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Abstract

In this paper a theory of game tree algorithms is presented, entirely
based upon the concept of a solution tree. Two types of solution trees are
distinguished: max and min trees. Every game tree algorithm tries to prune
as many nodes as possible from the game tree. A cut-o� criterion in terms
of solution trees will be formulated, which can be used to eliminate nodes
from the search without a�ecting the result. Further, we show that any
algorithm actually constructs a superposition of a max and a min solution
tree. Finally, we will see how solution trees and the related cuto� criterion
are applied in major game tree algorithms like alphabeta and MTD.
Keywords: Game tree search, Minimax search, Solution trees, Alpha-beta,
SSS*, MTD.

1 Introduction

A game tree models the behavior of a two-player game. Each node n in such a

tree represents a position in a game. An example of a game tree with game values

is found in Figure 1. The players are called Max and Min. Max is moving from

the square nodes, Min from the circle nodes. The game value f(p) for a position

p may be de�ned as the guaranteed pay-o� for Max. This function obeys the

minimax property. An algorithm computing the guaranteed pay-o� in a node

n is called a game tree algorithm. Over the years many algorithms have been

designed. Every algorithm tries to eliminate as many nodes as possible from the

game tree search. So every algorithm has its own cut-o� criterion. We will design

a cut-o� criterion derived from a theory of game trees. In this theory the notion

of a solution tree is the key notion, which turns out to be a powerful tool for

establishing such a criterion. We show that, in the family of search algorithms

obeying the cut-o� criterion, alphabeta is the depth-�rst instance, whereas MT-

SSS is the best-�rst instance. Besides, we show in an obvious way that every

algorithm necessarily builds a critical tree.

This paper is organized as follows. In Section 2 we recall some facts on solu-

tion trees mentioned earlier by Stockman[15]. In Section 3 the notion of a search

tree is recalled. This notion has been introduced by Ibaraki [4]. Next, minimax

functions on a search tree are de�ned, and the role of solution trees in a search tree

is discussed. Section 4 presents a general theory on game tree algorithms based
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Figure 1: A game tree with f -values.

upon solution trees. A general cut-o� criterion is the most important result. The

Sections 5 and 6 link two well-known game tree algorithms to the cut-o� criterion.

To conclude the opening section, some preliminaries are given. A game tree

is denoted by G and its root is denoted by r throughout this paper. Given a

statement related to a game tree, replacing the terms max/min by min/max

yields the so-called dual statement.

2 Solution Trees

A strategy of Max in a tree G is de�ned as a subtree, including in each max

node exactly one continuation and in each min node all continuations (all coun-

termoves to Max). Since the choice of Max in each position is known in such a

subtree, Max is able to calculate the outcome for each series of choices that his

opponent can make. In this paper a subtree with exactly one child in an internal

max node and all children in a min node, which we have called a strategy for

Max, will also be referred to as a min solution tree, or brie
y a min tree. Dually

a strategy for Min is de�ned, also called a max solution tree or a max tree. In

Figure 1 the bold edges generate a max tree. A max tree is denoted by T+ and

a min tree by T� in this paper.

Given a min solution tree, the most bene�cial choice for Min in each min node

is a move towards a terminal with minimal value. Consequently, in a given min

tree (Max strategy) T�, the pro�t for Max under optimal play of Min is equal to

the minimum of all pay-o� values in the terminals of T�. Therefore we introduce

the following function g for a max tree T+ and a min tree T�:

g(T+) = maxff(p) j p is a terminal in T+g (2.1)

g(T�) = minff(p) j p is a terminal in T�g (2.2)
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The intersection of a max tree T+ and a min tree T� consists of exactly one

path. The g-de�nition implies that g(T�) � f(p0) � g(T+), where p0 denotes

the terminal at the end of the intersection path. It follows that g(T�) � g(T+)

for any two solution trees T+ and T� in a game tree.

