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Abstract

This paper shows how the extension of ASP
called Hybrid ASP introduced by the authors
in [4] can be used to combine logical reason-
ing and Markov Decision Processes (MDPs)
with transition densities finitely supported
in infinite domains. The paper shows how a
computer language H-ASP# based on Hy-
brid ASP can be used to create efficient, ro-
bust representations of dynamic domains and
to compute optimal finite horizon policies for
the agents acting in such domains. The com-
plexity of computing optimal policies is EXP-
complete in the length of the input program.
The paper extends [5] where the authors dis-
cuss using Hybrid ASP to combine logical
reasoning and MDPs with transition densi-
ties in finite domains.

1 Introduction

Hybrid Answer Set Programming (Hybrid ASP or H-
ASP) introduced by the authors in [4], is an exten-
sion of Answer Set Programming (ASP) that allows
users to combine ASP type rules and numerical al-
gorithms. In [5] the authors have shown that H-ASP
can be used to create efficient, robust representations
of dynamic domains with transition densities over fi-
nite sets and to compute optimal finite horizon policies
for the agents acting in the domains. This paper ex-
tends [5] by demonstrating that H-ASP can be used to
create representations of dynamic domains with tran-
sition densities which are finitely supported over in-
finite sets. The paper discusses a computer language
H-ASP# introduced in [5], [3] based on H-ASP, which
is used to obtain computational solutions.

The process for computing an optimal finite horizon
policy from H-ASP# program is as follows.

1. Use H-ASP# program to generate a flat represen-
tation of the underlying MDP. This is done by com-
puting the successor states and state transitions of the
initial state. The step is then repeated for all the newly
computed successor states to compute the set of states
removed from the initial state by two steps. The step
is repeated again until no more successor states can be
computed.

2. Use the Dynamic Programming algorithm on the
flat representation of MDP to compute an optimal fi-
nite horizon policy.

H-ASP is a general formalism for combining ASP type
rules and numerical algorithms. H-ASP is applicable to
a wide range of problems. Thus, the particular problem
of computing optimal finite horizon policies considered
in this paper is just one example of possible applica-
tions of H-ASP. In H-ASP rules act as input-output de-
vices for the algorithms. This feature of H-ASP allows
it to be effectively used for reasoning about domains
with transition densities which are finitely supported
over infinite sets.

Markov Decision Processes (MDPs), first described in
[2] are widely used to model decision-making prob-
lems. At a specific time, a decision maker observes the
state of the system and decides which action to per-
form. Upon performing an action, the decision maker
incurs a reward that depends on the state of the sys-
tem and the action chosen. The system then non-
deterministically moves to a new state with a known
probability, at which time a decision maker again ob-
serves the state of the system and decides which action
to perform. The goal is to determine a policy that max-
imizes a cumulative expected reward. In the discrete
finite horizon case, which is the case that we will be
considering, the problem is usually solved numerically
using the Dynamic Programming algorithm (DP algo-
rithm for short). Thus one could encode a probabilistic
model of the domain from the description, and then
run the DP algorithm with the probabilistic model en-
coded as an input to generate a finite horizon optimal



policy. We will call this approach the ad hoc approach.

It is then reasonable to ask whether solving the prob-
lem using H-ASP provides an advantage over the ad
hoc approach? We will argue in this paper that solving
the problem using H-ASP provides a number of advan-
tages over the ad hoc approach. One advantage is that
a H-ASP formulation of the problem allows the user
to easily modify the underlying search space by impos-
ing logical constraints on the system in much the same
way that an ASP programmer can impose constraints
on the intended set of stable models of the program.

There are various approaches for combining ASP and
probability that are described in the literature. In [10],
Saad shows that normal hybrid probabilistic logic pro-
grams with answer set semantics introduced in [11] can
be used to describe possible finite trajectories of MDPs
and to compute finite horizon optimal policies. We
will discuss this and other related work in the conclu-
sion. Generally, the approaches for combining ASP and
probability do not handle transition densities finitely
supported over infinite sets. The main advantage of
H-ASP over these methods is in the ability of H-ASP
to handle transition densities finitely supported over
infinite sets.

