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Abstract

The application of multi-attribute utility theory whose aggregation process is
based on the Choquet integral requires the prior identification of a capacity. The
main approaches to capacity identification proposed in the literature are reviewed
and their advantages and inconveniences are discussed. All the reviewed methods
have been implemented within the Kappalab R package. Their application is illus-
trated on a detailed example.

Keywords: Multi-criteria decision aiding, multi-attribute utility theory, Choquet inte-
gral, free software.

1 Introduction

Let X ⊆ X1 × · · · × Xn, n ≥ 2, be a set of objects of interest described by a set N :=
{1, . . . , n} of attributes. The aim of multi-attribute utility theory (MAUT) [1] is to model
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the preferences of the decision maker (DM), represented by a binary relation � on X, by
means of an overall utility function U : X → R such that,

x � y ⇐⇒ U(x) ≥ U(y), ∀x, y ∈ X.

The function U is generally determined by means of an interactive and incremental process
requiring from the DM that he/she expresses his/her preferences over a small subset of
selected objects. The resulting global utility function can then be seen as providing a
numerical representation of the preference relation � on X and can be used in applications
as a model of the expertise of the DM.

The preference relation � is usually assumed to be complete and transitive. As far
as the overall utility function is considered, the most frequently encountered model is the
additive value model (see e.g. [2]). In this work, we consider the more general transitive
decomposable model of Krantz et al. [3, 4] in which U is defined by

U(x) := F (u1(x1), . . . , un(xn)), ∀x = (x1, . . . , xn) ∈ X, (1)

where the functions ui : Xi → R are called the utility functions and F : Rn → R, non-
decreasing in its arguments, is sometimes called the aggregation function. As far as the
utility functions are considered, for any x ∈ X, the quantity ui(xi) can be interpreted as
a measure of the satisfaction of the value xi for the DM. From now on, the term criterion
will be used to designate the association of an attribute i ∈ N with the corresponding
utility function ui. For the previous decomposable model to hold, it is necessary that the
preference relation is a weakly separable weak order (see e.g. [2]).

The exact form of the overall utility function U depends on the hypotheses on which
the multi-criteria decision aiding (MCDA) problem is based. When mutual preferential
independence (see e.g. [5]) among criteria can be assumed, it is frequent to consider that
the function F is additive and takes the form of a weighted sum. The decomposable model
given in Eq. (1) is then equivalent to the classical additive value model. The assumption
of mutual preferential independence among criteria is however rarely verified in practice.
In order to be able to take interaction phenomena among criteria into account, it has
been proposed to substitute a monotone set function on N , called capacity [6] or fuzzy
measure [7], to the weight vector involved in the calculation of weighted sums. Such an
approach can be regarded as taking into account not only the importance of each criterion
but also the importance of each subset of criteria. A natural extension of the weighted
arithmetic mean in such a context is the Choquet integral with respect to (w.r.t.) the
defined capacity [8, 9, 10].

The use of a Choquet integral as an aggregation function in Eq. (1) requires, as we shall
see, the ability to compare the utility of an object according to different criteria. In other
words, it is necessary that the utility functions be commensurable, i.e. ui(x) = uj(x) if
and only if, for the DM, the object x is satisfied to the same extent on criteria i and j; see
e.g. [11] for a more complete discussion on commensurability. In the considered context,
commensurable utility functions can be determined using the extension of the MACBETH
methodology [12] proposed in [10]; see also [11, 13]. This task is not trivial and can take a
large percentage of the time dedicated to a MCDA/preference modeling problem. We will
not discuss it further here, as the topic of this paper is the capacity identification problem.

Assuming that the utility functions have been determined, the learning data from which
the capacity is to be identified consists of the initial preferences of the DM: usually, a partial
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weak order over a (small) subset of the set X of objects, a partial weak order over the set
of criteria, intuitions about the importance of the criteria, etc. The precise form of these
prior preferences will be discussed in Section 3.

The aim of this paper is to review the main approaches to capacity identification pro-
posed in the literature that can be applied to Choquet integral based MAUT. As we shall
see, most of the presented methods can be stated as optimization problems. They differ
w.r.t. the objective function and the preferential information they require as input. For each
of the reviewed methods, we point out its main advantages/disadvantages. The last part of
this paper is devoted to a presentation of the discussed identification methods through the
Kappalab toolbox [14]. Kappalab, which stands for “laboratory for capacities”, is a package
for the GNU R statistical system [15], which is a Matlab like free software environment for
statistical computing and graphics. Kappalab contains high-level routines for capacity and
non-additive integral manipulation on a finite setting which can be used in the framework
of decision aiding or cooperative game theory. All the reviewed identification methods
have been implemented within Kappalab and can be easily used through the high-level R
language.

The paper is organized as follows. The second section is devoted to the presentation of
the Choquet integral as an aggregation operator and to numerical indices that can be used
to understand its behavior. In the third section, we discuss the form of the preferential
information from which the capacity is to be identified. The next section contains a review
of the main approaches to capacity identification existing in the literature. The application
of the reviewed methods is illustrated in the last section through the use of the Kappalab
R package.

In order to avoid a heavy notation, we will omit braces for singletons and pairs, e.g.,
by writing µ(i), N \ ij instead of µ({i}), N \ {i, j}. Furthermore, cardinalities of subsets
S, T, . . . , will be denoted by the corresponding lower case letters s, t, . . . Also, as classically
done, the asymmetric part of a binary relation � will be denoted by ≻ and its symmetric
part by ∼. Finally, the power set of N will be denoted by P(N).

2 The Choquet integral as an aggregation operator

2.1 Capacities and Choquet integral

As mentioned in the introduction, capacities [6], also called fuzzy measures [7], can be
regarded as generalizations of weighting vectors involved in the calculation of weighted
sums.

Definition 2.1. A capacity on N is a set function µ : P(N) → [0, 1] satisfying the following
conditions:

(i) µ(∅) = 0, µ(N) = 1,

(ii) for any S, T ⊆ N , S ⊆ T ⇒ µ(S) ≤ µ(T ).

Furthermore, a capacity µ on N is said to be
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• additive if µ(S ∪ T ) = µ(S) + µ(T ) for all disjoint subsets S, T ⊆ N ,

• cardinality-based if, for any T ⊆ N , µ(T ) depends only on the cardinality of T .

Note that there is only one capacity on N that is both additive and cardinality-based. We
call it the uniform capacity and denote it by µ∗. It is easy to verify that µ∗ is given by

µ∗(T ) = t/n, ∀T ⊆ N.

