
Generalized Counting for Lifted Variable Elimination

Nima Taghipour Jesse Davis
Department of Computer Science, KU Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{nima.taghipour,jesse.davis}@cs.kuleuven.be

Abstract

Lifted probabilistic inference methods exploit
symmetries in the structure of probabilistic
models to perform inference more efficiently.
In lifted variable elimination, the symme-
try among a group of interchangeable ran-
dom variables is captured by counting for-
mulas, and exploited by operations that han-
dle such formulas. In this paper we gener-
alize the structure of counting formulas and
present a set of inference operators that in-
troduce and eliminate these formulas from
the model. This generalization expands the
range of problems that can be solved in a
lifted way. Our work is closely related to the
recently introduced method of joint conver-
sion. Due to its more fine grained formula-
tion, however, our approach can provide more
efficient solutions than joint conversion.

1 Introduction

Probabilistic logical languages combine elements of
first-order logic with graphical models to succinctly
model complex, uncertain, structured domains [3].
These domains often involve a large number of ob-
jects, making efficient inference a major challenge. To
address this problem, lifted probabilistic inference was
introduced [5]. Lifted inference methods exploit the
symmetries in the structure of the model to perform
inference more efficiently.

Lifted inference uses two main techniques or tools for
lifting : (1) divide the problem into isomorphic and
independent subproblems, solve one instance, and ag-
gregate the result, and (2) count the number of iso-
morphic configurations for a group of interchangeable
objects instead of enumerating all possible configura-
tions. Our focus in this paper is on the second tool,

counting, in the context of lifted variable elimination
(LVE) [5, 2, 4].

LVE uses counting formulas to capture the the sym-
metry among a group of interchangeable objects [4].
A counting formula aggregates the joint state of a
group of random variables into histograms that show
only the number of variables with each state, without
distinguishing between the individuals. For instance,
the formula #X [Attends(X)], captures the number of
people who attend a workshop, without distinguishing
between their identity. As the number of possible ag-
gregate states (histograms) is much smaller than the
number of joint states of the group, lifted operations
achieve large efficiency gains by directly manipulating
these formulas, instead of the individual variables.

Counting formulas, as used so far in LVE [4], have
specific syntactic restrictions. Some of these restric-
tions are not fundamental, and can be removed to ar-
rive at more general counting formulas, which yields
more opportunities for lifting. One such restriction is
that a counting formula contains only a single atom,
i.e., it aggregates the state of a group of individual
random variables. In this paper, first we generalize
the definition of counting formulas in a straightfor-
ward way, to allow a counting formula to aggregate
the state of a group of tuples of random variables.
For instance, we allow a counting formula such as
#X [Attends(X), P resents(X)] that counts the num-
ber of people that (do not) attend and (do not) present
a paper at the workshop. Second, we present a set
of inference operators that introduce and manipulate
these generalized formulas, and show that these ex-
pand the opportunities for lifting, and hence for more
efficient inference, compared to the original formula-
tion of counting operations.

Our work is closely related to Apsel and Brafman’s [1]
on joint conversion and just-different counting conver-
sion. However, our method uses a more fine grained
formulation, and can offer more efficient solutions than
joint conversion.

2 Representation

Probabilistic logical models combine graphical models
with elements of first-order logic. Many representation
languages exist for such models [3]. Like earlier work
on LVE [5, 2, 4], we represent the model with paramet-
ric factors. This formalism can compactly represent
undirected probabilistic models on large numbers of
objects. We now introduce the necessary terminology.

The term “variable” can be used in both the logical
and probabilistic context. To avoid confusion, we use
the term logvar to refer to logical variables, and rand-
var to refer to random variables. We write variable
names in uppercase, and their values in lowercase.

We consider factorized probabilistic models. A fac-
tor f = φf (Af), where Af = (A1, . . . , An) are rand-
vars and φf is a potential function, maps configura-
tions of Af to a real-number. An undirected model
is a set of factors F over randvars A =

⋃
f∈F Af

and represents the following probability distribution:
PF (A) = 1

Z

∏
f∈F φf (Af), with Z a normalization

constant.

Our representation compactly defines a set of fac-
tors, using concepts from first-order logic. A con-
stant represents an object in our universe. A term
is either a constant or a logvar. A predicate P has
an arity n and a finite range (range(P)); it maps
n-tuples of objects (constants) to the range. An
atom is of the form P (t1, t2, . . . , tn), where the ti
are terms. A ground atom is an atom P (c1, . . . , cn)
where the ci are constants. The range of such
a ground atom is range(P). Each ground atom
represents a randvar (e.g., BloodType(joe)). Note
that the range of predicates, and hence randvars,
is not limited to {true, false} as in logic (e.g.,
range(BloodType(joe)) = {a, b, ab, o}).