Suppose that the Max player con�nes himself to a certain tree T�. Then Max

achieves a pay-o� of g(T�), if Min replies consistently towards a terminal with

value equal to g(T�). If Min deviates from a path towards a terminal equal to

g(T�), Max gets a higher pay-o�. Hence, g(T�) is the guaranteed pay-o� for

Max playing in T�. It follows that the highest attainable pay-o� for Max is equal

to the maximum of the values g(T�) in the set of all min trees T�. Dually, the

most bene�cial pay-o� from the viewpoint of Min is equal to the minimum of

the values g(T+) in the set of all max trees T+. Since the guaranteed pay-o� is

equal to the game value by de�nition, we come to the following equality holding

in each node n of a game tree:

f(n) = maxfg(T�) j T� a min tree rooted in ng

= minfg(T+) j T+ a max tree rooted in ng

This equality can be proved formally by means of induction on the height of n.

Since this equality is due to Stockman [15], it will be referred to as Stockman's

theorem in this paper.

3 The Search Tree

So far, we were dealing with complete game trees. However, in every game tree

algorithm the tree is built up step by step. At any time during execution a

subtree of the game tree has been generated. Such a subtree is called a search

tree. We assume that, as soon as at least one child of a node n is generated, all

other children of n are also added to the search tree. If the children of a node n

have been generated, n is called expanded or closed. If a non-terminal n has no

children in a search tree (and hence n is a leaf in this search tree), then n is called

open. A terminal n is called closed or open respectively, according to whether its

pay-o� value has been computed or not. The foregoing de�nitions of open and

closed imply, that an open leaf in a search tree either is a non-terminal, whose

children have not been generated yet, or is a terminal, whose game value has not

been computed yet. Obviously, every closed leaf in a search tree is a terminal in

the game tree.

Since f(p) is not known yet in an open node p of a search tree S, the mini-

max function cannot be applied in S. To get an idea of the game values we

assign two preliminary values to each open leaf. First, we assign +1 as a pre-

liminary value. This gives rise to a function f+ in a search tree S, de�ned as the

minimax function in S assuming f+(p) = +1 as game value in each open leaf

p and f+(p) = f(p) in each closed leaf. Second, we assume �1 as game value

in the open leaves. The related minimax function is called f�. In every node n

the inequality f�(n) � f(n) � f+(n) holds, which can be shown by induction

on the height of n. See Figure 2 for an instance of a search tree derived from
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Figure 2: A search tree derived from Figure 1.

Figure 1. The nodes a, b, c, f and i are open leaves, whereas d, e, g and h are

closed leaves (terminals that have their game values evaluated). In each node n

of Figure 2 the top value denotes f+(n) and the bottom value denotes f�(n).

In a search tree with minimax function f+ Stockman's theorem can be applied.

Likewise, this theorem can be applied to the f�-function. To rule out the an-

noying nodes with in�nite values, we introduce a new de�nition. For a max and

a min tree in a search tree this new g-de�nition will be given below (similar to

the c-function in [6]). This de�nition is a generalization of de�nitions (2.1) and

(2.2), which only hold for solution trees in a complete game tree, i.e., a tree with

solely closed nodes.

g(T+) = maxff(p) j p is a closed terminal in T+
g (3.1)

g(T�) = minff(p) j p is a closed terminal in T�g (3.2)

Applying Stockman's theorem to f+ and f� respectively leads to the equali-

ties below. Although Stockman's theorem deals with the old g-de�nition, these

equalities are also valid for the new g-de�nition. By a closed solution tree we

mean a solution tree in a search tree with solely closed leaves.

f+(n) = minfg(T+) j T+ is a closed max tree with root ng (3.3)

= maxfg(T�) j T� is a min tree with root ng (3.4)

f�(n) = maxfg(T�) j T� is a closed min tree with root ng (3.5)
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Figure 3: A max and a min tree, derived from Figure 2.

= minfg(T+) j T+ is a max tree with root ng (3.6)

Here we assume that the minimum=maximum of the empty set is +1=�1.

We will comment on the formulas for f+. (The formulas for f� are dual.) For

a min tree T� with +1 as the game value in the open nodes and for a closed

max tree T+, the old and the new g-de�nition yield the same value. For a non-

closed max tree T+, the g-value in old sense equals +1. Consequently, the above

equalities for f+(n) should be regarded as an application of Stockman's theorem,

where non-closed max trees (with in�nite g-value) are left out of consideration

in the right-hand side of (3.3).

