ Y |S.

1.2 Injective noise: For all v ∈ Vc, when holding the values of Par(v) constant, fv as a function
of Nv is one-to-one.

1.3 Non-constant noise: For every v ∈ Vc, Nv is not constant, or equivalently H (Nv) > 0.

Assumption 1.1 is common throughout the causal discovery literature (Spirtes et al., 2000), As-
sumption 1.2 is weaker than the Additive Noise Assumption (Hoyer et al., 2008), and Assumption
1.3 simply prevents some degenerate cases. Next, we state two local assumptions, not about noise
entropy, which are used in different parts of Theorem 2 in Section 4 to bound the conditional entropy
of variables by the entropy of their noise.

Assumption Collection 2 (non noise entropy local assumptions) We occasionally make some of
the following assumptions.

51180

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

2.1 Injective noise plus one: For all v ∈ V , v′ ∈ Par(v), when holding the values of Par(v) −
{v′} constant, fv as a function of v′ and Nv is one-to-one.

2.2 Directed-faithfulness: For every v ∈ V , v′ ∈ Des(v), Nv��⊥⊥v′.

Assumption 2.1 implies Assumption 1.2, and Assumption 2.2 is weaker than faithfulness on the
explicit noise graph. Finally, we state another list of local assumptions, about noise entropy, which
are used for our implementation of SOUR and SIR via a conditional entropy oracle in Section
5. These assumptions allow us to use the bounds established by Theorem 2 to extract layering
information.

Assumption Collection 3 (noise entropy local assumptions) We occasionally make some of the
following assumptions.

3.1 Known noise entropy: For all v ∈ V , H (Nv) is known to us.

3.2 Weakly increasing noise entropy: For all v ∈ V , v′ ∈ Des(v), H (Nv) ≤H (Nv′).

3.3 Strictly increasing noise entropy: For all v ∈ V , v′ ∈ Des(v), H (Nv) < H (Nv′).

Assumption 3.1 is clearly much weaker than assuming the noise distribution is known in advance.
Assumption 3.2 is satisfied in the case of i.i.d. noise, but is of course a weaker requirement than
i.i.d. noise. The i.i.d. noise case received some attention in literature (Peters and Bühlmann, 2014;
Peters et al., 2009; Xie et al., 2019). Assumption 3.3 is a bit stronger than 3.2, and rules out the i.i.d.
noise case.

Next, we discuss some intuition behind the assumptions and how they are used in Sections 4
and 5. Assumption Collection 2 guarantees strict separation of sources/sinks from non-sources/non-
sinks in SOUR/SIR: sources/sinks have conditional entropy equal to their unconditional noise’s en-
tropy, while non-sources/non-sinks do not. Assumption 2.1 means that a variable always carries
information about its children. In SOUR, non-sources differ from sources by the existence of an un-
conditioned unmediated parent, and Assumption 2.1 makes sure that excluding this parent from the
conditioning set increases the entropy. Assumption 2.2 can be regarded as a minor technicality, to
prevent unrealistic cases where a variable’s noise impacts the variable but not its descendants. With
that assumption in place, a variable carries information not just about its ancestors, but also about
their noise. In SIR, non-sinks differ from sinks by the existence of at least one descendant in the
conditioning set, and Assumption 2.2 makes sure that including this descendant in the conditioning
set decreases the entropy.

Assumption Collection 3 is meant to help us use the separation from Assumption Collection 2
for causal discovery. Assumption 3.1 is straightforward, and intuitively means that while the noise
is unobserved, it comes from a well-understood origin. In SOUR/SIR, knowledge of noise entropy
allows us to compare each variable’s conditional entropy to its unconditional noise’s entropy: the
variable is a source/sink iff the two entropies are equal. Furthermore, our separation result has di-
rectionality built into it: all non-sources/non-sinks deviate from their unconditional noise entropy
in the same direction (larger for non-sources in SOUR, smaller for non-sinks in SIR). Assumptions
3.2 or 3.3 allow us to get around the need for Assumption 3.1 by enabling us to utilize this direc-
tionality to detect sources/sinks. Finally, Figure 1 summarizes the sufficiency results we establish
in this paper.

