We report cellphone-based detection of dopamine with attomolar sensitivity in clinical samples with the use of a surface plasmon-coupled emission (SPCE) platform. To this end, silver-coated carbon nanotubes were used as spacer and cavity materials on SPCE substrates to obtain up to 100-fold fluorescence enhancements. The presence of silver on the carbon nanotubes helped to overcome fluorescence quenching arising due to π-π interactions between the carbon nanotube and rhodamine 6G. The competing adsorption of dopamine versus rhodamine 6G on graphene oxide was utilized to develop this sensing platform.
Keywords: biosensors; carbon; dopamine; graphene; nanotubes.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.