4 A General Theory

In this section a general theory on game tree algorithms is developed. A key role

is played by the notions alive and dead.

4.1 Alive Nodes

In this subsection the de�nition and the signi�cance of the notion alive is dis-

cussed. The de�nition of an alive node is as follows. A node n in a search tree

S is called alive if n is on the intersection path of a max tree T+ and a min tree

T� (either rooted in r) with g(T+) < g(T�).

Given an alive node n in a search tree S, we can construct a game tree Gn � S,

whose game value can only be obtained if one particular open descendant1 of

n is expanded. The construction of Gn proceeds as follows. Denote the ac-

tual values g(T+) and g(T�) by g1 and g2 respectively. The leaf p0 at the

end of the intersecting path must be open, since, if it was not, we would have

1In this paper each node n is assumed to be its own descendant.
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g(T�) � f(p0) � g(T+). Choose a value f0 with g1 � f0 � g2. De�ne f(p0) = f0
and f(p) � g1 for any open node p 6= p0 in T+ and f(q) � g2 for any open node

q 6= p0 in T�. To complete Gn, the other open nodes in S (if any) are closed

arbitrarily. After being extended, both T+ and T� have g-values equal to f0.

Stockman's theorem entails, that the game value of Gn equals f0. As long as p0
is not closed in Gn, T

+ and T� satisfy g(T+) = g1 < g2 = g(T�) and every value

in the range [g1; g2] is still achievable as game value for r.

The above construction is illustrated using the Figures 2 and 3. Figure 3 shows

solution trees T+ and T� with g(T+) = 3 and g(T�) = 8. Node u is on the

intersecting path and is therefore alive. The game tree Gu is constructed by

de�ning f(b) = f0 with f0 2 [3; 8], f(c) � 3 and f(a) � 8. The nodes f and i in

Figure 2 may be closed arbitrarily.

4.2 De�nition of the h-functions

In this subsection, we give an alternative de�nition for the notion alive. This

de�nition implies a practical method to establish whether a node is alive, using

the so-called h-functions. These h-functions in a search tree S are de�ned as:

h�(n) = minfg(T+) j T+ a max tree in S through rand ng (4.1)

h+(n) = maxfg(T�) j T� a min tree in S through rand ng (4.2)

It is easily seen that a node n is alive i� h�(n) < h+(n).

As a result of (3.4) and (3.6) respectively, the de�nition of the h-functions reduces

in the root to h+(r) = f+(r) and h�(r) = f�(r). Since every solution tree

considered in the above de�nition goes through r, r has a maximal h+-value and

a minimal h�-value in any given search tree S.

Extending the equality f+(r) = h+(r), we will give formulas for the h-functions

in any other node. Those formulas are of highly practical signi�cance. To this

end we need a new notion. Denote by AMAX(n)=AMIN(n) the set of max=min

nodes, that are proper ancestors of n. See Figure 4 for illustration. The set

AMIN-C(n) is de�ned as the set of children of the nodes in AMIN(n), as far as

these children are outside the path from r to n. The dual notion is AMAX-C(n).

The following interesting formulas hold for the h-values in a node n of a search

tree S.

h�(n) = maxff�(m) jm 2 fng [AMAX(n)g (4.3)

h+(n) = minff+(m) j m 2 fng [AMIN(n)g (4.4)

We only prove (4.3). As a result of (3.6), every node m 2 fng[AMAX(n) is the

root of a max tree T
m

with g(T
m
) = f�(m). In the superposition of all those

trees Tm, we choose arbitrarily a max tree T+ through r and n. By the de�ni-

tion of h�, we have h�(n) � g(T+). Every terminal value in the superposition

under consideration is bounded above by maxff�(m) j m 2 fng [ AMAX(n)g.

Hence, g(T+) and also h�(n) are bounded above by that value as well. By def-

inition, h�(n) is equal to the g-value of a max tree T0 through r and m. Every

node m 2 fng [ AMAX(n)g is the root of a subtree T 0 of T0. It follows that

h�(n) = g(T0) � g(T 0) � f�(m), where the latest inequality is due to (3.6). It

6
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Figure 4: De�nition of node sets.

follows that h�(n) � maxff�(m) j m 2 fng [ AMAX(n)g. The combination of

some of the inequalities provides the desired result.

