An interactive EA for multifractal bayesian denoising
We present in this paper a multifractal bayesian denoising technique based on an
interactive EA. The multifractal denoising algorithm that serves as a basis for this technique
is adapted to complex images and signals, and depends on a set of parameters. As the
tuning of these parameters is a difficult task, highly dependent on psychovisual and
subjective factors, we propose to use an interactive EA to drive this process. Comparative
denoising results are presented with automatic and interactive EA optimisation. The …
interactive EA. The multifractal denoising algorithm that serves as a basis for this technique
is adapted to complex images and signals, and depends on a set of parameters. As the
tuning of these parameters is a difficult task, highly dependent on psychovisual and
subjective factors, we propose to use an interactive EA to drive this process. Comparative
denoising results are presented with automatic and interactive EA optimisation. The …
Abstract
We present in this paper a multifractal bayesian denoising technique based on an interactive EA. The multifractal denoising algorithm that serves as a basis for this technique is adapted to complex images and signals, and depends on a set of parameters. As the tuning of these parameters is a difficult task, highly dependent on psychovisual and subjective factors, we propose to use an interactive EA to drive this process. Comparative denoising results are presented with automatic and interactive EA optimisation. The proposed technique yield efficient denoising in many cases, comparable to classical denoising techniques. The versatility of the interactive implementation is however a major advantage to handle difficult images like IR or medical images.
Springer
Showing the best result for this search. See all results