Skip to main content

Gene Set Enrichment Analysis in Python

Project description

GSEAPY: Gene Set Enrichment Analysis in Python.

https://badge.fury.io/py/gseapy.svg https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat-square https://travis-ci.org/zqfang/GSEApy.svg?branch=master Documentation Status https://img.shields.io/badge/license-MIT-blue.svg https://img.shields.io/badge/python-3.6-blue.svg https://img.shields.io/badge/python-2.7-blue.svg

The main documentation for GSEApy can be found at http://gseapy.rtfd.io/

For examples of using gseapy please click here: Example

Release notes : https://github.com/zqfang/gseapy/releases

GSEAPY is a python wrapper for GSEA and Enrichr.

GSEAPY can be used for RNA-seq, ChIP-seq, Microarry data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEAPY has five sub-commands available: gsea, prerank, ssgsea, replot enrichr.

gsea:

The gsea module produces GSEA results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.

prerank:

The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. prerank module is an API to GSEA pre-rank tools.

ssgsea:

The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009.

replot:

The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results.

enrichr:

The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.

Please use ‘gseapy COMMAND -h’ to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA documentation for more information. All files’ formats for GSEApy are identical to GSEA desktop version.

If you use gseapy in your research, you should cite the original ``GSEA`` and ``Enrichr`` paper.

Why GSEAPY

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

  • Ability to run inside python interactive console without having to switch to R!!!

  • User friendly for both wet and dry lab users.

  • Produce or reproduce publishable figures.

  • Perform batch jobs easy.

  • Easy to use in bash shell or your data analysis workflow, e.g. snakemake.

GSEA Java version output:

This is an example of GSEA desktop application output

docs/GSEA_OCT4_KD.png

GSEAPY Prerank module output

Using the same data from GSEA, GSEAPY reproduce the example above.

Using Prerank or replot module will reproduce the same figure for GSEA Java desktop outputs

docs/gseapy_OCT4_KD.png

Generated by GSEAPY

GSEAPY figures are supported by all matplotlib figure formats.

You can modify GSEA plots easily in .pdf files. Please Enjoy.

GSEAPY enrichr module

note: For now, enrichr module download enriched results only.

TODO: Save enriched table, grids, networks, bar graphs from website server using phantomJS and selenium.

A graphical introduction of Enrichr

docs/enrichr.PNG

Note: Enrichr uses a list of Entrez gene symbols as input. You should convert all gene names to uppercase.

Installation

Install gseapy package from bioconda or pypi.
# if you have conda
$ conda install -c bioconda gseapy

# for windows users
$ conda install -c bioninja gseapy

# or use pip to install the latest release
$ pip install gseapy
You may instead want to use the development version from Github, by running
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

  • Python 2.7 or 3.4+

Mandatory

  • Numpy >= 1.13.0

  • Pandas

  • Matplotlib

  • Beautifulsoup4

  • Requests(for enrichr API)

You may also need to install lxml, html5lib, if you could not parse xml files.

Run GSEAPY

Before you start:

Unless you know exactly how GSEA works, you should convert all gene symobl names to uppercase first.

For command line usage:

# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test


# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

# An example to use enrichr api
# see details of -g below, -d  is optional
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -d pathway_enrichment -o test

Run gseapy inside python console:

  1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

import gseapy

# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')


# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
  1. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: Example

# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()

sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

# using prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

# using ssGSEA
gseapy.ssgsea(data=ssGSEA_dataframe, gene_sets='KEGG_2016', outdir='test')
  1. For enrichr , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
     'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

gseapy.enrichr(gene_list=gl, description='pathway', gene_sets='KEGG_2016', outdir='test')

# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', description='pathway', gene_sets='KEGG_2016',
               outdir='test', cutoff=0.05, format='png' )

GSEAPY supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library

Or use get_library_name function inside python console.

 #see full list of latest enrichr library names, which will pass to -g parameter:
 names = gseapy.get_library_name()

 # show top 20 entries.
 print(names[:20])


['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]

Bug Report

If you would like to report any bugs when you running gseapy, don’t hesitate to create an issue on github here, or email me: fzq518@gmail.com

To get help of GSEAPY

Visit the document site at http://gseapy.rtfd.io/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gseapy-0.9.5.tar.gz (43.5 kB view details)

Uploaded Source

Built Distributions

gseapy-0.9.5-py3.6.egg (85.6 kB view details)

Uploaded Source

gseapy-0.9.5-py3-none-any.whl (46.3 kB view details)

Uploaded Python 3

File details

Details for the file gseapy-0.9.5.tar.gz.

File metadata

  • Download URL: gseapy-0.9.5.tar.gz
  • Upload date:
  • Size: 43.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.4

File hashes

Hashes for gseapy-0.9.5.tar.gz
Algorithm Hash digest
SHA256 1eb02f4056d089e26422105279546061629b8667307808297c3198d003b324b5
MD5 fd432e7b45ca5eac2704fd93cb413fcc
BLAKE2b-256 f10877fd8641e811f628cf9ba402c151b9242b52f2956543b9e7162e0f86da7e

See more details on using hashes here.

File details

Details for the file gseapy-0.9.5-py3.6.egg.

File metadata

  • Download URL: gseapy-0.9.5-py3.6.egg
  • Upload date:
  • Size: 85.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.4

File hashes

Hashes for gseapy-0.9.5-py3.6.egg
Algorithm Hash digest
SHA256 ffbe7fdf3064d53dddd3cc091f87773ea9b00bbc4367f25c60231dc03e111bf0
MD5 06e5e2b909581620a537af18a286d935
BLAKE2b-256 cbb41d7e7a12371b68775182f64802c688dae2d34ad0d2de1c37d229b157e708

See more details on using hashes here.

File details

Details for the file gseapy-0.9.5-py3-none-any.whl.

File metadata

  • Download URL: gseapy-0.9.5-py3-none-any.whl
  • Upload date:
  • Size: 46.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.4

File hashes

Hashes for gseapy-0.9.5-py3-none-any.whl
Algorithm Hash digest
SHA256 9b21cf831e456a57c1467cb1b0d2962cb107cb4389b21760e6c03b0f0583aaa5
MD5 00a0093c0d19c9763c58d9209b3e2d11
BLAKE2b-256 918c7b0f2130506ea4cadda185218f2d3ef5887c3f72a911e4b728df0a3b83d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page