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Abstract

The general consensus seems to be that lifted
inference is concerned with exploiting model
symmetries and grouping indistinguishable
objects at inference time. Since first-order
probabilistic formalisms are essentially tem-
plate languages providing a more compact
representation of a corresponding ground
model, lifted inference tends to work espe-
cially well in these models. We show that the
notion of indistinguishability manifests itself
on several different levels — the level of con-
stants, the level of ground atoms (variables),
the level of formulas (features), and the level
of assignments (possible worlds). We discuss
existing work in the MCMC literature on ex-
ploiting symmetries on the level of variable
assignments and relate it to novel results in

lifted MCMC.

1 Introduction

Numerous algorithms exploit model symmetries with
the goal of reducing the complexity of the compu-
tational problems at hand. A considerable amount
of attention to approaches utilizing model symme-
tries has been given by researchers working on “lifted
probabilistic inference [18].” Lifted inference is mainly
motivated by the large probabilistic graphical mod-
els resulting from statistical relational formalism such
as Markov logic networks [20]. The unifying theme
of lifted probabilistic inference is that inference on
the level of instantiated formulas is avoided and in-
stead lifted to the first-order level. Notable ap-
proaches are algorithms for lifted belief propaga-
tion [23, 10], bi-simulation-based approximate infer-
ence algorithms [22], and first-order knowledge compi-
lation techniques [24, 8], to name but a few.

We recently proposed the use of permutation groups

and, more generally, group theoretical concepts and
algorithms to represent and manipulate symmetries in
probabilistic models [15]. The representation of sym-
metries with irredundant generators of permutations
groups provides an exponential compression, that is,
a representation logarithmic in the number of permu-
tations. Since first-order models often exhibit strong
topological symmetries, permutation groups offer a
compact and well-understood representation. More-
over, numerous efficient group theoretical algorithms
are implemented in comprehensive open-source group
algebra frameworks such as GAP[7]. In recent work,
we described the construction of colored undirected
graphs whose automorphism groups are equivalent to
those of the probabilistic graphical models under con-
sideration. Moreover, we have shown that existing al-
gorithms such as Saucy[4] and NAUTY[12] compute
automorphism groups of the resulting colored graphs
very efficiently even for models involving millions of
variables [15].

Symmetries on different syntactical levels of statistical
relational formalism ultimately lead to symmetries in
the space of joint variable assignments. This space of
possible assignments corresponds to the state space of
Monte Carlo Markov chains such as the Gibbs sam-
pler that are often used for approximate probabilis-
tic inference. Since the permutation group modeling
the symmetries induces a partition (the so-called orbit
partition) on the state space of these Markov chains,
we investigate whether this can be exploited for more
efficient MCMC approaches to probabilistic inference.
The basic idea is that the lifted Markov chains' implic-
itly or explicitly operate on the partition of the state
space instead of the space of individual assignments.
We also describe orbital Markov chains, a recent con-
tribution to lifted MCMC [15]. An orbital Markov
chain is always derived from an existing Markov chain

1Please note that in the standard MCMC literature a
lifting of a Markov chain [3] is not the same as our notion
of a lifted Markov chain. We will later come back to this.



so as to leverage the symmetries in the underlying
model. Under mild conditions, orbital Markov chains
have the same convergence properties as chains oper-
ating on the state space partition without the need to
explicitly compute this partition.

We conducted several experiments verifying that or-
bital Markov chains converge faster to the true distri-
bution than state of the art Markov chains on well-
motivated and established sampling problems such as
the problem of sampling independent sets from graphs
and the problem of computing the marginal single vari-
able probabilities of large Markov logic networks.

2 Background

We first recall basic concepts of group theory and fi-
nite Markov chains both of which are crucial for under-
standing the presented work. Please note that these
should not be difficult to graps even for readers unfa-
miliar with group theory.