First, we describe a dynamic domain that will be used
as the main example in this paper. The dynamic do-
main and the associated problem will be called the
Secret Agent Problem. It is a typical example of a
problem for the use of DP algorithm.

The Secret Agent Problem.

Secret agent 00111 needs to cross a rectangular lake by
a boat (see figure 1). The opposite shore of the lake has
only one location where the secret agent can safely exit.
At all the other locations on the opposite shore the evil
agents are waiting in an ambush. The lake is divided
into 4 segments parallel to the shores. Each segment
has a water current with water flowing parallel to the
shores. The speed of the water can change suddenly in
one of two predetermined ways with equal probability
(the speed can take both positive and negative values).
To simplify the problem we will assume that the water
speed changes in 1 second intervals. Every 1 second
the agent can choose to steer the boat at the same an-
gle as before, or choose to increase the steering angle
by ∆angle or choose to decrease the steering angle by
∆angle if doing so does not steer the boat back towards
the starting shore. The boat is assumed to travel at a
constant velocity. What is an optimal choice of steer-
ing angles allowing the agent to arrive at the opposite
shore as fast as possible while avoiding an ambush?

A few comments about the problem description should
be made. First, the problem description specifies the

Figure 1: Secret Agent domain

laws of the domain. Then the probabilistic model, i.e.
the probabilities of moving from one state to another
under a particular action, needs to be computed us-
ing the laws specified in the description. While the
laws in the Secret Agent Problem are simple and eas-
ily yield the probabilistic model, one can see that the
laws could be more complicated and that creating a
probabilistic model from the description could be a
challenging problem in itself. Second, the number of
states and state transitions will be on the order of hun-
dreds of thousands. Thus to be practical, the software
that generates and analyzes the probabilistic model
needs to be efficient. Third, even small changes to the
problem description can significantly change the prob-
abilistic model. This is because adding, changing or
removing a law can affect all the states. For instance
suppose that the water speed in each segment can take
3 different values with unequal probability. This will
significantly change the probabilistic model and the
state space.

Our first comment justifies the idea that it is desir-
able to produce a probabilistic model of a domain by
encoding a domain description in a language that has
syntactic constructs for specifying laws of the domain.
H-ASP rules are syntactic constructs that allow spec-
ifying laws of domains. Our third comment justifies
the need for a general approach. In this paper we will
describe a general approach based on H-ASP. The H-
ASP formulation of the problem allows the user to
change the laws of the underlying system with little
restructuring of the rest of the H-ASP program.

The paper discusses one way of solving the Secret
Agent Problem using H-ASP. However, the techniques



we use are general and can be applied to many other
problems. For the implementation purposes we will
discuss a language closely related to H-ASP called H-
ASP#. We have implemented a prototype H-ASP#
solver, created a H-ASP# program for the Secret
Agent Problem, and have used the solver with the pro-
gram to solve the problem.

In this paper due to space constraint we have to omit
many technical details. For the interested reader, the
details can be found in [3].

Solving the Secret Agent Problem is accomplished by
modeling the Secret Agent Domain as a H-ASP# pro-
gram P# and then using a H-ASP# solver software
to find an optimal policy. The semantics of H-ASP#
program P# is defined using stable model semantics
of certain H-ASP program derived from P#.

The rest of the paper is structured as follows. In sec-
tion 2, we will review the MDPs and DP algorithm.
In section 3, we will review ASP and H-ASP. In sec-
tion 4, we will discuss H-ASP#. In section 5 we will
discuss H-ASP# program modeling the Secret Agent
Problem. We end with a conclusion and a discussion
of the related work.

2 Markov Decision Processes

A MDP M is a tuple M = 〈S, S0, A, T, r〉 where S is a
set of states, S0 ⊆ S is the set of initial states, A is the
set of actions, T : S ×A× S → [0, 1] is the stationary
transition function such that for all s ∈ S and a ∈
A, T (s, a, ·) is the probability distribution over S, i.e.
T (s, a, s′) is the probability of moving to a state s′

when action a is executed in state s. r : S ×A→ R is
the reward function, i.e. r (s, a) is the reward gained
by taking action a in state s.

