The alternate expression of flagellin genes in Salmonella is the result of an inversion of a 996 bp segment of chromosomal DNA. We have analyzed the components of this site-specific recombination reaction in an in vitro system derived from E. coli. Efficient Hin-mediated inversion requires the 20,000 MW Hin protein and a proteinase K-sensitive host component. The supercoiled DNA substrate must contain two 26 bp recombination sites in inverted configuration and a 60 bp sequence that increases the rate of recombination over 20-fold. This recombinational enhancer can function at many different locations and consists of at least two noncontiguous sequence domains whose relative orientation, but not precise spacing, with respect to each other is important. Synthetically derived wild-type and mutant recombination sites were constructed to analyze the sequence and structural features that are important within the recombination site.