A similar reasoning can be given, when a max tree Tm with g(Tm) = f�(m)

is considered in each node m 2 fng[AMAX-C(n)g. This results into (4.5). The

second formula is the dual counterpart.

h�(n) = maxff�(m) jm 2 fng [ AMAX-C(n)g (4.5)

h+(n) = minff+(m) jm 2 fng [ AMIN-C(n)g (4.6)

4.3 Dead Nodes

A node that is not alive is called dead. It is easily shown that every ancestor of

an alive node is alive as well. As a result, a descendant of a dead node is dead.

In terms of the h-functions, we may state that n is dead i� h�(n) � h+(n). The

h-functions will be utilized in this subsection to derive some properties of dead

nodes.

Consider a given max tree T+ including an open dead node p. By the de�nition of

h� we have g(T+) � h�(p). There is a node m 2AMIN(p) with f+(m) = h+(p)

due to (4.4), and m is the root of a closed max tree T 0 with g(T 0) = f+(m) due to

(3.3). Hence, h+(p) is associated not only with a min tree through r and p (by def-

inition), but also with a max tree rooted in a node m 2AMIN(p). We perform the

7



following transformation to the given tree T+. Remove the subtree belowm from

T+ and append T 0 to T+ in m. Since g(T+) � h�(p) � h+(p) = f+(m) = g(T 0),

the g-value does not increase by this transformation. Since T 0 is a closed solution

tree, the transformed tree has solely closed leaves below m. In a similar way, any

other open dead node can be eliminated from T+. The resulting tree does not

include any open dead node and its g-value does not exceed the original value

g(T+).

To illustrate the above transformation, see Figure 2. It is easily seen using (4.3)

and (4.4) that h�(i) = 6 and h+(i) = 3, meaning that i is dead. Any max tree

T+ through i has g-value � 6. The subtree below v in such a tree T+ may be

replaced by the max tree rooted in v and ending up in the terminals e and g.

Given an alive node n, the above transformation can be applied to a max tree

associated with h�(n), i.e., a max tree T+ such that g(T+) = h�(n). This results

into a new tree avoiding open dead nodes and not exceeding h�(n) by its g-value.

Since f+(m0) � h+(n) > h�(n) = g(T+) for every node m0 2 fng[AMIN(n),

replacing a subtree of T+ rooted in m0 with a closed subtree would raise the

g-value. We conclude that no node from fng[AMIN(n) is involved in the above

transformation of T+ eliminating open dead nodes. It follows that, given an

alive node n, a solution tree T+ through n associated with h�(n) can be found

avoiding any open dead node. As long as the algorithm does not expand an open

node of this tree T+, the value h�(n) is una�ected. Therefore, while expanding

a dead node, the h�-value of any alive node in a search tree is not a�ected. For

reasons of duality, any alive h+-value isn't a�ected either.

4.4 Main Theory

We now come to our theory consisting of four observations.

a) We have shown in subsection 4.1 that, if n is alive, a game tree Gn can

be constructed, in which f(r) is unknown as long as one particular open

descendant p0 of n is not expanded. The conclusion is that any alive node

n cannot be discarded.

b) As a result of a), an algorithm must continue as long as the search tree

contains any alive nodes. Therefore, the algorithm may only stop when all

nodes in the search tree are dead. We might say therefore, that any game

tree algorithm actually aims at killing the entire search tree.

c) All nodes in a search tree S are dead i� g(T+) � g(T�) for any two solution

trees T+ and T� in S. As a result of (3.4) and (3.6), this condition is

equivalent to the equality f�(r) = f+(r), which is the stop criterion of

every game tree algorithm therefore. When the condition f�(r) = f+(r)

is achieved, both a closed max tree and a closed min tree with g-value

equal to f(r) are present in the search tree. The superposition of these two

trees is called a critical tree. This notion has been introduced in [7], with

a totally di�erent de�nition however. Since the algorithm must continue

until f�(r) = f+(r) holds, we conclude that every game tree algorithm

8



needs to build a critical tree.