In the framework of aggregation, for each subset of criteria S ⊆ N , the number µ(S)
can be interpreted as the weight or the importance of S. The monotonicity of µ means that
the weight of a subset of criteria cannot decrease when new criteria are added to it.

When using a capacity to model the importance of the subsets of criteria, a suitable
aggregation operator that generalizes the weighted arithmetic mean is the Choquet inte-
gral [8, 9, 10].

Definition 2.2. The Choquet integral of a function x : N → R represented by the vector
(x1, . . . , xn) w.r.t. a capacity µ on N is defined by

Cµ(x) :=
n

∑

i=1

xσ(i)[µ(Aσ(i)) − µ(Aσ(i+1))],

where σ is a permutation on N such that xσ(1) ≤ · · · ≤ xσ(n). Also, Aσ(i) := {σ(i), . . . , σ(n)},
for all i ∈ {1, . . . , n}, and Aσ(n+1) := ∅.

Seen as an aggregation operator, the Choquet integral w.r.t. µ can be considered as
taking into account interaction phenomena among criteria, that is, complementarity or
substitutivity among elements of N modeled by µ [9].

The Choquet integral generalizes the weighted arithmetic mean in the sense that, as
soon as the capacity is additive, which intuitively coincides with the independence of the
criteria, it collapses into a weighted arithmetic mean.

An intuitive presentation of the Choquet integral is given in [16]. An axiomatic char-
acterization of the Choquet integral as an aggregation operator can be found in [9]. Note
that the first use of the Choquet integral in decision analysis is probably due to Schmeidler
in the context of decision under uncertainty; see e.g. [17].

2.2 The Möbius transform of a capacity

Any set function ν : P(N) → R can be uniquely expressed in terms of its Möbius represen-
tation [18] by

ν(T ) =
∑

S⊆T

mν(S), ∀T ⊆ N, (2)

where the set function mν : P(N) → R is called the Möbius transform or Möbius represen-
tation of ν and is given by

mν(S) =
∑

T⊆S

(−1)s−tν(T ), ∀S ⊆ N. (3)
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Of course, any set of 2n coefficients {m(S)}S⊆N does not necessarily correspond to the
Möbius transform of a capacity on N . The boundary and monotonicity conditions must be
ensured [19], i.e., we must have























m(∅) = ∅,
∑

T⊆N
m(T ) = 1,

∑

T⊆S
T∋i

m(T ) ≥ 0, ∀S ⊆ N, ∀ i ∈ S.
(4)

As shown in [19], in terms of the Möbius representation of a capacity µ on N , for any
x = (x1, . . . , xn) ∈ Rn, the Choquet integral of x w.r.t. µ is given by

Cmµ
(x) =

∑

T⊆N

mµ(T )
∧

i∈T

xi, (5)

where the symbol ∧ denotes the minimum operator. The notation Cmµ
, which is equivalent

to the notation Cµ, is used to emphasize the fact that the Choquet integral is here computed
w.r.t. the Möbius transform of µ.

2.3 Analysis of the aggregation

The behavior of the Choquet integral as an aggregation operator is generally difficult to
understand. For a better comprehension of the interaction phenomena modeled by the
underlying capacity, several numerical indices can be computed [20, 21]. In the sequel, we
present two of them in detail.

2.3.1 Importance index

The overall importance of a criterion i ∈ N can be measured by means of its Shapley
value [22], which is defined by

φµ(i) :=
∑

T⊆N\i

(n − t − 1)! t!

n!
[µ(T ∪ i) − µ(T )].

Having in mind that, for each subset of criteria S ⊆ N , µ(S) can be interpreted as the
importance of S in the decision problem, the Shapley value of i can be thought of as an
average value of the marginal contribution µ(T ∪ i) − µ(T ) of criterion i to a subset T
not containing it. A fundamental property is that the numbers φµ(1), . . . , φµ(n) form a
probability distribution over N . In terms of the Möbius representation of µ, the Shapley
value of i can be rewritten as

φmµ
(i) =

∑

T⊆N\i

1

t + 1
mµ(T ∪ i). (6)

2.3.2 Interaction index

In order to intuitively approach the concept of interaction, consider two criteria i and j
such that µ(ij) > µ(i) + µ(j). Clearly, the previous inequality seems to model a positive
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interaction or complementary effect between i and j. Similarly, the inequality µ(ij) <
µ(i) + µ(j) suggests considering that i and j interact in a negative or redundant way.
Finally, if µ(ij) = µ(i) + µ(j), it seems natural to consider that criteria i and j do not
interact, i.e., that they have independent roles in the decision problem.

A coefficient measuring the interaction between i and j should therefore depend on the
difference µ(ij) − [µ(i) + µ(j)]. However, as discussed by Grabisch and Roubens [23], the
intuitive concept of interaction requires a more elaborate definition. Clearly, one should
not only compare µ(ij) and µ(i) + µ(j) but also see what happens when i, j, and ij join
other subsets. In other words, an index of interaction between i and j should take into
account all the coefficients of the form µ(T ∪ i), µ(T ∪ j), and µ(T ∪ ij), with T ⊆ N \ ij.

Murofushi and Soneda [24] suggested to measure the average interaction between two
criteria i and j by means of the following interaction index:

Iµ(ij) :=
∑

T⊆N\ij

(n − t − 2)! t!

(n − 1)!
[µ(T ∪ ij) − µ(T ∪ i) − µ(T ∪ j) + µ(T )].

Notice that, given a subset T not containing i and j, the expression

µ(T ∪ ij) − µ(T ∪ i) − µ(T ∪ j) + µ(T )

can be regarded as the difference between the marginal contributions µ(T ∪ ij) − µ(T ∪ i)
and µ(T ∪ j) − µ(T ). We call this expression the marginal interaction between i and j in
the presence of T . Indeed, it seems natural to consider that if

µ(T ∪ ij) − µ(T ∪ i) > µ(T ∪ j) − µ(T ) (resp. <),

i and j interact positively (resp. negatively) in the presence of T .

