Previous studies have shown that in several angiosperms and the liverwort Marchantia the chloroplast gene rpl2, encoding ribosomal protein L2, is interrupted by an intron, but that in spinach (Spinacia oleracea, Caryophyllales) this intron has been lost. We have determined the distribution of the rpl2 intron for 390 species representing 116 angiosperm families. Filter hybridizations reveal that the intron is absent from the chloroplast genomes of all examined families of the Caryophyllales, suggesting that the intron was lost in the common ancestor of the order. Sequencing of the rpl2 gene in five genera of the Caryophyllales and in Rumex (Polygonales) not only confirms the filter hybridization results, but also shows that for all taxa lacking the intron, the rpl2 gene has undergone a precise deletion of the intron. In all cases, it is the original rpl2 gene that has sustained loss of its intron. This implies that in chloroplast DNA, integration of exogenous genes (e.g., a reverse transcript of a spliced mRNA) occurs mainly by homologous, replacement recombination, rather than by illegitimate recombination elsewhere in the genome. Filter hybridizations also reveal that the rpl2 intron was lost independently in the common ancestors of at least five other lineages of dicotyledons: Saxifragaceae (s.s.), Convolvulaceae (including Cuscuta), Menyanthaceae, two genera of Geraniaceae, and one genus of Droseraceae. The molecular and phylogenetic implications of these independent intron losses are discussed.
Keywords: Chloroplast DNA; dicotyledons; molecular systematics; phylogeny; rpl2 intron; structural rearrangement.
© 1991 The Society for the Study of Evolution.