A trajectory θ is a sequence of states θ1, θ2,. . . , θm
for some m ≥ 0, where θ1, θ2,. . . , θm ∈ S. A policy π
is a map S × Z+ → A where Z+ is the set of all the
positive integer numbers, that maps each state s ∈ S
and time i ∈ Z+ to an action π (s, i). Let an MDP
M , and a finite horizon κ be given. κ is the maximum
length of the trajectories that we will be considering.
The probability Probπ (θ) of a trajectory θ under a

policy π is Probπ (θ) =

|θ|−1∏
i=1

T (θi, π (θi, i) , θi+1) where

|θ| is the length of the trajectory. The reward Rnπ (θ)
of a trajectory θ at time n under a policy π is Rnπ (θ) =
|θ|∑
i=1

r (θi, π (θi, n+ i− 1)).

Let Θ (s, i) be the set of all the trajectories of length
i starting at state s ∈ S. Note that Θ (s, 1) = (s).

The performance of a policy π at time i with initial
state s is the expected sum of rewards received on the
next κ+ 1− i steps by following the policy π. That is

Rπ (s, i) =
∑

θ∈Θ(s,κ+1−i)

Probπ (θ) ·Riπ (θ).

The finite horizon optimal policy problem is to find a
policy π∗ that would maximize the κ step performance,
i.e. find π∗ such that for all the policies π for all s0 ∈ S0

Rπ∗ (s0, 1) ≥ Rπ (s0, 1)

The performance for a policy π at time i satisfies the
following recursive formula

Rπ (s, i) = r (s, π (s, i)) + (1)∑
s′∈S

T (s, π (s, i) , s′) ·Rπ (s′, i+ 1)

where Rπ (s, κ) = r (s, π (s, κ)). It is the case that
there exists π∗ such that for all s ∈ S and for all the
policies π Rπ∗ (s, 1) ≥ Rπ (s, 1). π∗ can be constructed
as follows. First define π∗ (s, κ) = argmaxa∈A r (s, a).
Then for 1 ≤ i < κ, let

π∗ (s, i) = argmaxa∈A
∑
s′∈S

T (s, a, s′) ·Rπ∗ (s′, i+ 1) .

(2)

The above recursive equations defines the DP algo-
rithm. The algorithm proceeds by first computing
π∗ (s, κ) and Rπ∗ (s, κ) for every s ∈ S. Now, assuming
that for every s ∈ S π∗ (s, i+ 1) and Rπ∗ (s, i+ 1) are
computed, compute π∗ (s, i) using formula 2 and then
Rπ∗ (s, i) using formula 1 for all s ∈ S, except for i = 1
where π∗ (s, 1) needs to be computed only for the ini-
tial states S0 and Rπ∗ (s, 1) need not be computed. It
is easy to see that the DP algorithm is a polynomial
time algorithm in |S| and |A|.

A flat representation of a MDP 〈S, S0, A, T, r〉 is a set
of |S|×|S| tables for the transition function - one table
for each action and a table for a reward function [7].

3 Hybrid ASP

We will now give a brief overview of ASP and then a
brief overview of H-ASP.

A normal propositional logic programming rule (nor-
mal propositional logic programming rule) is an ex-
pression of the form

C = p← q1, . . . , qm, not r1, . . . ,not rn (3)

where p, q1, . . . , qm, r1, . . . , rn are atoms from a fixed
set of atoms At. The atom p in the rule above is
called the head of C (head(C)), and the expression



q1, . . . , qm,not r1, . . . ,not rn, with ‘,’ interpreted as
the conjunction, is called the body of C (body(C)). The
set {q1, . . . , qn} is called the positive part of the body
of C (posBody(C)) (or premises of C) and the set
{r1, . . . , rm} is called the negative part of the body of
C (negBody(C)) (or constraints of C). Given any set
M ⊆ At and atom a, we say that M satisfies a (not a),
written M |= a (M |= not a), if a ∈M (a 6∈M). For a
rule C of the form 3 we say that M satisfies the body
of C if M satisfies qi for i = 1, ...,m and M satisfies not
rj for j = 1, ..., n. We say that M satisfies C, written
M |= C, if whenever M satisfies the body of C, then
M satisfies the head of C. A normal logic program P
is set of rules of the form of (3). We say that M ⊆ At
is a model of P , written M |= P , if M satisfies every
rule of P .