The quantity Iµ(ij) can therefore be interpreted as a measure of the average marginal
interaction between i and j. An important property is that Iµ(ij) ∈ [−1, 1] for all ij ⊆ N ,
the value 1 (resp. -1) corresponding to maximum complementarity (resp. substitutivity)
between i and j [25]. In terms of the Möbius representation of µ, Iµ(ij) can be rewritten
as

Imµ
(ij) =

∑

T⊆N\ij

1

t + 1
mµ(T ∪ ij). (7)

2.4 The concept of k-additivity

From the results presented in Sections 2.1 and 2.2, one can see that a capacity µ on N
is completely defined by the knowledge of 2n − 2 coefficients, for instance {µ(S)}∅6=S(N

or {mµ(S)}∅6=S(N . Such a complexity may be prohibitive in certain applications. The
fundamental notion of k-additivity proposed by Grabisch [25] enables to find a trade-off
between the complexity of the capacity and its modeling ability.

Definition 2.3. Let k ∈ {1, . . . , n}. A capacity µ on N is said to be k-additive if its
Möbius representation satisfies mµ(T ) = 0 for all T ⊆ N such that t > k and there exists
at least one subset T of cardinality k such that mµ(T ) 6= 0.
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As one can easily check, the notion of 1-additivity coincides with that of additivity.
Notice that, in this case, it follows from Eq. (7) that the interaction index is zero for
any pair of criteria, which is in accordance with the intuition that an additive capacity
cannot model interaction. More generally, it can be shown that a k-additive capacity,
k ∈ {2, . . . , n}, can model interaction among at most k criteria; see e.g. [26].

Let k ∈ {1, . . . , n} and let µ be a k-additive capacity on N . From Eq. (2), we immedi-
ately have that

µ(S) =
∑

∅6=T⊆S
t≤k

mµ(T ), ∀S ⊆ N,

which confirms that a k-additive capacity (k < n) is completely defined by the knowledge

of
∑k

l=1

(

n

l

)

coefficients.

3 The identification problem

Assuming that the utility functions have been determined (see [10, 13]), the next step
consists in identifying a capacity, if it exists, such that the Choquet integral w.r.t. this
capacity numerically represents the preferences of the DM (see Eq. (1)). When dealing
with a real-world preference modeling problem, the DM is generally asked to reason on a
finite and usually small subset O of the set X of objects of interest. The set O is usually
composed either of physically available objects (at hand) or of selected, potentially fictitious
objects the reasoning on which may prove particularly useful for modeling the preferences of
the DM. Using the terminology of statistical learning, the set O could be seen as a learning
set. Its usually small cardinality (rarely more than 20 objects) is due to the fact that the
expression of the preferences of the DM is generally a very time-consuming process. See
for instance [5, Chap. 3] for a more complete discussion about the subset O.

Once an appropriate subset O has been determined, the DM is asked to express his
initial preferences. The use of the adjective initial will become clear at the end of this
section. These preferences, from which the capacity is to be determined, can take the form
of:

• a partial weak order �O over O (ranking of the available objects);

• a partial weak order �N over N (ranking of the importance of the criteria);

• a partial weak order �P on the set of pairs of criteria (ranking of interactions);

• etc.

In the context of MAUT based on the Choquet integral, it seems natural to translate
some of the above prior information as follows:

• x ≻O x′ can be translated as Cµ(u(x)) − Cµ(u(x′)) ≥ δC ;

• x ∼O x′ can be translated as −δC ≤ Cµ(u(x)) − Cµ(u(x′)) ≤ δC ;

• i ≻N j can be translated as φµ(i) − φµ(j) ≥ δSh;
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• i ∼N j can be translated as −δSh ≤ φµ(i) − φµ(j) ≤ δSh;

• ij ≻P kl can be translated as Iµ(ij) − Iµ(kl) ≥ δI ;

• ij ∼P kl can be translated as −δI ≤ Iµ(ij) − Iµ(kl) ≤ δI ;

where u(x) := (u1(x1), . . . , un(xn)) for all x ∈ X, and δC , δSh and δI are nonnegative
indifference thresholds to be defined by the DM. In other terms, the partial weak orders �O,
�N , �P previously mentioned are translated into partial semiorders with fixed indifference
thresholds. Note that in practice a constraint of the form Iµ(ij) − Iµ(kl) ≥ δI is generally
accompanied by either the constraint Iµ(ij) ≤ 0 or the constraint 0 ≤ Iµ(kl).

Most of the identification methods proposed in the literature can be stated under the
form of an optimization problem:

min or max F(. . . )

subject to















































































ν(S ∪ i) − ν(S) ≥ 0,∀ i ∈ N, ∀S ⊆ N \ i,
ν(N) = 1,
Cν(u(x)) − Cν(u(x′)) ≥ δC ,
...
φν(i) − φν(j) ≥ δSh,
...
Iν(ij) − Iν(kl) ≥ δI ,
Iν(kl) ≥ 0
...

where ν is a game on N , i.e. a set function ν : P(N) → R such that ν(∅) = 0 and F is an
objective function that differs w.r.t. to the chosen identification method.

A solution to the above problem is a general capacity defined by 2n−1 coefficients. The
number of variables involved in it increases exponentially with n and so will the computa-
tional time. For large problems, both for computational and simplicity reasons, it may be
preferable to restrict the set of possible solutions to k-additive capacities, k ∈ {1, . . . , n},
typically k = 2 or 3. The idea is here simply to rewrite the above optimization problem in
terms of the Möbius transform of a k-additive game using Eqs. (3), (5), (6) and (7), which

will decrease the number of variables from 2n − 1 to
∑k

l=1

(

n

l

)

as one can see from Table 1.
We obtain

min or max F(. . . )

subject to































































∑

T⊆S
t≤k−1

mν(T ∪ i) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i,

∑

T⊆N
0<t≤k

mν(T ) = 1,

Cmν
(u(x)) − Cmν

(u(x′)) ≥ δC ,
...
φmν

(i) − φmν
(j) ≥ δSh,

...

where mν is the Möbius representation of a k-additive game ν on N .

Of course, the above optimization problem may be infeasible if the constraints are
inconsistent. Such a situation can arise for two main reasons :
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Table 1: Influence of the order of k-additivity and the number n of criteria on the number
of variables.

k / n 2 3 4 5 6 7 8 9 10
1-add 2 3 4 5 6 7 8 9 10
2-add 3 6 10 15 21 28 36 45 55
3-add - 7 14 25 41 63 92 129 175
n-add 3 7 15 31 63 127 255 511 1023

• The preferential information provided by the DM is contradictory or violates natu-
ral axioms underlying most decision-making procedures such as compatibility with
dominance, transitivity of strict preferences, etc.