The intersection of the max and the min tree in a critical tree is a path

with constant f -value, as can easily be shown using Stockman's theorem.

d) Expanding descendants of a dead node does not a�ect the h-values of any

alive node, as we have shown in subsection 4.3. Consequently, an alive node

can only be killed by expanding an alive node. For a game tree algorithm

to achieve its goal, every node needs to be killed. Therefore, expanding a

dead node is useless. Since every dead node has solely dead descendants, a

dead node along with the subtree underneath may be neglected during the

search.

Notice that the notes a) and d) constitute a general cut-o� criterion for game

tree algorithms: alive nodes must be respected, dead nodes may be neglected.

Note c) describes the situation on termination of a game tree algorithm.

5 Alpha-beta revisited

An extensive treatment of the alphabeta procedure can be found in [7]. The

same paper also includes a historical survey of the rise of this procedure. In this

section, we will show, how the alphabeta algorithm complies with our theory on

solution trees. The main result is the characterization of alphabeta, presented in

Theorem 5.2. Figure 5 shows the code of the alphabeta procedure. We present

a postcondition of alphabeta, which extends the postconditions in [7] and [3], in

that it relates the new functions f+ and f� to the return value of an alphabeta

call. The accompanying precondition is: � < �.

Theorem 5.1 The following postcondition holds for an alphabeta call with return

value v.

low failure: v � � ) v = f+(n); (5.1)

success: � < v < � ) v = f(n) (5.2)

high failure: v � � ) v = f�(n): (5.3)

In case of a low or high failure, n has exactly one optimal closed max or min tree

with g-value equal to f+(n) or f�(n) respectively.

Proof

We only prove the extended part of the theorem, viz. the results in case of a

low or high failure. These results are proved by induction on the height of the

calling tree. This means that, we show that the theorem holds for a call, under

the assumption that the theorem holds for any recursive subcall to a child c. For

reasons of duality, only the case that n is a max node, is studied.

Suppose that the call ends with a low failure. Then every child has been pa-

rameter in a subcall and every subcall has ended with a low failure. Then

v = maxfv0
c
j c a child of ng, where v0

c
denotes the result of the subcall with

parameter c. Since each v0
c
corresponds to a unique max tree (assumed by induc-

tion), v corresponds to a unique max tree too.

Suppose the call ends with a high failure. Then the last subcall, say to c0, ended

9



function alphabeta(n; �; �);
if terminal (n) then v :=f(n);
else if max(n) then

v := �1;
�
0 := �;

c :=�rst(n);
while v < � and c 6= ? do

v
0 :=alphabeta(c; �0; �);
v := max(v; v0);
�
0 := max(�0; v0);

c := next(c);
else if min(n) then

v := +1;
�
0 := �;

c :=�rst(n);
while � < v and c 6= ? do

v
0 :=alphabeta(c; �; �0);
v := min(v; v0)
�
0 := min(�0; v0);

c := next(c);
return v;

Figure 5: The alpha-beta procedure

with a high failure with return value v0
c0
. The return value of the main call is

v = v0
c0
. The unique optimal min tree for c0 (assumed by induction) is also the

unique optimal min tree for n, since the elder children provided a smaller return

value. 2

The exact value of a game tree is computed by a call alphabeta(r;�1;+1).

When this call is executed and a node n is parameter in a subcall, n is the left-

most open alive node in the actual search tree, as we will show in the following

theorem. So, a characterization of the alphabeta algorithm as depth-�rst instance

is obtained.

Theorem 5.2 Suppose a call alphabeta(r;�1;+1) is performed. Then at every

nested call alphabeta(n; �; �), the relation h�(n) = � < � = h+(n) holds and

every node to the left of n is dead.

Proof

This is proved by induction on the depth of n. The theorem holds trivially at

depth 0. We will show, that the theorem holds at depth d+ 1, provided that it

holds at depth d (d � 0). Assume n is max node at depth d with h�(n) = � and

h+(n) = �. The case that n is a min node is dual.