A propositional Horn rule is a logic programming rule
of the form H = p← q1, . . . , qm, where p, q1, . . . , qm ∈
At . Thus in a Horn rule, the negative part of its body
is empty. A Horn program P is a set of Horn rules.
Each Horn program P has a least model under inclu-
sion relation, LMP , which can be defined using the
one-step provability operator TP . For any set A, let
P (A) denote the set of all subsets of A. The one-step
provability operator TP : P (A) → P (A) associated
with the Horn program P [12] is defined by setting:

TP (M) = {p : ∃C ∈ P (p = head(C) ∧M |= body(C))}

for any M ∈ P (A). We define TnP (M) by induc-
tion by setting T 1

P (M) = TP (M) and Tn+1
P (M) =

TP (TnP (M)). Then the least model LMP can be com-
puted as LMP = TP (∅) ↑ ω =

⋃
n≥1 T

n
P (∅).

If P is a normal logic program and M ⊆ At , then the
Gelfond-Lifschitz reduct of P with respect to M [6]
is the Horn program PM which results by eliminating
those rules C of the form (3) such that ri ∈ M for
some i and replacing C by p ← q1, . . . , qn otherwise.
We then say that M is a stable model for P if M equals
the least model of PM .

An answer set programming rule is an expression of
the form 3 where p, q1, . . . , qm, r1, . . . , rn are classical
literals, i.e., either positive atoms or atoms preceded by
the classical negation sign ¬. Answer sets are defined
in analogy to stable models, but taking into account
that atoms may be preceded by classical negation.

A H-ASP program P has an underlying parame-
ter space S. Elements of S are of the form p =
(t, x1, . . . , xm) where t is time and xi are parameter
values. We shall let t(p) denote t and xi(p) denote
xi for i = 1, . . . ,m. We refer to the elements of S as
generalized positions.

Let At be a set of atoms of P . Then the universe of P
is At × S. For ease of notation, we will often identify

an atom and the string representing atom.

If M ⊆ At×S, we let M̂ = {p ∈ S : (∃a ∈ At)((a,p) ∈
M)}. A block B is an object of the form B =
a1,. . . , an,not b1, . . . ,not bm where a1,. . . , an,b1,. . . ,bm
∈ At. Given M ⊆ At×S, B = a1,. . . , an,not b1, . . . ,not
bm, and p ∈ S, we say that M satisfies B at the gener-
alized position p, written M |= (B,p), if (ai,p) ∈ M
for i = 1, . . . , n and (bj ,p) /∈ M for j = 1, . . . ,m. If
B is empty, then M |= (B,p) automatically holds. We
define B− = not b1, . . . , not bm.

There are two types of rules in H-ASP.

Advancing rules are of the form

B1;B2; . . . ;Br : A,O

a

where A is an algorithm, each Bi is of the form
a1,. . . ,an,not b1,. . . ,not bm where a1,. . . ,an, b1,. . . ,bm,
and a are atoms, and O ⊆ Sr is such that if
(p1, . . . ,pr) ∈ O, then t(p1) < . . . < t(pr),
A (p1, . . . ,pr) ⊆ S, and for all q ∈ A (p1, . . . ,pr),
t(q) > t(pr). Here and in the next rule, we allow n
or m to be equal to 0 for any given i. Moreover, if
n = m = 0, then Bi is empty and we automatically
assume that Bi is satisfied by any M ⊆ At × S. We
shall refer to O as the constraint set of the rule and
the algorithm A as the advancing algorithm of the
rule. The idea is that if (p1, . . . ,pr) ∈ O and for each
i, Bi is satisfied at the generalized position pi, then
the algorithm A can be applied to (p1, . . . ,pr) to
produce a set of generalized positions O′ such that if
q ∈ O′, then t(q) > t(pr) and (a,q) holds.

Stationary rules are of the form

B1;B2; . . . ;Br : H,O

a

where each Bi is of the form a1,. . .,an,not b1,. . . ,not bm
where a1,. . . , an,b1,. . . ,bm and a are atoms, O ⊆ Sr

is such that if (p1, . . . ,pr) ∈ O, then t(p1) < · · · <
t(pr), and H is a Boolean algorithm defined on O.
We shall refer to O as the constraint set of the rule
and the algorithm H as the Boolean algorithm of the
rule. The idea is that if (p1, . . . ,pr) ∈ O and for each
i, Bi is satisfied at the generalized position pi, and
H((p1, . . . ,pr)) is true, then (a,pr) holds.