• The number of parameters of the model, i.e. the number of coefficients of the Möbius
transform, is too small to have all the constraints satisfied. In this case, in order to
increase the number of free parameters, and therefore to be more likely to be able to
model the DM’s initial preferences, the approach usually consists in incrementing the
order of k-additivity. It may happen however that even with a general (n-additive)
capacity, the constraints imposed by the DM, still being in accordance with the pre-
viously mentioned natural axioms, cannot be satisfied. In such a case, some more
specific axioms underlying the Choquet integral model are violated (see e.g. [27]) and
the Choquet integral cannot be considered as sufficiently flexible for modeling the
initial preferences of the DM.

It is important to note that, in practice, finding a solution to the above optimization
problem does not necessarily end the identification process. Indeed, the obtained Choquet
integral-based model is then usually analyzed by means of the indices presented in Sec-
tion 2.3. If the results are not completely in accordance with the DM’s reasoning, his initial
preferences are enriched by additional constraints and a new identification is performed.
Such an incremental process is carried out until a satisfactory model is found.

4 Review of the main approaches to capacity identifi-

cation

As discussed in Section 3, most of the methods for capacity identification proposed in the
literature can be stated as optimization problems. They differ according to their objec-
tive function and the preferential information they require as input. After presenting two
approaches that could be seen as generalizations of multiple linear regression, we review
methods based on maximum split, minimum variance and minimum distance identifica-
tion principles. We end this section by describing a hybrid method enabling to provide an
approximate solution if there are no capacities compatible with the DM’s preferences.
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4.1 Least-squares based approaches

Historically, the first approach that has been proposed can be regarded as a generalization of
classical multiple linear regression [28]. It requires the additional knowledge of the desired
overall evaluations y(x) of the available objects x ∈ O. The objective function is defined as

FLS(mν) :=
∑

x∈O

[Cmν
(u(x)) − y(x)]2 ,

where u(x) := (u1(x1), . . . , un(xn)) for all x ∈ X. The aim is to minimize the average
quadratic distance between the overall utilities {Cmν

(u(x))}x∈O computed by means of
the Choquet integral and the desired overall scores {y(x)}x∈O provided by the DM. The
optimization problem takes therefore the form of a quadratic program, not necessarily
strictly convex [29], which implies that the solution, if it exists, is not necessarily unique
(this aspect is investigated in detail in [30]). In order to avoid the use of quadratic solvers,
heuristic suboptimal versions of this approach have been proposed by Ishii and Sugeno [31],
Mori and Murofushi [28] and Grabisch [32]. Let us detail this latter approach.

Called Heuristic Least Mean Squares (HLMS), it is based on a gradient approach starting
from a DM defined capacity µ that we shall call the initial capacity. This capacity is
typically an additive capacity representing the DM’s prior idea of what the aggregation
function F in Eq. (1) should be. In the absence of clear requirements on the aggregation
function, a very natural choice for µ is the uniform capacity µ∗ since the Choquet integral
w.r.t. that capacity is nothing else than the arithmetic mean. Once the initial capacity
µ has been chosen, for each object x ∈ O, the gradient modifies only the coefficients of
µ involved in the computation of Cµ(u(x)) (without violating monotonicity constraints).
When all the available objects have been used, unmodified coefficients of µ are modified
towards the average value of neighboring coefficients. This forms one iteration, and the
process is restarted until a stopping criterion is satisfied. The advantage over the optimal
quadratic approach is that only the vector of the coefficients of µ has to be stored, while
in the latter, a squared matrix of same dimensions has to be stored. Also, as we shall see
in Subsection 5.2, this heuristic approach tends to provide less extreme solutions than the
optimal approach. However, unlike for the optimal quadratic method, it is not possible to
require that the solution be k-additive, k < n.

In the context of MAUT based on the Choquet integral, the main inconvenience of these
approaches is that they require the knowledge of the desired overall utilities {y(x)}x∈O,
which cannot always be obtained from the DM.

4.2 A maximum split approach

An approach based on linear programming was proposed by Marichal and Roubens [33].
The proposed identification method can be stated as follows:
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maxFLP (ε) := ε

subject to







































∑

T⊆S
t≤k−1

mν(T ∪ i) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i,

∑

T⊆N
0<t≤k

mν(T ) = 1,

Cmν
(u(x)) − Cmν

(u(x′)) ≥ δC + ε,
...

Roughly speaking, the idea of the proposed approach is to maximize the minimal difference
between the overall utilities of objects that have been ranked by the DM through the partial
weak order �O (hence the name maximum split). Indeed, if the DM states that x ≻O x′,
he may want the overall utilities to reflect this difference in the most significant way.

The main advantage of this approach is its simplicity. However, as the least squares
based approach presented in the previous subsection, this identification method does not
necessarily lead to a unique solution, if any. Furthermore, as it will be illustrated in
Section 5, the provided solution can sometimes be considered as too extreme, since it
corresponds to a capacity that maximizes the difference between overall utilities.

4.3 Minimum variance and minimum distance approaches

The idea of the minimum variance method [34] is to favor the “least specific” capacity, if
any, compatible with the initial preferences of the DM. The objective function is defined as
the variance of the capacity, i.e.

FMV (mν) :=
1

n

∑

i∈N

∑

S⊆N\i

γs(n)





∑

T⊆S

mµ(T ∪ i) −
1

n





2

.

As shown in [34], minimizing this variance is equivalent to maximizing the extended Havrda
and Charvat entropy of order 2. This method can therefore be equivalently regarded as
a maximum entropy approach. The optimization problem takes the form of the following
strictly convex quadratic program:

minFMV (mν)

subject to







































∑

T⊆S
t≤k−1

mν(T ∪ i) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i,

∑

T⊆N
0<t≤k

mν(T ) = 1,

Cmν
(u(x)) − Cmν

(u(x′)) ≥ δC ,
...

As discussed in [34, 35], the Choquet integral w.r.t. the minimum variance capacity
compatible with the initial preferences of the DM, if it exists, is the one that will exploit
the most on average its arguments.

One of the advantages of this approach is that it leads to a unique solution, if any,
because of the strict convexity of the objective function. Also, in the case of “poor” initial
preferences involving a small number of constraints, this unique solution will not exhibit too
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specific behaviors characterized for instance by very high positive or negative interaction
indices or a very uneven Shapley value.