Each Logvar X has a finite domain D(X), which
is a set of constants. Unless mentioned otherwise,
without loss of generality, we assume that D(X) =
{x1, . . . , xn} for the logvars. A substitution, θ =
{X1 → t1, . . . , Xn → tn}, is a mapping of logvars to
terms. A grounding substitution maps all logvars to
constants. Applying θ to a, denoted aθ, replaces each
occurrence of Xi in a with ti.

A constraint CX on a set of logvars X = {X1, . . . , Xn}
is a conjunction of inequalities of the form Xi 6= t
where t is a constant in D(Xi) or a logvar in X (the
conditions Xi ∈ D(Xi) are left implicit). We write C
instead of CX when X is apparent from the context.
By gr(X|CX) we denote the set of ground substitu-
tions to X that are consistent with CX.

A parametrized randvar (PRV) is a constrained atom

of the form P (X)|C, where P (X) is an atom and C
is a constraint on X. A PRV P (X)|C represents a
set of ground atoms (and hence, a set of randvars)
{P (X)θ|θ ∈ gr(X|C)}. Given a PRV V, we use RV (V)
to denote the set of randvars it represents; we also say
these randvars are covered by V.

Example. The PRV V = Smokes(X)|X 6= x1,
with D(X) = {x1, . . . , xn}, represents n − 1 randvars
{Smokes(x2), . . . Smokes(xn)}. 2

A valuation of a randvar (set of randvars) is an assign-
ment of a value to the randvar (resp. an assignment of
values to all randvars in the set).

A parametric factor or parfactor is of the form ∀L :
C.φ(A), with L a set of logvars, C a constraint on L,
A = (Ai)ni=1 a sequence of atoms parametrized with
L, and φ a potential function on A. The set of log-
vars occurring in A is denoted logvar(A), and we have
logvar(A) ⊆ L. When logvar(A) = L, we write the
parfactor as φ(A)|C. A factor φ(A′) is called a ground-
ing of a parfactor φ(A)|C if A′ can be obtained by
instantiating L according to a grounding substitution
θ ∈ gr(L|C). The set of all groundings of a parfactor
g is denoted gr(g).

Example. Parfactor g = φ1(Smokes(X)) rep-
resents the set of n ground factors gr(g) =
{φ1(Smokes(x1)), . . . , φ1(Smokes(xn))}.

When talking about a model below, we mean a set
of parfactors. In essence, a set of parfactors G is a
compact way of defining a set of factors F = {f |f ∈
gr(g) ∧ g ∈ G}. The corresponding probability distri-
bution is PG(A) = 1

Z

∏
f∈F φf (Af).

3 Lifted Variable Elimination

The state of art in lifted variable elimination (LVE)
is the result of various complementary efforts [5, 4, 1,
2]. In this section we briefly review the C-FOVE [4]
algorithm, which forms the basis of our work. Another
extension to C-FOVE, namely joint formulas [1], is
discussed and compared with in Section 7.

Variable elimination calculates the marginal distribu-
tion of some variable by eliminating randvars in a spe-
cific order from the model until reaching the desired
marginal [6]. To eliminate a single randvar V , it first
multiplies all the factors containing V into a single fac-
tor and then sums out V from that single factor. LVE
does this on a lifted level by eliminating parametrized
randvars (i.e., whole groups of randvars) from parfac-
tors (i.e., group of factors). LVE performs inference
using a set of lifted operators that we summarize be-
low. Table 1 shows the outer loop of LVE.

Lifted sum-out sums-out a PRV, and hence all the

Inputs: G: a model; Q: the query randvar.
while G contains other randvars than Q:

if a PRV V can be eliminated by lifted sum-out
G← eliminate V in G by lifted sum-out

else apply an enabling operator on parfactors in G
end while
return G

Table 1: Outer loop of LVE.

randvars represented by that PRV, from the model.
It is applicable when each randvar represented by the
PRV appears in exactly one grounding of exactly one
parfactor in the model. This is possible when the atom
representing that PRV contains all the logvars in that
parfactor. The goal of all other operators is to ma-
nipulate the parfactors into a form that satisfies this
precondition. In this sense, all operators except lifted
sum-out can be seen as enabling operators.

Lifted multiplication performs the equivalent of many
factor multiplications in a single lifted operation. It
prepares the model for sum-out by replacing all the
parfactors that share a PRV by a single equivalent
product parfactor in the model.

Shattering and splitting rewrite the model such that
the first group of operations can be applied on it.

Additionally, LVE has another important enabling op-
erator, counting conversion, which introduces counting
formulas into the model. We introduce and generalize
counting formulas, along with operations that handle
them, in the following sections.

