Supplementary material

Human Pluripotent Stem Cell-derived Neurons are Functionally Mature *in vitro* and Integrate into the Mouse Striatum *in vivo*

Andrea Comella-Bolla^{1,2,3,4,5} · Javier G. Orlandi^{6,7,8} · Andrés Miguez^{1,2,3,4,5} · Marco Straccia^{1,2,3,4,5} · María García-Bravo^{9,10} · Georgina Bombau^{1,2,3,4,5} · Mireia Galofré^{1,2,3,4,5} · Phil Sanders^{1,2,3,4,5} · Jordi Carrere^{1,2,3,4,5} · José Carlos Segovia^{9,10} · Joan Blasi¹¹ · Nicholas D. Allen¹² · Jordi Alberch^{2,3,4,5,6} · Jordi Soriano^{7,13} · Josep M. Canals ^{1,2,3,4,5}.

¹Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain. ²Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Spain.

³Institute of Neurosciences, University of Barcelona, Barcelona, Spain.

⁴Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.

⁵August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain ⁶Pathophysiology of Neurodegenerative Disease. Laboratory, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain.

⁷Departament de Física de la Matèria Condensada, University of Barcelona, Barcelona, Spain.

⁸Department of Physics and Astronomy, University of Calgary, Calgary, Canada. ⁹Differentiation and Cytometry Unit. Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER). Madrid. Spain.

¹⁰Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain.

¹¹Laboratory of Cellular and Molecular Neurobiology, Department Pathology and Experimental Therapeutics, Faculty of Medicine and Health Science, Biomedical Research Institute of Bellvitge (IDIBELL); University of Barcelona, Barcelona, Spain. ¹²Cardiff Repair Group, School of Biosciences and medicine, Cardiff University, Cardiff, Wales, UK.

¹³Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain.

Table S1 Table of correspondence of human gene names with human protein names

Gene	Protein name	Protein symbol
АСТВ	Actin, cytoplasmic 1/ Beta-actin	Actine
ADAM10	Disintegrin and metalloproteinase domain-containing protein 10	ADAM 10
АМРН	Amphiphysin	АМРН
BDNF	Brain-derived neurotrophic factor	Bdnf
BIN1	Myc box-dependent-interacting protein 1	BIN1
CACNA1A	Voltage-dependent P/Q-type calcium channel subunit alpha-1B	Cav2.1
CACNA1B	Voltage-dependent P/Q-type calcium channel subunit alpha-1A	Cav2.2
CACNA1C	Voltage-dependent L-type calcium channel subunit alpha-1C	CaV1.2
CACNA1H	Voltage-dependent T-type calcium channel subunit alpha-1H	Cav3.2
CACNA1S	Voltage-dependent L-type calcium channel subunit alpha-1S	Cav1.1
CACNB1	Voltage-dependent L-type calcium channel subunit beta-1	CAB1
CACNB2	Voltage-dependent L-type calcium channel subunit beta-2	CAB2
CACNB3	Voltage-dependent L-type calcium channel subunit beta-3	CAB3
CACNB4	Voltage-dependent L-type calcium channel subunit beta-4	CAB4
CACNG2	Voltage-dependent calcium channel gamma-2 subunit/ Transmembrane AMPAR	
	regulatory protein gamma-2	TARP gamma-2
CAMK1G	calcium/calmodulin-dependent protein kinase IG	CaMKIG
CAMK2A	calcium/calmodulin-dependent protein kinase II alpha	САМКА
САМК4	calcium/calmodulin-dependent protein kinase IV	САМК4
CASK	Peripheral plasma membrane protein CASK	CASK
CLCA1	Chloride channel accessory 1	hCaCC-1
CLCN1	Voltage-sensitive Chloride channel protein 1	CIC-1
CLCN2	Voltage-sensitive Chloride channel protein 2	CIC-2
CLCN5	Voltage-sensitive Chloride channel protein 5	CIC-5
CLCN6	Voltage-sensitive Chloride channel protein 6	CIC-6
CLCN7	Voltage-sensitive Chloride channel protein 7	CIC-7
CLIC1	Chloride intracellular channel 1	NCC27
CLIC2	Chloride intracellular channel 2	XAP121
CREB1	cAMP responsive element binding protein 1	CREB
DLG1	Discs large homolog 1	SAP-97
DLG2	Discs large homolog 2	PSD-93
DLG3	Discs large homolog 3	SAP102
DLG4	Discs large homolog 4	PSD95
DRD1	Dopamine receptor D1	DRD1A
DRD2	Dopamine receptor D2	D2DR
DRD3	Dopamine receptor D3	D3DR
EIF2B1	Translation initiation factor eIF-2B subunit alpha/ Eukaryotic translation initiation	EIF2BA
	factor 2B subunit 1 alpha	
GABRA1	gamma-aminobutyric acid (GABA) A receptor alpha 1	GABRalfa1
GABRA2	GABA (A) receptor alpha 2	GABRalfa2
GABRB1	GABA (A) receptor beta 1	GABR beta1
GABRB2	GABA (A) receptor beta 2	GABR beta2
GABRD	GABA (A) receptor delta	GABR delta
GABRE	GABA (A) receptor epsilon	GABR epsilon
GABRG1	GABA (A) receptor gamma 1	GABR gamma1
GABRG2	GABA (A) receptor gamma 2	GABR gamma2
GABRP	GABA (A) receptor pi	GABR pi
GABRQ	GABA (A) receptor theta	GABR theta
GAP43	Neuromodulin	GAP43
GLRA1	glycine receptor alpha 1	GLR alfa1
GLRA2	glycine receptor alpha 2	GLR alfa2
GLRA3	glycine receptor alpha 3	GLR alfa3