A generalization of this approach [36] consists in finding, if it exits, the closest capacity
to a capacity defined by the DM and compatible with his/her initial preferences. As already
discussed in Subsection 4.1, this initial capacity is typically an additive capacity representing
the DM’s prior idea of what the aggregation function should be. In the absence of clear
requirements a very natural choice for µ is the uniform capacity µ∗. In order to practically
implement such a minimum distance principle, in [36], three quadratic distances have been
studied. In the sequel, we shall restrict ourselves to the following one defined, for any two
games µ, ν on N by

d2(mµ, mν) :=
∫

[0,1]n
[Cmν

(x) − Cmµ
(x)]2dx. (8)

This quadratic distance, thoroughly studied in [37, Chap. 7] in the context of the exten-
sion of pseudo-Boolean functions, can be interpreted as the expected quadratic difference
between overall utilities computed by Cmµ

and Cmν
assuming that the vectors of partial

utilities are uniformly distributed in [0, 1]n.

In the absence of clear requirements on the aggregation function, a natural objective
function for the above discussed minimum distance principle is thus given by

FMD(mν) :=
∫

[0,1]n

[

Cmν
(x) −

1

n

n
∑

i=1

xi

]2

dx.

The resulting optimization problem is again a strictly convex quadratic program.

4.4 A less constrained approach

This approach, which is due to Meyer and Roubens [38], can be seen as a generalization of
the least squares methods described in Subsection 4.1. The minimal preferential information
which has to be provided by the DM is a weak order over the available objects. The objective
function, depending on more variables than the least squares methods described earlier, is
defined as

FGLS(mν , y) :=
∑

x∈O

[Cmν
(u(x)) − y(x)]2 ,

where y = {y(x)}x∈O are additional variables of the quadratic program1 representing overall
unknown evaluations of the objects that must verify the weak order imposed by the DM.

The optimization problem can be written as the following convex quadratic program :

minFGLS(mν , y)

subject to







































∑

T⊆S
t≤k−1

mν(T ∪ i) ≥ 0, ∀i ∈ N, ∀S ⊆ N \ i,

∑

T⊆N
0<t≤k

mν(T ) = 1,

y(x) − y(x′) ≥ δy,
...

1The acronym GLS stands for “generalized least squares”.
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where δy is a indifference threshold, playing a similar role as δC , i.e., it can be interpreted
as the desired minimal difference between the overall utilities of two objects which are
considered as significantly different by the DM. A solution of the quadratic program consists
of the Möbius representation mν of the capacity and the overall evaluations y = {y(x)}x∈O.

Let us first intuitively explain the main idea of the approach. As discussed at the end of
Section 3, assuming that the constraints imposed by the DM are not contradictory and do
not question natural multicriteria decision axioms such as compatibility with dominance,
it may still happen that the number of parameters (following from the chosen order of k-
additivity) is too small so that these constraints can be satisfied. A first possibility consists
in increasing k, if possible. A second solution consists in relaxing some of the constraints
by translating the desired weak order over the available objects by means of conditions on
the unknown overall evaluations {y(x)}x∈O. In that case, the Möbius transform mν is less
constrained and there may exist a solution.

The role of the objective function is to minimize the quadratic difference between the
numerical representation {y(x)}x∈O of the weak order imposed by the DM and the overall
utilities computed by means of the Choquet integral. If the objective function is zero, then
for each object x, its overall evaluation y(x) equals its aggregated overall utility Cmν

(u(x)).
In that case, the weak order obtained by ordering the objects according to their aggregated
evaluations is consistent with the weak order imposed by the DM and the threshold δy is not
violated. Two possibilities arise: either there is a unique solution or there exists an infinity
of solutions to the problem. In the second case, the solution is chosen by the solver and its
characteristics are difficult to predict. If the objective function is strictly positive, then the
aggregated overall evaluations {Cmν

(u(x))}x∈O do not exactly match the overall unknown
evaluations {y(x)}x∈O numerically representing the weak order imposed by the DM. Two
possibilities arise: either the weak order induced by the aggregated overall evaluations
{Cmν

(u(x)}x∈O corresponds to �O but x ≻O x′ does not necessarily imply Cmν
(u(x)) ≥

Cmν
(u(x′))+δy (see Subsection 5.6), or the weak order induced by the {Cmν

(u(x)}x∈O does
not correspond to �O. In the former case, the solution does not respect the DM’s choice
for the minimal threshold δy. In the latter case the weak order is violated “on average”
which might not be very satisfactory.

The advantage of this approach is that it may provide a solution even if the weak order
over the available objects is incompatible with a Choquet integral model because some
specific axioms are violated (see e.g. [27]), if the indifference threshold δy is too large, or if
some of the constraints on the criteria are not compatible with a representation of the weak
order by a Choquet integral. It is then on to the DM to decide if the result is satisfactory
or not. Nevertheless, as already explained, this approach should be used with care when
the objective function is zero, since then, it simply amounts to letting the quadratic solver
choose a feasible solution whose characteristics are difficult to predict.

4.5 Practical implementation

The discussed identification methods have been implemented within the Kappalab pack-
age [14] for the GNU R statistical system [15]. The package is distributed as free soft-
ware and can be downloaded from the Comprehensive R Archive Network (http://cran.
r-project.org) or from http://www.polytech.univ-nantes.fr/kappalab. To solve lin-

13



ear programs, the LpSolve R package [39] is used; strictly convex quadratic programs are
solved using the Quadprog R package [40]; finally, not necessarily strictly convex quadratic
programs are solved using the ipop routine of the Kernlab R package [41].

As far as the maximum number of criteria is considered, Kappalab allows to work
comfortably with up to n = 10 criteria if n-additive capacities are considered and with up
to n = 32 criteria if 2 or 3-additive capacities are considered.

5 Applications of the Kappalab R package

5.1 Problem description

We consider an extended version of the fictitious problem presented in [34] concerning the
evaluation of students in an institute training econometricians. The students are evaluated
w.r.t. five subjects: statistics (S), probability (P), economics (E), management (M) and
English (En). The utilities of seven students a, b, c, d, e, f , g on a [0, 20] scale are given in
Table 2.

Table 2: Partial evaluations of the seven students.