4 Generalized Counting Formulas

Counting is one of the fundamental techniques used for
lifting. It is applied to lift the computations performed
on a group of interchangeable randvars in the same
factor. This is achieved by manipulation of count-
ing formulas. Such a formula aggregates the state of
a group of interchangeable randvars into histograms
that show the number of randvars in the group with
each value. These structures take the computations to
the level of the aggregate state of the group, without
considering the state of individual randvars. This al-
lows for more efficient computations as the number of
possible aggregate states (histograms) is polynomial in
the domain size, whereas the number of joint states is
exponential in the domain size.

In this section, we generalize counting formulas, such
that they aggregate the state of a group of tuples of
atoms, instead of a group of atoms. This permits lift-
ing in cases where not all individual randvars are ex-
changeable in a group, but specific tuples of randvars

are. Our definition of a counting formula is a straight-
forward generalization of their existing formulation [4].

Counting Formulas. We define a counting formula
to be of the form γ = #X:C [P1(X1), . . . , Pk(Xk)],
with C a constraint on the counted logvar X, and
X ∈ Xi(i = 1, . . . , k). The counted logvar X is
bound by the counting formula and excluded from
logvar(γ). A grounded counting formula is a count-
ing formula in which all logvars except the counted
logvar are replaced by constants. Such a formula rep-
resents a counting randvar whose range is the set of
possible histograms that distribute n elements into
r =

∏k
i=1 |range(Pi)| buckets. More precisely its

state is the histogram function h = {(ri, ni)}ri=1,
that shows for each ri ∈ ×ki=1range(Pi) the num-
ber ni of tuples (P1(. . . , x, . . .), . . . , Pk(. . . , x, . . .))
whose state is ri. The state of the count-
ing randvar thus depends deterministically on the
state of the randvars ∪ki=1RV (Pk(. . . , X, . . .)|C), or
more precisely on the state of tuples of randvars
RV (P1(. . . , X, . . .), . . . , Pk(. . . , X, . . .)|C). For sim-
plicity, we denote a histogram h = {(ri, ni)}ri=1 by
the list of counts (n1, . . . , nr), when the elements ri
are apparent from the context.

Example. Having D(X) = {ann, bob, carl, dave}, the
counting randvar γ = #X [Smokes(X), Asthma(X)]
aggregates the state of tuples of randvars RV (γ) =
{(Smokes(xi), Asthma(xi))|xi ∈ D(X)}. Suppose
that RV (γ) are assigned the following set of values:

X Smokes(X) Asthma(X)
ann f t
bob f f
carl f f
dave t t

Then the value of the counting randvar is the his-
togram h = {(tt, 1), (tf, 0), (ft, 1), (ff, 2)}. 2

Our definition of a counting formula, which allows a
tuple of atoms in a counting formula, is a simple gener-
alization of Milch et al.’s definition, which only allows
a single atom (a 1-tuple). We show how these formu-
las provide us with data structures that create more
opportunities for lifting through a suite of model con-
version operations, in Section 5, and present a lifted
sum-out operation for these formulas in Section 6. But
first, we recall a normal form for the model, which
guarantees correct semantics, and facilitates handling
of counting formulas [4].

Normal parfactors. As mentioned, the range of a
counting formula depends on the number of randvars
that it counts, which in turn depends on its associ-
ated constraint. For instance consider the formula
#Y :{Y 6=X,Y 6=x1}[F (X,Y)]. For X = x1, it represents

a CRV that counts n − 1 randvars (Y can take on all
n values except x1), but for X = x′ 6= x1 it represents
a CRV that counts n − 2 randvars (Y can take on all
n values except x1 and x′). To ensure that all CRVs
in the groundings of a parfactor have the same range,
following Milch et al., we require the constraints and
parfactors to be in a normal form. A constraint C is
in normal form if for each pair of logvars X1 and X2

with an inequality constraint X1 6= X2:

EX1 \ {X2} = EX2 \ {X1}

where the excluded set EX = {t |(X 6= t) ∈ C} is
the set of terms in an inequality constraint with X
in constraint C. This guarantees that a logvar Xi has
the same number of values in C, given any value to the
rest of the logvars. This number is denoted |X : C| and
equals |D(X)| − |EX |. A parfactor is in normal form
if the conjunct of its constraint with the constraints of
its counting formulas is in normal form. Any model
can rewritten into an equivalent one in normal form
using the auxiliary operations [4].

5 Conversion Operations

In this section we present conversion operations that
rewrite the model in terms of counting formulas. The
first operation is a generalization of C-FOVE’s count-
ing conversion [4], while the rest are new operations.
Throughout this paper, we illustrate the application of
the new operators on examples for which C-FOVE [4]
has no lifted solution. As such, we show how the new
operations perform inference with complexity polyno-
mial in the domain size, where C-FOVE cannot avoid
the exponential complexity of propositional inference.

