Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization

J Biol Chem. 2003 Dec 19;278(51):51606-12. doi: 10.1074/jbc.M310722200. Epub 2003 Oct 16.

Abstract

The c-Myc protein is a transcription factor that is a central regulator of cell growth and proliferation. Thr-58 is a major phosphorylation site in c-Myc and is a mutational hotspot in Burkitt's and other aggressive human lymphomas, indicating that Thr-58 phosphorylation restricts the oncogenic potential of c-Myc. Mutation of Thr-58 is also associated with increased c-Myc protein stability. Here we show that inhibition of glycogen synthase kinase-3 (GSK-3) activity with lithium increases c-Myc stability and inhibits phosphorylation of c-Myc specifically at Thr-58 in vivo. Conversely, overexpression of GSK-3 alpha or GSK-3 beta enhances Thr-58 phosphorylation and ubiquitination of c-Myc. Together, these observations suggest that phosphorylation of Thr-58 mediated by GSK-3 facilitates c-Myc rapid proteolysis by the ubiquitin pathway. Furthermore, we demonstrate that GSK-3 binds c-Myc in vivo and in vitro and that GSK-3 colocalizes with c-Myc in the nucleus, strongly arguing that GSK-3 is the c-Myc Thr-58 kinase. We found that c-MycS, which lacks the N-terminal 100 amino acids of c-Myc, is unable to bind GSK-3; however, mutation of Ser-62, the priming phosphorylation site necessary for Thr-58 phosphorylation, does not disrupt GSK-3 binding. Finally, we show that Thr-58 phosphorylation alters the subnuclear localization of c-Myc, enhancing its localization to discrete nuclear bodies together with GSK-3.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Binding Sites
  • Cell Line
  • Cell Nucleus / chemistry
  • Cell Nucleus / metabolism*
  • Glycogen Synthase Kinase 3 / metabolism*
  • Glycogen Synthase Kinase 3 / physiology
  • Mice
  • Peptide Hydrolases / metabolism*
  • Phosphorylation
  • Protein Binding
  • Proto-Oncogene Proteins c-myc / metabolism*
  • Transfection
  • Ubiquitin / metabolism

Substances

  • Proto-Oncogene Proteins c-myc
  • Ubiquitin
  • Glycogen Synthase Kinase 3
  • Peptide Hydrolases