Student S P E M En Mean
a 18 11 11 11 18 13.80
b 18 11 18 11 11 13.80
c 11 11 18 11 18 13.80
d 18 18 11 11 11 13.80
e 11 11 18 18 11 13.80
f 11 11 18 11 11 12.40
g 11 11 11 11 18 12.40

Assume that the institute is slightly more oriented towards statistics and probability
and suppose that the DM considers that there are 3 groups of subjects: statistics and
probability, economics and management, and English. Furthermore, he/she considers that
within the two first groups, subjects are somewhat substitutive, i.e. they overlap to a certain
extent. Finally, if a student is good in statistics or probability (resp. bad in statistics and
probability), it is better that he/she is good in English (resp. economics or management)
rather than in economics or management (resp. English). This reasoning, applied to the
profiles of Table 2, leads to the following ranking:

a ≻O b ≻O c ≻O d ≻O e ≻O f ≻O g. (9)

We shall further assume that the DM considers that two students are significantly different
if their overall utilities differ by at least half a unit.

By considering students a and b, and f and g, it is easy to see that the criteria do not
satisfy mutual preferential independence, which implies that there is no additive model that
can numerically represent the above weak order.

14



In order to use the identification methods reviewed in the previous section and imple-
mented in Kappalab, we first create 7 R vectors representing the students:

> a <- c(18,11,11,11,18)

> b <- c(18,11,18,11,11)

> c <- c(11,11,18,11,18)

> d <- c(18,18,11,11,11)

> e <- c(11,11,18,18,11)

> f <- c(11,11,18,11,11)

> g <- c(11,11,11,11,18)

The symbol > represents the prompt in the R shell, the symbol <- the assignment operator,
and c is the R function for vector creation.

5.2 The least squares approaches

In order to apply the least squares approaches presented in Subsection 4.1, the 7 vectors
previously defined and representing the students need first to be concatenated into a 7 row
matrix, called C here, using the rbind (“row bind”) matrix creation function:

> C <- rbind(a,b,c,d,e,f,g)

Then, the DM needs to provide overall utilities for the seven students. Although it is unre-
alistic to consider that this information can always be given, we assume in this subsection
that the DM is able to provide it. He respectively assigns 15, 14.5, 14, 13.5, 13, 12.5 and
12 to a, b, c, d, e, f and g. These desired overall utilities are encoded into a 7 element R
vector:

> overall <- c(15,14.5,14,13.5,13,12.5,12)

The least squares identification routine based on quadratic programming (providing an
optimal but not necessarily unique solution) can then be called by typing:

> ls <- least.squares.capa.ident(5,2,C,overall)

in the R terminal. The first argument sets the number of criteria, the second fixes the desired
order of k-additivity, and the two last represent the matrix containing the partial utilities
and the vector containing the desired overall utilities respectively. The result is stored in
an R list object, called here ls, containing all the relevant information for analyzing the
results.

The solution, a 2-additive capacity given under the form of its Möbius representation,
can be obtained by typing:

> m <- ls$solution

and visualized by entering m in the R terminal:
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> m

Mobius.capacity

{} 0.000000

{1} 0.311650

{2} 0.176033

... ...

{4,5} 0.001752

As discussed in Subsection 4.1, for the considered example, the obtained solution is probably
not unique [30].

The Choquet integral for instance of a w.r.t. the solution can be obtained by typing:

> Choquet.integral(m,a)

[1] 15

To use the least squares identification routine implementing the heuristic approach pro-
posed in [32], we first need to create the initial capacity as discussed in Subsection 4.1.
Here, in the absence of clear requirements on the form of the Choquet integral, we take the
uniform capacity on the set of criteria (subjects):

> mu.unif <- as.capacity(uniform.capacity(5))

The heuristic least squares identification routine can then be called by typing:

> hls <- heuristic.ls.capa.ident(5,mu.unif,C,overall,alpha=0.05)

The first argument sets the number of criteria, the second contains the initial capacity, the
third represents the matrix of the partial evaluations, the fourth the vector containing the
desired overall utilities, and the last the value of the parameter controlling the gradient
descent.

The overall utilities computed using the Choquet integral w.r.t. the two obtained solu-
tions are given in the last two columns of the table below, the sixth column containing the
desired overall evaluations:

S P E M En Given Mean LS HLS

a 18 11 11 11 18 15.0 13.8 15.0 15.0

b 18 11 18 11 11 14.5 13.8 14.5 14.5

c 11 11 18 11 18 14.0 13.8 14.0 14.0

d 18 18 11 11 11 13.5 13.8 13.5 13.5

e 11 11 18 18 11 13.0 13.8 13.0 13.0

f 11 11 18 11 11 12.5 12.4 12.5 12.5

g 11 11 11 11 18 12.0 12.4 12.0 12.0

As one can see, both the optimal and the heuristic approaches enable to recover the overall
utilities provided by the DM. Recall however that the solution returned by the optimal
quadratic method is 2-additive whereas that returned by the heuristic method is 5-additive.

The Shapley values of the solutions can be computed by means of the Shapley.value

function taking as argument a capacity and are given in the following table :
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S P E M En

LS 0.29 0.14 0.21 0.13 0.24

HLS 0.24 0.18 0.20 0.16 0.21

As one could have expected, the Shapley value of the solution obtained by the heuristic
approach is more even than that returned by the optimal quadratic method.

5.3 The LP, minimum variance and minimum distance approaches

As discussed earlier, the least squares approaches applied in the previous subsection are not
well adapted to MAUT since they rely on information that a DM cannot always provide.
The LP, the minimum variance and the minimum distance approaches require only a partial
weak order over the available objects, such as the one provided by the DM in Eq. (9). This
weak order is naturally translated as

Cmν
(a) > Cmν

(b) > Cmν
(c) > Cmν

(d) > Cmν
(e) > Cmν

(f) > Cmν
(g).

with indifference threshold δC = 0.5.

Practically, the preference threshold is stored in an R variable:

> delta.C <- 0.5

and the weak order over the students is encoded into a 6 row R matrix:

> Acp <- rbind(c(a,b,delta.C), c(b,c,delta.C), c(c,d,delta.C),

c(d,e,delta.C), c(e,f,delta.C), c(f,g,delta.C))

each row containing a constraint of the form Cmν
(u(x)) ≥ Cmν

(u(y)) + δC .

The LP approach is then invoked by typing:

> lp <- lin.prog.capa.ident(5,2,A.Choquet.preorder = Acp)

The first argument fixes the number of criteria, the second sets the desired order of k-
additivity for the solution, and the last contains the partial weak order provided by the
DM. All the relevant information to analyze the solution is stored in the R object lp.

