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Abstract

Statistical relational learning models combine
the power of first-order logic, the de facto tool
for handling relational structure, with that of
probabilistic graphical models, the de facto
tool for handling uncertainty. Lifted prob-
abilistic inference algorithms for them have
been the subject of much recent research. The
main idea in these algorithms is to improve
the speed, accuracy and scalability of exist-
ing graphical models’ inference algorithms by
exploiting symmetry in the first-order repre-
sentation. In this paper, we consider blocked
Gibbs sampling, an advanced variation of the
classic Gibbs sampling algorithm and lift it to
the first-order level. We propose to achieve
this by partitioning the first-order atoms in
the relational model into a set of disjoint clus-
ters such that exact lifted inference is poly-
nomial in each cluster given an assignment to
all other atoms not in the cluster. We propose
an approach for constructing such clusters and
determining their complexity and show how
it can be used to trade accuracy with com-
putational complexity in a principled man-
ner. Our experimental evaluation shows that
lifted Gibbs sampling is superior to the propo-
sitional algorithm in terms of accuracy, scala-
bility and convergence.

1 Introduction

Modeling large, complex, real-world domains requires
the ability to handle both rich relational structure and
large amount of uncertainty. Probabilistic graphical
models are a standard representation and reasoning tool
for managing uncertainty. Unfortunately, they can-
not handle relational structure and as a result they
do not scale to large domains. On the other hand,
first-order logic can handle relational structure but has
no representation for uncertainty. Thus, combining
the representation and reasoning power of first-order

logic with that of probabilistic graphical models is a
worthwhile goal. Statistical relational learning (SRL)
[2, 6, 9, 21, 31] is an emerging field which attempts to
do just that.

The key task in SRL is inference - the problem of an-
swering a query given an SRL model. In principle,
one can use graphical models inference algorithms to
perform inference in SRL models. To do this, one
has to ground the SRL model, yielding a Markov or a
Bayesian network. This is problematic because the re-
sulting graphical model can be substantially large and
even state-of-the-art graphical models algorithms are
unable to handle problems at this scale. An alternative
approach, which has gained prominence since the work
of Poole [28] is lifted or first-order inference. The main
idea, which is similar to theorem proving, is to take a
graphical model inference algorithm and exploit sym-
metry in its execution by performing inference over a
group of identical or interchangeable random variables.
The algorithms are called lifted algorithms because they
identify symmetry by consulting the first-order or rela-
tional representation without grounding the model.

Several lifted algorithms have been proposed to date.
Prominent exact inference algorithms are lifted first-
order variable elimination [28] and its various exten-
sions [3, 26], which lift the variable elimination algo-
rithm, and probabilistic theorem proving (PTP) [10]
which lifts the weighted model counting algorithm
[1, 32]. Notable approximate inference algorithms are
lifted Belief propagation [33] and lifted importance sam-
pling [10, 11], which lift belief propagation [24] and im-
portance sampling respectively.

In this paper, we lift the blocked Gibbs sampling al-
gorithm, an advanced variation of Gibbs sampling –
a popular MCMC technique. Blocked Gibbs sampling
improves upon the Gibbs sampling algorithm by group-
ing variables together in a block and then jointly sam-
pling all variables in the block [12, 13, 19]. Blocking
improves the mixing time and as a result improves both
the accuracy and convergence of Gibbs sampling. The
difficulty is that to jointly sample variables in a block,
we need to compute a joint distribution over them. This



is typically exponential in the treewidth of the ground
network projected on the block.

Several earlier papers have attempted to exploit
relational or first-order structure in MCMC sam-
pling. Three notable examples are lazy MC-SAT [30],
Metropolis-Hastings MCMC for Bayesian logic (BLOG)
[22] and typed MCMC [17]. Unfortunately, none of the
aforementioned techniques are truly lifted; they do not
exploit the first-order structure to the fullest extent. In
fact, lifting a generic MCMC technique is difficult be-
cause at each point in order to ensure convergence to the
correct stationary distribution one has to maintain an
assignment to all random variables in the ground net-
work. We circumvent these issues by lifting the blocked
Gibbs sampling algorithm, which as we show is more
amenable to lifting.