5.1 Counting Conversion

Counting formulas are introduced into the model by
counting conversion. By rewriting the model (replac-
ing an atom) with a counting formula, this opera-
tion allows us to compactly represent and manipu-
late a high dimensional factor on a set of interchange-
able randvars. Intuitively this conversion achieves the
equivalent of multiplying groundings of a single parfac-
tor with each other, and thus functions as an enabling
operation for lifted sum-out. We generalize this oper-
ation to a rewrite rule that replaces a tuple of atoms
with a counting formula. By removing the restriction
on the number of counted atoms, this generalization
provides more opportunities for lifting.

Example. Consider the model consisting of the par-
factor φ(A(X), B(X), C(Y), D(Y)). Lifted sum-out
is not applicable here, as no atom contains all the
logvars. Counting conversion removes a logvar from

the set of free logvars, hence preparing the model for
lifted sum-out. Here we perform counting conversion
on logvar X by introducing a counting formula on
the tuple of atoms A(X), B(X), and rewrite the par-
factor as φ′(#X [A(X), B(X)], C(Y), D(Y)), where φ′

is such that for each histogram h(.) in the range of
#X [A(X), B(X)], φ′(h(.), c, d) is equal to

φ(t, t, c, d)h(tt) · φ(t, f, c, d)h(tf)

·φ(f, t, c, d)h(ft) · φ(f, f, c, d)h(ff)

Note that after this conversion, logvar Y is the only
free logvar in the parfactor, which enables lifted sum-
out of both C(Y) and D(Y) from the model.1 2

We can now formally define this operator.

Operation: count-convert
Input: (1) a parfactor g = ∀L : C.φ(A) (2) a logvar
X ∈ logvar(A)
Preconditions: (1) there is no counting formula in
the set AX = {A ∈ A|X ∈ logvar(A)} (2) There is
no counting formula γ = #Xi:Ci [. . .] in A, such that
(Xi 6= X) ∈ Ci
Output: g′ = ∀L′ : C ′.φ′(A′), such that:
(1) L′ = L\{X} (2) C ′ is the projection of C on L′ (3)
A′ = A \ AX ∪ {#X [AX]}, and (4) for each valuation
(h(.),a) to (#X [AX],A \ AX):

φ′(h(.),a) =
∏

a′∈range(AX)

φ(a′; a)h(a
′)

The preconditions for counting conversion of a logvar
X require that it does not appear inside an existing
counting formula. This means that X cannot appear
(1) in an atom inside a counting formula, or (2) in the
constraint associated with a counting formula. Ex-
cluding the first case ensures that the result of con-
version can be represented by our counting formulas,
and does not require more complicated structures like
nested or overlapping counting formulas, which are not
well defined in our formulation. In the second case,
where X is in an inequality constraint with a counted
logvar, counting conversion is still possible, but by the
operation of merge-counting, which will be introduced
in Section 5.3. Note that the precondition for counting
conversion as defined above, is weaker than the orig-
inal one of C-FOVE, which requires X to appear in
exactly one atom in the parfactor [4].

5.2 Merging Counting Formulas

Two counting formulas can count over tuples of rand-
vars with overlapping randvars between them. When

1We further show in Section 6 that A(X) and B(X) can
also be eliminated with a lifted sum-out.

such formulas appear in a parfactor together, to sum-
out the common randvars, we need to first merge these
counting formulas into one.

Example. Consider the counting formulas in the
parfactor φ(#X [S(X)],#Y [S(Y), A(Y)]). The first
argument, γ1 = #X [S(X)], aggregates the state of
randvars RV (S(X)), and the second argument, γ2 =
#Y [S(Y), A(Y)], the state of RV (S(X), A(X)). As
the second group of randvars is a superset of the
first set, given a histogram h2(.) for γ2, we can in-
fer the value h1 of γ1. We can therefore merge the
two counting formulas into one #X [S(X), A(X)] and
rewrite the parfactor as φ′(#X [S(X), A(X)]) where
φ′(h2) = φ(h1, h2) and h1 is the histogram that results
from projecting h2 on the assignments to the S() rand-
vars. Concretely, having the counts (ntt, ntf , nft, nff)
for h2, the value of h1 is the histogram with counts
(ntt + ntf , nft + nff). 2

Although in the above example one CRV was a
superset of the other, merging can be applied
to any pair of formulas with overlapping rand-
vars. For instance, by merging, the parfactor
φ(#X [A(X), B(X)],#Y [B(Y), C(Y))]) is transformed
into a parfactor φ(#X [A(X), B(X), C(X)]). To for-
malize this operator we introduce the notion of com-
patible valuations to atoms, and then the projection of
histograms.

A pair of valuations (a1,a2) to (A1,A2) are compatible,
denoted by a1 ∼ a2, if each atom Ai ∈ A1 ∩ A2 is
assigned with the same value ai in both a1 and a2.

