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The following is an extended abstract of a forthcoming paper, part of
which was presented at the Workshop on Algebra & Substructural Logic
held at JAIST, 10-17 November 1999.

1. Introduction

To see that a finitely axiomatizable logic is decidable—in the sense
that it has a decidable set of theorems—it suffices to show that it has the
finite model property, and indeed, this has been the method of choice for
establishing decidability of propositional logics. A logic is said to have the
finite model property (FMP) if every formula that fails to be a theorem
of the logic can be refuted in a finite model of the logic. The first one to
apply the method in a non-trivial way was J.C.C. McKinsey in [6], where
he obtained decision procedures for the modal logics S2 and S4.

Although traditionally logics have often been identified with their sets
of theorems, work on the algebraization of logic (such as in [1]) has empha-
sized the importance of the inferences of the logic. We say that a logic has
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the strong finite model property (SFMP) if for every finite set of premises
I', and every formula ¢, if ¢ is not a consequence of I', then there is an
interpretation in a finite model of the logic that makes all of the formulas
of T' true, but ¢ false. To see that the set of inferences I' - ¢ (I" finite)
of a finitely axiomatizable logic is decidable it suffices to verify it has the
SFMP. Clearly, every logic that has the SFMP also has the FMP. If a logic
has the “deduction detachment theorem” the converse holds as well. In the
full paper we discuss the FMP and SFMP in general, and compare the two
properties for some extensions of fragments of intuitionistic linear logic.

The logics we consider are algebraizable in the sense of [1], and we carry
out our considerations in the domain of algebra. We say that a quasivariety
of algebras has the FMP if every identity that fails to hold in the class can
be refuted in a finite member of the class, and that it has the SFMP if
every quasi-identity that fails to hold in the class can be refuted in a finite
member of the class. It is easy to see that a quasivariety of algebras has the
FMP iff it is included in the variety generated by its finite members, and
that it has the SFMP if it is included in (and hence equals) the quasivariety
generated by its finite members. Furthermore, a deductive system that is
algebraizable in the sense of [1] has the FMP or SFMP if and only if its
equivalent quasivariety has the FMP or SEFMP respectively.

A quasivariety K has the finite embeddability property (FEP) if every
finite partial subalgebra of a member of X can be embedded in a finite
member of IC. It is easy to see that every quasivariety with the FEP has
the SEMP; interestingly, the converse also holds (see Section 1).

Okada and Terui [7] established the FMP for a Gentzen style formal-
ization of the multiplicative additive fragment of intuitionistic linear logic
(IMALL), and also—using a different construction—for the extension of
that system obtained by adding the rule of weakening (IMALL"). The
classes of algebras corresponding with these systems are the variety R* of
bounded lattice-ordered commutative residuated monoids and the variety
R of integral bounded lattice-ordered commutative residuated monoids,
respectively; the algebras in R are better known as residuated lattices.

The construction Okada and Terui used to show that IMALL has the
FMP carries over to the domain of algebra: the variety R* has the FMP.
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In Section 2 we show that R* does not have the SFMP, and hence also does
not have the FEP. Okada and Terui’s second construction, used to show
that IMALLY has the FMP, also carries over, and enables us to show that
the variety R has the FEP, and hence the SFMP. We outline the proof in
Section 3. The same construction allows us to settle in the affirmative two
problems that had remained open for some time, viz., whether the quasiva-
rieties of pocrims and of BCK-algebras have the FEP (Theorem 3.5). For
details, further results and references, we refer to the full paper [3].

2. Failure of the FEP

The following theorem explains our interest in the FEP. A proof of the
only non-trivial implication, (iii) = (i), is given in [4].

Theorem 2.1. Let K be a quasivariety of algebras. The following are
equivalent.

(i) K has the FEP,
(ii) K has the SFMP,
(iii) K is generated, as a quasivariety, by its finite members; i.e., K =
ISPPy(KF), where K denotes the class of finite members of K.

Let R* denote the class of algebras (A4, A,V,:,—,e,0,1), such that
(A,A,V,0,1) is a lattice with smallest element 0 and largest element 1,
(A, -, e) is a monoid with identity e, and — is the residuation operation
defined by ¢ < a — b if and only if a- ¢ < b. In such an algebra the monoid
operation respects the partial order. A residuated lattice is an algebra in
R* that is integral, i.e., an algebra in which e coincides with; R will denote
the variety of all residuated lattices (with e dropped from the type). An
example of an algebra that belongs to R*, but not to R, is

Z=(ZU{L, T}HAV,+,—,0,L,T).

Here Z is the set of integers with its usual linear order, 1 < x < T for
all x € Z, + is the usual addition on Z and
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THar=zx+T=T ife#l,
l4+xz=z+1L =1 forallzx.

In particular, this structure is residuated. Since eZ = 0 # T = 1%,
Z¢R.