Our main idea in applying the blocking approach to
SRL models is to partition the set of first-order atoms
in the model into disjoint clusters such that PTP (an
exact lifted inference scheme) is feasible in each clus-
ter given an assignment to all other atoms not in the
cluster. Given such a set of clusters, we show that
Gibbs sampling is essentially a message passing algo-
rithm over the cluster graph formed by connecting clus-
ters that have atoms that are in the Markov blanket of
each other. Each message from a sender to a receiving
cluster is a truth assignment to all ground atoms that
are in the Markov blanket of the receiving cluster. We
show how to store this message compactly, under cer-
tain conditions, by taking advantage of the first-order
representation yielding a lifted MCMC algorithm.

Each cluster graph defines an instance of the lifted
blocked Gibbs sampling algorithm. We show that un-
like propositional models, increasing the cluster size in
relational models may yield significant reductions in
complexity. As a result, constructing an optimal clus-
ter graph that satisfies the given time and space con-
straints as well as achieves the best accuracy is quite
tricky and NP-hard in general. We therefore propose a
greedy approach for constructing cluster graphs. The
greedy method trades time and space complexity with
accuracy, and tries to put strongly coupled or highly
correlated variables in a cluster. The latter improves
accuracy by reducing the mixing time [12, 18, 19].

We present experimental results comparing the perfor-
mance of lifted blocked Gibbs sampling with (proposi-
tional) blocked Gibbs sampling, MC-SAT [29, 30] and
Lifted BP [33] on various benchmark SRL models. Our
experiments show that lifted Gibbs sampling is supe-
rior to blocked Gibbs sampling and MC-SAT in terms
of convergence, accuracy and scalability. It is also more
accurate than lifted BP on some instances.

2 Notation and Preliminaries

In this section, we describe notation and preliminaries
on propositional logic, first-order logic, Markov logic
networks and Gibbs sampling. For more details, refer
to [4, 16, 18].

The language of propositional logic consists of atomic
sentences called propositions or atoms, and logical
connectives such as ∧ (conjunction), ∨ (disjunction),
¬ (negation), ⇒ (implication) and ⇔ (equivalence).
Each proposition takes values from the binary domain
{False, True} (or {0, 1}). A propositional formula f
is an atom, or any complex formula that can be con-
structed from atoms using logical connectives. For ex-
ample, A, B and C are propositional atoms and f =
A∨¬B∧ C is a propositional formula. A knowledge base

(KB) is a set of formulas. A world is a truth assignment
to all atoms in the KB.

First-order logic (FOL) generalizes propositional logic
by allowing atoms to have internal structure; an atom
in FOL is a predicate that represents relations between
objects. A predicate consists of a predicate symbol,
denoted by Monospace fonts, e.g., Friends, Smokes,
etc., followed by a parenthesized list of arguments called
terms. A term is a logical variable, denoted by lower
case letters such as x, y, z, etc., or a constant, denoted
by upper case letters such as X, Y , Z, etc. We as-
sume that each logical variable, e.g., x is typed and
takes values over a finite set ∆x. The language of FOL
also includes two quantifiers in addition to the logical
connectives: ∀ (universal) and ∃ (existential) which ex-
press properties of an entire collection of objects. A
formula in first order logic is a predicate (atom), or any
complex sentence that can be constructed from atoms
using logical connectives and quantifiers. For example,
the formula ∀x Smokes(x) ⇒ Asthma(x) states that all
persons who smoke have asthma. ∃x Cancer(x) states
that there exists a person x who has cancer. A first-

order KB is a set of first-order formulas.

In this paper, we use a subset of FOL which has no
function symbols, equality constraints or existential
quantifiers. We also assume that domains are finite
(and therefore function-free) and that there is a one-
to-one mapping between constants and objects in the
domain (Herbrand interpretations). We assume that
each formula f is of the form ∀x f , where x are the
set of variables in f and f is a conjunction or dis-
junction of literals; each literal being an atom or its
negation. For brevity, we will drop ∀ from all the for-
mulas. Given variables x = {x1, . . . , xn} and constants
X = {X1, . . . , Xn} where Xi ∈ ∆xi

, f [X/x] is obtained
by substituting every occurrence of variable xi in f with
Xi. A ground formula is a formula obtained by substi-
tuting all of its variables with a constant. A ground
KB is a KB containing all possible groundings of all



of its formulas. For example, the grounding of a KB
containing one formula, Smokes(x) ⇒ Asthma(x) where
∆x = {Ana,Bob}, is a KB containing two formulas:
Smokes(Ana) ⇒ Asthma(Ana) and Smokes(Bob) ⇒
Asthma(Bob). A world in FOL is a truth assignment
to all atoms in its grounding.