Given a counting formula γ = #X [A], the projection
of a histogram h ∈ range(γ) on A′ ⊆ A, is a histogram
h′ ∈ range(#X [A′]) such that for each a′ ∈ range(A′):
h′(a′) =

∑
a∼a′ h(a). We denote the projection of h

on A′ by h[A′].

We can now formally define this operator.

Operation: merge
Input: (1) a parfactor g = ∀L : C.φ(A) (2) a pair of
counting formulas (γ1, γ2) = (#X1:C1 [A1],#X2:C2 [A2])
in A
Precondition: gr(X1 : C ∧ C1) = gr(X2 : C ∧ C1)
Output: g′ = ∀L : C.φ′(A′), such that:
(1) A′ = A \ {γ1, γ2} ∪ {#X1 [A12]}, with A12 =
A1 ∪ A2θ and θ = {X2 → X1} (2) for each valuation
(h(.),a) to (#X1 [A12],A \ {γ1, γ2}):

φ′(h,a) = φ(h[A1], h[A2θ]; a)

5.3 Merge-counting

This operation is applicable when counting conversion
cannot replace a tuple of atoms by a new counting for-

mula, but needs to merge them into an existing count-
ing formula. Concretely, this happens during counting
conversion on a logvar X, in a parfactor with a count-
ing formula #Y :Y 6=X [AY], that is, when an existing
counted logvar is in an inequality constraint with X.
In such cases, we cannot convert the parfactor to an
equivalent one with two separate counting formulas
#Y [AY] and #X [AX]. Intuitively, this is because the
histograms of these two counting formulas do not de-
termine the value of the original parfactor. Instead,
we can apply merge-counting, which incorporates the
atoms AX inside the existing counting formula. Con-
sider the following example:

Example. Consider the parfactor g of the form
φ(#X:X 6=Y [A(X)], B(Y)). We show how merge-
counting on logvar Y rewrites g as an equivalent par-
factor g′ = φ′(#X [A(X), B(X)]). For this we need to
properly define the potential φ′ based on φ. Note that
g′ represents a single factor, while g represents n fac-
tors, one for each y ∈ D(Y). The potential φ′ should
thus be defined such that g′ evaluates the product of
these n factors, for any valuation of randvars A(X) and
B(X). Consider a valuation that yields histogram h(.)
for #X [A(X), B(X)]. To compute φ′(h), we compute
the value of g at this valuation, based on the following
observations: in gr(g), each factor gy = φ(γy, B(y)),
has a distinct counting formula γy = #X:X 6=y[A(X)],
which covers all the randvars RV (A(X)) except A(y),
due to the inequality constraint. Since the histogram
of #X [A(X)] is h[A] = (nt, nf), each CRV γy, which
excludes the value of one randvar A(y), takes on one
of the two histograms

• h−t[A] = (nt − 1, nf), when A(y) = t, or

• h−f[A] = (nt, nf − 1), when A(y) = f

Each factor gy in gr(g) thus evaluates to one of the
four values φ(h−, b), for (h−, b) ∈ {h−t[A], h

−f
[A]} × {t, f}.

Knowing the number #(h−, b) of factors with each
value φ(h−, b), we can compute the desired potential
φ′ as:

φ′(h(.)) =
∏

(h−,b)

φ(h−, b)#(h−,b)

The numbers #(h−, b) are inferred directly from the
histogram h(.). For instance, #(h−t[A], t), the number of
ys with γy = h−t[A] and B(y) = t, by definition equals
h(tt), that is, the number of ys with A(y) = B(y) = t.
With similar reasoning, we determine all the numbers
#(h−, b) from h(.) and define the desired potential φ′

as:

φ′(h(.)) = φ(h−t[A], t)
h(tt) · φ(h−f[A] , t)

h(ft)

·φ(h−t[A], f)h(tf) · φ(h−f[A] , f)h(ff)

As such, merge-counting replaces the parfactor g with
the equivalent parfactor g′ = φ′(#X [A(X), B(X)]), by
directly computing φ′ from φ. 2

The operator is formally defined as follows.

Operation: merge-count
Input: (1) a parfactor g = ∀L : C.φ(A) (2) a count-
ing formula γ = #X1:C1 [A1] in A (3) a logvar X2 in
logvar(A)
Precondition: (1) there is no counting formula in
A2 = {A ∈ A|X2 ∈ logvar(A)} (2) γ is the only
counting formula whose counted logvar X1 is in an
inequality constraint with X2

Output: g′ = ∀L′ : C ′.φ′(A′), such that:
(1) L′ = L \ {X2} (2) C ′ is the projection of C on L′

(3) A′ = A \ {γ,A2} ∪ {#X1:C12 [A12]}, with A12 =
A1∪A2{X2 → X1}, and C12 = C1 \ (X1 6= X2) (4) for
each valuation (h(.),a) to (#X1 [A12],A′ \#X1 [A12]):

φ′(h(.),a) =
∏

(a12)∈range(A12)

φ(h−a1
[A1]

,a2; a)h(a12)

where ai denotes the projection of the valuation a12

on Ai{X2 → X1}, and the histogram h−r is such that
h−r(r) = h(r)− 1, and h−r(r′) = h(r′), for r′ 6= r.

