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Multiview Deep Learning For Land-Use

Classification
F. P. S. Luus, B. P. Salmon, F. van den Bergh, and B. T. J. Maharaj

Abstract—A multiscale input strategy for multiview deep
learning is proposed for supervised multispectral land-use classifi-
cation and it is validated on a well-known dataset. The hypothesis
that simultaneous multiscale views can improve composition-
based inference of classes containing size-varying objects com-
pared to single-scale multiview is investigated. The end-to-end
learning system learns a hierarchical feature representation with
the aid of convolutional layers to shift the burden of feature
determination from hand-engineering to a deep convolutional
neural network. This allows the classifier to obtain problem-
specific features that are optimal for minimizing the multinomial
logistic regression objective, as opposed to user-defined features
which trades optimality for generality. A heuristic approach to
the optimization of the deep convolutional neural network hyper-
parameters is used, based on empirical performance evidence.
It is shown that a single deep convolutional neural network
can be trained simultaneously with multiscale views to improve
prediction accuracy over multiple single-scale views. Competitive
performance is achieved for the UC Merced dataset where
the 93.48% accuracy of multiview deep learning outperforms
the 85.37% accuracy of SIFT-based methods and the 90.26%
accuracy of unsupervised feature learning.

Index Terms—Neural network applications, neural network
architecture, feature extraction, urban areas, remote sensing.

I. INTRODUCTION

FEATURE design has been a mainstay in classifier ap-

plications and much effort has been invested in hand-

engineering specific features that are suitable only for se-

lect use-cases. The advent of GPU-accelerated computational

resources made feasible the implementation of multilayer

convolutional neural network (CNN) approaches for classifi-

cation. Deep learning discovers optimal features for the given

problem in order to minimize the log loss cost function during

classification. It is important to investigate the performance

benefits of using the optimal problem-specific features learned

by deep learning instead of using user-defined features that

trades problem-specific optimality for general applicability.

The features discovered by deep learning are optimal in the

sense that they minimize the multinomial logistic regression

objective, and improved accuracy is expected compared to the

use of more general user-defined features like SIFT and Gabor

features. The objective of this research was to design a deep

convolutional neural network (DCNN) for the UC Merced
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land-use dataset [1], a dataset compiled in 2010 and used

as a benchmark in several land-use classification studies [1]–

[7]. The challenge is to optimize classification accuracy by

finding a proper selection of DCNN hyper-parameters, which

are defined as the DCNN settings, such as the architecture

design, convolutional filter bank specifications, pooling layer

specifications, and learning rate and momentum values, ex-

cluding the learned neuron weights and biases.

While the hyper-parameter selection and the reduction of

overfitting through data augmentation do have a significant

impact on deep learning performance, an additional strategy

is needed to achieve competitive performance. This requires

moving beyond simple label-preserving transformations such

as mirroring and rotation to augment the input dataset, while

still adhering to the guiding principle of minimum intervention

so that the majority of the feature learning burden can be

delegated to the deep learning solution.

The approach contributed in this letter is a generalization

of the multiview strategy used by Krizhevsky et al. [8] to

admit multiple view scales used to extract partial input sample

patches. Classes with size-varying objects, such as storage

tanks, can then potentially be recognized more accurately if

consensus of multiscale views is used, a hypothesis tested in

this research.

Deep learning has been used previously in remote sensing

for hierarchically extracting deep features with deep belief

networks [9] or stacked auto-encoders in combination with

principal component analysis (PCA) and logistic regression

for hyperspectral data classification [10]. A hybrid DCNN was

presented by Chen et al. [11] for improved vehicle detection

in satellite images where variable-scale features are extracted

through the use of multiple blocks of variable receptive field

sizes or max-pool field sizes. Remote sensing image fusion

with deep neural networks (DNN) has been done by Huang

et al. [12] using stacked modified sparse denoising auto-

encoders for pretraining the hidden layers of the DNN to

avoid the “diffusion of gradients” caused by random neuron

initialization.