Markov logic [4] extends FOL by softening the hard con-
straints expressed by the formulas and is arguably the
most popular modeling language for SRL. A soft for-
mula or a weighted formula is a pair (f, w) where f is a
formula in FOL and w is a real-number. A Markov logic
network (MLN), denoted by M, is a set of weighted
formulas (fi, wi). Given a set of constants that rep-
resent objects in the domain, a Markov logic network
defines a Markov network or a log-linear model. The
Markov network is obtained by grounding the weighted
first-order knowledge base and represents the following
probability distribution.

PM(ω) =
1

Z(M)
exp

(
∑

i

wiN(fi, ω)

)
(1)

where ω is a world, N(fi, ω) is the number of groundings
of fi that evaluate to True in the world ω and Z(M) is
a normalization constant or the partition function.

In this paper, we assume that the input MLN to our
algorithm is in normal form [14, 23]. We require this
for simplicity of exposition. Our main algorithm can be
easily modified to work with other canonical forms such
as parfactors [28] and first order CNFs with substitu-
tion constraints [10]. However, its specification becomes
much more complicated and messy.

A normal MLN [14] is an MLN that satisfies the fol-
lowing two properties: (1) There are no constants in
any formula, and (2) If two distinct atoms with the
same predicate symbol have variables x and y in the
same position then ∆x = ∆y. For example, consider an
MLN having two formulas (Smokes(x) ⇒ Asthma(x), w)
and (Smokes(Ana),∞) (evidence). Its normal form
has three formulas: (Smokes(x′) ⇒ Asthma(x′), w),
(Smokes1(y) ⇒ Asthma1(y), w) and (Smokes1(y),∞),
where ∆′

x = ∆x \ {Ana} and ∆y = {Ana}. Note that
in a normal MLN, we assume that the terms in each
atom are ordered and therefore we can identify each
term by its position in the order.

The two main inference problems in MLNs are comput-
ing the partition function and the marginal probabili-
ties of query atoms given evidence. For example, given
a MLN (Smokes(x) ⇒ Asthma(x), w), and evidence that
Ana smokes, i.e., (Smokes(Ana),∞), we might be in-
terested in knowing the posterior probability that Ana
has Asthma, namely P (Asthma(Ana)|Smokes(Ana)).

2.1 Gibbs Sampling and Blocking

Given a MLN, a set of query atoms and evidence, we
can adapt the basic (propositional) Gibbs sampling [8]
algorithm for computing the marginal probabilities of
query atoms given evidence as follows. First, we ground
all the formulas in the MLN, yielding a Markov net-
work. Second, we instantiate all the evidence atoms
in the network. Assume that the resulting evidence-
instantiated network is defined over a set of variables
X. Third, we generate N samples (x̄(1), . . . , x̄(N)) (a
sample is a truth assignment to all random variables in
the Markov network) as follows. We begin with a ran-
dom assignment to all variables, yielding x̄(0). Then
for t = 1, . . . , N , we perform the following steps. Let
(X1, . . . , Xn) be an arbitrary ordering of variables in
X. Then, for i = 1 to n, we generate a new value

x̄
(t)
i for Xi by sampling a value from the distribu-

tion P (Xi|x̄
t
1, . . . , x̄

t
i−1, x̄

(t−1)
i+1 , . . . , x̄

(t−1)
n ). (This is of-

ten called systematic scan Gibbs sampling. An alter-
native approach is random scan Gibbs sampling which
often converges faster than systematic scan Gibbs sam-

pling). For conciseness, we will write P (Xi|x̄
(t)
−i) =

P (Xi|x̄
t
1, . . . , x̄

t
i−1, x̄

(t−1)
i+1 , . . . , x̄

(t−1)
n ). Once the re-

quired N samples are generated, we can use them to
answer any query over the model. In particular, the
marginal probability for each variable can be estimated
by averaging the conditional marginals:

P̂ (x̄i) =
1

N

N∑

t=1

P (x̄i|x̄
(t)
−i)

Note that in Markov networks, P (Xi|x̄
(t)
−i) =

P (Xi|x̄
(t)
−i,MB(Xi)

) where MB(Xi) is the Markov Blan-

ket (the set of variables that share a function withXi) of

Xi and x̄
(t)
−i,MB(Xi)

is the projection of x̄
(t)
−i onMB(Xi).