Note that the second precondition can be established
by merging counting formulas. Merging is thus an en-
abling operator for this conversion operator.

6 Elimination Operations

In the previous section, we presented the operators
that introduce or merge counting formulas. In this
section, we present a lifted sum-out operator that elim-
inates these formulas, as well as an operator that ag-
gregates the results after lifted sum-out.

6.1 Sum-out by Counting

We present an operation for summing out an atom
inside counting formulas. This lifted operation sums
out all the randvars represented by the atom from the
model. It functions as a rewrite rule that removes the
atom from a counting formula, and has the sum-out
operation of C-FOVE as a special case.

Example. Consider summing-out the PRV
A(X) from the model defined by the parfactor
φ(#X [A(X), B(X)]). By lifted sum-out we derive
the parfactor φ′(#X [B(X]), for which we define the
potential function φ′ such that for each histogram
h′ ∈ range(#X [B(X)]):

φ′(h′) =
∑
h∼h′

Num(h|h′)φ(h)

where h ∼ h′ denotes a histogram h ∈
range(#X [A(X), B(X)]) that is compatible with his-
togram h′, that is, h′ = h[B]. The quantity Num(h|h′)
equals the number of possible ways that a valuation to
RV (A(X)) with the counts h′, can be extended to a
valuation to RV (A(X), B(X)) with the counts h. 2

The coefficient Num(h|h′) is defined based on the
number Num(h) of possible valuations to the rand-
vars that result in a histogram h: For each his-
togram h = {(ri, ni)}ri=1, with

∑
i ni = n, we define

Num(h) = n!
(n1!)...(nr!) , and Num(h|h′) = Num(h)

Num(h′) .

Note that sum-out removes an atom from the counting
formula. Summing-out the last atom, such as B(X) in
the above example, results in an empty counting for-
mula, for which we define the range as {(Null, 0)},
Num((Null, 0)) = 1, and which we trivially remove
from the list of arguments after sum-out. The opera-
tion is formally defined below.

Operation: sum-out
Input: (1) a parfactor g = ∀L : C.φ(A) in model G
(2) a counting formula γ = #X1:C1 [A1] in A (3) an
atom A ∈ A1

Precondition: (1) logvar(A) = L (2) for all
PRVs (A′|C ′) in the model, other than (A|C ∧ C1):
RV (A|C ∧ C1) ∩RV (A′|C ′) = ∅
Output: g′ = ∀L : C.φ′(A′), such that:
(1) A′ = A \ {γ} ∪ {γ′}, with γ′ = #X1:C1 [A1 \ {A}]
(2) for each valuation (h′(.),a) to (γ′,A′ \ γ′):

φ′(h′(.),a) =
∑
h∼h′

Num(h|h′) · φ(h(.),a)

This operation has the sum-out operation of C-FOVE
as a special case, namely when A1 = {A}. It can also
be further generalized to sum-out a group of atoms
{A1, . . . , An} ⊆ A in one operation, if the two precon-
ditions are satisfied for all atoms.

6.2 Aggregation

In lifted inference, after dividing a problem into iso-
morphic subproblems, first the result of one prototyp-
ical instance of this problem is computed and then the
result is aggregated, usually with the trivial operation
of exponentiation. This operator in fact multiplies a
group of identical factors and is applied when a logvar
disappears from the parfactor after a sum-out opera-
tion. Aggregation can, however, be extended to cases
where a simple exponentiation does not work. In this
section we extend this operator and show how this al-
lows for more efficient lifted computations.

