Stem cells from human exfoliated deciduous teeth (SHED) uniquely exhibit high proliferative and neurogenic potential. Charged biomaterials have been demonstrated to promote neural differentiation of stem cells, but the dose-response effect of electrical stimuli from these materials on neural differentiation of SHED remains to be elucidated. Here, by utilizing different annealing temperatures prior to corona poling treatment, BaTiO3/P(VDF-TrFE) ferroelectric nanocomposite membranes with varying charge polarization intensity (d 33 ≈ 0, 4, 12 and 19 pC N-1) were fabricated. Enhanced expression of neural markers, increased cell elongation and more prominent neurite outgrowths were observed with increasing surface charge of the nanocomposite membrane indicating a dose-response effect of surface electrical charge on SHED neural differentiation. Further investigations of the underlying molecular mechanisms revealed that intracellular calcium influx, focal adhesion formation, FAK-ERK mechanosensing pathway and neurogenic-related ErbB signaling pathway were implicated in the enhancement of SHED neural differentiation by surface electrical charge. Hence, this study confirms the dose-response effect of biomaterial surface charge on SHED neural differentiation and provides preliminary insights into the molecular mechanisms and signaling pathways involved.
Keywords: Dose-response effect; Electric polarization; Electrical microenvironment; Neurogenesis; Surface charge.
© 2022 The Authors.