The soluble form of the migration inhibitory factor receptor cluster of differentiation 74 (sCD74) has previously been shown to be elevated during the development of acute lung injury (ALI) in mice. However, the biological role of increased sCD74 in ALI remans poorly understood. Synthesized recombinant sCD74 protein was administered to mice intratracheally. Pro-inflammatory genes in lung tissue and the inflammatory factors in bronchoalveolar lavage fluid (BALF) were analyzed using RT-PCR and ELISA, respectively. Additionally, RAW264.7, A549, and human umbilical vein endothelial cells (HUVEC) were treated with sCD74, and the resulting pro-inflammatory factor protein and gene expression levels were analyzed in the supernatants and cell lysates. Meanwhile, the level of nuclear factor (NF)-κB components in cell lysates after stimulating macrophages with sCD74 was also assessed. After administration of 0.5 mg/kg body weight sCD74 to mice, the expression of Tnfa, Mip2, and Il6 increased in lung tissues after 2 h by 2.1-, 3.4-, and 2.8-fold, respectively. Moreover, the BALF concentrations of TNF-α and MIP-2 reached maximal levels of 560 and 107 pg/mL at 8 h compared to those in the saline group, respectively. Similarly, TNFA, MIP2, and IL6 expression increased by 4.0-, 11.8-, and 2.6-fold, respectively, 2 h after stimulating macrophages with 1000 ng/mL sCD74. The levels of phospho-IκB and phospho-p65 were also significantly increased in the cytoplasm and nucleus of macrophages following sCD74 stimulation. Taken together, these results suggest that sCD74 is a critical cellular factor involved in the lung acute inflammatory response through nuclear factor-κB signaling.
Keywords: Lung inflammation; Nuclear factor-κB; Soluble cluster of differentiation 74.
Copyright © 2020 Elsevier GmbH. All rights reserved.