The minimum variance approach is called similarly:

> mv <- mini.var.capa.ident(5,2,A.Choquet.preorder = Acp)

To use the minimum distance approach, we first need to create the initial capacity. In
the absence of clear requirements from the DM, we choose the uniform capacity on the set
of criteria (subjects), which can be created by entering:

> m.mu <- additive.capacity(c(0.2,0.2,0.2,0.2,0.2))

The closest capacity to the uniform capacity compatible with the initial preferences of the
DM is then obtained by typing:
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> md <- mini.dist.capa.ident(m.mu,2,"global.scores",

A.Choquet.preorder = Acp)

The second argument sets the desired order of k-additivity for the solution, while the third
one indicates which of the 3 available quadratic distances between capacities should be
used [36]. The character string "global.scores" refers to the distance given in Eq. (8).

The overall utilities computed using the Choquet integral w.r.t. the 2-additive solutions
are given in the following table:

S P E M En Mean LP MV MD

a 18 11 11 11 18 13.8 18.00 15.25 14.95

b 18 11 18 11 11 13.8 17.36 14.75 14.45

c 11 11 18 11 18 13.8 16.73 14.25 13.95

d 18 18 11 11 11 13.8 16.09 13.75 13.45

e 11 11 18 18 11 13.8 15.45 13.25 12.95

f 11 11 18 11 11 12.4 14.82 12.75 12.45

g 11 11 11 11 18 12.4 14.18 12.25 11.95

Note that, as expected, the LP approach leads to more dispersed utilities, which reach
the maximum value (18) that a Choquet integral can take for the seven students. Note
also that, for the minimum variance and the minimum distance approaches, the differences
between the overall utilities of two consecutive students in the weak order provided by the
DM equal exactly δC . This last observation follows from the fact that, in this example, the
aim of both methods is roughly to find the Choquet integral that is the closest to the simple
arithmetic mean while being in accordance with the preferential information provided by
the DM.

The Shapley values of the 2-additive solutions are:

S P E M En

LP 0.45 0.00 0.27 0.05 0.23

MV 0.27 0.16 0.21 0.14 0.22

MD 0.24 0.18 0.20 0.16 0.22

As one can see, all three solutions designate statistics (S) as the most important criterion.
Note that the LP solution is very extreme, since the overall importance of probability (P)
and management (M) is very small and that of S is close to one half.

However, the overall importances of the criteria are not in accordance with the orienta-
tion of the institution. Indeed, one would have expected to obtain that statistics (S) and
probability (P), and economics (E) and management (M), have the same importances. This
is due to the fact that until now, the preferential information which we used was limited to
a small number of students which were ranked by the DM. In order to build a more accurate
model, we can impose additional constraints as we shall see in the next subsection. This
clearly justifies the use of a progressive interactive approach to model the DM’s preferences
in MAUT.
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5.4 Additional constraints on the Shapley value

As discussed in the previous subsection, assume now that by considering the Shapley val-
ues of the 2-additive solutions obtained above, the DM explicitly requires that statistics
(S) and probability (P), and economics (E) and management (M), have the same overall
importances, i.e. S ∼N P and E ∼N M .

These additional constraints are translated as −δφ ≤ φmν
(S)−φmν

(P ) ≤ δφ and −δφ ≤
φmν

(E) − φmν
(M) ≤ δφ, where the indifference threshold δφ is supposed to have been set

to 0.01 by the DM. To encode them, an R variable representing the indifference threshold
is first created:

> delta.phi <- 0.01

The inequalities discussed above are then encoded into a 4 row R matrix:

> Asp <- rbind(c(1,2,-delta.phi), c(2,1,-delta.phi),

c(3,4,-delta.phi), c(4,3,-delta.phi))

each row corresponding to a constraint of the form φmν
(i) − φmν

(j) ≥ c, c ∈ [0, 1].

The LP approach is then invoked by typing

> lp2 <- lin.prog.capa.ident(5,2,A.Choquet.preorder = Acp,

A.Shapley.preorder = Asp)

into the R terminal. The minimum variance and minimum distance routines are called
similarly.

The Shapley values of the 2-additive solutions are:

S P E M En

LP 0.23 0.23 0.18 0.18 0.18

MV 0.22 0.21 0.18 0.17 0.22

MD 0.22 0.21 0.18 0.17 0.22

As expected, the solutions satisfy the constraints additionally imposed by the DM.

The overall utilities computed using the Choquet integral w.r.t. the 2-additive solutions
are given in the following table:

S P E M En Mean LP MV MD

a 18 11 11 11 18 13.8 16.03 15.12 14.84

b 18 11 18 11 11 13.8 15.52 14.62 14.34

c 11 11 18 11 18 13.8 15.01 14.12 13.84

d 18 18 11 11 11 13.8 14.50 13.62 13.34

e 11 11 18 18 11 13.8 13.99 13.12 12.84

f 18 18 11 11 11 12.4 13.48 12.62 12.34

g 11 11 18 11 11 12.4 12.97 12.12 11.84
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This time, the three approaches give more similar overall utilities. This was to be expected
as the problem is more constrained.

The interaction indices of the 2-additive capacities obtained by means of the LP, mini-
mum variance and minimum distance approaches are respectively given in the three tables
below:

[LP] S P E M En

S NA -0.27 -0.17 0.00 -0.03

P -0.27 NA 0.00 0.16 -0.04

E -0.17 0.00 NA -0.12 -0.06

M 0.00 0.16 -0.12 NA -0.07

En -0.03 -0.04 -0.06 -0.07 NA

[MV] S P E M En

S NA -0.21 -0.05 -0.06 0.10

P -0.21 NA 0.01 0.15 -0.03

E -0.05 0.01 NA -0.12 0.05

M -0.06 0.15 -0.12 NA -0.01

En 0.10 -0.03 0.05 -0.01 NA

[MD] S P E M En

S NA -0.21 -0.04 -0.07 0.10

P -0.21 NA 0.03 0.18 -0.01

E -0.04 0.03 NA -0.10 0.09

M -0.07 0.18 -0.10 NA 0.00

En 0.10 -0.01 0.09 0.00 NA

As one can notice, statistics (S) negatively interacts with almost all the subjects, which
again is not in accordance with the orientation of the institution. Indeed, one would expect
statistics (S) to be complementary with all subjects except probability (P). Once more, in
the perspective of a progressive and interactive approach, this can be corrected by imposing
additional constraints on the interaction indices as we shall see in the next subsection.