61181

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

Assumption 3.1
known noise entropy

Assumption 3.2
weakly inc. noise entropy

Assumption 3.3
strictly inc. noise entropy

Assumption 2.1
injective noise plus one

Assumption 2.2
directed-faithfulness

SOUR is implementable SIR is implementable

Figure 1: Local assumptions flowchart. The arrows do not represent logical implication. The
source nodes in this flowchart (not to be confused with the sources we try to discover in SOUR)
are assumptions from Assumption Collection 3. The sink nodes in this flowchart (not to be con-
fused with the sinks we try to discover in SIR) state that SIR or SOUR is implementable us-
ing a conditional entropy oracle. Every directed path from a source node to a sink node in
the chart represent sufficient local assumptions for sink node to hold: for example, the path
“Assumption 3.1” → “Assumption 2.2” → “SIR is implementable” means that Assumptions 3.1
and 2.2 together are sufficient for SIR to be implementable using a conditional entropy oracle. As-
sumption Collection 1 is always implicitly assumed.

4. Entropy Bounds

Let us first provide some informal intuition for our bounds. The value of v ∈ Vc is fully determined
by Par(v) and Nv. When we condition on Par(v), Nv remains the only source of randomness
for v. If we don’t condition on anything else, then since noise injectivity implies that fv doesn’t
dilute Nv’s entropy, we get that the conditional entropy of v equals H (Nv). If the conditioning set
includes—in addition to Par(v)—some descendant u ∈ Des(v), then u generally carries additional
information about Nv and we can expect the entropy to be reduced relatively to H (Nv). On the
other hand, if the conditioning set excludes some unmediated parent r ∈ Par(v), then r is a source
of randomness additional to Nv. If the conditioning set also excludes all descendants of r (and thus
also all descendants of v), then no additional information is given about Nv or r, so (using noise-
plus-one injectivity to prevent fv from diluting the entropy) we can generally expect a conditional
entropy larger than H (Nv).

Theorem 2 formalizes the intuition above. In Section 5, we use it to detect sinks and sources in
graphs via a conditional entropy oracle. First, we introduce a lemma:

Lemma 1 Let v ∈ Vc and S ⊆ Vc −{v} s.t. Des(v,Gc)∩ S = ∅. Then Nv ⊢GN
c
S, and therefore

Nv ⊥⊥ S.

Proof Consider any path of undirected edges Nv = u0 − u1 − u2 − · · ·uk = s between Nv and
a node s ∈ S. The adjacent edge to Nv must necessarily be the edge Nv → v, since this is the
only edge adjacent to Nv in the graph; in particular, u1 = v. Since s is not a descendant of v, the
remainder of the path u1 = v− · · · − s = uk must contain at least one edge of the form ui ← ui+1;
choose i to be the minimum value so that ui ← ui+1 exists in the path. Since we have established
i ≥ 1, then the previous edge ui−1 − ui exists and must be oriented as ui−1 → ui; therefore, ui

71182

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

is a collider in the path, and since we are not conditioning on anything, neither ui nor any of its
descendants are conditioned on. Therefore, we have shown that Nv ⊢GN

c
S, and therefore Nv ⊥⊥ S

(by Theorem 1).

We can now state and prove Theorem 2.

Theorem 2 (entropy bounds) Let v ∈ Vc and let S ⊆ V − {v}. Then:

2.1 Assume Par(v) ⊆ S. Then H (v|S) ≤ H (Nv). (Conditioning on a node’s parents yields a
weakly lower entropy than the noise’s.)2

2.2 Assume Par(v) ⊆ S and Des(v) ∩ S = ∅. Then H (v|S) = H (Nv). (Conditioning on a
node’s parents but no descendants yields exactly the same entropy as the noise’s.)

2.3 Assume Assumption 2.2. Assume Par(v) ⊆ S and Des(v) ∩ S ̸= ∅. Then H (v|S) <
H (Nv). (Conditioning on a node’s parents and some descendants yields a strictly lower
entropy than the noise’s.)

2.4 Assume Assumption 2.1. Assume that there exists v′ ∈ Par(v) − S s.t. Des(v′) ∩ (S ∪
Par(v)) = ∅ . Then H (v|S) > H (Nv). (Failing to condition on at least one unmedi-
ated parent of a node and that parent’s descendants yields a strictly higher entropy than the
noise’s.)

Proof

2.1 Compute:

H (v|S)
= H (fv(Par(v) ∪ {Nv})|S)
≤H (Par(v) ∪ {Nv}|S)
= H (Par(v)|S) + H (Nv|S ∪ Par(v)) chain rule

= 0 + H (Nv|S) Par(v) ⊆ S

= H (Nv|S)
≤H (Nv).