Example. Consider the parfactor g of the form
∀Y.φ(#X:X 6=Y [P (X)], Q(Y)). Summing-out Q(Y) re-
sults in the parfactor g′ = ∀Y.φ′(#X:X 6=Y [P (X)]), on

which sum-out is no longer applicable. Note that
the logvar Y is still part of the parfactor, although
it does not appear in any atom. We show how, by
aggregation, we can rewrite g′ as an equivalent par-
factor g′′ = φ′′(#X [P (X)]), which is free of logvar
Y . Assume D(X) = D(Y) = {ann, bob, carl, dave}.
Then g′ represents four ground factors, one for each
person in D(Y), e.g., for Y = ann there is a fac-
tor φ′(#X:X 6=ann[P (X)]) in gr(g′). g′′ should be de-
fined such that φ′′(#X [P (X)]) equals the product of
these four factors. Note that these factors all have
the same potential, but each on a CRV that ex-
cludes one distinct randvar from the group RP =
{P (ann), P (bob), P (carl), P (dave)}. Given any as-
signment to RP with nt true and nf false, each of
these CRVs has either one less true than nt or one less
false than nf . Specifically, there are nt histograms
with counts (nt−1, nf) and nf histograms with counts
(nt, nf−1). Since the value φ′(h) is the same for all fac-
tors with the same histogram h, to compute the prod-
uct it suffices to know (nt, nf). Aggregation rewrites
g′ as φ′′(#X [P (X)]), where the potential φ′′ is such
that:

φ′′((nt, nf)) = φ′((nt − 1, nf))nt · φ′((nt, nf − 1))nf

The logvar Y is now removed from g′, and we can
eliminate P (X) from the model by lifted sum-out. 2

The more expensive alternative to aggregation is to
apply counting on both atoms, and work with the
parfactor φ∗(#X [P (X), Q(X)]). This alternative so-
lution eliminates both P and Q atoms with counting
sum-out, in poly time, while the above solution uses
counting only for the P atoms, and runs in linear time.

We formalize this operator as follows.

Operation: aggregate
Input: (1) a parfactor g = ∀L : C.φ(A) in model
G (2) a counting formula γ = #X1:C1 [A1] in A (3) a
logvar X2 ∈ L \ logvar(A)
Precondition: A has no counting formula #Xi:Ci

[.]
other than γ, such that (Xi 6= X2) ∈ Ci
Output: g′ = ∀L′ : C ′.φ′(A′), such that:
(1) L′ = L \ {X2} (2) C ′ is the projection of C on L′

(3) A′ = A\{γ}∪{#X1:C′1
[A1]}, with C ′1 = C1\{X1 6=

X2} (4) for each valuation (h(.),a) to (#X1:C′1
[A1],A′\

{#X1:C′1
[A1]}):

φ′(h(.),a) =
∏

a1∈range(A1)

φ(h−a1(.),a)h(a1)

7 Relation to Joint Conversion

Our contributions are closely related to, and target
similar problems as, joint conversion and just-different

counting conversion [1]. Our approach, however, can
provide more efficient solutions than those based on
the mentioned methods.

Joint conversion enables counting the states of a group
of tuples of randvars, without modifying Milch et al.’s
definition of counting formulas [4]. For instance, to
enable counting tuples of randvars (A(x), B(x)), joint
conversion replaces each occurrence of atoms A(X)
and B(X) in the model with a joint atom JAB(X),
whose state is the Cartesian product of the two atoms.
Counting conversion can then derive a counting for-
mula like #X [JAB(X)], which corresponds to a for-
mula #X [A(X), B(X)] in our formulation. When
combined with just-different counting [1], joint con-
version may also enable counting on logvars that are
constrained to be unequal, similar to our approach.

However, there are differences between the two meth-
ods. Joint conversion is a global operation on the
model, which introduces more dependencies by cou-
pling two randvars into a joint randvar. After this op-
eration, inference deals solely with the joint atom, and
never directly with its constituents. Our method, how-
ever, uses a more fine grained formulation, by which it
not only can simulate joint conversion, but also provide
more efficient solutions than those possible by joint
conversion. This primarily happens when the opera-
tions can divide the problem into independent parts,
by eliminating a subset of the atoms that joint con-
version couples in a joint atom. This allows for more
efficient computations by avoiding the dependencies
induced by unnecessary joint conversions. We illus-
trate this advantage in the following example.

Example. Consider summing-out all the randvars,
i.e., computing the partition function, in the model
consisting of the following parfactors

g1 = φ1(P1(X), P2(Y))|X 6= Y

g2 = φ2(P2(Y), P3(X))|X 6= Y

. . .

gm = φm(Pm(X), Pm+1(Y))|X 6= Y

Our approach. To sum out all the randvars, i.e., to
eliminate all the atoms, our approach can proceed as
follows. It first performs a counting conversion on Y
in g1 to derive g′1 = φ′(P1(X),#Y :Y 6=X [P2(Y)]). Next,
it eliminates P1(X) from the model by lifted sum-out,
and aggregation. This results in g∗1 = φ∗1(#Y [P2(Y)]).
To prepare the model for summing-out P2(Y), we first
perform the following operations:

1. count-convert on logvar Y in g2 to derive the
parfactor g′2 = φ′2(#Y :Y 6=X [P2(Y)], P3(X))

2. merge-count on logvar X in g′2 to derive the

parfactor g′′2 = φ′′2(#Y [P2(Y), P3(Y)])

