The passage of leukocytes through basement membranes involves proteolytic degradation of extracellular matrix (ECM) components executed by focalized proteolysis. We have investigated whether the migration of leukocytes through 3-dimensional collagenous tissue scaffolds requires similar ECM breakdown. Human T blasts and SupT1 lymphoma cells expressed mRNA of MMP-9, MT1-MMP, MT4-MMP, cathepsin L, uPA, and uPAR as well as ADAM-9, -10, -11, -15, and -17. Upon long-term migration within 3-dimensional collagen matrices, however, no in situ collagenolysis was obtained by sensitive fluorescein isothiocyanate-collagen fragmentation analysis and confocal fluorescence/backscatter microscopy. Consistent with nonproteolytic migration, T-cell crawling and path generation were not impaired by protease inhibitor cocktail targeting MMPs, serine proteases, cysteine proteases, and cathepsins. Dynamic imaging of cell-ECM interactions showed T-cell migration as an amoeba-like process driven by adaptive morphology, crawling along collagen fibrils (contact guidance) and squeezing through pre-existing matrix gaps by vigorous shape change. The concept of nonproteolytic amoeboid migration was confirmed for multicomponent collagen lattices containing hyaluronan and chondroitin sulfate and for other migrating leukocytes including CD8+ T blasts, monocyte-derived dendritic cells, and U937 monocytic cells. Together, amoeboid shape change and contact guidance provide constitutive protease-independent mechanisms for leukocyte trafficking through interstitial tissues that are insensitive toward pharmacologic protease inhibitors.