2.2 Compute:

H (v|S)
= H (fv(Par(v) ∪ {Nv})|S)
= H (Par(v) ∪ {Nv}|S) Par(v) ⊆ S and Assumption 1.2

= . . . = H (Nv|S) as in the proof of Theorem 2.1

= H (Nv). Nv ⊥⊥ S by Lemma 1

2. Theorem 2.1 does not actually require Assumption 1.2, but we will only be using this part of the theorem in conjunc-
tion with Theorem 2.2 which does require that assumption, so there is no need to separate the cases further.

81183

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

2.3 Compute: Assumption 2.2 implies that Nv is dependent on S (since S contains at least one
element from Des(v)), and therefore H (Nv|S) < H (Nv). So now we have:

H (v|S) ≤H (Nv|S) < H (Nv),

where the first inequality is by the proof of Theorem 2.1.

2.4 We make two initial observations:

(1) Nv ⊥⊥ S ∪ Par(v). This is because Des(v′) ∩ S = ∅ and Des(v) ⊂ Des(v′), so
Des(v) ∩ S = ∅ and trivially Des(v) ∩ Par(v) = ∅. Thus Lemma 1 implies Nv ⊥⊥
S ∪ Par(v).

(2) Nv′ ⊥⊥ S ∪ (Par(v) − {v′}) ∪ Par(v′). This is because Des(v′) ∩ (S ∪ (Par(v) −
{v′})) = ∅ by assumption, and trivially Des(v′) ∩ Par(v′) = ∅, so Lemma 1 implies
Nv′ ⊥⊥ S ∪ (Par(v)− {v′}) ∪ Par(v′).

Compute:

H (v|S)
= H (fv(Par(v) ∪ {Nv})|S)
= H (fv((Par(v)− {v′}) ∪ {Nv, v

′})|S)
≥H (fv((Par(v)− {v′}) ∪ {Nv, v

′})|S ∪ (Par(v)− {v′}))
= H (Nv, v

′|S ∪ (Par(v)− {v′})) Assumption 2.1

= H (Nv|S ∪ Par(v)) + H (v′|S ∪ (Par(v)− {v′})) chain rule

= H (Nv) + H (v′|S ∪ (Par(v)− {v′})) Observation (1)

To complete our proof, it is sufficient to show that H (v′|S ∪ (Par(v)− {v′})) > 0:

H (v′|S ∪ (Par(v)− {v′}))
= H (fv′(Par(v′) ∪ {Nv′})|S ∪ (Par(v)− {v′}))
≥H (fv′(Par(v′) ∪ {Nv′})|S ∪ (Par(v)− {v′}) ∪ Par(v′))

= H (Nv′ |S ∪ (Par(v)− {v′}) ∪ Par(v′)) Assumption 1.2

= H (Nv′) Observation (2)

> 0 Assumption 1.3

5. Causal Layering Algorithms

In this section, we use Theorem 2 to implement SOUR and SIR when we can only access the graph
via a conditional entropy oracle. Looking at the psuedocode of SOUR in Algorithm 1 (resp. SIR in

91184

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

Algorithm 2), we see that information about edges is only used in line 4, to identify a non-empty
subset of sources (resp. sinks). With certain assumptions and conditioning, sources’ (resp. sinks’)
conditional entropy is equal to their noise entropy, while the conditional entropy of non-sources
(resp. non-sinks) is larger (resp. smaller) than their noise entropy. We can use this separation
to implement line 4 without knowledge of the underlying graph, but with a conditional entropy
oracle. SOUR can be implemented subject to Assumptions 2.1 and either 3.1 or 3.2. SIR can be
implemented subject to Assumptions 2.2 and either 3.1 or 3.2. SIR can also be implemented subject
just to Assumption 3.3.

