Гидроксамовые кислоты

Материал из Википедии — свободной энциклопедии
Это текущая версия страницы, сохранённая РобоСтася (обсуждение | вклад) в 18:43, 13 сентября 2024 (checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101)). Вы просматриваете постоянную ссылку на эту версию.
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
Общая формула гидроксамовых кислот.

Гидроксамовые кислоты — класс органических соединений, которые содержат функциональную группу RC(O)N(OH)R', где R и R' — углеводородные радикалы. Фактически они представляют собой амиды (RC(O)NHR'), у которых один атом водорода при азоте замещён на гидроксил. Часто используются как хелатирующие агенты металлов. Обладают таутомерией, могут обратимо переходить в гидроксииминовую форму[1].

Впервые гидроксамовую кислоту удалось получить в 1869 г. в лаборатории Вильгельма Лоссена. В результате взаимодействия этилоксалата и гидроксиламина была получена оксалогидроксамовая кислота. Чуть позже удалось получить смесь моно-, ди- и трибензоиловых производных гидроксамовых кислот в результате реакции гидроксиламина с хлорангидридом бензойной кислоты[1].

Синтез и реакции

[править | править код]
Таутомерный переход гидроксамовой кислоты в гидроксииминовую форму.

Гидроксамовые кислоты обычно получают из сложных эфиров или хлорангидридов карбоновых кислот. Например, синтез бензогидроксамовой кислоты идёт в соответствии со следующим уравнением реакции[2]:

C6H5CO2Me + NH2OH → C6H5C(O)NHOH + MeOH

Также гидроксамовые кислоты могут быть получены из альдегидов при помощи реакции Анджели — Римини[англ.].

Наиболее известная реакция с участием гидроксамовых кислот — это перегруппировка Лоссена. Алкилирование приводит к образованию сложных алкиловых эфиров гидроксамовых кислот, а ацилирование хлорангидридами карбоновых кислот — ацильных производных гидроксамовых кислот[1].

Физические свойства

[править | править код]

Ароматические гидроксамовые кислоты — относительно стабильные кристаллические твердые вещества. В целом, гидроксамовые кислоты — менее сильные кислоты, чем соответствующие им карбоновые (рК около 9)[1].

Координационная химия и биохимия

[править | править код]

В области координационной химии гидроксамовые кислоты используются в качестве лигандов[3]. Депротонируясь, они превращаются в бидентатные лиганды гидроксоматы, которые связывают ионы металлов. Сродство гидроксоматов к ионам трёхвалентного железа настолько велико, что в результате эволюции у живых организмов появилось целое семейство гидроксамовых кислот, которые функционируют как лиганды и переносчики ионов железа. Такие вещества называются сидерофоры[англ.] и используются для поглощения ионов железа всеми бактериями и растениями. Использование этих веществ позволяет растворить нерастворимые соединения трёхвалентного железа. Образовавшиеся комплексы затем транспортируются в клетку, где Fe3+ восстанавливается до Fe2+. Сродство гидроксоматов к Fe2+ значительно меньше, чем к Fe3+, поэтому ион двухвалентного железа легко диссоциирует из такого комплекса. У двудольных, не злаковых и дрожжей восстановление сидерофоров осуществляется внеклеточно, а в клетку поступает свободный ион Fe2+. У злаков, остальных грибов и бактерий сидерофор транспортируется в клетку целиком, и лишь затем подвергается восстановлению[4].

Использование

[править | править код]

Гидроксамовые кислоты широко используются для флотации редкоземельных минералов. Они применяются для концентрирования и экстракции руд, которые затем подвергаются дальнейшей обработке. Некоторые гидроксамовые кислоты (например, вориностат, белиностат, панобиностат и трихостатин А) являются ингибиторами гистондеацетилазы и поэтому обладают антираковыми свойствами. Дефероксамин, — природное производное гидроксамовой кислоты, — используется в качестве противоядия при отравлении железом. Ещё одна природная гидроксамовая кислота — Фосмидомицин, это ингибитор 1-деокси-D-ксилулозо-5-фосфат редуктоизомеразы (ДКФ редуктоизомераза), а салицилгидроксамовая кислота ингибирует альтернативную оксидазу растений и грибов. Кроме того, ведутся исследования по использованию гидроксамовых кислот для переработки отработанного ядерного топлива.

Примечания

[править | править код]
  1. 1 2 3 4 Beyer-Walter, Lehrbuch der Organischen Chemie, 23. Auflage, S. Hirzel Verlag 1998 ISBN 3-7776-0808-4
  2. C. R. Hauser and W. B. Renfrow, Jr «Benzohydroxamic Acid» Org. Synth. 1939, volume 19, p. 15ff.
  3. Agrawal, Y K. Hydroxamic Acids and Their Metal Complexes // Успехи химии. — Российская академия наук, 1979. — Т. 48, № 10. — С. 948. — doi:10.1070/RC1979v048n10ABEH002422.
  4. Miller, Marvin J. Syntheses and Therapeutic Potential of Hydroxamic Acid Based Siderophores and Analogues (англ.) // Chemical Reviews[англ.] : journal. — 1989. — November (vol. 89, no. 7). — P. 1563—1579. — doi:10.1021/cr00097a011. Архивировано 20 сентября 2018 года.

Литература

[править | править код]