Thus, the complexity of sampling a variable is linear in
the size of the Markov blanket.

The sampling distribution of Gibbs sampling converges
to the posterior distribution (the distribution associ-
ated with the evidence instantiated Markov network)
as the number of samples increases because the result-
ing Markov chain is guaranteed to be aperiodic and
ergodic (see [18] for details).

The main idea in blocked Gibbs sampling [13] is group-
ing variables forming a block, and then jointly sam-
pling them given assignments to all other variables not
in the block. Blocking improves mixing yielding a more
accurate sampling algorithm [18]. However, the com-
putational complexity of jointly sampling all variables
in the block typically increases with the treewidth of
the Markov network projected on the block. Thus, the
main issue in blocked Gibbs sampling is finding the
right balance between computational complexity and
accuracy, given time and memory constraints.



3 Our Approach

We illustrate the key ideas in our approach using an
example MLN having two weighted formulas: R(x, y)∨
S(y, z), w1 and S(y, z)∨T(z, u), w2. Note that the prob-
lem of computing the partition function of this MLN for
arbitrary domain sizes is non-trivial; it cannot be poly-
nomially solved using existing exact lifted approaches
such as PTP [10] and Lifted VE [3].

Our main idea is to partition the set of atoms into dis-
joint blocks (clusters) such that PTP is polynomial in
each cluster and then sample all atoms in the cluster
jointly. PTP is polynomial if we can recursively apply
its two lifting rules (defined next) , the power rule and
the generalized binomial rule until the treewidth of the
remaining ground network is bounded by a constant.

The power rule is based on the concept of a decom-
poser. Given a normal MLN M, a set of logical vari-
ables, denoted by x, is called a decomposer if it satis-
fies the following two conditions: (i) Every atom in M
contains exactly one variable from x, and (ii) For any
predicate symbol R, there exists a position s.t. vari-
ables from x only appear at that position in atoms
of R. Given a decomposer x, it is easy to show that
Z(M) = [Z(M[X/x])]|∆x| where x ∈ x and M[X/x] is
the MLN obtained by substituting all logical variables
x in M by the same constant X ∈ ∆x and then con-
verting the resulting MLN to a normal MLN. Note that
for any two variables x, y in x, ∆x = ∆y by normality.

The generalized binomial rule is used to sample sin-
gleton atoms efficiently (the rule also requires that the
atom is not involved in self-joins, i.e., it does not appear
more than once in the same formula). Given a normal
MLN M having a singleton atom R(x), we can show

that Z(M) =
∑|∆x|

i=0

(
|∆x|
i

)
Z(M|R̄i)w(i)2p(i) where R̄i

is a sample of R s.t. exactly i tuples are set to True.
M|R̄i is the MLN obtained from M by performing the
following steps in order: (i) Ground all R(x) and set
its groundings to have the same assignment as Ri, (ii)
Delete formulas that evaluate to either True or False,
(iii) Delete all groundings of R(x) and (iv) Convert the
resulting MLN to a normal MLN. w(i) is the exponen-
tiated sum of the weights of formulas that evaluate to
True and p(i) is the number of ground atoms that are
removed from the MLN as a result of removing formu-
las (these are essentially don’t care atoms which can be
assigned to either True or False).

Now, let us apply the clustering idea to our example
MLN. Let us put each first-order atom in a cluster by it-
self, namely we have three clusters: R(x, y), S(y, z) and
T(z, u) (see Figure 1(a)). Note that each (first-order)
cluster represents all groundings of all atoms in the
cluster. To perform Gibbs sampling over this cluster-
ing, we need to compute three conditional distributions:
P (R(x, y)|S̄(y, z), T̄(z, u)), P (S(y, z)|R̄(x, y), T̄(z, u)) and

R(x, y) S(y, z)

T(z, u)

y

z

(a) Clustering 1

R(x, y), S(y, z)

T(z, u)

z

(b) Clustering 2

Figure 1: Illustration of clustering for lifted blocked Gibbs
sampling for our example MLN R(x, y) ∨ S(y, z), w1 and
S(y, z) ∨ T(z, u), w2. (a) A possible clustering for blocked
lifted Gibbs sampling in which each atom is put in a cluster
by itself. (b) A more efficient clustering for blocked lifted
Gibbs sampling.