3. multiply g∗1 and g′′2 to derive the parfactor g12 =
φ12(#Y [P2(Y), P3(Y)]),#Y [P2(Y)])

4. merge the counting formulas to derive a g′12 =
φ′12(#Y [P2(Y), P3(Y)])

Now from this parfactor, we sum-out P2(Y) and get
a parfactor g∗2 = φ∗12(#Y [P3(Y)]). Inference continues
by eliminating P3 from parfactors g∗2 and g3, in a simi-
lar way as it eliminated P2 from g∗1 and g2. We repeat
this procedure for all the remaining atoms Pi, until
we eliminate the last atom Pm+1, which concludes the
inference. The complexity of the procedure is propor-
tional to the size of the largest potential it handles.
For elimination of each atom Pi, the size of the largest
potential we handle is O(n4), proportional to the num-
ber of histograms in the range of a counting formula
#X [Pi(X), Pi+1(X)]. As there are m atoms Pi, the
whole procedure is in time O(mn4).

Joint conversion. Any solution based on joint con-
version and just different counting conversion is less
efficient than the above method. Here we present one
such typical solution. Joint conversion first replaces
the atoms P1 and P2 with a joint atom J12, which
represents the joint state of the atoms. This changes
g1 and g2 respectively into φ′1(J12(X), J12(Y))|X 6=
Y and φ′2(J12(Y), P3(X))|X 6= Y . Still J12 can-
not be summed-out from the model, due to the free
logvar X in g2. Just-different conversion, to de-
rive a φ′′1(#X [J12(X)]) is not helpful either. The
only option is to continue applying joint conversions
between atoms such as J12...k and Pk+1, to finally
have only one joint atom J1...m+1 in the model.
Note that range(J1...m+1) = {true, false}m+1. The
model would then consist of parfactors of the form
φi(J1...m+1(X), J1...m+1(Y))|X 6= Y . By multiply-
ing these m parfactors into one, and then just-
different conversion, we derive a parfactor g∗ =
φ∗(#X [J1...m+1(X)]). Finally we can sum-out the
counting formula γ∗ = #X [J1...m+1] from g∗. The
complexity of these operations is dominated by the
manipulation of the counting formula γ∗ and is pro-
portional to |range(γ∗)| which is O(n2m

). Compar-
ing this complexity to the complexity of our approach,
O(mn4), we see that our method can be much more ef-
ficient than Apsel and Brafman (2011)’s approach [1].
For example, for m = 10, the latter approach has com-
plexity O(n1024), in contrast to our approach which
has complexity O(10n4).

8 Conclusion

Counting is one of the fundamental techniques used
in lifted inference to exploit the symmetries among in-

terchangeable randvars. In lifted variable elimination
this technique works by manipulation of counting for-
mulas. In this paper we showed how generalizing the
structure of counting formulas, along with the lifted
operators that manipulate them, provides more oppor-
tunities for lifting. Our approach is closely related to
the method of joint conversion [1], but can offer more
efficient solutions than this method.

Further generalizations of counting formulas, to cap-
ture a greater range of symmetries, are also conceiv-
able. However, manipulation of such formulas, and
especially counting the number of isomorphic states,
can easily lead to non-trivial combinatorial problems.
Future research on such problems can bring valuable
insights for lifted inference.

Acknowledgements

NT is supported by GOA 08/008 ‘Probabilistic Logic
Learning’. JD is partially supported by the Research
Fund K.U.Leuven (CREA/11/015 and OT/11/051),
EU FP7 Marie Curie Career Integration Grant
(#294068), and FWO-Vlaanderen (G.0356.12). We
wish to thank Daan Fierens for many insightful com-
ments and discussions.

References

[1] Udi Apsel and Ronen I. Brafman. Extended lifted
inference with joint formulas. In Proceedings of
the 27th Conference on Uncertainty in Artificial
Intelligence (UAI-11), pages 11–18. AUAI Press,
2011.

[2] Rodrigo de Salvo Braz. Lifted first-order proba-
bilistic inference. PhD thesis, Department of Com-
puter Science, University of Illinois at Urbana-
Champaign, 2007.

[3] Lise Getoor and Ben Taskar, editors. An Introduc-
tion to Statistical Relational Learning. MIT Press,
2007.

[4] Brian Milch, Luke S. Zettlemoyer, Kristian Ker-
sting, Michael Haimes, and Leslie Pack Kaelbling.
Lifted probabilistic inference with counting formu-
las. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI-08), pages 1062–
1608, 2008.

[5] David Poole. First-order probabilistic inference. In
Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-03), pages
985–991, 2003.

[6] David Poole and Nevin Lianwen Zhang. Exploiting
contextual independence in probabilistic inference.
J. Artif. Intell. Res. (JAIR), 18:263–313, 2003.