An overview of the UC Merced dataset is given in Section

II, and the methodology and design approach is discussed

in Section III. The benchmark setup and description of the

empirical investigation of different deep learning architectures

is then given in Section IV. The results are also presented in

Section IV where class confusion, convergence, visualization

of the inner workings of the network, and comparison to the

results of other published methods are addressed before a

conclusion is reached in Section V.
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II. DATASET

The UC Merced land-use dataset [1] is investigated, which

is a set of aerial ortho-imagery with a 0.3048 m pixel resolu-

tion extracted from United States Geological Survey (USGS)

national maps. The UC Merced dataset has been used as

a benchmark for land-use classifier evaluation in numerous

publications [1]–[7].

The dataset consists of 21 land-use classes containing a

variety of spatial patterns, some with texture and/or color

homogeneity and others with heterogeneous presentation. The

dataset was compiled from a manual selection of 100 images

per class, each RGB image being approximately 256×256

pixels. The 21 land-use types include agricultural, airplane,

baseball diamond, beach, buildings, chaparral, dense residen-

tial, forest, freeway, golf course, harbor, intersection, medium

density residential, mobile home park, overpass, parking lot,

river, runway, sparse residential, storage tanks, and tennis court

classes.

III. METHODOLOGY

In this section an overview of the training of a DCNN

is first given, followed by a description of the important

processing layers of a DCNN. The specific DCNN architecture

instantiation developed for the UC Merced dataset is then

defined and then methods of reducing training overfitting are

given. A multiscale multiview input strategy is then described

that utilizes the defined DCNN.

A. Deep Learning

Deep learning is characterized as an end-to-end learning

system typically consisting of more than 5 processing layers,

which is usually supervised and produces a discriminative

classification for a given input. The burden of feature de-

termination is shifted to a DCNN, which learns the optimal

features for the given problem in order to minimize a loss

cost function. The features are learned in a hierarchical manner

where higher-level features are learned in deeper convolutional

layers as combinations of lower-level features determined in

shallow layers.

An improved accuracy is expected by directly learning the

features that minimize the multiclass log loss cost function

L = − 1
N

∑N
i=1

∑K
j=1

yi,j log(pi,j) for a given dataset with

N samples, compared to using predetermined features. The

natural logarithm of the probability pi,j of sample i belonging

to class j is counted by setting yi,j = 1 only if i belongs to

class j. Stochastic gradient descent can be used since the loss

function is a sum of differentiable functions, and Nesterov’s

accelerated gradient in particular has been shown to be ef-

fective despite the use of noisy gradient estimates [13]. The

update increment vt+1 and the updated network parameters

wt+1 are calculated as follows, with momentum µ and learning

rate ǫ.

vt+1 = µ · vt − ǫ ·

〈

∂L

∂w

∣

∣

∣

∣

wi+µ·vt

〉

Bi

(1)

wi+1 = wi + vt+1 (2)

The loss gradient estimate ∂L
∂w

is determined for the average

loss over a smaller batch Bi of input samples for the DCNN

parameters equal to wi + µ · vt.

B. Architecture definitions

1) Convolutional layers: A CNN consists of convolutional

layers, each followed by optional sub-sampling and regulariza-

tion layers, and ending in fully-connected 1D hidden layers.

A convolutional layer receives a 3D input and creates a 3D

output that measures the filter responses at each input location,

calculated as the sum of the element-wise incidence product

between the filter and image window. This convolutional

response encodes the input in terms of learned templates to

systematically reduce input dimensionality as a part of feature

determination.

2) Activation functions: Each filter response becomes the

input to a nonlinear activation function, which should be non-

saturating in order to accelerate learning. Rectified linear units

(ReLU) (f(x) = max(0,x)) are used in lieu of saturating non-

linearities after every convolutional and fully-connected layer,

except for the final dense layer which uses softmax activation

(f(xj) = exj/
∑

k e
xk ) to maximize the multinomial logistic

regression objective. Network implementation is simplified

with the use of ReLU, as this activation function does not

require input normalization to avoid saturation, although local

normalization can promote improved generalization [8].

