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REMARKS ON SPLITTINGS IN THE VARIETY OF
RESIDUATED LATTICES

This is an extended abstract of a talk presented at the Workshop on
Algebra & Substructural Logic held at JAIST, 10-17 November 1999. The
full version of the paper is forthcoming in Algebra Universalis.

1. Introduction

A residuated lattice is an algebra A = (A;V, A,-,—,0, 1), such that:
(1) (A;V,A,0,1) is a bounded lattice with the greatest element 1 and

smallest 0;

(2) (4;-,1) is a commutative monoid;
(3) A satisfies: z-y <ziff x <y — z.

The class R of residuated lattices is a variety. It is arithmetical, has
CEP, and is genereated by its finite members (cf. [4], also [3]). It is also
congruence l-regular, i.e., for any congruence 6, the coset of 1 determines
0 uniquely. Cosets of 1 are called congruence filters. A finite subdirectly
irreducible (si) residuated lattice A always has a unique coatom c. By
finiteness, ¢"T! = ¢”, for some positive integer n. We will denote such a
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¢" by *. The congruence filter corresponding to the monolith of A is {a €
A :a > x}. For more details on residuated lattices and their connections
with logics without contraction see [7]. For a broader perspective onto the
latter, see [5] and [6].

For a given (quasi)variety W, let L9(W), L*(W), stand, respectively,
for the lattice of subquasivarieties and subvarieties of W.

A pair (Q1, Q2) of sub(quasi)varieties of a given (quasi)variety W is
said to split LY(W) (L1(W)) iff Q1 € Qs and for any S, sub(quasi)variety
of W, either @1 € § or § C Q5. In other words, Qs is the largest
sub(quasi)variety of W not containing Q;.

If (V1,Vs) is a splitting pair of subvarieties of a variety V, i.e., when
(V1,Vs) splits L¥(V) of subvarieties of V, then V; is generated by a si
algebra, called splitting algebra. It follows from general algebraic results
that every finite si algebra in R splits LY(R). However, we will show that
only one such algebra is splitting in V, i.e., splits L(R).

If V is congruence-distributive and generated by its finite members,
then every splitting algebra in V is finite and uniquely determined by the
splitting pair (cf. [2]). Thus, the only candidates for splitting algebras are
finite subdirect irreducibles.

Fact 1. The two-element boolean algebra 2 splits L'(R).

We will now slightly modify the technique introduced by Jankov in [1],
to suit our purposes.

Let A be a finite si residuated lattice. Fix a set X of |A| distinct
variables, and index them by the elements of A, so that z,, x; be distinct
iff @ # b. Let — be the term operation defined as =z = z — 0, and
o€ {V,A,:,—}. The diagram of A is defined, as usual, by Ax = A{z-q <
2 a € A} A N{Zaoh < T 0 xp : a,b € A}, Then, the Jankov term of
order n for A is defined as YXL = A} — x,, where x € A is the smallest

member of the monolithic filter on A.

By a wvaluation on an algebra B we mean any homomomorphism from
the absolutely free algebra of the appropriate type into B.
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Lemma 1. Let B € R. Then, A C B iff there is a valuation v, such
that B, Aa =1 & x, # 1.

We know already that the two-element boolean algebra splits LV(R).
Our aim is to show no other algebra has this property. The technique we
use will be guided by the following lemma, which characterises non-splitting
algebras in R.

Lemma 2. The following are equivalent:
(i) A is not a splitting algebra in R,
(i) (Vicw)(@TBER):A&V(B)andB Y, =1.

2. Expansions of residuated lattices

This section is entirely devoted to presenting a construction that em-
beds a given finite si residuated lattice A into another one, called an ex-
pansion of A, in a certain special way that will prove useful later on.

We begin the construction by fixing a finite si residuated lattice A,
with the coatom c. Now, take the set Ay = {a € A : ca < a}, and let
D be any set disjoint from A, with |D| = |Ag|. Thus, by means of any
bijection, we can index the elements of D by the elements of Ay, getting
D ={d,:a€ Ap}. Let B=AUD. We will proceed to define a relation
and an operation on B.

Definition 1. For x,y € B, we put x < y if either:

z,y € Aand z <A y; or
z=d, €D,yc Aand a <2 y; or

e xcAy=d, €D and z <” caq; or
° x:da,y:dbeDandagAb.
Notice that we have ca < d, < a whenever ca < a.

¢

Then, we pass on to define a binary operation on B. To avoid
overloaded notation, we will abbreviate = -2 y everywhere by zy. Thereby,
we commit ourselves to never abbreviating the new operation x -y, within

the present section.
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Definition 2. For any z,y € B, let:

xy, if xz,y € A,

doy, if ©=d, €D, yec A, cay < ay;
ay, if x=d, €D, ye€ A, cay = ay;
cab, if x=dy,y=dy, e D

The structure B = (B;-, 1,0, <) defined above turns out to be almost
a residuated lattice. Namely, we have:

Fact 2. The structure B is a partially ordered, bounded, commu-

(3

tative, integral monoid. Moreover, “’ is monotonic, i.e., if x < y, then

z-x < z-y, forany x,y,z € B.

To state the next observation, it will be convenient to view B as a par-
tial algebra (B;A”,Vv’, —7,-,0,1), where A7, V7, =7 coincide, respectively,
with the meet, join, and residuation, whenever they exist, and are unde-
fined otherwise.

Fact 3. A is a subalgebra of B.