P (T(z, u)|R̄(x, y), S̄(y, z)) where R̄(x, y) denotes a truth
assignment to all possible groundings of R. Let the
domain size of each variable be n. Naively, given an
assignment to all other atoms not in the cluster, we
will need O(2n

2

) time and space for computing and
specifying the joint distribution at each cluster. This
is because there are n2 ground atoms associated with
each cluster. Notice however that all groundings of each
first-order atom are conditionally independent of each
other given a truth assignment to all other atoms. In
other words, we can apply PTP here and compute each
conditional distribution in O(n3) time and space (since
there are n3 groundings of each formula and we need
to process each ground formula at least once). Thus,
the complexity of sampling all atoms in all clusters is
O(n3). Note that the complexity of sampling all vari-
ables using propositional Gibbs sampling is also O(n3).

Now, let us consider an alternative clustering in which
we have two clusters as shown in Figure 1(b). Intu-
itively, this clustering is likely to yield better accuracy
than the previous one because more atoms will be sam-
pled jointly. Counterintuitively, however, as we show
next, our new clustering will yield a lifted blocked sam-
pler having smaller complexity than the previous one.

To perform Gibbs sampling over Clustering 2, we need
to compute two distributions P (R(x, y), S(y, z)|T̄(z, u)),
P (T(z, u)|R̄(x, y), S̄(y, z)). Let us see how PTP will
compute P (R(x, y), S(y, z)|T̄(z, u)). If we instantiate all
groundings of T, we get the following reduced MLN
{R(x, y)∨S(y, Zi), w1}

n
i=1 and {S(y, Zi), kiw2}

n
i=1 where

Zi ∈ ∆z and ki is the number of False groundings of
T(y, Zi). This MLN contains a decomposer y. PTP
will now apply the power rule, yielding formulas of the
form {R(x, Y )∨S(Y,Zi), w1}

n
i=1 and {S(Y,Zi), kiw2}

n
i=1

where Y ∈ ∆y. R(x, Y ) is a singleton atom and there-
fore applying the generalized binomial rule, we will
get n + 1 reduced MLNs, each containing n atoms
of the form {S(Y,Zi)}

n
i=1. These atoms are condi-

tionally independent of each other and a distribution



over them can be computed in O(n) time. Thus, the
complexity of computing P (R(x, y), S(y, z)|T̄(z, u)) is
O(n2). Samples for R and S can be generated from
P (R(x, y), S(y, z)|T̄(z, u)) in O(n2) time as well. No-
tice that P (T(z, u)|R̄(x, y), S̄(y, z)) = P (T(z, u)|S̄(y, z))
because R is not in the Markov blanket of T. This distri-
bution can also be computed in O(n2) time. Therefore,
the complexity of sampling all atoms using the cluster-
ing shown in Figure 1(b) is O(n2).

We make an important observation about the space
complexity of the two clusterings shown in Figure 1. For
the second clustering, notice that to compute the con-
ditional distribution P (R(x, y), S(y, z)|T̄(z, u)), we only
need to know how many groundings of T(Zi, u) are True
in T̄(z, u) for all Zi ∈ ∆z. Cluster T(z, u) can share this
information with its neighbor using only O(n) space.
Similarly, to compute P (T(z, u)|S̄(y, z)) we only need
to know how many groundings of S(y, Zi) are True in
S̄(y, z) for all Zi ∈ ∆z. This requires O(n) space and
the overall space complexity of Clustering 2 is O(n). On
the other hand, the space complexity of Gibbs sampling
over Clustering 1 is O(n2).

4 The Lifted Blocked Gibbs Sampling

Algorithm

Next, we will formalize the discussion in the previous
section yielding a lifted blocked Gibbs sampling algo-
rithm. We begin with some required definitions.

We define a cluster as a set of first order atoms (these
atoms will be sampled jointly in a lifted Gibbs sampling
iteration). Given a set of disjoint clusters {C1, . . . , Cm},
the Markov blanket of a cluster Ci is the set of clusters
that have at least one atom that is in the Markov blan-
ket of an atom in Ci. Given a MLN M, the Gibbs

cluster graph is a graph G (each vertex of G is a clus-
ter) such that: (i) Each atom in the MLN is in exactly
one cluster of G (ii) Two clusters Ci and Cj in G are
connected by an edge if Cj is in the Markov blanket
of Ci. Note that by definition if Ci is in the Markov
blanket of Cj , then Cj is in the Markov blanket of Ci.