2.1 Group Theory

A symmetry of a discrete object is a structure-
preserving bijection on its components. A natural way
to represent symmetries are permutation groups. A
permutation group & acting on a finite set Q is a fi-
nite set of bijections g : & — ) that form a group.
Let € be a finite set and let & be a permutation group
acting on Q. If « € Q and g € & we write a? to de-
note the image of o under g. A cycle (a1 as ... ay)
represents the permutation that maps a; to as, as to
as,..., and a, to a;. Every permutation can be writ-
ten as a product of disjoint cycles where each element
that does not occur in a cycle is understood as being
mapped to itself. We define a relation ~ on € with
«a ~ [ if and only if there is a permutation g € & such
that a® = . The relation partitions 2 into equiva-
lence classes which we call orbits. We use the notation
a® to denote the orbit {a? | g € &} containing . Let
f: 9 — R be a function from € into the real numbers
and let & be a permutation group acting on 2. We
say that & is an automorphism group for (£, f) if and
only if for all w € Q and all g € &, f(w) = f(w?).

2.2 Finite Markov Chains

Given a finite set 2 a finite Markov chain defines a ran-
dom walk (Xg, X1, ...) on elements of Q with the prop-
erty that the conditional distribution of X, 41 given
(Xo, X1, ..., X,,) depends only on X,,. For all z,y € Q
P(z,y) is the chain’s probability to transition from x
to y, and P!(x,y) = Pi(y) the probability of being in
state y after t steps if the chain starts at . A Markov
chain is irreducible if for all x,y € €1 there exists a ¢

such that P(z,y) > 0 and aperiodic if for all z € Q,
ged{t > 1| P'(xz,z) > 0} = 1. A chain that is both
irreducible and aperiodic is called an ergodic chain and
converges to a unique stationary distribution.

The total variation distance di, of the Markov chain
from its stationary distribution 7 at time ¢ with initial
state x is defined by

da(PLm) = 5 37 1P'(2,) = 7o)
yeQ

For € > 0, let 7,(¢) denote the least value T such that
dw (P, ) < e for all t > T. The mizing time 7(¢) is
defined by 7(¢) = max{7;(¢) | x € Q}. We say that
a Markov chain is rapidly mizing if the mixing time is
bounded by a polynomial in n and log(¢~!), where n
is the size of each configuration in 2.

3 Symmetry in Statistical Relational
Artificial Intelligence

The notion of lifted probabilistic inference was first in-
troduced in the context of first-order variable elimina-
tion, a variation of variable elimination, taking advan-
tage of the symmetries in statistical relational mod-
els [18]. Following Poole’s work, several algorithms
for lifted probabilistic inference were developed such
as lifted and counting belief propagation [23, 10], bi-
simulation based approximate inference [22], general
purpose MCMC algorithm for relational models [13]
and, more recently, first-order knowledge compilation
techniques [24, 8]. Naturally, there is a close connec-
tion between the concept of symmetry and lifted in-
ference. For instance, lifted belief propagation identi-
fies and clusters indistinguishable ground atoms and
features by keeping track of the messages send and re-
ceived by each of the corresponding nodes in a factor
graph [23, 10]. Bi-simulation type procedures group
indistinguishable elements and, therefore, exploit sym-
metry in the model as well [22].

We have proposed the use of group theory and, in
particular, permutation groups to compactly repre-
sent symmetries in graphical models [15]. There are
several reasons to consider group theory and permuta-
tion groups a natural representation of symmetries in
graphical models. First, an irredundant set of genera-
tors of a permutation group ensures exponential com-
pression. For instance, for a set of n exchangeable
binary random variables, the permutation group act-
ing on the variables is the symmetric group on n which
has n! permutations. However, we only need at most
n—1 irredundant generators to represent this permuta-
tion group. In addition to the compact representation,
group theory also provides numerous remarkably effi-
cient algorithms for manipulating and sampling from
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Figure 1: Symmetry in the model is observable on dif-
ferent syntactical levels of the relational model. The
level of constants, the level of ground atoms (vari-
ables), the level of clauses (features) and the level
of possible worlds (assignments). Each permutation
group acting on the set of constants induces a permu-
tation group acting on the set of ground atoms. The
latter induces a permutation group acting on the set of
features. This permutation partitions (a) the variables
and feature and (b) the assignment space.

groups. The product replacement algorithm [2], for in-
stance, samples group elements uniformly at random
with impressive performance.