Theorem 2.2. The variety R* does not have the FEP.

In view of Theorem 2.1, in order to show that R* fails to have the FEP
it suffices to show that it is not generated, as a quasivariety, by its finite
algebras. We do this by exhibiting a quasi-identity that is satisfied by all
finite algebras in R*, but that fails in the (infinite) algebra Z. Let ¢ be
the sentence

VaVy[(0 <z & x4+ y~0) =z~ 0]

This quasi-identity does not hold in Z: indeed, we have 0 < 1, 1 +
(=1) = 0 but 1 # 0. But it can be shown to hold in all finite algebras in
R*.

We already observed in the introduction that R* does have the FMP;
R* is thus an example of a variety that has the FMP but does not have
the SFMP.

3. The FEP in R and its subreducts

In this section we will show that R has the FEP. More strongly, we
show that any partial pocrim B may be embedded in the pocrim reduct of
a (complete) residuated lattice D, and the embedding preserves any meets,
joins and bounds that happen to be defined in B (Theorem 3.3). If the
partial algebra B is finite, then the residuated lattice D is finite as well.
For a discussion of pocrims and their BCK-subreducts, see [2].

Let A be a pocrim and let B be a partial subalgebra of A. Let M =
(M,-,1,<) be the partially ordered submonoid of (A,-,1, <) generated by
B. For each a € M and b € B, define
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(a~bl={ceM:ac<b} (={ceM:c<a—b}).

The set (a ~~ b] is a downward closed subset of M with respect to the
order of M inherited from A. Note that (1 ~» a] = (a]. Set

D={(a~bl:a€ M, be B},
and let D be the closure system generated by D, that is,
D={NXx:Xx CD}.
Let C be the closure operator on the set of subsets of M associated with
D,ie., for X C M, let
C(X)=({{veD:XCY}
We shall define an algebra D whose universe is the set D. For X, Y C M
anda € M,set XY ={ab:a € X,beY}and Xa = X{a}. For X, Y C M
and X; C M, i € I, define
X Py=cXxy)
X-PYy={aeM:XaCY}
D
\/iel Xi = C(Uie] Xi)
D
/\iEI Xi= ﬂiel Xi
o> =ND
1P = M.

It can be shown that D is closed under the operation — and that
D is an associative and commutative operation with identity 12 on D.
Moreover, we show that —P is the residuation operation on D with respect

to -P and C. We obtain the following result.

Lemma 3.1. The structure D = (D,-P, =P 1P C) is a pocrim.
Moreover, the partial order C is a complete lattice order with lattice meet
AP, lattice join \/P, largest element 1P and smallest element 0P

The map ¢ from B to D which sends a to (a] is an embedding which
preserves all existing operations in B. Thus, B is isomorphic to a partial
subalgebra of D. We have the following result.
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Lemma 3.2. The map ¢ is an embedding of the partial subalgebra B
of A into D. Moreover, 1 preserves all meets and joins that exist in B. In
particular, if 0 is the least element of A and 0 € B then +(0) = 0P.

Theorem 3.3.

(i) Every partial pocrim can be embedded in a (complete) residuated lat-
tice,

(ii) Every partial BCK-algebra can be embedded in a (complete) residu-
ated lattice.

We prove that finiteness is preserved in the construction. Let (N, <)
denote the natural numbers. When B is finite, with |B| = k say, we show
that there is a surjective order-reversing map h from (N, <)* to the ordered
monoid M and a subset Z of N¥ such that for each (a ~ b] € D there is a
set W C Z such that (a ~» b] = h([W)). Recall that a partially ordered set
(S, <) is well-quasi-ordered if it is well-ordered and if it contains no infinite
antichains. It is known that the direct product of well-quasi-ordered sets
is well-quasi-ordered (see, for example, [8]). Since the natural numbers are
well-quasi-ordered, so is the partially ordered set (N, §>k . The set Z can
be chosen to be the downward closure of an antichain in (N, <)* and hence
is finite. Thus Z has only finitely many subsets, and it follows that D, and
hence D, are finite.

Lemma 3.4. If B is a finite partial subalgebra of A then the algebra
D is finite.

Theorem 3.5. Fach of the following quasivarieties has the FEP:
(i) The variety R of residuated lattices,
(ii) the quasivariety of pocrims,

(iii) the quasivariety of BCK-algebras.

The subvariety R, of R consisting of all n-potent residuated lattices,
defined, relative to R, by the identity z"*! ~ z", also has the FEP, and
this can be seen in a more straightforward way (see [3] or [5]). The proof
depends however on the presence of the V-operation, and does not carry
over to the case of pocrims.
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Problem 3.6. Does the variety of pocrims satisfying " +!

sess the FEP?

~ z" pos-

The same question about n-potent BCK-algebras is also open.
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