Algorithm 3 SOUR (Causal Discovery)

Assumptions: 2.1 & (3.1 or 3.2)
Input: Variables Vc, entropy oracle H
Output: A Layering L of Gc

1: Vcur←Vc

2: L←empty sequence
3: while Vcur ̸=∅ do
4: if As. 2.1 & 3.1 hold then
5: SR← non-∅ subset of

{v∈Vcur :H (v|Vc − Vcur)=H (Nv)}
6: else if As. 2.1 & 3.2 hold then
7: SR← non-∅ subset of

argminv∈Vcur
H (v|Vc − Vcur)

8: end if
9: L.append(SR)

10: Vcur←Vcur − SR
11: end while
12: return L

Algorithm 4 SIR (Causal Discovery)

Assumptions: 2.2 & (3.1 or 3.2), or 3.3
Input: Variables Vc, entropy oracle H
Output: A Layering L of Gc

1: Vcur←Vc

2: L←empty sequence
3: while Vcur ̸=∅ do
4: if As. 2.2 & 3.1 hold then
5: SN← non-∅ subset of

{v∈Vcur :H (v|Vcur − {v})=H (Nv)}
6: else if As. 2.2 & 3.2 or As. 3.3 hold then
7: SN← non-∅ subset of

argmaxv∈Vcur
H (v|Vcur − {v})

8: end if
9: L.prepend(SN)

10: Vcur←Vcur − SN
11: end while
12: return L

Algorithms 3 and 4 present the causal discovery implementations of SOUR and SIR respectively. By
argmin/argmax we mean the set of all minimizing/maximizing arguments and not just an arbitrary
one (in case the minimizing/maximizing argument is unique, then argmin/argmax is a singleton
set). Lines 4-8 in Algorithms 3 and 4 replace line 4 in Algorithms 1 and 2. Therefore, to guarantee
the correctness of the causal discovery implementations, we must show that the replacement lines
accomplish the same function as the original line 4. Specifically, we need to show that the replace-
ment lines produce a non-empty subset of SRC(GVcur

c) for SOUR and SNK(GVcur
c) for SIR. This

is where Theorem 2 comes in handy. Theorem 3 proves that Algorithms 3 and 4 implement SOUR
and SIR (Algorithms 1 and 2 respectively), thus—by Theorem 5 in the appendix—Algorithms 3
and 4 produce a layering of Gc:

Theorem 3 (correctness of Algorithms 3 and 4) The following statements hold whenever the rel-
evant algorithm reaches line 4. By SOUR we refer to Algorithm 3 and by SIR we refer to Algorithm
4.

3.1 Assume As. 2.1. In SOUR, SRC(GVcur
c) = {v ∈ Vcur : H (v|Vc − Vcur) = H (Nv)}.

3.2 Assume As. 2.1 & 3.2. In SOUR, argminv∈Vcur
H (v|Vc − Vcur) ⊆ SRC(GVcur

c).

101185

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

3.3 Assume As. 2.2. In SIR, SNK(GVcur
c) = {v ∈ Vcur : H (v|Vcur − {v}) = H (Nv)}.

3.4 Assume As. 2.2 & 3.2, or 3.3. In SIR, argmaxv∈Vcur
H (v|Vcur − {v}) ⊆ SNK(GVcur

c).

Proof Note that Vcur is monotonically shrinking throughout iterations in both SOUR and SIR. For
each proof, we assume the algorithm worked correctly up until the current iteration: that is, in all
previous iterations, SR ⊆ SRC(GVcur

c) for SOUR and SN ⊆ SNK(GVcur
c) for SIR (where Vcur

is the value of Vcur at that iteration). That is, SOUR only removed sources and SIR only removed
sinks from the induced subgraph of each previous iteration.

3.1 Let v ∈ Vcur. Consider v ∈ SRC(GVcur
c). Since v is a source, all nodes in Par(v,Gc) are no

longer in Vcur, and thus Par(v,Gc) ⊆ Vc − Vcur. On the other hand, since v ∈ Vcur, v has
never been removed and so the nodes in Des(v,Gc) were never sources in previous iterations,
and therefore Des(v,Gc) ⊆ Vcur, thus Des(v,Gc)∩(Vc−Vcur) = ∅. Theorem 2.2 therefore
implies that H (v|Vc − Vcur) = H (Nv).