Notice that the oldest child c of n has h�(c) = � = �0 and h+(c) = �, when the

subcall alphabeta(c; �0; �) starts. Now, we discuss some properties of the subcalls

alphabeta(c; �0; �) that are followed by a next one. So the subcall to the youngest

child of n and the subcalls ending with v0 � � are left out of consideration for

10



our goal. After a subcall ending with �0 < v0, the h�-value for n and all its

children change into v0, and hence �0 is updated. After any subcall ending with

v0 � �0, the h-values for n and its children are una�ected and hence �0 remains

unchanged. We conclude that the h-values for any call at depth d + 1 are in

accordance with the theorem.

At any subcall with parameter c, the elder brothers (if any) of c satisfy f+(c) �

�0 = h�(c) and are dead therefore. By the induction hypothesis, any other node

to the left of c is already dead, when n is expanded. 2

The set AMIN-C(n) for a given n can be split up into two sets, called AMIN-C-

Left(n) and AMIN-C-Right(n), containing the nodes to the left or right respec-

tively of n. Likewise, AMAX-C(n) can be split up. Let S0 denote the search

tree when a nested call alphabeta(n; �; �) is executed (and when Theorem 5.2

applies). As an easy extension to Theorem 5.2, we can show, that any x 2

AMIN-C-Right(n) is open in S0. This enables us to determine a static value

for � = h+(n) in S0, as we will show. Suppose that the game tree is com-

pleted under the nodes in AMIN-C-Left(n). Expanding descendants of nodes

in AMIN-C-Left(n) does not a�ect h+(n), since those nodes are dead. Hence,

h+(n) remains equal to �. In the enhanced tree, each descendant x of a node in

AMIN-C-Left(n) has f+(x) = f(x). Applying (4.6) in the enhanced tree results

into � = h+(n) = minff(x) j x 2 AMIN-C-Left(n)g. A dual formula holds for �.

Here, we re-cover the formulas presented in [1].

6 The MTD-algorithm

In this section, we discuss the MTD-algorithm. First we present the algorithm.

Next, we give a characterization for one particular instance of MTD, viz. MT-

SSS.

6.1 The Description of the MTD algorithm

MTD stands for Memory Test Driver. The algorithm has its roots in the Test

routine, introduced in [9]. This routine is equivalent to alphabeta with a so-called

null-window, i.e., a window with ��� = 1. A null-window is represented by one

value 
, equal to the greater parameter � = �+1. The assumption is made that

any game value is integer, so no game values between 
 � 1 and 
 are assumed.

Consequently, the success ending in the postcondition cannot apply. So, the re-

turn value v of the Test procedure establishes either a lower bound v = f�(n) or

an upper bound v = f+(n).

We use an extended Test procedure. When several Test calls are executed suc-

cessively (each with a di�erent null window), the search tree can be retained

in memory and bounds like f+(n) and f�(n) can be stored at each node n.

The Test procedure, which exploits previous bounds and stores new bounds, is

named MT (Memory Test). The code of MT is presented in Figure 6. The code

of the MTD algorithm including a number parameter f is shown in Figure 7. In

most actual applications of game tree search, a so-called transposition table is

maintained, containing all positions visited earlier. This table can also serve to

register bounds to the nodes of the search tree. The bounds are stored into the
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functionMT(n; 
);
if terminal (n) then

if open(n) then v :=eval(n)
else v := n:f

+ or n:f�;
else

if open(n) then generate the children of n;
if max(n) then

v := �1;
c :=�rst(n);
while v < 
 and c 6= ? do

if c:f+ � 
 then v
0 :=MT(c; 
) else v

0 := c:f
+ ;

v := max(v; v0);
c := next(c);

if min(n) then
v := +1;
c :=�rst(n);
while v � 
 and c 6= ? do

if c:f� < 
 then v
0 :=MT(c; 
) else v

0 := c:f
� ;

v := min(v; v0);
c := next(c);

if v < 
 then n:f
+ := v else n:f

� := v;
return v;

Figure 6: The code of the function MT

�elds n:f+ and n:f� of a record associated to each node n of the transposition

table In case of a high failure n:f� is set; in case of a low failure a value n:f+ is

set. Hence, we assume that only one bound per node is stored. As soon as n:f+

is set, the alternate variable n:f� is unde�ned, even though it may have been

given a value in the past. A variable that is unde�ned, is assumed to have an

in�nite value.