The lifted blocked Gibbs sampling algorithm (see Algo-
rithm 1) can be envisioned as a message passing algo-
rithm over a Gibbs cluster graph G. Each edge (Ci, Cj)
in G stores two messages in each direction. The mes-
sage from Ci to Cj contains the current truth assign-
ment to all groundings of all atoms (we will discuss how
to represent the truth assignment efficiently, in a lifted
manner shortly) that are in the Markov blanket of one
or more atoms in Ci. We initialize the messages ran-
domly. Then at each Gibbs iteration, we generate a
sample over all atoms by sampling the clusters along
an ordering (C1, . . . , Cm) (Steps 3-10). At each cluster,
we first use PTP to compute a conditional joint distri-
bution over all atoms in the cluster given an assignment

Algorithm 1: Lifted Blocked Gibbs Sampling

Input: A normal MLN M, a Gibbs cluster graph G, an
integer N and a set of query atoms R

Output: Marginal estimates of all atoms in R
begin1

Randomly initialize all outgoing messages at each2

cluster;
for t = 1 to N do3

Let (C1, . . . , Cm) be an arbitrary ordering of4

clusters of G;
// Gibbs iteration
for i = 1 to m do5

M′ = MLN obtained from M by removing all6

atoms not in the Markov blanket of the atoms in
Ci and instantiating all atoms in the Markov
Blanket of Ci using the incoming messages to Ci;
Compute the joint distribution PCi

over the7

atoms in Ci by running PTP on M′;
Sample a truth assignment to all atoms in Ci8

from PCi
;

Update the estimate of all query atoms in Ci;9

Update all outgoing messages from Ci;10

end11

to atoms in their Markov blanket. This assignment is
derived using the incoming messages. Then, we sample
all atoms in the cluster from the joint distribution and
update the estimate for query atoms in the cluster as
well as all outgoing messages. We can prove that:

Theorem 1. The Markov chain induced by Algorithm
1 is ergodic and aperiodic and its stationary distribu-
tion is the distribution represented by the input normal
MLN.

4.1 Lifted Message Representation

We say that a representation of truth assignments to
the groundings of an atom is lifted if we only specify
the number of true (or false) assignments to its full or
partial grounding.

Example 1. Consider an atom R(x, y), where ∆x =
{X1, X2} and ∆y = {Y1, Y2}. We can represent
the truth assignment (R(X1, Y1) = 1, R(X1, Y2) =
0, R(X2, Y1) = 1, R(X2, Y2) = 0) in a lifted manner using
either an integer 2 or a vector ([Y1, 2], [Y2, 0]). The first
representation says that 2 groundings of R(x, y) are true
while the second representation says that 2 groundings
of R(x, Y1) and 0 groundings of R(x, Y2) are true.

Next, we state sufficient conditions for representing a
message in a lifted manner while ensuring correctness,
summarized in Theorem 2. We begin with a required
definition. Given an atom R(x1, . . . , xp) and a subset
of atoms {S1, . . . , Sk} from its Markov blanket, we say
that a term at position i in R is a shared term w.r.t.
{S1, . . . , Sk} if there exists a formula f such that in f ,
a logical variable appears at position i in R and in one
or more atoms in {S1, . . . , Sk}. For instance, in our



running example, y (position 2) is a shared term of R
w.r.t. {S} but x (position 1) is not.

Theorem 2 (Sufficient Conditions for a Lifted
Message Representation). Given a Gibbs cluster
graph G and an MLN M, let R be an atom in Ci and
let Cj be a neighbor of Ci in G. Let SR,Cj

be the set
of atoms formed by taking an intersection between the
Markov blanket of R and the union of the Markov blan-
ket of atoms in Cj . Let x be the set of shared terms
of R w.r.t. SR,Cj

∪ Cj and y be the set of remaining
terms in R. Let the outgoing message from Ci to Cj

be represented using a vector of |∆x| pairs of the form
[Xi, ri] where ∆x is the Cartesian product of the do-
mains of all terms in x, Xi ∈ ∆x is the i-th element
in ∆x and ri is the number of groundings of R(Xi,y)
that are true in the current assignment. If all messages
in the lifted Blocked Gibbs sampling algorithm (Algo-
rithm 1) use the aforementioned representation, then
the stationary distribution of the Markov chain induced
by the algorithm is the distribution represented by the
input normal MLN.