Gene	Protein name	Protein symbol
GRIA1	Glutamate receptor ionotropic, AMPA 1	GluR1/GluA1
GRIA2	Glutamate receptor ionotropic, AMPA 2	GluR2/GluA2
GRIA3	Glutamate receptor ionotropic, AMPA 3	GluR3/GluA3
GRIA4	Glutamate receptor ionotropic, AMPA 4	GluR4/GluA4
GRIK1	Glutamate receptor ionotropic, kainate 1	EAA3/GLUR5/GluK1
GRIK3	Glutamate receptor ionotropic, kainate 3	EAA5/GLUR7/GluK3
GRIK4	Glutamate receptor ionotropic, kainate 4	EAA1/GRIK/GluK4
GRIK5	Glutamate receptor ionotropic, kainate 5	EAA2/GRIK2/GluK5
GRIN1	Glutamate receptor ionotropic, N-methyl D-aspartate (NMDA) 1	GluN1/NMDAR1/NR1
GRIN2A	Glutamate receptor ionotropic, NMDA 2A	GluN2A/NMDAR2A/NR2A
GRIN2B	Glutamate receptor ionotropic, NMDA 2B	GluN2B/NMDAR2B/NR2B
GRIN2C	Glutamate receptor ionotropic, NMDA 2D	GluN2C/NMDAR2C/NR2C
GRIN2D	Glutamate receptor ionotropic, NMDA 2C	GluN2D/NMDAR2D/NR2D
GRIN3A	Glutamate receptor ionotropic, NMDA 3A	GluN3A/NMDAR3A/NR3A
GRIN3B	Glutamate receptor ionotropic, NMDA 3A	GluN3B/NMDAR3B/NR3B
GRINA	Glutamate receptor ionotropic, NMDA -associated protein 1	NMDARA1/TMBIM3
HPRT1	hypoxanthine phosphoribosyltransferase 1;hCG15412 Celera Annotation	HPRT
HTR1B	5-hydroxytryptamine (serotonin) receptor 1B	5-HT1B
HTR2A	5-hydroxytryptamine (serotonin) receptor 2A	5-HT2A
HTR3A	5-hydroxytryptamine (serotonin) receptor 3A	5-HT3A
HTR3B	5-hydroxytryptamine (serotonin) receptor 3B	5-HT3B
KCNA1	Potassium voltage-gated channel (shaker-related) subfamily A member 1	Kv1.1
KCNA10	Potassium voltage-gated channel (shaker-related) subfamily A member 10	Kv1.8
KCNA2	Potassium voltage-gated channel (shaker-related) subfamily A member 2	KV1.2
KCNA3	Potassium voltage-gated channel (shaker-related) subfamily A member 3	KV1.3
KCNA4	Potassium voltage-gated channel (shaker-related) subfamily A member 4	KV1.4
KCNA5	Potassium voltage-gated channel (shaker-related) subfamily A member 5	KV1.5
KCNAB1	Potassium voltage-gated channel subunit beta-1	Kvb1.3
KCNB1	Potassium voltage-gated channel (Shab-related) subfamily B member 1	KV2.1
KCNC1	Potassium voltage-gated channel (Shaw-related) subfamily C member 1	KV3.1
KCNC4	Potassium voltage-gated channel (Shaw-related) subfamily C member 4	KV3.4
KCND1	Potassium voltage-gated channeL (Shal-related) subfamily D member 1	KV4.1
KCND2	Potassium voltage-gated channeL (Shal-related) subfamily D member 2	KV4.2
KCNE1	Potassium voltage-gated channeL (Isk-related family) subfamily E member 1	MinK
KCNF1	Potassium voltage-gated channeL subfamily F member 1	KV5.1/kH1
KCNG1	Potassium voltage-gated channeL subfamily G member 1	KV6.1/kH2
KCNH1	Potassium voltage-gated channeL (eag-related) subfamily H member 1	Kv10.1
KCNH2	Potassium voltage-gated channeL (eag-related) subfamily H member 2	Kv11.1
KCNJ1	ATP-sensitive inward rectifier potassium channel 1/Potassium inwardly-rectifying	KIR1.1/ROMK1
	channel subfamily J member 1	
KCNJ11	ATP-sensitive inward rectifier potassium channel 11/ Potassium inwardly-rectifying	KIR6.2
	channel subfamily J member 11	
KCNJ4	Inward rectifier potassium channel 4	Kir2.3/IRK-3
KCNJ5	G protein-activated inward rectifier potassium channel 4	Kir3.4/IRK-4
KCNJ6	G protein-activated inward rectifier potassium channel 2	Kir3.2/KATP-2
KCNK10	Potassium channel subfamily K member 10/ Outward rectifying potassium channel	K2p10.1/TREK2
	protein TREK-2	
KCNK2	Potassium channel subfamily K member 2/ Outward rectifying potassium channel	K2p2.1/TREK1
	protein TREK-1	
КСМКЗ	Potassium channel subfamily K member 3/ Acid-sensitive potassium channel protein	K2p3.1/TASK-1
	TASK-1	
KCNK4	Potassium channel subfamily K member 4/ TWIK-related arachidonic acid-stimulated	K2p4.1/TRAAK
	potassium channel protei	
KCNK5	Potassium channel subfamily K member 5 / Acid-sensitive potassium channel protein	K2p5.1/TASK-2
	TASK-2	
КСМК9	Potassium channel subfamily K member 9/ Acid-sensitive potassium channel protein	K2p9.1/TASK-3
	TASK-3	