3) Sub-sampling layers: Sub-sampling layers normally pro-

ceed convolutional layers to further reduce feature dimension-

ality, but also to achieve translation invariance in the case

of max-pool sub-sampling layers [8]. E.g. a 2×2 max-pool

layer divides the convolutional layer output into a set of

non-overlapping 2× 2 cells and only records the maximum

activated filter response in each cell, thereby halving the

input dimensions and producing features that are increasingly

invariant to image object translations.

C. Architecture instantiation

The DCNN design given in this subsection was heuristically

selected based on experimental investigation that adhered to

the objective of layer dimension reduction, since it devel-

ops a strong hierarchical feature representation. The DCNN

designed for the UC Merced dataset accepts a 96× 96× 3
input, which can be converted from an RGB to HSV (Hue-

Saturation-Value) color model. The HSV color model can

more directly concentrate chromaticity to single filter layers,

which can potentially simplify features and allow for the

reduction of network complexity.

The input is converted to 45×45×64 neurons with the first

convolutional layer using 64 filters of 7×7×3 operating at a

stride of (2, 2), before being sub-sampled with a 2×2 max-

pool layer to obtain a 23×23×64 output with 10% dropout.

The second convolutional layer uses 192 filters of 3×3×64 to

produce a 21×21×192 output, which is sub-sampled with a

2×2 max-pool to give a 11×11×192 output with 20% dropout

as shown in Figure 1. A third convolutional layer with 192

filters of 3×3×192 produces a 9×9×192 output followed by

a 2×2 max-pool layer which outputs 5×5×192 neurons with
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Figure 1. CNN architecture with 4 convolutional layers accepting 96×96×3
inputs and resolving to a 21-class softmax output layer.

30% dropout. The final convolutional layer has 224 filters of

2×2×192 and gives a 4×4×224 output, which is max-pooled

with 2×2 cells to render a 2×2×224 output with 40% dropout.

A fully-connected dense layer with 256 hidden units are used

with ReLU activation and 50% dropout follows, after which

another dense layer with 256 hidden units are used before

resolving to 21 units in a softmax output layer.

All neuron biases are set to 0 and network weights are

initialized randomly according to normalized initialization

U

[

−
√

6√
nj+nj+1

,
√

6√
nj+nj+1

]

given by Glorot et al. [14],

where nj and nj+1 are the number of neurons in layers j and

j+1, respectively. The final DCNN weight and bias parameters

are based on the epoch registering the minimum value for the

log loss cost function on the training data.

D. Reducing overfitting

1) Dropout: Convolutional and fully-connected layers can

be interconnected so that hidden neuron outputs are deacti-

vated with probability p during training, with the remainder

of the outputs multiplied by 1
1−p

. This strategy reduces the

co-adaptation of neurons, since dropout forces neurons to

provide more useful and robust contributions in combination

with arbitrary active neuron combinations [8]. The set of

dropped neurons changes randomly at every epoch, which

changes the architecture and reduces overfitting at the cost

of approximately 1
1−p

times the convergence period compared

to training without dropout.

2) Data augmentation: The original input dataset can be

expanded with label-preserving transformations such as hori-

zontal and vertical flips and rotation. This presents the network

with an enlarged set of inputs which may contain examples

present in the test dataset but not in the original training

dataset, thus improving classification accuracy. During training

all views are flipped horizontally or vertically with probability

of 0.5, but for testing the model averaging only considers the

untransformed views. The classifier is trained with transformed

views so that any untransformed view can be recognized

during testing.

E. Multiview deep learning

Another form of data augmentation involves the use of

multiple partial views of a given input sample to train with,
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Figure 2. Partial view selection specifications for composing a multiview
input dataset consisting of 10 × 96 × 96× 3 inputs per sample.

and classifying test samples with the mean softmax output

averaged over a predetermined set of classified patches or

views, i.e. model averaging [8]. Some classes are distinguished

by the presence of certain objects, such as airplanes and

storage tanks, which only occupy a portion of a given sample.

If these objects vary in size across different samples then

multiscale views can potentially produce stronger activations

with higher probability than single-scale views.