Consider instead v /∈ SRC(GVcur
c). Since v /∈ SRC(GVcur

c), then Par(v,Gc)∩Vcur ̸= ∅, so
there exists some v∗ ∈ Par(v,Gc) ∩ Vcur. We claim that there exists an unmediated parent
v′ ∈ Par(v,Gc)∩Vcur of v, meaning that Des(v′, Gc)∩Par(v,Gc) = ∅. We will construct
a finite sequence u0, u1, u2, . . . , uk which satisfies the following properties:

• u0 = v∗

• ui+1 ∈ Des(ui, Gc) for all i

• ui ∈ Par(v,Gc) ∩ Vcur for all i

• Des(uk, Gc) ∩ Par(v,Gc) = ∅

Once we construct this sequence, we can set v′ = uk and our claim is proven. As v′ is an
ancestor of all nodes in Des(v′, Gc) and v′ ∈ Vcur, then none of the nodes in Des(v′, Gc)
have been removed either (they were never sources since they have an unremoved ancestor),
meaning Des(v′, Gc) ⊆ Vcur so Des(v′, Gc)∩(Vc−Vcur) = ∅. Since also v′ ∈ Par(v,Gc)∩
Vcur and Des(v′, Gc) ∩ Par(v,Gc) = ∅, we can apply Theorem 2.4 to establish H (v|Vc −
Vcur) > H (Nv).

All that is left is to construct the sequence. For every i, if Des(ui, Gc) ∩ Par(v,Gc) = ∅,
we can simply set k = i and end the sequence. If Des(ui, Gc) ∩ Par(v,Gc) ̸= ∅, then there
exists some ui+1 ∈ Des(ui, Gc) ∩ Par(v,Gc); furthermore, since ui ∈ Vcur and ui is an
ancestor of ui+1, it follows that ui+1 was never removed from Vcur either, and therefore
ui+1 ∈ Par(v,Gc)∩Vcur. Since each element of the sequence is a descendant of the previous
one, the sequence is moving down a directed path (potentially skipping some nodes along the
path), and since Gc is acyclic, this means that the sequence contains no repetitions. As the
Vc is finite, the sequence must be finite, and therefore it must end with some ui satisfying
Des(ui, Gc) ∩ Par(v,Gc) = ∅, so k must be finite.

3.2 Let u ∈ Vcur. Our proof of Theorem 3.1 established that if q ∈ SRC(GVcur
c), then H (q|Vc−

Vcur) = H (Nq), and if q /∈ SRC(GVcur
c), then H (q|Vc − Vcur) > H (Nq). Assume u /∈

SRC(GVcur
c). In that case, H (u|Vc−Vcur) > H (Nu); also, u has at least one ancestor u′ ∈

111186

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

SRC(GVcur
c), and for that ancestor H (u′|Vc − Vcur) = H (Nu′). Assumption 3.2 implies

H (Nu′) ≤H (Nu), and therefore we have

H (u′|Vc − Vcur) = H (Nu′) ≤H (Nu) < H (u|Vc − Vcur).

Thus, u /∈ argminv∈Vcur
H (v|Vc − Vcur).

3.3 Let v ∈ Vcur. Since v ∈ Vcur, and v is a child of all nodes in Par(v,Gc), then no node in
Par(v,Gc) has been a sink in any previous iteration, and therefore Par(v,Gc) ⊆ Vcur, so
Par(v,Gc) ⊆ Vcur−{v}. If v ∈ SNK(GVcur

c), then Des(v,Gc)∩Vcur = ∅, and since also
Par(v,Gc) ⊆ Vcur−{v}, Theorem 2.2 implies that H (v|Vcur−{v}) = H (Nv). If instead
v /∈ SNK(GVcur

c), then Des(v,Gc) ∩ Vcur ̸= ∅, so by Theorem 2.3 H (v|Vcur − {v}) <
H (Nv).

3.4 Let u ∈ Vcur. First, consider the case where Assumptions 2.2 & 3.2 hold. Because As-
sumption 2.2 holds, our proof of Theorem 3.3 established that if q ∈ SNK(GVcur

c), then
H (q|Vcur − {q}) = H (Nq), and if q /∈ SNK(GVcur

c), then H (q|Vcur − {q}) < H (Nq).
Assume u /∈ SNK(GVcur

c). In that case, H (u|Vcur − {u}) < H (Nu); also, u has at least
one descendant u′ ∈ SNK(GVcur

c), and for that descendant H (u′|Vcur −{u′}) = H (Nu′).
Assumption 3.2 implies H (Nu′) ≥H (Nu), and therefore we have

H (u′|Vcur − {u′}) = H (Nu′) ≥H (Nu) > H (u|Vcur − {u}).

Thus, u /∈ argmaxv∈Vcur
H (v|Vcur − {v}).

