Evaluating Inference Algorithms for the Prolog Factor Language

Tiago Gomes and Vitor Santos Costa
CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{tgomes,vsc}@fc.up.pt

Abstract

Over the last years there has been some
interest in models that combine first-order
logic and probabilistic graphical models to
describe large scale domains, and in efficient
ways to perform inference on these domains.
Prolog Factor Language (PFL) is a extension
of the Prolog language that allows a natural
representation of this first-order probabilistic
models (either directed or undirected). PFL
is also capable of solving probabilistic queries
on these models through the implementa-
tion of several inference techniques: variable
elimination, belief propagation, lifted vari-
able elimination and lifted belief propagation.
We show how these models can be easily rep-
resented using PFL and then we perform a
comparative study between the different in-
ference algorithms in four artificial problems.

1 Introduction

Over the last years there has been some interest in
models that combine first-order logic and probabilis-
tic graphical models to describe large scale domains,
and in efficient ways to perform inference and learn-
ing using these models (Getoor and Taskar 2007;
Raedt et al. 2008). A significant number of lan-
guages and systems has been proposed and made avail-
able, such as Independent Choice Logic (Poole 1997),
PRISM (Sato and Kameya 1997; Sato and Kameya
2008), Stochastic Logic Programs (ICL) (Muggleton
1996), Markov Logic Networks (MLNs) (Richardson
and Domingos 2006), CLP(BN') (Santos Costa et al.
2003), ProbLog (Raedt, Kimmig, and Toivonen 2007;
Kimmig et al. 2011), and LPADs (Riguzzi and Swift
2011), to only mention a few. These languages differ
widely, both on the formalism they use to represent
structured knowledge, on the graphical model they en-

code, and on how they encode it. Languages such as
ICL, Prism, or ProbLog use the distribution semantics
to encode probability distributions. MLNs encode re-
lationships through first-order formulas, such that the
strength of a true relationship serves as a parameter
to a corresponding ground markov network. Last, lan-
guages such as CLP(BN) approach the problem in a
more straightforward way, by using the flexibility of
logic programming as a way to quickly encode graph-
ical models.

Research in Probabilistic Logic Languages has made it
very clear that it is crucial to design models that can
support efficient inference. One of the most exciting
developments toward this goal has been the notion of
lifted inference (Poole 2003; de Salvo Braz, Amir, and
Roth 2005). The idea is to take advantage of the regu-
larities in structured models and perform a number of
operations in a fell swoop. The idea was first proposed
as an extension of variable elimination (Poole 2003;
de Salvo Braz, Amir, and Roth 2005), and has since
been applied to belief propagation (Singla and Domin-
gos 2008; Kersting, Ahmadi, and Natarajan 2009) and
in the context of theorem proving and model count-
ing (Gogate and Domingos 2011; Van den Broeck et al.
2011).

Most work in probabilistic inference computes statis-
tics from a sum of products representation, where each
element is known as a factor. Lifted inference ap-
proaches the problem by generalizing factors through
the notion of parametric factor, commonly called par-
factor. Parfactors can be seen as templates, or classes,
for the actual factors found in the inference process.
Lifted inference is based on the idea of manipulating
these parfactors, thus creating intermediate parfactors
in the process, and in general delaying as much as pos-
sible the use of fully instantiated factors.

Parfactors are a compact way to encode distributions
and can be seen as a natural way to express complex
distributions. This was recognized in the Bayesian
Logic Inference Engine (BLOG) (Milch et al. 2005),

and more recently has been the basis for proposals
such as Relational Continuous Models (Choi, Amir,
and Hill 2010), and parametrized randvars (random
variables) (Taghipour et al. 2012). In this same vein,
we propose an extension of Prolog designed to support
probabilistic reasoning with the parfactors, the Prolog
Factor Language (PFL).

The PFL aims at two goals. First, we would like to use
the PFL to understand the general usefulness of lifted
inference and how it plays with logical and probabilis-
tic inference. Second, we would like to use the PFL as
a tool for multi-relational learning. In this work, we
focus on the first task. The work therefore introduces
two contributions: a new language for probabilistic
logical inference, and a comparative evaluation of a
number of state-of-the-art inference techniques.

The paper is organized as follows. First, we present
the main ideas of the PFL. Second, we discuss how
the PFL is implemented. Third, we present a first
experimental evaluation of the PFL and draw some
conclusions.