The main contribution proposed is that a single DCNN

can be trained with multiscale views to obtain improved

classification accuracy compared to using multiple views at

one particular scale only. The UC Merced dataset samples are

downsampled from 256×256 to 96×96 based on empirical

evaluation of the optimal input size, and 10 multiscale views

are extracted as follows. The first 4 augmenting views are

acquired at the image corners at 75% input coverage, while

the fifth view has 100% coverage. Views 6 to 10 are obtained at

the corners and center at 50% input coverage, and all extracted

views are scaled to the input size of 96× 96 as shown in

Figure 2.

IV. RESULTS AND DISCUSSION

A. Experimental setup

The standard benchmark conditions for the UC Merced

dataset first stipulated in [1] is followed to measure classi-

fication accuracy. Five-fold stratified cross-validation is used

for all experiments, where four folds are used for training and

model selection, and the remaining unseen fold is classified

to measure accuracy. Initial empirical evaluation indicated that

the hyper-parameters that most influence accuracy include the

input size, first convolutional filter size and filter amount, and

the network learning rate. Hyper-parameter range selections

are based around values that resulted in high classification

accuracy during an initial evaluation. Various architecture

instantiations are evaluated empirically to optimizing the

aforementioned hyper-parameters.
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Table I
FIVE-FOLD CROSS-VALIDATION ACCURACY FOR VARIOUS DCNN

ARCHITECTURES. ALL INSTANTIATIONS USE NESTEROV’S ACCELERATED

GRADIENT (LINEAR MOMENTUM µ = 0.9 → 0.999, LINEAR LEARNING

RATE DECREASE TO 0.0001, BATCH SIZES |Bi| = 128)

Parameter Architecture

#1 #2 #3 #4 #5 #6 #7

Input size 80×80 96×96 128×128
Filter 1 size 7× 7 7× 7 7× 7 7× 7 7× 7 9× 9 9× 9

Learning rate 0.005 0.005 0.005 0.005 0.005 0.005 0.01
Max epochs 1000 1000 300 300 300 1000 1000

Multiview 1 1 5 5 10 1 1

Multiscale × × × × ×

HSV: Acc. (µ 86.76 88.00 90.53 91.18 92.34 87.10 83.29
±σ) ±1.74 ±2.88 ±1.87 ±1.62 ±1.25 ±1.98 ±2.83

RGB: Acc. (µ 87.14 91.10 92.76 93.48

±σ) ±3.77 ±0.80 ±1.46 ±0.82
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Figure 3. Averaged five-fold cross-validation accuracy graphs for multiview
architecture #5 (see Table I).

B. Architecture selection

Several architectures have been evaluated to obtain the best

performing DCNN for the UC Merced dataset, and the results

are shown in Table I. The important design choices include

the reduction in learning rate, using model averaging with an

increasing number of multiple views, and finding the optimal

input size of 96×96.

The single-scale multiview input of Krizhevsky et al. [8]

has been implemented in arch. #3, but its 91.1% accuracy is

outperformed by the 92.75% of multiscale input (arch. #4).

Using the first five views (arch. #4 in Table I) specified in

Figure 2 improved test accuracy from 87.14% to 92.76%, but

using model averaging with all ten views (arch. #5 in Table I)

resulted in an accuracy of 93.48% for RGB inputs.

The DCNN training convergence rate is illustrated for archi-

tecture #5 (see Table I) in Figure 3, comparing the progression

of training and testing accuracies in terms of training epochs.

The single-view test accuracy is also shown, which performs

poorer than with multiview model averaging.

Figure 4 displays a visualization of the trained single-

view DCNN architecture #2 (see Table I), showing the first

convolutional filters and the convolutional responses for a

selection of UC Merced classes. The first max-pool and

dropout outputs are also shown to illustrate their functions

of sub-sampling and omission noise. The second, third, and

fourth convolutional filter banks are too large to display in the

letter and are not included. The convolutional filters are the

core features that are learnt by the DCNN and it is seen that

the network reduces convolutional response dimensions to a

final single-dimensional response appropriate for the use of

softmax activation.

Table II
UC MERCED ACCURACY COMPARISON.