Symmetry in statistical relational languages manifests
itself at various syntactic levels ranging from the set of
constants to the assignment space. There is often sym-
metry at the level of constants. In the well-known so-
cial network model [23] without evidence, for example,
we have that the constants are indistinguishable mean-
ing that swapping two constants leads to an isomor-
phic statistical relational model. Now, the permuta-
tions on the constant level induce permutations on the
level of ground atoms and formulas. From the irredun-
dant generators of the permutation group modeling
the symmetries on the constant level we can directly
compute the irredundant generators of the permuta-
tion group modeling the corresponding symmetries on
the ground level. Indeed, it is well-known that iso-
morphisms between permutation groups always map
irredundant generators in one group to irredundant
generators in the other. However, symmetry on the
ground level does not necessarily lead to symmetry on
the constant level. Similarily, while symmetry on the
ground level induces symmetry on the space of assign-
ments to the random variables this is not true for the
other direction. Figure 1 depicts the different syntac-
tical levels on which symmetries can arise.

Most existing lifted inference algorithms implicitly ex-
ploit symmetry on the ground level. Examples are
lifted variable elimination [18] as well as counting be-
lief propagation [23, 10] approaches that cluster vari-
ables and features whose factor nodes would send and
receive the same messages were belief propagation run
on the ground model. A recently developed approach

maps weighted formulas to colored undirected graphs
and applies graph automorphism algorithms to com-
pute the symmetries of the log-linear models defined
over the weighted formulas [15]. The resulting per-
mutation groups partition the (exponential) space of
variable assignments when acting on it. Since the state
space of MCMC approaches is identical to the assign-
ment space of the probabilistic graphical models, we
will investigate whether and to what extend the parti-
tion induced by the models’ symmetries can be lever-
aged for more efficient MCMC algorithms.

4 Lifted MCMC

We have seen that symmetries on different syntacti-
cal levels of statistical relational formalism ultimately
lead to symmetries in the space of joint variable as-
signments. Now, the space of possible variable assign-
ments is the state space of Monte Carlo Markov chains
such as the Gibbs sampler that are often used for ap-
proximate probabilistic inference. Since the permuta-
tion group modeling the symmetries induces a parti-
tion (the so-called orbit partition) on the state space of
these Markov chains, we will investigate whether this
can be exploited for more efficient MCMC approaches
to probabilistic inference. The basic idea is that the
lifted MCMC algorithms implicitly or explicitly oper-
ate on the partition of the state space instead of the
original state space.

4.1 Lumping

A lumping (also: collapsing, projection) of a Markov
chains is a compression of its state space which is possi-
ble under certain conditions on the transition probabil-
ities of the original Markov chain [1, 5]. The following
definition formalizes the notion.

Definition 4.1. Let M be a Markov chain with
transition matrix P and state space 2, and let C =
{C1,...,Cy} be a partition of the state space. If for all
CZ‘,C]' € C and all j/,j” S Cj

Y P(ijh =Y P@i',j")

i'eCy ieC;

then M is ordinary lumpable. If, in addition, 7 (j') =
7_r(j//) for all j/,5" € Cj and all Cj € C then M is
exactly lumpable.

Let 7 be the stationary distribution of the quotient
Markov chain, that is, the exactly lumped Markov
chain whose state space is C. Then, the probability
m(i) of a state i € C; C Q of the original chain can be
computed as (i) = 7(¢)/|C;].

The benefit of lumping a Markov chain is the poten-
tially much smaller state space and ultimately more



rapid mixing. For instance, consider the case of n bi-
nary random variables that are exchangeable?. Here,
the natural choice of a partition of the state space is
{Cy, C1, ..., Cy, } where each C; contains the states with
Hamming weight i, that is, the states with ¢ non-zeros.
Please note that the C;’s are the orbits (equivalence
classes) of the orbit partition of the permutation group
acting on the set of states (variable assignments). In-
stead of 2" states the resulting lumped Markov chain
has only n + 1 states and mixes more rapidly than
the original one. Figure 2 depicts (a) a fragment of
a finite Markov chain with non-zero probability tran-
sitions indicated by arrows and (b) a lumped Markov
chain that bundles several states of the original chain
into a single one of the lumped chain.

The crucial question is whether the explicit construc-
tion of the lumped chain is computationally feasible.
After all, if the computation of lumped Markov chains
was intractable we would not have gained much. Un-
fortunately, it turns out that the explicit construc-
tion of the lumped state space is indeed intractable.
Computing the coarsest lumping quotient of a Markov
chain with a bi-simulation procedure is linear in the
number of non-zero probability transitions of the chain
[5] and, hence, in most cases exponential in the num-
ber of random variables. Moreover, other theoretical
results show that special cases of the lumping problem
are also intractable. The results are negative even for
the important special case of partitions resulting from
permutation groups acting on the state space of the
Markov chains. It is known that, given a permuta-
tion group acting on the state space, merely comput-
ing the number of equivalence classes of the resulting
orbit partition of the state space is a #P-complete
problem [9].