Now, we will prove that f(r) = v upon termination of the MTD-algorithm. The

situation that the MT call in the initial step ends with a low failure (f+(r) =

v < 
) is discussed. The alternate case is dual. The �rst MT call in the

main loop starts with f+(r) = 
. A low failure ending of this call amounts

to f+(r) = v < 
. A high failure is equivalent to f�(r) = v = 
. (Given

the start condition f+(r) = 
, an ending with f�(r) = v > 
 cannot happen.)

Therefore, a high failure causes the stop criterion to apply. When a low failure

happens, the MT call in the subsequent iteration starts with f+(r) = 
. For

each iteration a similar reasoning holds. When the stop criterion holds after any

iteration, the condition f+(r) = 
 holding at the start of latest MT call, along

with the stop criterion f�(r) = v = 
 yields f(r) = v.

The instance with f =1 is called MT-SSS, due to its similarity with SSS*. This

similarity has been clari�ed in [13]. Extensive tests with MT-SSS, MT-Dual and

MTD(f) are described in [12, 13]. It turns out that, combining MTD(f) with

12



functionMTD(r; f);
initial step:


 := f ;
v :=MT(r; 
);
main loop:

if v < f then
repeat


 := v;
v :=MT(r; 
);

until v = 
;
if v � f then

repeat


 := v + 1;
v :=MT(r; 
);

until v = 
 � 1;
return v;

Figure 7: The code of MTD(f).

iterative deepening and taking the value of each previous iteration as the next

f -value results into a fast and e�cient algorithm.

6.2 Characterization of MT-SSS

In this subsection, we will characterize MT-SSS. The main result is expressed by

Theorem 6.1.

In Lemma 6.1, we use the notions left and right child respectively of a max tree.

For any max tree T+, a node x is called a left node for T+, if x is an elder brother

of a node c being the single child in T+ of a min node. Analogously a right node

of T+ is de�ned.

Lemma 6.1 For each nested call MT(n; 
) during execution of MT-SSS, the

following pre- and postcondition holds.

Precondition:

If n is not open then f+(n) = 
 and there is a unique optimal closed max tree

T+. Every x 2 T+ has f+(x) = x:f+ and every left node y of T+ satis�es

y:f� = f�(y) > 
.

Postcondition:

If a call MT(n; 
) ends with a low failure (v < 
), the newly constructed search

tree below n contains a unique optimal closed max tree T+

1 . Every x 2 T+

1 has

f+(x) = x:f+ and every left node y of T+

1 satis�es y:f� = f�(y) � 
 > v.

Proof(outline)

The proof of the postcondition is by induction on the height of the calling tree,

similarly to the proof of Theorem 5.1. The proof holds under the condition that

the precondition holds.

In each (sub)call in the initial step, the node parameter n is open. The precon-

dition for each call MT(r; 
) in the main loop is a result of the postcondition of
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the previous call. The proof of the precondition for a nested call during the main

loop is by induction on the depth of n, similarly to the proof Theorem 5.2. 2

Lemma 6.2 For any call MT(n; 
) during execution of MT-SSS, each node x

in AMAX-C-Left(n) has f+(x) < 
 and each node x in AMIN-C-Left(n) has

f�(x) � 
.

Proof(sketch)

The proof is by induction on the depth of n, similarly to the proof of Theorem

5.2. The proof utilizes the fact (along with its dual counterpart), that a child

c of max node n is only parameter in a subcall, when every subcall to an elder

child c0 has ended with a low failure or has c0:f+ < 
 in the transposition table.

2

Theorem 6.1 For any call MT(n; 
) during execution of MT-SSS, h+(n) is

maximal in S and every node to the left of n is dead or has a lower h+-value.

Proof

In a call MT(r; 
), the algorithm descends from the root to the search tree. In

each closed max node n, a closed child c is chosen, such that f+(n) = f+(c) = 
,

and in each open max node, any parameter c of a subcall has f+(n) = f+(c) =1.

We conclude, that the transition from a closed node n to an open child c is made

in a min node n. Now, it can be shown by induction, that an open min tree T�

with g(T�) = 
 crosses every node n being parameter in a nested MT call. It

follows that h+(n) � 
. At the start of a call MT(r; 
), each min tree in the

search tree has g-value � f+(r) = 
. The conclusion is that h+(n) = 
 and no

node has a higher h+-value.