Date Method Accuracy (%)

2010 SPM [1] 74.00

2010 SPCK++ [1] 76.05

2015 Saliency-UFL [2] 82.72±1.18

2014 Bag-of-SIFT [3] 85.37±1.56

Single-view deep learning 88.00±2.88

2014 SAL-LDA [5] 88.33

2015 Pyramid of spatial relatons [6] 89.1

2014 UFL [3] 90.26±1.51

Multiview deep learning 93.48±0.82

2014 VLAT [7] 94.3

C. Accuracy comparison

A five-fold stratified cross-validation comparison of all the

important methods employed in the literature for the UC

Merced dataset is shown in Table II. The highest accuracies for

the UC Merced dataset have been achieved with unsupervised

feature learning (UFL) [3] and the vector of locally aggregated

tensors (VLAT) method [7], which is an extension of visual

dictionary approaches like bag-of-words. Single-view DCNN

is outperformed by these methods, but the 90.26% accuracy

of UFL can be improved upon with a multiview DCNN which

achieves 93.48%.

A confusion analysis was also performed for DCNN archi-

tecture #2 (see Table I) and the most notable class confusion

was between medium density residential and dense residential,

as well as between buildings and storage tanks. The classes

with the least accurate predictions are storage tanks, buildings,

medium density residential, and tennis court classes.

The classes that benefited most from multiscaling the five-

view input were the sparse residential, runway, dense residen-

tial, storage tanks, freeway, river and overpass classes, while

the agricultural class performed the worst. This gives evidence

for the hypothesis that object-based classes can benefit from

multiscale views if the objects tend to vary in size, such as in

the storage tanks and sparse residential classes.

D. Implementation details

For the ten-view DCNN instantiation #5 (Table I) a running

time of 36.6 seconds per epoch was attained on an Amazon

Elastic Compute Cloud g2.2xlarge instance with a GRID K520

GPU possessing 1536 CUDA cores and 4 GB video memory

of which 1 GB was used. A Python implementation was

used based on Theano and Lasagne [15], which provides a

GPU-accelerated computational differentiation platform which

automatically computes gradients for complex systems.

V. CONCLUSION

An end-to-end learning system with hierarchical feature

representation was designed in this letter for complex land-

use classification of high-resolution multispectral aerial im-

agery. DCNN architectures were optimized in terms of cross-

validation accuracy on the UC Merced land-use dataset, and

it was shown that multiscale views can be used to train a

single network and increase classification accuracy compared
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(a) Filters - Convolution 1: Trained 7× 7× 3 convolutional filters (64 filters)

(b) Convolution 1: 45× 45× 64 output from 96× 96× 3 input convoluted with 7× 7× 3 filters and (2, 2) stride

Agricultural:

Airplane:

Buildings:

Dense
residential:

Medium
residential:

Storage tanks:

(c) Max-pool 1: 23× 23× 64 output from 45× 45× 64 input max-pooled with (2, 2). Outputs shown for dense residential and storage tanks.

(d) Dropout 1: 23× 23× 64 output from 45× 45× 64 max-pooled input with 10% dropout. Outputs shown for dense residential and storage tanks.

(e) Convolution 2: 21 × 21× 192 output from 23 × 23× 64 input convoluted with 3× 3× 64 filters. Outputs for dense residential and storage tanks.

(f) Convolution 3: 9× 9× 192 output from 11 × 11 × 192 input convoluted with 3× 3× 192 filters. Dense residential (above) and storage tanks (below).

(g) Convolution 4: 4× 4× 224 output from 5× 5× 192 input convoluted with 2× 2× 192 filters. Dense residential (above) and storage tanks (below).

Figure 4. Filters and CNN layer outputs for single-view architecture #2 (see Table I) and inputs from a selection of classes. Output visuals are mapped to
full channel range and combined in some cases to occupy all RGB channels.

to using single-view samples. Competitive performance was

shown where multiview DCNN outperformed both SIFT-based

methods and unsupervised feature learning. Future research

may investigate the performance benefits of a combination of

DCNN cascaded with secondary neural networks and the use

of only one view scale per network.
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