Gene	Protein name	Protein symbol
KCNMB1	Potassium large conductance calcium-activated channel subfamily M beta-1	K(VCA)beta-1
KCNN1	Potassium intermediate/small conductance calcium-activated channel subfamily N	KCa2.1/SK1
	member 1	
KCNN2	Potassium small conductance calcium-activated channel subfamily N member 2	KCa2.2/SK2
KCNN3	Potassium small conductance calcium-activated channel subfamily N member 3	KCa2.3;/SK3
KCNN4	Potassium small conductance calcium-activated channel subfamily N member 4	KCa3.1/SK4
KCNQ1	Potassium voltage-gated channel subfamily KQT member 1	KvLQT1/Kv7.1
KCNQ2	Potassium voltage-gated channel subfamily KQT member 2	KvLQT2/KV7.2
KCNQ3	Potassium voltage-gated channel subfamily KQT member 3	KvLQT3/KV7.3
KCNQ4	Potassium voltage-gated channel subfamily KQT member 4	KvLQT4/KV7.4
KCNS1	Potassium voltage-gated channel delayed-rectifier subfamily S member 1	KV9.1
KCNS2	Potassium voltage-gated channel delayed-rectifier subfamily S member 2	KV9.2
KCNS3	Potassium voltage-gated channel delayed-rectifier subfamily S member 3	KV9.3
NEUROD1	Neuronal differentiation 1/ Class A basic helix-loop-helix protein 3	NEUROD/bHLHa3
NTF3	Neurotrophin 3/ Nerve growth factor 2	NT3/NGF2
NTRK1	Neurotrophic tyrosine kinase receptor type 1	TRK1
NTRK2	Neurotrophic tyrosine kinase receptor type 2	ТККВ
NTRK3	Neurotrophic tyrosine kinase receptor type 3	TRKC
P2RX2	P2X purinoceptor 2	P2X2
P2RX4	P2X purinoceptor 4	P2X4
P2RX7	P2X Purinergic receptor ligand-gated ion channel	P2X7
P2RY1	P2Y Purinergic receptor G-protein coupled	P2Y1
PDE1B	Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1B	PDES1B
PPP1R9A	Neurabin-I/ Protein phosphatase 1 regulatory subunit 9A	Neurabin-I/ NRB1
PPP1R9B	Neurabin-2/ Spinophilin/ Protein phosphatase 1 regulatory subunit 9B	Neurabin-II/ Spinophilin
SCN1A	Sodium voltage-gated channel type I alpha subunit	Nav1.1
SCN2B	Sodium voltage-gated channel type II beta subunit	SCN2B
SCN3A	Sodium voltage-gated channel type III alpha subunit	Nav1.3
SCN4A	Sodium voltage-gate channel type IV alpha subunit	Nav1.4