2 The Prolog Factor Language (PFL)

First, we briefly review parfactors. We define parfactor
as a tuple of the form:

<AC ¢>

where A is a set of atoms (atomic formulas), C' is a set
of constraints, and the ¢ function defines a potential
function on]Rar . Intuitively, the atoms in A describe a
set of random variables, the constraints in C' describe
the possible instances for those random variables, and
the ¢ describe the potential values. The constraints in
C apply over a set of logical variables L in A.

As an example, a parfactor for the MLN language
could be written as:

2.33 : Smokes(X) AN X € {John,Mary,William}

in the example, A = {Smokes(X)}, and L = {X}.
Each MLN factor requires a single parameter, in this
case 2.33. The constraint X € {John,Mary,William}
defines the possible instances of this parfactor, in the
example the three factors:

2.33 : Smokes(John)
2.33 : Smokes(Mary)
2.33 : Smokes(William)

Notice that all factors share the same potential values.

The main goal of the PFL is to enable one to use
this compact representation as an extension of a logic
program. The PFL inherits from previous work in
CLP(BN), which in turn was motivated by prior work
on probabilistic relational models (PRMs) (Getoor
et al. 2001). A PRM uses a Bayesian network to rep-
resent the joint probability distribution over fields in a
relational database. Then, this Bayesian network can
be used to make inferences about missing values in the
database. In Datalog, missing values are represented
by Skolem constants; more generally, in logic program-
ming missing values, or existentially-quantified vari-
ables, can be represented by terms built from Skolem
functors. CLP(BN) represents the joint probability
distribution as a function over terms constructed from
the Skolem functors in a logic program. Thus, in
CLP(BN), we see random variables as a special inter-
pretation over a set V' of function symbols, the skolem
variables.

2.1 Introducing the PFL

The first insight of the PFL is that CLP(BN) skolem
functions naturally map to atoms in parfactor formu-
lae. That is, in a parfactor the formula a(X) A b(X)
can be seen as identifying two different skolem func-
tions X — a(X) and X — b(X). The second obser-
vation is that both the constraints and the potential
values can be obtained from a logic program. Thus,
an example of a parfactor described by PFL is simply:

bayes abi(K) ; abi_table ; [professor(K)].

This factor would define the random variable abi (K)
(shorthand for ability), within the context of a directed
network, having the constraint K € {professor(K)},
and a distribution abi_table/1.

More precisely, the PFL syntax for a factor is
Type F; ¢; C.

Thus, a PFL factor has four components:

e Type refers the type of the network over which the
parfactor is defined. It can be bayes, for directed
networks, or markov, for undirected ones.

e [is a sequence of Prolog terms that define sets
of random variables under the constraints in C.
Each term can be seen as the signature of a skolem
function whose arguments are given by the un-
bound logical variables. The set of all logical vari-
ables in F' is named L.

The example includes a single term, abi(K); the
only logical variable is K.

e The table ¢ is either a list of potential values or
a call to a Prolog goal that will unify its last ar-
gument with a list of potential values.

e (' is a list of Prolog goals that impose bindings
on the logical variables in L. In other words, the
successful substitutions for the goals in C are the
valid values for the variables in L. In the example,
the goals constrain K to match a professor.

By default all random variables are boolean. However,
it may be useful to define a different domain for some
random variables. To do so, one can use:

bayes abi(K)::[h,m,1] ;
abi_table ;
[professor(K)].

to indicate that h,m,1 are the possible values for the
random variables instantiated by abi(K).

A more complex example is a parfactor for a student’s
grade in a course:

bayes grade(C,S)::[a,b,c,d], int(8), diff(C)
grade_table ;
[registration(_,C,S8)].

In the example, the registration/3 relation is part
of the extensional school data-base.

The next example shows an encoding for the compet-
ing workshops problem (Milch et al. 2008):

markov attends(P)::[t,f] , hot(W)::[t,f] ;
[0.2, 0.8, 0.8, 0.8] ;
[c(P,W)].

markov attends(P)::[t,f], series::[t,f] ;
[0.501, 0.499, 0.499, 0.499] ;
[c(P,0)].

One can observe that the model in this case is undi-
rected. The encoding defines two parfactors: one con-
nects workshop attendance with the workshop being
hot, the other with the workshop being a series.