We hypothesize that the intractability of the explicit
construction of the lumped chain’s state space is the
main reason that the technique of lumping, while well-
understood on a theoretical level, has not been seri-
ously considered by communities that apply Markov
chain Monte Carlo methods to large-scale applications
requiring probabilistic inference. We are not aware
of MCMC approaches to probabilistic reasoning that
leverage the theory of lumping.

4.2 Orbital Markov Chains

A recent study of Markov chains that exploit state
space symmetries has shown that, under certain cir-
cumstances, the explicit computation of the partition
of the state space is not necessary to achieve the same
computational gains as the lumped chain [15]. The

2In SRL models this is equivalent to the case of all
ground atoms being indistinguishable.
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Figure 2: (a) A fragment of a finite state space of
a Markov chain with non-zero transition probabilities
indicated by directed arcs. (b) A lumping of the state
space. Instead of moving between individual states,
the lumped chain moves between classes of states of
the original chain. (c¢) The benefits of lumping are also
achievable by sampling uniformly at random from the
implicit equivalence classes (orbits) in each step.

basic idea is that we only need, for each w € €, an
efficient way to sample uniformly at random from [w]
the equivalence class containing w. It was shown that
the product replacement algorithm [2] provides such
an efficient method of sampling uniformly from the
equivalence classes induced by a permutation group.
The novel family of Markov chains was termed orbital
Markov chains [15]. An orbital Markov chain is al-
ways derived from an existing Markov chain so as to
leverage the symmetries in the underlying model. In
the presence of symmetries orbital Markov chains are
able to perform wide-ranging transitions reducing the
time until convergence. In the absence of symmetries
they are equivalent to the original Markov chains. Or-
bital Markov chains only require a generating set of
a permutation group & acting on the chain’s state
space as additional input. As we have previously dis-
cussed, these sets of generators are computable with
algorithms that derive permutation groups for colored
undirected graphs such as SAuCY and NAUTY or by
means of other algorithms that have been developed
in the lifted inference literature.

Let Q be a finite set, let M’ = (X[, X7,...) be a
Markov chain with state space €2, let m be a station-
ary distribution of M’, and let & be an automor-
phism group for (2,7). The orbital Markov chain
M = (Xo,X4,...) for M’ is a Markov chain which
at each integer time ¢+ 1 performs the following steps:

1. Let X}, be the state of the original Markov chain
M’ at time t + 1;



2. Sample X;;1, the state of the orbital Markov
chain M at time ¢t + 1, uniformly at random from
X’g_l, the orbit of X7, .

The orbital Markov chain M, therefore, runs at ev-
ery time step ¢ > 1 the original chain M’ first and
samples the state of M at time ¢ uniformly at random
from the orbit of the state of the original chain M’ at
time ¢. Figure 2 (c) depicts a fragment of the orbital
Markov chain for the original Markov chain (a). In-
stead of computing the equivalence of the state space
explicitely (b) novel transitions are introduced that
make the chain behave as if it was lumped.

Given a state X; and a permutation group & orbital
Markov chains sample an element from X, %, the orbit
of X, uniformly at random. By the orbit-stabilizer
theorem this is equivalent to sampling an element
g € & uniformly at random and computing X;%. Sam-
pling group elements uniformly at random is a well-
researched problem [2] and computable in polynomial
time in the size of the generating sets with product
replacement algorithms [17]. These algorithms are im-
plemented in several group algebra systems such as
GAP[7] and exhibit remarkable performance. Once ini-
tialized, product replacement algorithms can generate
pseudo-random elements by performing, depending on
the variant, 1 to 3 group multiplications. We could
verify that the overhead of step 2 during the sampling
process is indeed negligible.

The following theorem relates properties of the orbital
Markov chain to those of the Markov chain it is derived
from. A detailed proof can be found in the appendix.