In an implemented system, the algorithms in H-ASP
rules are allowed to be any sort of algorithms, for in-
stance algorithms for solving differential or integral
equations, solving a set of linear equations or linear
programming equations, etc.

A H-ASP Horn program is a H-ASP program which
does not contain any negated atoms in At.



Let P be a Horn H-ASP program, let I ∈ S be an ini-
tial condition. Then the one-step provability operator
TP,I is defined so that given M ⊆ At×S, TP,I(M) con-
sists of M together with the set of all (a, J) ∈ At× S
such that

(1) there exists a stationary rule C = B1;B2;...;Br:H,O
a

and (p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r
such that

(a, J) = (a,pr), M |= (Bi,pi) for i = 1, . . . , r, and
H(p1, . . . ,pr) = 1 or

(2) there exists an advancing rule C = B1;B2;...;Br:A,O
a

and (p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r
such that J ∈

A(p1, . . . ,pr) and M |= (Bi,pi) for i = 1, . . . , r.

The stable model semantics for H-ASP programs will
now be defined. Let M ⊆ At×S, let I ∈ S. An H-ASP
rule C = B1;...,Br:A,O

a is inconsistent with (M, I) if for

all (p1, . . . ,pr) ∈ O∩
(
M̂ ∪ {I}

)r
, either (i) there is an

i such that M 6|= (B−i ,pi) (ii) A (p1, . . . ,pr)∩M̂ = ∅ if
A is an advancing algorithm, or (iii) A(p1, . . . ,pr) = 0
if A is a Boolean algorithm. Then we form the Gelfond-
Lifschitz reduct of P over M and I, PM,I as follows.

(1) Eliminate all rules that are inconsistent with
(M, I).

(2) If the advancing rule C = B1;...,Br:A,O
a is not

eliminated by (1), then replace it by
B+

1 ;...,B+
r :A+,O+

a

where for each i, B+
i is the result of removing all

the negated atoms from Bi, O
+ is equal to the set

of all (p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r
such that M |=

(B−i ,pi) for i = 1, . . . , r and A(p1, . . . ,pr) ∩ M̂ 6= ∅,
and A+(p1, . . . ,pr) is defined to be A(p1, . . . ,pr)∩M̂ .

(3) If the stationary rule C = B1;...,Br:H,O
a is not

eliminated by (1), then replace it by
B+

1 ;...,B+
r :H|O+ ,O

+

a

where for each i, B+
i is the result of removing all the

negated atoms from Bi, O
+ is equal to the set of

all (p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r
such that M |=

(B−i ,pi) for i = 1, . . . , r and H(p1, . . . ,pr) = 1.

We then say that M is a stable model of P with initial

condition I if

∞⋃
k=0

T kPM,I ,I (∅) = M.

We say that M is a single trajectory stable model of P
with initial condition I if M is a stable model of P with
the initial condition I and for each t ∈ {t (p) | p ∈ S}
there exists at most one p ∈ M̂ ∪{I} such that t (p) =
t.

We say that an advancing algorithm A lets a parameter
y be free if the domain of y is Y and for all generalized
positions p and q and all y′ ∈ Y , whenever q ∈ A(p),

then there exist q′ ∈ A(p) such that y (q′) = y′ and q
and q′ are identical in all the parameter values except
possibly y.

4 H-ASP#

The main reason for introducing H-ASP# is the fol-
lowing. Because advancing algorithms can let param-
eters be free, it is the case that even for problems of
modest size, the number of generalized positions that
advancing algorithms produce can be enormous. While
most of these generalized positions will not be a part
of any stable model, producing them makes implemen-
tations impossible. Thus we need to have a mechanism
where the values of the parameters which are free are
not produced.