2.2 Querying and Generating Evidence for
the PFL

In our approach, each random variable in PFL is im-
plicitly defined by a predicate with the same name and
an extra argument. More formally, the value V for a
random variable or skolem function R(Ay,...,A,), is
given by the predicate R(A1,...,A,,V). Thus in or-
der to query a professor’s ability it is sufficient to ask:

7- abi(p0, V).

This approach follows in the lines of PRISM (Sato and
Kameya 1997) and CLP(BN).

Evidence can be given as facts for the intentional pred-
icates. Hence,

abi(p0,h).

can be used to indicate that we have evidence on p0’s
(high) ability. Conditional evidence can also be given
as part of a query, hence:

?7- abi(p0,h), pop(p0,X).

would return the marginal probability distribution for
professor p0O’s popularity given that he had a high abil-

ity.
3 Inference in the PFL

One of our main motivations in designing the PFL is
to research on the interplay between logical and prob-
abilistic inference. Indeed, how to execute a PFL pro-
gram very much depends on the probabilistic inference
method used.

Solving the main inference tasks in first-order prob-
abilistic models can be done by first grounding the
network and then applying a ground solver, such as
variable elimination or belief propagation. However,
the cost of this operation will strongly depend on the
domain size (number of objects). It may be much more
efficient to solve this problem in a lifted way, that is, by
exploiting the repeated structure of the model to speed
up inference by potentially several orders of magni-
tude.

The PFL thus supports both lifted and grounded infer-
ence methods. In fully grounded solving the PFL im-
plementation creates a ground network and then calls
the solver to obtain marginals. In lifted solving the
PFL implementation first finds out a graph of parfac-
tors that are needed to address the current query, an
then calls the lifted solver.

The fully grounded algorithm implements a transitive
closure algorithm, and is as follows. First, given a
query goal @), it obtains the corresponding random
variable {V'}. It also collects the set of evidence vari-
ables E. The algorithm then maintains two sets: an
open set of variables, initially O <~ E'U {V}, and an
explored set of variables X, initially empty (X < {}).
It proceeds as follows:

1. Tt selects a variable V' from the open-set (O) and
removes it from O;

2. Adds V to X;

3. For all parfactors defining the variable V, it com-
putes the constraints as a sequence of Prolog
goals, and it adds the other random variables V'
to O if V' ¢ X;

4. Tt terminates when O empty.

The grounded algorithm is currently used by the fol-
lowing solvers: non-lifted variable elimination, non-
lifted belief propagation, and counting belief propaga-
tion.

Lifted solving performs a first step of computing the
transitive closure, but only on the graph of parfactors.
No constraints are called, and no grounding is made.
A second step then evaluates the domain defined by
the constraints as a set of tuples, that is compactly
described as a tree. The network of parfactors and re-
spective tuples is next sent to a lifted solver. This im-
plementation supports lifted variable elimination and
lifted first-order belief propagation.

The probabilistic inference algorithms used in the PFL
are discussed next.

4 Probabilistic Inference Algorithms

A typical inference task is to compute the marginal
probabilities of a set of random variables given the ob-
served values of others (evidence). Variable elimina-
tion (VE) and belief propagation (BP) are two popular
ways to solve this problem.

Next we briefly describe these two algorithms as well
as their lifted versions.

4.1 Variable Elimination

Variable elimination (Zhang and Poole 1996) is one of
the simplest exact inference methods. As the name
indicates, it works by successively eliminating the ran-
dom variables that appears in the factors until only
the query variable remains.

At each step, each variable X is eliminated by first
collecting the factors where X appears, then calculat-
ing the product of these factors and finally summing
out X. The product of two factors works like a join
operation in relational algebra, where the set of ran-
dom variables of the resulting factor is the union of
the random variables of the two operands, and the
product is performed such that the values of common
random variables match with each other. Summing
out a variable X is done through the summation of all
probabilities where the values of X varies, while the
values of the other variables remains fixed.

Unfortunately, the cost of variable elimination is expo-

nential in relation to the treewidth of the graph. The
treewidth is the size of the largest factor created during
the operation of the algorithm using the best order in
which the variables are eliminated. And it gets worse:
finding the best elimination order is a NP-Hard prob-
lem. In our experiments, we choose to eliminate the
variable whose product of all factors where it appears
contains the smallest number of variables.