Alternatively, assume Assumption 3.3. In the proof of Theorem 3.3, we have shown that if
q ∈ SNK(GVcur

c) then H (q|Vcur − {q}) = H (Nq). That claim did not rely on Assump-
tion 2.2 and therefore still holds. On the other hand, since we only ever remove sinks, all
the parents of nodes in Vcur are also still in Vcur, and therefore Theorem 2.1 implies that
H (q|Vcur−{q}) ≤H (Nq) for all q ∈ Vcur. Assume u /∈ SNK(GVcur

c). As we have estab-
lished, H (u|Vcur−{u}) ≤H (Nu); also, u has at least one descendant u′ ∈ SNK(GVcur

c),
and for that descendant H (u′|Vcur−{u′}) = H (Nu′). Assumption 3.3 implies H (Nu′) >
H (Nu), and therefore we have

H (u′|Vcur − {u′}) = H (Nu′) > H (Nu) ≥H (u|Vcur − {u}).

Thus, u /∈ argmaxv∈Vcur
H (v|Vcur − {v}).

Finally, we present a straightforward observation regarding the running time of our algorithms. Note
that the bound given is worst-case.

Theorem 4 (running time of Algorithms 3 and 4) Algorithms 3 and 4 make O(|Vc|2) oracle calls.

Proof In every iteration, the algorithms perform one oracle call for each element in Vcur. Further-
more, in the beginning Vcur = Vc, and in every iteration at least one element is removed from Vcur.
Thus the number of oracle calls is bounded from above by

∑|Vc|
i=1 i = O(|Vc|2).

121187

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

6. Conclusion

In this paper, we introduced a new method of causal discovery algorithms for discrete data. Our
algorithms recover a layering of the causal graph, which they can only access via a conditional
entropy oracle. In fact, our algorithms implement the SOUR and SIR algorithms from graph theory,
but without direct access to the graph. The key idea behind our algorithms is that, with appropriate
assumptions and conditioning, sources and sinks can be separated from the other nodes in the graph
based on comparison between their conditional entropy and the unconditional entropy of their noise.
The sources in SOUR and sinks in SIR have conditional entropy equal to the unconditional entropy
of their noise. On the other hand, the non-sources in SOUR have conditional entropy larger than the
unconditional entropy of their noise, while the non-sinks in SIR have conditional entropy smaller
than the unconditional entropy of their noise. Our implementations of SOUR and SIR are provably
correct and make O(|Vc|2) oracle calls in the worst-case. Our algorithms do not make many of the
assumptions that are commonly made in literature, but they do need to make an assumption on noise
entropies, namely that they are either known or monotonically increasing.

Acknowledgments

We thank Yu Bai for fruitful discussions.

References

Nicola Branchini, Virginia Aglietti, Neil Dhir, and Theodoros Damoulas. Causal entropy opti-
mization. In International Conference on Artificial Intelligence and Statistics, pages 8586–8605.
PMLR, 2023.

Vincent Cabeli, Honghao Li, Marcel da Câmara Ribeiro-Dantas, Franck Simon, and Hervé Isam-
bert. Reliable causal discovery based on mutual information supremum principle for finite
datasets. In WHY21 workshop, 35rd Conference on Neural Information Processing Systems.

Spencer Compton, Kristjan Greenewald, Dmitriy A Katz, and Murat Kocaoglu. Entropic causal
inference: Graph identifiability. In International Conference on Machine Learning, pages 4311–
4343. PMLR, 2022.

Ming Gao and Bryon Aragam. Efficient bayesian network structure learning via local markov
boundary search. Advances in Neural Information Processing Systems, 34:4301–4313, 2021.

Dan Geiger, Thomas Verma, and Judea Pearl. d-separation: From theorems to algorithms. In
Machine Intelligence and Pattern Recognition, volume 10, pages 139–148. Elsevier, 1990.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. Advances in neural information processing systems,
21, 2008.

Arthur B Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–
562, 1962.

131188

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

Murat Kocaoglu, Sanjay Shakkottai, Alexandros G Dimakis, Constantine Caramanis, and Sriram
Vishwanath. Applications of common entropy for causal inference. Advances in neural informa-
tion processing systems, 33:17514–17525, 2020.

Alexander Marx. Information-theoretic causal discovery. 2021.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Causal discovery with score matching on additive models with arbitrary noise. arXiv preprint
arXiv:2304.03265, 2023.