So far, we have been dealing with two ‘sorts’ of elements: members
of A, and members of D. To get rid of this tiresome division, let’s write
d instead of d; (notice that the element d; indeed exists, i.e., is in D, for
cl =c < 1), and state:

Fact 4. For any z,y € A, the following hold:
(i) if cx < x, then d - x = d,, otherwise d - © = x;
(ii) d-x-d-y = cxy;
(iii) d -z <d-yiffd-x <y iffx <vy;

Despite Fact 3 above, we cannot expect B to be a fully fledged (i.e.,
not partial) residuated lattice. Indeed, simple examples show that B might
be neither residuated nor a lattice. To deal with this unwelcome situation,
we will resort to a completion technique, reminiscent of what has been used
in [5] or [6], yet quite substantially different.
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Definition 3. A subset X of B is closed, if the following four condi-
tions are satisfied:

o 04 € X;

e Vx,ye B:x e X and y <z imply y € X;

e Vx,yec A:x € X and y € X imply z Vy € X;
eVr,yc A:d-z€ X andd-y€ X imply d- (zVy) € X.

Since, as it is easy to verify, the intersection of any family of closed sets
in the above sense is itself closed, we can define C' : p(B) — @(B) to be
a map sending each X C B to the smallest closed subset of B containing
X. As usual we denote it by C(X) and call the closure of X. To justify
this terminology, we have the following:

Fact 5. The map C defined above is a closure operation on B.

For a closed X C B, define & to be \/{z € A: 2z € X}, and & to be
V{r € A:d-z € X}. Since, by Fact 3, joins of elements of A exist, and
are again in A, these are legitimate definitions.

Fact 6. If X C B is closed, then X = (£]U(d-z]|. Moreover, ifa € A,
then (a] is closed.

For X,Y C B, we define X = Y tobe theset {z€ B|Vx € X : z-x €
Y} andYoX tobe{z-y|xze X,yeY}.

Fact 7. Let X, Y be closed subsets of B, and let Q = C(X oY). The
following hold:
(i) §=ciyVig, ¢=1igV 2y;
(i) C(X oY) = (cxy Vag|U (d- (zyV z7)];
(ili) X =Y is closed.

Definition 4. Let C be the algebra (C;A,V,-,—,1,0), with the uni-
verse C' being the set of all closed subsets of B, and the operations defined
as follows:

e XANY =XNY,
e XVY=C(XUY),
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e X Y =C(XoY),
e X oY =X=Y,
e 1€ =DB,0° = {04}.
We will refer to the algebra C defined above, as the expansion of A.

Fact 8. The expansion C of A is a residuated lattice, and A is a
subalgebra of C.

We will sum up the properties of C in the lemma below. First, however,
yet another definition. Let A be a finite si residuated lattice with the
monolithic congruence filter .

Definition 5. The filter u is of depth n iff n is the smallest natural

n+1

number for which ¢ = ¢ = x, where c is the coatom of A.

Lemma 3. Let A be a finite si residuated lattice with the monolithic
congruence filter i of depth n, and C be its expansion. Then, the following
hold:

(i) ACC,
(ii) C is si,
(iii) v, the monolithic congruence filter of C, is of depth 2n,
(iv) p=vla.
It is easy to observe that the construction presented here can be iter-
ated. The next lemma is a consequence of this observation.

Lemma 4. Let A be a finite si residuated lattice with the monolith p
of depth n, and k be any natural number. Then, there is an si residuated
lattice B with the monolith v, such that:

(i) A CB,
(ii) v is of depth greater than k,

(iii) p=v|A.
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3. Lack of splittings

To make use of Lemma 2 we will need another construction. Let A,
B be finite si residuated lattices. We reserve the letter ¢ to stand for the
coatom of A, and ¢ for the coatom of B.

Then, we proceed to define A ® B = (((4 \ {1}) x (B \ {1})) U
{1, 1)} A,V, -, —,(1,1),(0,0)).

We will write a;, instead of (a, ), and 11, 0p we will further abbreviate
to 1, 0, whenever it will not cause confusion. In other words, we view the
elements of A ® B as elements of A indexed by elements of B.

The operations on A ® B are defined by:

a; Nbj =ar (@ AD)inj,
a; vV bj =ar (aV b)vj,
a; - bj —=df (a . b)i.j,
(CL — b)i_>j, if a g b, /) ﬁ j;
(a—b)g, if aLb, i<jy;
14, if a<b, i<y
Cimj, if a<b, iLj.

ai — bj =at

Fact 9. A ® B is an si residuated lattice.

Now, let A, u, B, n <k € w be as in Lemma 4, and let m > k be the
depth of v. B © L1, where L, is the simple Lukasiewicz algebra with
p + 1 elements, for the first prime number p greater or equal to |B|. As
previously, let ¢, ¢ stand for the unique coatoms of A, L, 11, respectively.

Fact 10. A ¢ V(B ® L,11). Moreover, there is a valuation v such
that BO Lyt =y Aa = ¢, and BO L, &, YXC) =1, for any k < p.

We are now ready to state our main result.

Theorem 1. The only algebra that splits L'(R) is the two-element
boolean algebra 2.

Proof. That 2 splits L(R) follows by Fact 2. Let A be a finite si residu-
ated lattice different from 2. Take any k£ € w. Let B be the algebra whose
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existence is guaranteed by Lemma 4. Then, by Fact 10, B © L, falsifies
ngk) =1,and A € V(B®L,1). Together, these constitute precisely the
condition (ii) of Lemma 2, by which the conclusion follows.
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