4.2 Belief Propagation

Belief propagation is an algorithm that follows a mes-
sage passing approach to efficiently solve probabilistic
queries. Here, we describe the implementation of the
algorithm over factor graphs (Kschischang, Frey, and
Loeliger 2001). The algorithm consists in iteratively
exchanging local messages between variable and factor
nodes of a factor graph, until convergence is achieved
(the probabilities for each variable stabilize). These
messages consists in vectors of probabilities that mea-
sures the influence that variables have among others.

Belief propagation is known to converge to the exact
answers when the factor graph does not contains loops.
Otherwise, there is no guarantee on the convergence of
the algorithm, or that the results will be good approxi-
mations of the exact solutions. However, experimental
results show that this loopy belief propagation often it
converges to good approximations and can finish sev-
eral times faster than other methods (Murphy, Weiss,
and Jordan 1999).

Next, we describe how the messages are calculated and
how to obtain the marginals for each variable. The
message from a variable X to a factor f is defined by:

ux—g(z) = 11

g€neighbors(X)\{f}

ug-x (), (1)

that is, it consists in the product of the messages re-
ceived from X’s other neighbor factors. The message
that a factor f sends to a variable X is defined by:

k

(2)

where Y7, ...,Y} are the other f’s neighbor variables.
In other words, it is the product of the messages re-
ceived from the other f’s neighbor variables, followed
by summing out all variables except X.

’U,f_>X(17): Z f(xvyla"'
Y15 Yk

Finally, we estimate the marginal probabilities for a
variable X by computing the product of the messages
received by all X’s neighbor factors:

P(x) x H

fé€neighbors(X)

ufx () - 3)

Depending on the graphical model, we may also need
to normalize the probabilities. That is, to scale them
to sum to 1. In our implementation, initially all mes-
sages are initialized uniformly.

4.3 Lifted Variable Elimination

Lifted variable elimination exploits the symmetries
present in first-order probabilistic models, so that it
can apply the same principles behind variable elimina-
tion to solve a probabilistic query without grounding
the model. However, instead of summing out a ran-
dom variable at a time, it works out by summing out
a whole group of interchangeable random variables.

Initially a shattering operation is applied in all of the
parfactors. Shattering consists in splitting the par-
factors until all atoms represent under the constraint
either identical or disjoint sets of ground random vari-
ables. Intuitively, this is necessary to ensure that the
same reasoning steps are applied to all ground factors
represented by a parfactor. Sometimes it may also be
necessary to further split the parfactors for some lifted
operation be correct, that is, equal to a set of multiple
ground operations.

Work on lifting variable elimination started
with (Poole 2003) and was later extended by
(de Salvo Braz, Amir, and Roth 2007). (Milch
et al. 2008) increased the scope of lifted inference by
introducing counting formulas, that can be seen as
a compact way to represent a product of repeated
ground factors. The current state of art on lifted
variable elimination is GC-FOVE (Taghipour et al.
2012). GC-FOVE extends previous work by redefining
the operations described in (Milch et al. 2008) to
be correct for whatever constraint representation
is being used. In fact, the constraints can be even
represented as sets of tuples over the corresponding
logical variables.

4.4 Lifted Belief Propagation

There are currently two main approaches for apply-
ing belief propagation at lifted level: lifted first-order
belief propagation (Singla and Domingos 2008) and
counting belief propagation (Kersting, Ahmadi, and
Natarajan 2009).

Counting belief propagation is defined over factor
graphs and works out by grouping in clusters the vari-
ables and factors that are indistinguishable in terms of
messages sent and received, creating through process
a compressed factor graph. To achieve this, counting
belief propagation simulates the use of belief propaga-
tion through a color based scheme, where colors are
transmitted instead of real probabilities and identical

colors identify identical messages.

While counting belief propagation requires grounding
the model to a factor graph and only then performing
the compression phase, lifted first-order belief propa-
gation identifies the random variables which send and
receive the same messages directly from the parfactors.
This can be significantly more efficient.

In both approaches, the messages sent by belief propa-
gation need to be adapted to consider the fact that an
edge in the compressed/lifted network can represent
multiples edges in the uncompressed/ground network.

5 Experimental Evaluation

We compare the performance of variable elimination,
belief propagation and their lifted versions in four stan-
dard benchmark problems described using PFL: work-
shop attributes (Milch et al. 2008), competing work-
shops (Milch et al. 2008), city (Poole 2003) and social
domain (Jha et al. 2010).