Ana Rita Nogueira, Andrea Pugnana, Salvatore Ruggieri, Dino Pedreschi, and João Gama. Methods
and tools for causal discovery and causal inference. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 12(2):e1449, 2022.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,
2000.

Jonas Peters and Peter Bühlmann. Identifiability of gaussian structural equation models with equal
error variances. Biometrika, 101(1):219–228, 2014.

Jonas Peters, Dominik Janzing, Arthur Gretton, and Bernhard Schölkopf. Detecting the direction
of causal time series. In Proceedings of the 26th annual international conference on machine
learning, pages 801–808, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! causal
discovery benchmarks may be easy to game. Advances in Neural Information Processing Sys-
tems, 34:27772–27784, 2021.

Gabriel Ruiz, Oscar Hernan Madrid Padilla, and Qing Zhou. Sequentially learning the topo-
logical ordering of causal directed acyclic graphs with likelihood ratio scores. arXiv preprint
arXiv:2202.01748, 2022.

Jakob Runge. Conditional independence testing based on a nearest-neighbor estimator of condi-
tional mutual information. In International Conference on Artificial Intelligence and Statistics,
pages 938–947. PMLR, 2018.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal
discovery via topological ordering. arXiv preprint arXiv:2210.06201, 2022.

Peter Spirtes and Kun Zhang. Causal discovery and inference: concepts and recent methodological
advances. In Applied informatics, volume 3, pages 1–28. SpringerOpen, 2016.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

Roberto Tamassia. Handbook of graph drawing and visualization. CRC press, 2013.

141189

CAUSAL LAYERING VIA CONDITIONAL ENTROPY

Marc Teyssier and Daphne Koller. Ordering-based search: a simple and effective algorithm for
learning bayesian networks. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, pages 584–590, 2005.

Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. D’ya like dags? a survey on
structure learning and causal discovery. ACM Computing Surveys, 55(4):1–36, 2022.

Feng Xie, Ruichu Cai, Yan Zeng, Jiantao Gao, and Zhifeng Hao. An efficient entropy-based causal
discovery method for linear structural equation models with iid noise variables. IEEE transac-
tions on neural networks and learning systems, 31(5):1667–1680, 2019.

Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal discovery: theory and practice.
International Journal of Approximate Reasoning, 151:101–129, 2022.

Appendix A. Repeated Removal of Sources/Sinks

Repeated removal of sources/sinks in a DAG yields a layering; we precisely define this process in
Algorithm 5, which we call the Repeated Removal (RR) Algorithm. This is a simple generalized
variant of the well-known Kahn’s Algorithm (Kahn, 1962), but we include a correctness proof here
for completeness.

Algorithm 5 RepeatedRemoval (RR)

Input: DAG G = (V,E)
Output: Layering L of G

1: Vcur ← V
2: Lstart ← empty sequence
3: Lend ← empty sequence
4: while Vcur ̸= ∅ do
5: SR, SN ← subsets of SRC(GVcur), SNK(GVcur) s.t. SR ∪ SN ̸= ∅
6: Lstart.append(SR)
7: Lend.prepend(SN)
8: Vcur ← Vcur − (SR ∪ SN)
9: end while

10: L← concatenate(Lstart, Lend)
11: return L

Theorem 5 (correctness of RR) RR outputs a layering of its input (regardless of the specific
choices made for SR and SN in each iteration).

Proof Suppose v → v′ ∈ E. We need to show that L(v) < L(v′). We make the following useful
observation: as long as v, v′ ∈ Vcur, v /∈ SN and v′ /∈ SR. We break into cases:

1. Assume v ∈ Lstart. If v′ ∈ Lend, the result is trivial. If v′ ∈ Lstart, then our observation im-
plies that v′ must have been appended to Lstart at a strictly later iteration than v. Therefore,
v′ is appended to Lstart when v is already in Lstart, implying Lstart(v) < Lstart(v

′).

151190

FEIGENBAUM ARPIT HEINECKE NIEBLES YAO WANG XIONG SAVARESE

2. Assume v ∈ Lend. Then our observation implies that v′ ∈ Lend, and furthermore that v must
be added to Lend at a strictly later iteration than v′. Therefore, v is prepended to Lend when
v′ is already in Lend, implying Lend(v) < Lend(v

′).

161191