5.5 Additional constraints on the interaction indices

Assume finally that, in order to be in accordance with the orientation of the institution, the
DM imposes that subjects within the same group2 have to interact in a substitutive way,
whereas two subjects from different groups have to interact in a complementary way. This
additional preferential information is translated by means of the following constraints:

P E M En

−1 ≤ Imν (SP ) ≤ −δI δI ≤ Imν (SE) ≤ 1 δI ≤ Imν (SM) ≤ 1 δI ≤ Imν (SEn) ≤ 1 S
δI ≤ Imν (PE) ≤ 1 δI ≤ Imν (PM) ≤ 1 δI ≤ Imν (PEn) ≤ 1 P

−1 ≤ Imν (EM) ≤ −δI δI ≤ Imν (EEn) ≤ 1 E
δI ≤ Imν (MEn) ≤ 1 M

where δI , supposed set to 0.05, is a DM defined threshold to be interpreted as the minimal
absolute value of an interaction index to be considered as significantly different from zero.

To encode this additional preferential information, an R variable representing the thresh-
old is first created:

> delta.I <- 0.05

2Recall that the three groups of subjects are {S, P}, {E,M}, and {En}.
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The constraints discussed above are then encoded into a 10 row R matrix:

> Aii <- rbind(c(1,2,-1,-delta.I), c(1,3,delta.I,1), c(1,4,delta.I,1),

c(1,5,delta.I,1), c(2,3,delta.I,1), c(2,4,delta.I,1),

c(2,5,delta.I,1), c(3,4,-1,-delta.I), c(3,5,delta.I,1),

c(4,5,delta.I,1))

each row corresponding to a constraint of the form a ≤ Imν
(ij) ≤ b, a, b ∈ [−1, 1].

There are no 2-additive capacities compatible with these additional constraints. The
order of k-additivity is then incremented and the LP approach is invoked by typing:

> lp3 <- lin.prog.capa.ident(5,3, A.Choquet.preorder = Acp,

A.Shapley.preorder = Asp,

A.interaction.interval = Aii)

The minimum variance and minimum distance routines are called similarly.

The Shapley values and the interaction indices of the three 3-additive solutions are given
in the four following tables:

S P E M En

LP 0.23 0.23 0.16 0.16 0.22

MV 0.23 0.22 0.18 0.18 0.20

MD 0.22 0.21 0.18 0.19 0.21

[LP] S P E M En

S NA -0.30 0.05 0.05 0.12

P -0.30 NA 0.07 0.14 0.05

E 0.05 0.07 NA -0.24 0.05

M 0.05 0.14 -0.24 NA 0.05

En 0.12 0.05 0.05 0.05 NA

[MV] S P E M En

S NA -0.13 0.05 0.05 0.05

P -0.13 NA 0.05 0.05 0.05

E 0.05 0.05 NA -0.05 0.05

M 0.05 0.05 -0.05 NA 0.05

En 0.05 0.05 0.05 0.05 NA

[MD] S P E M En

S NA -0.21 0.05 0.05 0.05

P -0.21 NA 0.05 0.05 0.05

E 0.05 0.05 NA -0.12 0.05

M 0.05 0.05 -0.12 NA 0.05

En 0.05 0.05 0.05 0.05 NA

As expected, the constraints additionally imposed by the DM are satisfied.

The overall utilities computed using the Choquet integral w.r.t. the 3-additive solutions
are given in the following table:

S P E M En Mean LP MV MD

a 18 11 11 11 18 13.8 14.06 14.26 14.45

b 18 11 18 11 11 13.8 13.55 13.76 13.95

c 11 11 18 11 18 13.8 13.04 13.26 13.45

d 18 18 11 11 11 13.8 12.53 12.76 12.95

e 11 11 18 18 11 13.8 12.02 12.26 12.45

f 18 18 11 11 11 12.4 11.51 11.76 11.95

g 11 11 18 11 11 12.4 11.00 11.26 11.45

We hereby conclude the process of the modeling of the DM’s preferences. In the following
section we imagine a scenario where the DM considers that the 3-additive solutions above
are too complex and where he/she prefers to have a simpler description of his preferences.
In such a case, the DM has to take into account that some of his preferences will be violated.
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5.6 A simpler solution

Assume that for the sake of simplicity the DM absolutely wants a 2-additive solution for
the problem described in the previous subsections. In that case, it is possible to use the
generalized least squares approach described in Subsection 4.4 to obtain an approximate
solution.

First of all, the weak order over the students has to be encoded into a 6 row R matrix:

> rk.proto <- rbind(c(1,2), c(2,3), c(3,4), c(4,5), c(5,6), c(6,7))

The integers correspond to the line indices of the alternatives a, b, c, d, e, f and g in the
matrix C defined in Subsection 5.2.

The generalized least squares approach can then be called by typing:

> gls <- ls.ranking.capa.ident(5, 2, C, rk.proto, 0.5,

A.Shapley.preorder = Asp,

A.interaction.interval = Aii)

The first argument sets the number of criteria, the second the desired order of k-additivity,
the third the matrix containing the partial evaluations, the fourth the matrix containing the
weak order and the fifth argument is the value of the threshold δy. The two last arguments
contain the matrices encoding the additional constraints on the Shapley value and on the
interaction indices respectively.

Although we know from the previous subsections that there are no 2-additive capacities
compatible with the imposed constraints, this approach provides a solution with a non zero
objective function as we could have expected. The following table gives the aggregated
overall utilities {Cmν

(u(x))}x∈O in the last column and the overall utilities {y(x)}x∈O in
the last but one column:

S P E M En Mean y GLS

a 18 11 11 11 18 13.8 13.94 13.67

b 18 11 18 11 11 13.8 13.44 13.44

c 11 11 18 11 18 13.8 12.94 12.81

d 18 18 11 11 11 13.8 12.44 12.57

e 11 11 18 18 11 13.8 11.94 11.81

f 18 18 11 11 11 12.4 11.44 11.57

g 11 11 18 11 11 12.4 10.94 11.21

As one can see, the ranking provided by the DM is not violated but the minimal threshold
δy is not always respected (for example Cmν

(f)−Cmν
(g) < δy). The Shapley value and the

interaction indices of this 2-additive solution are:

S P E M En

0.23 0.22 0.17 0.16 0.22

S P E M En

S NA -0.22 0.05 0.05 0.14

P -0.22 NA 0.06 0.09 0.06

E 0.05 0.06 NA -0.08 0.15

M 0.05 0.09 -0.08 NA 0.05

En 0.14 0.06 0.15 0.05 NA
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which as expected satisfy the constraints imposed by the DM. It is now up to the DM
to evaluate if the violation of δy does not deteriorate significantly the overall quality of the
model.
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