When two microemulsions are put in contact in the gravity field along a horizontal contact line, cross-diffusion can trigger the transport of one species in the presence of a gradient in concentration of another species. We show here theoretically that such cross-diffusion effects can induce buoyancy-driven convective instabilities at the interface between two solutions of different compositions even when initially the less dense solution lies on top of the denser one. Two different sources of convective modes are identified depending whether positive or negative cross-diffusion is involved. We evidence the two predicted cross-diffusion driven instabilities experimentally using a two-layer stratification of Aerosol-OT (AOT) water-in-oil microemulsions solutions with different water or AOT composition.