Our implementation of lifted variable elimination cor-
responds to GC-FOVE, with the difference that we
use a simple tree to represent the constraints instead
of a constraint tree (Taghipour et al. 2012). We have
also implemented two forms of lifted belief propaga-
tion, namely one based on counting belief propagation
(CBP) and one based on lifted first-order belief prop-
agation (LFOBP). All algorithms were written in C++
and are available with the development version of the
YAP Prolog system (Santos Costa, Damas, and Rocha
2012).

The test environment was a machine with 2 Intel®)
Xeon® X5650@2.67GHz processors and 99 Gigabytes
of main memory, running a Linux kernel 2.6.34.9-
69.fc13.x86_64. The times for solving each query pre-
sented here are the minimum times of a series of mul-
tiple runs.

Figures 1(a) and 1(b) displays the running times to
solve a query on series for both workshop attributes
and competing workshops problems with an increased
number of individuals (Milch et al. 2008). GC-FOVE
and LFOBP are the methods that performs better, fol-
lowed by CBP. For CBP, the size of the compressed fac-
tor graph remains constant as we increase the number
of individuals. Hence its cost is mostly dominated by
the time used to compress the factor graph. Variable
elimination performs reasonably well even in the pres-
ence of large domains, as the treewidth remains con-
stant for all number of individuals. Although it con-
verges in few iterations, belief propagation is clearly
the slowest method.

Figure 1(c) shows the running times to solve a query

100 T

p
80 -
6oL
N
(&)
|
& 40 |-
20
e
0 -5 L @ hid
0 0.2 0.4 0.6 0.8 1
Number of Individuals -10°
(a) Workshop attributes
500 T
400 - =
— 300 - =
o
2
& 00| .
100 - =
) "N -~ -Wr
(0 o&
0 0.2 0.4 0.6 0.8 1
Number of Individuals -10°

(c) City

=
()
E
=
Number of Individuals -10*
(b) Competing workshops
1,600 T T T T
—e— VE (intractable)
1400 | . oo
—— GC-FOVE
1,200 - | —e— LFOBP
-+- CBP
1,000
=
g 800 -
&
600 -
400 -
200 +
et
ol e—e =& = ‘ |
0 200 400 600

|
800 1,000 1,200 1,400

Number of Individuals

(d) Social domain

Figure 1: Performance on workshops attributes, competing workshops, city and social domain problems with an

increased number of individuals.

on guilty for some individual in the city problem, given
the descriptions of the others (Poole 2003). Here GC-
FOVE, LFOBP and CBP have close performances, as
well as their non-lifted versions.

More interesting is the social domain problem (Jha
et al. 2010) where non-lifted exact inference is in-
tractable, since the treewidth of the graph increases
exponentially in relation to the number of individuals.
Figure 1(d) displays the performances of belief prop-
agation, GC-FOVE, LFOBP and CBP for a query on
friends. We found that CG-FOVE is capable of ex-
actly solving this problem in a very efficient way, even
thought it has to do some operations whose cost de-
pend on the number of individuals, namely counting
conversion (Taghipour et al. 2012).

Now, we want to evaluate the effect caused by evidence
on the value of some random variables for all the dif-
ferent inference algorithms. For this experiment we
took the social domain network, fixed the number of
individuals at 500 and varied the percentage of evi-
dence on random variables produced by smokes (ob-
served random variables as well their observed values
were choose randomly). The results are show in Fig-
ure 2. While the run times remain stable for the three
versions of belief propagation with all percentages of
evidence, GC-FOVE behaves different. The first set of
evidence causes an increase on the run time as some
parfactors will be split. However adding more evidence
will not cause further splitting and instead the run
times will decrease gradually, since the absorption of
the evidence will cause some operations used by GC-

100 T T

—o— VE(intractable)
—a— BP

80 —— GC-FOVE
—e— LFOBP

-+- CBP

601

Time (s)

—o—6 ——(

O | | | |
0% 20% 40% 60% 80%
Percentage of Evidence

Figure 2: Performance on social domain problem vary-
ing the percentage of evidence.

FOVE to become slightly cheaper.

Finally, we also found interesting in comparing the
memory usage between ground and lifted solvers. Fig-
ure 3 shows the maximum memory used during the
execution of each inference method for the social do-
main problem. As we expected, lifted solving requires
less memory than ground solving. The memory usage
of CBP is close to the memory usage of belief propa-
gation because it needs to ground the model first.