Theorem 4.2 (Niepert [15]). Let Q be a finite set
and let M’ be a Markov chain with state space Q and
transition matriz P'. Moreover, let ™ be a probability
distribution on Q, let & be an automorphism group for
(Q,m), and let M be the orbital Markov chain for M'.
Then,

(a) if M’ is aperiodic then M is also aperiodic;
(b) if M’ is irreducible then M is also irreducible;

(c) if ™ is a reversible distribution for M’ and, for all
g € 6 and all x,y € Q we have that P'(z,y) =
P'(29,y%), then 7 is also a reversible and, hence,
a stationary distribution for M.

The condition in statement (c) requiring for all g € &
and all z,y € Q that P'(z,y) = P'(29%, y%) expresses
that the original Markov chain is compatible with
the symmetries captured by the permutation group
. This weak assumption is met by all of the practi-
cal Markov chains we are aware of and, in particular,
Metropolis chains and Gibbs sampler.

Figure 3: From left to right: the 3-grid, the 3-
connected cliques, and the 3-complete graph models.
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Figure 4: The results of the three Gibbs samplers for
the 5-grid model.

5 Experiments

We conducted experiments on two different well-
established classes of graphical models. First, we se-
lected the insert/delete Markov chain for independent
sets of graphs for the experiments. Sampling indepen-
dent sets is a classical problem motivated by numerous
applications and with a considerable amount of recent
research devoted to it [11, 6].

Let G = (V,E) be a graph. A subset X of V is an
independent set if {v,w} ¢ FE for all v,w € X. Let
Z(G) be the set of all independent sets in a given graph
G and let A be a positive real number. The partition
function Z = Z(\) and the corresponding probability
measure 7y on Z(G) are defined by

AlXI
Z=Z\= Z AXTand 7r>\(X):7.

XeZ(G)

Approximating the partition function and sampling
from Z(G) can be accomplished using a rapidly mix-
ing Markov chain with state space Z(G) and stationary
distribution 7. The simplest Markov chain for inde-
pendent sets is the so-called insert/delete chain [6]. If
X, is the state at time t then the state at time £+ 1 is



determined by the following procedure:

1. Select a vertex v € V uniformly at random;

2. If v € X; then let X;11 = X;\{v} with probability
1/(1+N);

3. If v ¢ X; and v has no neighbors in X; then let
Xiy1 = X U {v} with probability A/(1 + A);

4. Otherwise let X;41 = X;.

Using a path coupling argument one can show that the
insert/delete chain is rapidly mixing for A < 1/(A —
1) where A is the maximum degree of the graph [6].
We can turn the insert/delete Markov chain into the
orbital insert/delete Markov chain M(Z(G)) simply
by adding the following fifth step:

5. Sample X1 uniformly at random from its orbit.

As a corollary to Theorem 4.2, we have that the or-
bital insert/delete chain for independent sets is aperi-
odic, irreducible, and has 7y as its unique stationary
distribution [15].

We compared the performance of the orbital Markov
chains for independent sets of graphs with state-of-the-
art algorithms for sampling independent sets [6]. We
used GAP, a system for computational discrete alge-
bra, and the ORB package® to implement the sampling
algorithms. The experiments can easily be replicated
by installing GAP and the ORB package and by run-
ning the GAP files available at a dedicated code repos-
itory*. For the evaluation of the sampling algorithms
we selected three different graph topologies exhibiting
varying degrees of symmetry:

The k-grid model is the 2-dimensional kxk grid.
An instance of the model for & = 3 is depicted
in Figure 3 (left). Here, the generating set of
the permutation group & computed by SAUCY is
{(a c)(d f)(g i), (a )b f)(d h)} and |6] = .

The k-connected cliques model is a graph with k& + 1
distinct cliques each of size ¥ — 1 and each con-
nected with one edge to the same vertex. Statisti-
cal relational formalisms such as Markov logic net-
works often lead to similar graph topologies. An in-
stance for k = 3 is depicted in Figure 3 (center).
Here, the generating set of & computed by SAUCY is
{(a g)(b f),(ac)(bd),(ai)(bh)}and |& =24

The k-complete graph model is a complete graph with
k? vertices. Figure 3 (right) depicts an instance for k =
3. Here, the generating set of & computed by SAUCY

3http://www.gap-system.org/Packages/orb.html
“http://code.google.com /p/lifted-meme/
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Figure 5: The results of the three Gibbs samplers for
the 5-connected cliques (top) and the 5-complete graph
(bottom) model.

is {(b ), (b d),(be), (b f)(bg)(bh),(bi) (ab)} and
6] = 9! = 362880.