In [4], the authors have suggested an indirect approach
by which the advancing algorithms can specify values
for only some of the parameters. The approach requires
extending the Herbrand base of P by new atoms S1,
S2, . . . , Sn one for each parameter. Suppose that there
is an advancing algorithm A in a rule B:A,O

a that spec-
ifies parameters with indexes i1, i2, . . . , ik and lets
other parameters be free. Then we add to P rules of
the form B:A,O

Sij
for each j from 1 to k. This is re-

peated for every advancing rule of P . Then if M is a
stable model of P and p ∈ M̂ , we will require that
{S1, . . . , Sn} ⊆ WM (p). That is, we will require that
every parameter is set at p by some advancing algo-
rithm. To accomplish this, we add to P the following
stationary rules for i = 1, . . . , n not Si, not FAIL

FAIL . We
will refer to the mechanism as the Parameter Restric-
tion Mechanism.

A H-ASP# program consists of parameter declara-
tions, algorithm declarations, commands, and rules.
Parameter declarations have the form param(p) where
p is a parameter to be used by the H-ASP# program.
The parameters Act, Prob and Ret describing an ac-
tion choice, an unnormalized probability and cumula-
tive expected reward respectively are assumed to be
used in every H-ASP# program and do not need to
be declared. An algorithm declaration has the form
program p(a1,. . . ,ak) {c1; . . . ; cm} where p is the name
of the algorithm, a1,. . . ,ak are the names of the in-
put arguments, c1,. . . ,cm are commands. A signature
declaration has the form sig(p, (s1, . . . , sk)) where p is
the algorithm name, s1, . . . , sk are parameter names.
A signature states that the algorithm’s output is a set
of tuples of the form (y1, . . . , yk) where yi is the value
for the parameter si. The signature declarations are
required for the advancing algorithms.

H-ASP# rules have the form a:-B1 : A,O or
a:-B1;B2 : A,O where a is a string repre-



sentation of an atom, B1, B2 are of the form
c1, . . . , ck, not d1, . . . , not dm where c1, . . . , ck,
d1, . . . , dm are string representations of atoms. A and
O are the algorithm names as declared in the algorithm
declarations. O is a name of a Boolean algorithm. The
algorithms used in rules can be those declared in H-
ASP# program or those provided by the solver. Since
there are no significant restrictions regarding which al-
gorithms a solver can provide, hypothetically H-ASP#
rules can use arbitrary algorithms.

H-ASP# implements the Parameter Restriction Mech-
anism, with the parameter Prob excepted. That is, for
H-ASP# advancing rule, a : −B : A,O, the algorithm
A is assumed to set the parameters that are speci-
fied in its signature declaration and let others be free.
Since we require that for every generalized position, ev-
ery parameter is set by some advancing algorithm, the
free parameters are simply not generated by the ad-
vancing algorithm. The rules corresponding to B:A,O

Sij

and not Si, not FAIL
FAIL then are not included in H-ASP#

programs. It will be an error if at a generalized posi-
tion a parameter is set by more than one advancing
algorithm.

There are two other assumptions used in H-ASP#.

1. We assume that if p is a generalized position and A
is an advancing algorithm in a H-ASP# program then
for all q ∈ A (p) t (q) = t (p) + 1/2.

2. If O is a constraint set algorithm occurring in a H-
ASP# program and O (p,q) = 1 iff t (p) + 1/2 = t (q)

If a signature of an advancing algorithm A is (Act)
then an advancing rule that uses A is called an action
rule. If a signature of an advancing algorithm A is
(Prob) then an advancing rule that uses A is called
a probability rule. If an advancing rule is neither an
action rule nor a probability rule then it is referred to
as simply an advancing rule.

A H-ASP# program has to specify how to derive ac-
tion choice, how to derive consequences of perform-
ing actions and how to derive unnormalized probabili-
ties. Deriving action choice is accomplished by the ac-
tion rules and stationary rules. Deriving consequences
of performing actions is accomplished by the advanc-
ing rules and stationary rules. Deriving unnormalized
probabilities is accomplished by the probability rules.
Deriving action choices and their consequences will
occur in two stages. First an action will be chosen.
Second, the action’s consequences will be derived. To
model the two stage process, we will use the parameter
LEVEL that will take values 0 or 1. Choosing an action
a at a generalized position p with LEVEL (p) = 0 is
modeled by an appropriate advancing algorithm pro-

ducing a generalized position p̂ which is identical to p
in all the parameter values except t (p̂) = t (p) + 1/2,
Act (p̂) = a and LEVEL (p̂) = 1. We will assume
that an action rule can only be used in a generalized
position p where LEVEL (p) = 0 and an advancing
rule and a probability rule can be used only when
LEVEL (p) = 1. When generating p̂ from p all the
atoms derived at p̂ are copied to p. Thus the states at
p̂ and at p are nearly identical except for the values
of time and Act parameters.