4.2 Complexity

Theorem 2 provides a method for representing the mes-
sages succinctly by taking advantage of the symmetry
at inference time. It also generalizes the ideas presented
in the previous section (last paragraph) and helps us
bound the space complexity of each message. Formally,

Theorem 3 (Space Complexity of a Message).
Given a Gibbs cluster graph G and an MLN M, let
the outgoing message from cluster Ci to cluster Cj in
G be defined over the set {R1, . . . , Rk} of atoms. Let
xi denote the set of shared terms of Ri that satisfy the
conditions outlined in Theorem 2. Then, the space com-
plexity of representing the message is O(

∑k

i=1 |∆xi
|).

Note that the space requirements of Lifted Blocked
Gibbs sampling are not only dependent on the space re-
quired to represent the messages but also on the space
required by the PTP algorithm at each cluster. More
precisely, the space required equals the sum of the space
required by the messages and the maximum space re-
quired by PTP to represent the joint distribution at a
cluster. The time required to sample a cluster C equals
the sum of the time required by PTP at C and the time
required to compute the outgoing messages from C.

We can compute the time and space complexity of PTP
at a cluster by running it schematically as follows. We
apply the power rule as before but explore only one
randomly selected branch in the search tree induced
by the generalized binomial rule. Recall that applying
the generalized binomial rule will result in n+ 1 recur-
sive calls (i.e, the search tree node has branching factor
of n + 1) where n is the domain size of the singleton
atom. If neither the power rule nor the generalized bi-

nomial rule can be applied at any point during search,
the complexity of PTP is exponential in the treewidth
of the remaining ground network. More precisely, the
complexity of PTP is O(exp(g) × exp(w + 1)) where g
is the number of times the generalized binomial rule is
applied and w is the treewidth (computed heuristically)
of the remaining ground network.

Algorithm 2: Construct Gibbs Cluster Graph

Input: A normal MLN M, complexity bounds α and β
Output: A Gibbs cluster graph G
begin1

Initialization: Construct a set of initial clusters such2

that each first order atom is in a separate cluster.
Connect the clusters appropriately yielding a Gibbs
cluster graph G
while True do3

F = ∅ // F: Set of feasible cluster graphs4

for all pairs of clusters Ci and Cj in G do5

Merge Ci and Cj yielding a cluster graph G′
6

if T (G′) ≤ T (G) and S(G′) ≤ S(G) then7

Add G′ to F8

else if T (G′) ≤ α and S(G′) ≤ β then9

Add G′ to F10

If F is empty return G11

G = Cluster graph in F that has the maximum12 ∑
i
ζ(Ci)

end13

4.3 Constructing the Gibbs Cluster Graph

Next, we present a heuristic algorithm for constructing
the Gibbs cluster graph. From a computational view
point, we want its time and space requirements to be
as small as possible. From an approximation quality
viewpoint, we want to jointly sample, i.e., cluster to-
gether highly coupled/correlated variables to improve
mixing. We can cast this as an optimization problem:

Maximize O =
∑

i

ζ(Ci), subject to: S(G) ≤ α, T (G) ≤ β

where S(G) and T (G) denote the time and space re-
quirements of the Gibbs cluster graph G, ζ(Ci) mea-
sures the amount of coupling in the cluster Ci of G,
and parameters α and β are used to bound the time
and space complexity respectively. In our implementa-
tion, we measure coupling using the number of times
two atoms appear together in a formula.

The optimization problem is NP-hard since it in-
cludes the NP-hard knapsack problem as a special case.
Therefore, we propose to use the greedy approach given
in Algorithm 2 for solving it. The algorithm begins by
constructing a Gibbs cluster graph in which each first-
order atom is in a cluster by itself. Then, in the while
loop, the algorithm tries to iteratively improve the clus-
ter graph. At each iteration, given the current cluster
graph G, for every possible pair of clusters (Ci, Cj) of
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Figure 2: KL divergence as a function of time for: (a)
M1 with 50 objects and (b) M2 with 50 objects. Conver-
gence diagnostic using Gelman-Rubin statistic (R) for (c)
M3 with 25 objects and (d) M4 with 25 objects. Note that
for lifted BP, the values displayed are the ones obtained after
the algorithm has converged. Time required by 100 Gibbs
iterations as a function of the number of objects for (e) M3

and (f) M4.