SAUCY needed about 5 ms to compute the sets of gen-
erators for the permutation groups of the three mod-
els. We generated samples of the probability measure
mx on Z(G) for A = 1 and the three graph topolo-
gies by running (a) the insert/delete chain, (b) the
insert/delete/drag chain [6], and (c) the orbital in-
sert/delete chain. Each chain was started in the state
corresponding to the empty set and no burn-in pe-
riod was used. The orbital insert/delete chain did not
require more RAM and needed 50 microseconds per
sample which amounts to an overhead of about 25%
relative to the 40 microseconds of the insert/delete
chain. The 25% overhead remained constant and inde-
pendent of the size of the graphs. Since the sampling
algorithms create large files with all accumulated sam-
ples, I/0 overhead is included in these times. For each
of the three topologies and each of the three Gibbs



samplers, we computed the total variation distance be-
tween the distribution approximated using all accumu-
lated samples and the true distribution 7. Figure 4
plots the total variation distance over elapsed time for
the k-grid model for k = 5. The orbital insert/delete
chain (Orbital Gibbs) converges the fastest. The in-
sert/delete/drag chain (Drag Gibbs) converges faster
than the insert/delete chain (Gibbs). The same results
are observable for the other graph topologies (see Fig-
ures 5) where the orbital Markov chain outperforms
the others. The larger the cardinalities of the orbits
induced by the symmetries the faster converges the
orbital Gibbs sampler relative to the other chains.

Moreover, we conducted experiments with the well-
established social network Markov logic network (the
smokes-cancer MLN) exactly as specified in [23]. Here
we created two ground MLNs with 50 and 100, re-
spectively, people in the domain, leading to Markov
networks with 2600 and 10200 variables, respectively.
Building the ground models took only a fraction of
a second. We proceeded to apply the symmetry de-
tection algorithm [15] taking 24 and 136 ms, respec-
tively, to compute the irredundant generators of the
automorphism group of the models. For n people in
the domain, there are n — 1 irredundant generators
of the automorphism group and the group has size n!
which is exactly the size of the symmetric group on
n. Please note that, based on our observation of indis-
tinguishability of objects on different syntactical levels
of the model, it is actually not necessary to use sym-
metry detection algorithms in this case. The irredun-
dant generators of the symmetric group representing
the symmetries on the level of constants can be di-
rectly used to compute the irredundant generators for
the permutation group representing the symmetries on
the level of ground atoms and formulas.

Finally, we compared the standard Gibbs sampler,
Alchemy’s MC-SAT algorithm [19], and the orbital
Gibbs sampler on the models. The overhead of the
product replacement algorithm was again negligible
and far outweighed by the faster convergence of the
orbital chain. Figure 5 plots the symmetric Kullback-
Leibler divergence for the single variable marginals.

6 Discussion

We have presented a novel perspective on lifted in-
ference. Instead of directly operating on the space of
joint variable assignments, orbital Markov chains op-
erate on a symmetry-induced partition of this space.
We related lifted MCMC to the notion of lumping of
Markov chains. Instead of computing the partition of
the state space explicitly which is usually intractable,
orbital Markov chains operate on the original state
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Figure 6: The results of the standard Gibbs sampler,
Alchemy’s MC-SAT algorithm, and the orbital Gibbs
sampler for the social network MLN with 50 (top) and
100 (bottom) people in the domain.

space while having convergence properties identical to
the corresponding lumped Markov chain. We want to
point out that in the MCMC literature a lifting of a
Markov chain [3] is not the same as what has been
coined lifted inference by the statistical relational Al
community. Quite the opposite, instead of operating
on a more compact state space, lifting in the classical
sense introduces additional states. Nevertheless, there
might be interesting relationships between lumping,
lifting and lifted inference.

Future work will include the integration of orbital
Markov chains with algorithms for marginal as well
as maximum a-posteriori inference. We will also ap-
ply the symmetry detection approach to make exist-
ing inference algorithms more efficient by, for instance,
using symmetry breaking constraints in combinatorial
optimization approaches to maximum a-posteriori in-
ference in Markov logic networks (cf. [21, 14, 16]).
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