Informally, the stable model of the H-ASP# program
W# is the unique maximal stable model of H-ASP
program W derived from W#, with the initial con-
dition J derived from the initial condition specified in
W#. The definitions of the derivations are omitted due
to the considerations of space. However an interested
reader can find these in [3].

We prove the following computational result for H-
ASP# programs.

Theorem. Let W# be a H-ASP# program that gen-
erates a MDP, and let I be an initial condition. Let
the length of W# be the number of bits required to rep-
resent all the statements of W# plus the number of
bits required to encode all the algorithms used in W#
as Turing machines. Suppose that for every advanc-
ing algorithm A in W# and for every input p, the
length of the output |A (p)| of A with the input p is
O (|W#|m1) for some m1 ≥ 0. Let the horizon be κ
which is O (|W#|m2) for some m2 ≥ 0. Suppose that
every algorithm used in W# is a polynomial time algo-
rithm. Then the question of whether there exists a pol-
icy with a non-negative performance is EXP-complete
in |W#|.

The proof of the result provides a reduction of the
succinct circuit value problem to the problem of non-
negative policy existence for an appropriate H-ASP#
program and is based on the proof of Theorem 1 [8].
The proof can be found in [3].

5 Modeling the Secret Agent Problem
using H-ASP#

We will need the following parameters: LOCATION,
ANGLE. The values of LOCATION will be 1 × 2
vectors describing the locations of the agent. Note
that LOCATION is an infinite parameter. The val-
ues of ANGLE will be a floating point numbers, with
ANGLE (p) specifying the steering angle of the agent
at a state with the generalized position p. With these
parameters we will describe the location of the agent
and the steering angle. The set of atoms At will con-
tain atoms: DONE, T , FAIL. The atom DONE will be



used to signal that the agent has arrived at the oppo-
site shore. T is a placeholder atom. FAIL will be used
for constraints as in not FAIL

FAIL and thus will never be
part of a stable model.

At every time step the Secret Agent will choose an
action of the type (move, α) where α is one of the
possible steering angles. Once the agent arrives at the
opposite shore the only possible action is done which
does not change any parameters.

Action rules are used to derive action choices. Below is
an action rule deriving actions of the form (move, α).
The encoding of the algorithms is omitted for brevity.

T:- : act_move, isNotDone1

program isNotDone1 (p) {

#

# Check whether the agent has reached

# the opposite shore

}

program act_move (p) {

#

# Generate possible actions of the form

# ("move", a), where a is an angle.

}

sig (act_move, (Act))

Below is an advancing rule specifying the effect of ac-
tions on the parameter ANGLE.

T:- : adv_ANGLE, isActionNotDone

program isActionNotDone (p) {

Act(p)!="done"

}

program adv_ANGLE (p) {

#

# return the set containing an angle

# specified in Act(p)

}

sig (adv_ANGLE, (ANGLE))

Below is a probability rule specifying the unnormalized
transition probabilities. As can be seen from the rule
all the transitions are assigned equal probability.

T:- ; : prob_default

program prob_default (p, q) { 1 }

sig (prob_default, (Prob))

The agent’s reward at a state is determined as follows.
If κ is the horizon, then the reward for arriving at a
safe exit is κ minus the number of 1 second intervals

required for the arrival. All other states get a reward
of 0.

The full text of the program can be found in
http://math.ucsd.edu/˜abrik/Secret Agent/

6 Conclusion

The main advantages of using H-ASP# programs over
an ad hoc approach for finding an optimal policy is
that such programs produce robust and compact rep-
resentations of dynamic domains which can be modi-
fied easily. Implementing even simple changes to an ad
hoc model of a dynamic domain may require creating
a model from scratch, depending on how the model is
constructed. However making changes in a H-ASP#
program often requires only changing rules and algo-
rithms that model the changed parts.