6 Conclusions and Future Work

We introduce the PFL, an extension of Prolog to ma-
nipulate complex distributions represented as products
of factors. The PFL has been implemented as an ex-
tension to an existing programming language, and is
publicly available. As an initial experiment, we use the
PFL to represent several lifted inference benchmarks,
and compare a number of inference techniques. Our
results illustrates the efficiency gains obtained from
lifted solving these problems.

We see the PFL as a tool in experimenting with
ways to combine probabilistic and logical inference,
and plan to continue experimenting with different ap-
proaches, such as the ones based on knowledge com-
pilation (Van den Broeck et al. 2011). We also plan
to look in more detail to aggregates. Last, and not
least, our ultimate focus is to be able to learn PFL
programs.

1r —e— VE(intractable)
—a— BP
—— GC-FOVE
0.8 1 —o— LFOBP
' -+- CBP
g
ST
i_
3
=
S
= 04}
0.2 |-
0 | | |

— |
0 200 400 600 800 1,000 1,200 1,400

Number of Individuals

Figure 3: Memory usage on social domain problem
with an increased number of individuals.

Acknowledgments

This work is funded (or part-funded) by the ERDF
- European Regional Development Fund through the
COMPETE Programme (operational programme for
competitiveness) and by National Funds through the
FCT - Fundacao para a Ciéncia e a Tecnologia
(Portuguese Foundation for Science and Technology)
within project HORUS (PTDC/EIA/100897/2008)
and project LEAP (PTDC/EIA-CCO/112158/2009).

References

Choi, Jaesik, Eyal Amir, and David J. Hill. 2010.
“Lifted Inference for Relational Continuous Mod-
els.” Edited by Peter Griinwald and Peter
Spirtes, UAI 2010, Proceedings of the Twenty-
Sixth Conference on Uncertainty in Artificial In-
telligence, Catalina Island, CA, USA, July 8-11,
2010. AUAT Press, 126-134.

de Salvo Braz, Rodrigo, Eyal Amir, and Dan Roth.
2005. “Lifted First-Order Probabilistic Infer-
ence.” Edited by Leslie Pack Kaelbling and
Alessandro Saffiotti, IJCAIL Professional Book
Center, 1319-1325.

—— 2007. “Lifted first-order probabilistic infer-
ence.” Chapter 15 of Introduction to Statistical
Relational Learning, edited by Lise Getoor and
Ben Taskar, 433-451. MIT Press.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer.
2001. “Learning Probabilistic Relational Models.”
Chapter 13 of Relational Data Mining, 307-335.
Springer.

Getoor, L., and B. Taskar. 2007. Introduction to
Statistical Relational Learning. MIT Press.

Gogate, Vibhav, and Pedro Domingos. 2011.
“Probabilistic Theorem Proving.” Edited by
Fabio Gagliardi Cozman and Avi Pfeffer, UAI
2011, Proceedings of the Twenty-Seventh Con-
ference on Uncertainty in Artificial Intelligence,
Barcelona, Spain, July 14-17, 2011. AUAI Press,
256—265.

Jha, Abhay Kumar, Vibhav Gogate, Alexandra Me-
liou, and Dan Suciu. 2010. “Lifted Inference Seen
from the Other Side : The Tractable Features.”
Edited by John D. Lafferty, Christopher K. I.
Williams, John Shawe-Taylor, Richard S. Zemel,
and Aron Culotta, NIPS. Curran Associates, Inc.,
973-981.

Kersting, K., B. Ahmadi, and S. Natarajan. 2009.
“Counting belief propagation.” Proceedings of the
Twenty-Fifth Conference on Uncertainty in Arti-
ficial Intelligence. AUAI Press, 277-284.

Kimmig, Angelika, Bart Demoen, Luc De Raedt,
Vitor Santos Costa, and Ricardo Rocha. 2011.
“On the implementation of the probabilistic logic
programming language ProbLog.” TPLP 11 (2-
3): 235-262.

Kschischang, F.R., B.J. Frey, and H.A. Loeliger.
2001. “Factor graphs and the sum-product algo-
rithm.” Information Theory, IEEE Transactions
on 47 (2): 498-519.