If a node to the left of n has an ancestor x in AMAX-C-Left(n), then f+(x) < 


and every min tree through r and any descendant of x has g-value < 
. If ancestor

x is in AMIN-C-Left(n), then f�(x) > 
 and every max tree through any descen-

dant of x and r has g-value � 
. For those nodes x, h+(x) � f+(r) � 
 � h�(x)

and hence, any descendant of x is dead. 2

Notice that a node n being expanded during MT-SSS is not guaranteed to be

alive. By theorem 6.1, a closed parameter n in a nested call satis�es n:f+ =

f+(n) = 
. However, the inequality f+(n) > f�(n) needs not to hold. Instead,

n may have identical boundary values. The most trivial occurrence of such a

parameter is a terminal n that is revisited. It is also possible that n is an inner

node or even n = r. This is illustrated by Figure 8. This tree may be (a part

of) the search tree after a MT call during MT-SSS. In this tree, b is a closed

terminal with f(b) = 3, f+(a) > 3 and n0 is still open. It is easily seen that

f+(a) = f+(n) = f+(m) = f+(r) > 3 and f�(b) = f�(n) = 3. In the next iter-

ation, we have a call MT(r; 
) with 
 = f+(r) > 3. Supposing that the subcall

to a ends with return value 3, we get f+(a) = f+(n) = f+(m) = f+(r) = 3.

Since f+(n) = f�(n) = 3, everything below n is dead. Nevertheless, MT-SSS

performs a new iteration, which expands open descendants of a and revisits b.

Assume that n is the single child of m, i.e, n0 is assumed to be removed from the

game tree. When the above situation with f+(a) = f+(n) = f+(m) = f+(r) = 3

14
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Figure 8: Side e�ects on boundaries.

is reached, then also f�(r) = 3 and r is dead. Nevertheless, MT-SSS continues

with a call MT(r; 3). So, it turns out that even a dead root can be parameter in

an MT call.

In order to make sure that only alive nodes are expanded, we must store other

bounds at some nodes n in the transposition table. For the root, f+(r) and

f�(r) must be stored and the stop criterion must be converted into r:f+ = r:f�.

Inspecting closely the code in Figure 6, we see, that only the f+-value is looked

up in a child of a max node. A dual situation holds in a min node. Therefore,

f�(n) must be stored in every max node n in the transposition table, and f+(n)

must be stored in every min node. With these enhancements in the code of

MT-SSS, the condition f+(n) � 
 > f�(n) will hold for every node n visited

by an MT call. Consequently h+(n) = 
 > h�(n) holds and hence, only alive

nodes are visited. This implies, among others, that a closed terminal will never

be re-visited by an MT call.

Storing the new bounds requires, that f�(n) is also available after a low failure

in a max node n, and dually, f+(n) is available after a high failure in a min

node n. This can only be achieved, if the procedure Test returns two values, viz.

f+(n) and f�(n), rather than one value v which equals either f+(n) or f�(n).

These return values are computed using their minimax properties.

As a matter of fact, every enhancement should be re
ected in the code of MT

and MTD(f).

Theorem 6.1 showed that h+(n) = 
 for any call MT(n; 
) during MT-SSS.

It can be shown by extending Theorem 6.1 and Lemma 6.2, that every node in

AMIN-C-Right(n) is open. When n itself is open at an MT call, parameter 
 has

a value that can be determined statically. We can compute this value in exactly

the same way, as we did for parameter � in the alphabeta algorithm. It follows

that 
 and � have identical values. Again, we have re-covered an old result, see

[14].
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7 Concluding remarks

We have developed a new theory built around the notion of solution tree. It was

shown, how alphabeta and MT-SSS �t into this theory. Two fairly important

algorithms are not discussed here, viz. negascout and proof number search. The

role of solution trees in those algorithms was described in [2]. Due to Stockman's

theorem, the notion of strategy or solution tree has pushed aside the minimax

function. To our feeling, the former notion is closer to the human intuition than

the latter is.
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