There is extensive literature on combining ASP and
probability. However to our knowledge only the work of
Saad [10] addresses the problem of computing optimal
policies of MDPs. In [10] Saad introduces a Markov Ac-
tion Language AMD which allows to describe MDPs.
There are three main differences between the present
work and [10]. The statements in AMD can specify
exact probabilities, whereas in H-ASP# the probabil-
ities as specified in the values of Prob parameter are
unnormalized probabilities. The difference can be sig-
nificant for modeling. In some cases only the ratio of
probabilities is known. For instance we may know that
among certain two outcomes the first is twice as likely
as the second. This condition can be easily modeled us-
ing unnormalized probabilities by multiplying by 2 the
unnormalized probability of the state corresponding
to the first outcome, and not multiplying the unnor-
malized probability of the state corresponding to the
second outcome. However, specifying the exact prob-
abilities would require the information about all the
successor states making probability assignment more
difficult. The second difference is that H-ASP# allows
the use of algorithms for modeling. For example, in H-
ASP#, it is possible to realistically model dynamic do-
mains with parameters over infinite sets where physical
processes have to be modeled by the numerical meth-
ods. This cannot be achieved in AMD. The third differ-
ence has to do with computing an optimal policy. [10]
shows how an AMD program B can be translated into
a normal hybrid probabilistic logic program BP . The
probabilistic answer sets of BP correspond to the valid
trajectories of the underlying MDP. Saad suggests that
optimal policy is found using the flat representation of
the underlying MDP. The issue of how to create flat
representations of MDPs when the trajectories can be
computed is crucial for efficient implementations and



it is not addressed in [10]. For instance the MDP for
the Merchant Problem discussed in [5] has over 4×1015

trajectories. It would be impractical to compute them
all. In contrast H-ASP# resolves the issue of comput-
ing the optimal policy without explicitly computing all
the trajectories.

Baral et al. in [1] have introduced P-log - a declar-
ative language based on ASP that combines logical
and probabilistic arguments. Basic probabilistic in-
formation in P-log is expressed by probability atoms
pr (a (t) = y|c B) = v where, intuitively, a is caused
by factors determined by B with probability v. This is
causal probability as described in [9]. Thus effect a is
independent of all factors except B and the effects of
B. The semantics of a probabilistic program Π is based
on the mapping of Π to a logic programming Π′, and
is given by the sets of beliefs of a rational agent asso-
ciated with Π together with their probabilities. There
are significant differences between P-log and H-ASP#.
First, H-ASP# allows the use of parameters over in-
finite sets and the use of arbitrary algorithms, which
allow complex physical models to be created using H-
ASP#. This is not the case with P-log. Second differ-
ence is that the probabilities in H-ASP# are assigned
to states, whereas the probabilities in P-log are as-
signed to atoms. Assigning probabilities to states al-
lows a somewhat greater flexibility in modeling prob-
abilities, whereas assigning probabilities to atoms can
produce somewhat more robust descriptions. Finally,
H-ASP# provides a mechanism for constructing flat
representations of MDPs whereas such functionality is
not explicitly provided by P-log. Some of the similari-
ties of two languages are that both use ASP and that
both use unnormalized probabilities.

In this paper we have shown that H-ASP can be used
to compute a finite horizon optimal policy for domains
with transition densities finitely supported over infi-
nite sets. We have demonstrated our approach using
the Secret Agent Problem - a typical example for an
application of MDPs. Our solution uses H-ASP# - a
computer language based on H-ASP. The stable model
of H-ASP# programs W# is defined as the unique
maximal stable model of a H-ASP program W which
is derived from W#. Under mild assumptions, the
computational complexity of a H-ASP# programs is
EXP-complete in the length of the program. We have
implemented H-ASP# prototype solver and have cre-
ate H-ASP# program P# that solves the Secret Agent
Problem. P# contains 285 lines of code including com-
ments. Computing the stable model of P# takes 4
minutes and 9 seconds on a 2.0 GHz Intel processor.
In the process of the computation, 282921 states and
358120 transitions are generated. This is as expected
given that H-ASP# program provides a compact rep-

resentation of the MDP of the problem domain. Both
P# and the MDP for the Secret Agent Problem can
be found at

http://math.ucsd.edu/~abrik/Secret_Agent/
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