Milch, B., L.S. Zettlemoyer, K. Kersting, M. Haimes,
and L.P. Kaelbling. 2008. “Lifted probabilis-
tic inference with counting formulas.” Proc. 23rd
AAAIL pp. 1062-1068.

Milch, Brian, Bhaskara Marthi, Stuart J. Rus-
sell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. 2005. “BLOG: Probabilistic Models
with Unknown Objects.” Edited by Leslie Pack
Kaelbling and Alessandro Saffiotti, [JCAI-05,
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30-August 5, 2005. Profes-
sional Book Center, 1352-1359.

Muggleton, Stephen. 1996. “Stochastic Logic Pro-
grams.” In Advances in Inductive Logic Program-
ming, edited by Luc De Raedt, Volume 32 of Fron-
tiers in Artificial Intelligence and Applications,
254-264. Amsterdam: 10S Press.

Murphy, K.P., Y. Weiss, and M.I. Jordan. 1999.
“Loopy belief propagation for approximate infer-
ence: An empirical study.” Proceedings of the
Fifteenth conference on Uncertainty in artificial

intelligence. Morgan Kaufmann Publishers Inc.,
467-475.

Poole, David. 1997. “The Independent Choice
Logic for Modelling Multiple Agents Under Un-
certainty.” Artif. Intell. 94 (1-2): 7-56.

. 2003. “First-order probabilistic inference.”
Edited by Georg Gottlob and Toby Walsh, IJCAL
Morgan Kaufmann, 985-991.

Raedt, Luc De, Paolo Frasconi, Kristian Kersting,
and Stephen Muggleton, eds. 2008. Probabilistic
Inductive Logic Programming - Theory and Ap-
plications. Volume 4911 of Lecture Notes in Com-
puter Science. Springer.

Raedt, Luc De, Angelika Kimmig, and Hannu Toivo-
nen. 2007. “ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery.” Edited by
Manuela M. Veloso, IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artifi-
cial Intelligence, Hyderabad, India, January 6-12,
2007. 2462-2467.

Richardson, Matthew, and Pedro Domingos. 2006.
“Markov logic networks.” Machine Learning 62
(1-2): 107-136.

Riguzzi, Fabrizio, and Terrance Swift. 2011. “The
PITA system: Tabling and answer subsumption
for reasoning under uncertainty.” TPLP 11 (4-
5): 433-449.

Santos Costa, Vitor, Luis Damas, and Ricardo
Rocha. 2012. “The YAP Prolog system.” Theory
and Practice of Logic Programming 12 (Special
Issue 1-2): 5-34.

Santos Costa, Vitor, David Page, Maleeha Qazi, and
James Cussens. 2003. “CLP(BN): Constraint
Logic Programming for Probabilistic Knowledge.”
Edited by Christopher Meek and Uffe Kjeerulff,
UAI 08, Proceedings of the 19th Conference in
Uncertainty in Artificial Intelligence, Acapulco,
Mezxico, August 7-10 2003. Morgan Kaufmann,
517-524.

Sato, Taisuke, and Yoshitaka Kameya. 1997.
“PRISM: A Language for Symbolic-Statistical
Modeling.” Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence,
1JCAI 97, Nagoya, Japan, August 23-29, 1997, 2
Volumes. Morgan Kaufmann, 1330-1339.

. 2008. “New Advances in Logic-Based Prob-

abilistic Modeling by PRISM.” In Raedt et al.
2008, 118-155.

Singla, P., and P. Domingos. 2008. “Lifted first-
order belief propagation.” Proceedings of the 23rd
national conference on Artificial intelligence, Vol-
ume 2. 1094-1099.

Taghipour, N., D. Fierens, J. Davis, and H. Blockeel.
2012. “Lifted variable elimination with arbitrary

constraints.” Proceedings of the fifteenth inter-
national conference on artificial intelligence and
statistics.

Van den Broeck, Guy, Nima Taghipour, Wannes
Meert, Jesse Davis, and Luc De Raedt. 2011.
“Lifted Probabilistic Inference by First-Order
Knowledge Compilation.” Edited by Toby Walsh,
IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011.
IJCAI/AAAI, 2178-2185.

Zhang, N. L., and D. Poole. 1996. “Exploiting
causal independence in bayesian network infer-

ence.” Journal of Artificial Intelligence Research,
Vol 5, (1996), 301-328, December.