G, the algorithm creates a new cluster graph G′ from
G by merging Ci and Cj . Among these graphs, the
algorithm selects the graph that yields the most cou-
pling and at the same time either has smaller complex-
ity than G or satisfies the input complexity bounds α
and β. It then replaces G with the selected graph and
iterates until the graph cannot be improved. Note that
increasing the cluster size may decrease the complex-
ity of the cluster graph in some cases and therefore we
require steps 6 and 7 which add G′ to the feasible set
if its complexity is smaller than G. Also note that the
algorithm is not guaranteed to return a cluster graph
that satisfies the input complexity bounds, even if such
a cluster graph exists. If the algorithm fails then we
may have to use local search or dynamic programming;
both are computationally expensive.

5 Experiments

In this section, we compare the performance of lifted
blocked Gibbs sampling (LBG) with (propositional)
blocked Gibbs sampling (BG), lazy MC-SAT [29, 30]
and lifted belief propagation (LBP) [33]. We exper-

imented with the following four MLNs: (i) A RST
MLN having two formulas, M1 : [R(x) ∨ S(x, y), w1];
[S(x, y) ∨ T(y, z)], (ii) A toy Smoker-Asthma-Cancer
MLN having three formulas, M3 : [Asthma(x) →
¬Smokes(x)], [Asthma(x) ∧ Friends(x, y) →
¬Smokes(y)], [Smoke(x) → Cancer(x)], (iii) The
example R, S, T MLN defined in Section 3, M3 and (iv)
WEBKB MLN, M4 used in [20]. Note that the first
two MLNs can be solved in polynomial time using PTP
while PTP is exponential on M3 and M4. For each
MLN, we set 10% randomly selected ground atoms
as evidence. We varied the number of objects in the
domain from 5 to 200. We used a time-bound of 1000
seconds for all algorithms.

We implemented LBG and BG in C++ and used
alchemy [15] to implement MC-SAT and LBP. For
LBG, BG and MC-SAT, we used a burn-in of 100 sam-
ples to negate the effects of initialization. For M1 and
M2, we measure the accuracy using the KL divergence
between the estimated marginal probabilities and the
true marginal probabilities computed using PTP. Since
computing exact marginals of M3 and M4 is not fea-
sible, we perform convergence diagnostics for LBG and
BG using the Gelman-Rubin statistic [7], denoted by
R. R measures the disagreement between chains by
comparing the between-chain variances with the within-
chain variances. The closer the value of R to 1, the
better the mixing.

Figure 2 shows the results. Figures 2(a) and 2(b) show
the KL divergence as a function of time for M1 and
M2 respectively. In both cases, LBG converges much
faster than BG and MC-SAT and has smaller error.
LBP is more accurate than LBG on M1 while LBG
is more accurate than LBP on M2. Figures 2(c) and
2(d) show log(R) as a function of time for M3 and M4

respectively. We see that the Markov chain associated
with LBG mixes much faster than the one associated
with BG. To measure scalability, we use running time
per Gibbs iteration as a performance metric. Figures
2(e) and 2(f) show the time required by 100 Gibbs it-
erations as a function of number of objects for M3 and
M4 respectively. They clearly demonstrates that LBG
is more scalable than BG.

6 Summary and Future Work

In this paper, we proposed lifted Blocked Gibbs sam-
pling, a new algorithm that improves blocked Gibbs
sampling by exploiting relational or first-order struc-
ture. Our algorithm operates by constructing a Gibbs
cluster graph, which represents a partitioning of atoms
into clusters and then performs message passing over
the graph. Each message is a truth assignment to the
Markov blanket of the cluster and we showed how to
represent it in a lifted manner, under certain conditions.



We proposed an algorithm for constructing the Gibbs
cluster graph and showed that it can be used to trade
accuracy with computational complexity. Our exper-
iments demonstrate clearly that lifted blocked Gibbs
sampling is more accurate and scalable than proposi-
tional blocked Gibbs sampling as well as MC-SAT.

Future work includes: lifting the Rao-Blackwellised
Gibbs sampler, applying our lifting rules to other
MCMC approaches such as slice sampling [25] and the
recently proposed flat histogram MCMC [5], develop-
ing new clustering strategies, performing approximate
message propagation over the Gibbs cluster graph, etc.
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