SCN5A;-	Sodium voltage-gate channel type V alpha subunit	Nav1.5
SCN7A	Sodium voltage-gate channel type VII alpha subunit	Nav2.1
SCN8A	Sodium voltage-gate channel type VIII alpha subunit	Nav1.6
SCN9A	Sodium voltage-gate channel type IX alpha subunit	Nav1.7
SLC12A1	Solute carrier family 12 member 1/Na-K-Cl cotransporter 2	SLC12A1/NKCC2
SLC12A2	Solute carrier family 12 member 2/ Na-K-Cl cotransporter 1	SLC12A2/NKCC1
SLC12A4	Solute carrier family 12 member 4/ Electroneutral potassium-chloride cotransporter 1	SLC12A4/KCC1
SLC12A5	Solute carrier family 12 member 5/ Electroneutral potassium-chloride cotransporter 2	SLC12A5/KCC2
SLC17A8	Solute carrier family 17 member 8 /vesicular glutamate transporter 3	VGLUT3
SLC32A1	Solute carrier family 32 member 1/ GABA vesicular transporter	VGAT
SLC37A1	Glucose-6-phosphate exchanger/ Solute carrier family 37 member 1	G3PP
SLC5A11	Sodium/myo-inositol cotransporter 2/Solute carrier family 5 member 11	SMIT2
SNAP25	Synaptosomal-associated protein 25kDa	SNAP25
SV2C	Synaptic vesicle glycoprotein 2C	SV2C
SYN1	Synapsin I	SYN1
SYNGR2	Synaptogyrin 2	SYNGR2
SYNJ2	Synaptojanin 2	SYNJ2
SYNPO	Synaptopodin	SYNPO
SYP	Synaptophysin	SYP
SYT12	Synaptotagmin XII	SytXII
SYT2	Synaptotagmin II	SytII
SYT5	Synaptotagmin V	SytV
SYT6	synaptotagmin VI	SytVI
TACR1		
	Tachykinin receptor 1/ Substance-P receptor	SPR/NK-1R
TACR2	Tachykinin receptor 2/ Substance-K receptor/ Neurokinin A receptor	SKR/NK-2R
VAMP2	Vesicle-associated membrane protein 2/ Synaptobrevin 2	SYB2/VAMP-2
VAMP5	Vesicle-associated membrane protein 5/ Myobrevin	VAMP-5

Pluripotency at DIV 0

Ctr-Q33

Fig. S1 Representative OCT- 3/4 immuno-fluorescence in (a) Ctr-Q33 hiPSC and (b) GEN-Q18 hESC cultures at DIV 0. The square boxes (a' and b') show a detail of the images. Scale bar is 100 μ m. (c)-(d) Quantitative gene expression profiles of NANOG, POU5F1 and KRT18 mRNA levels along Ctr-Q33 (c) and GEN-Q18 (d) neuronal differentiation. Data is shown as mean \pm SEM. Statistics: One-way ANOVA followed by Tukey's multiple comparison test, relative to DIV 0. *P < 0.05; **P < 0.001; ***P < 0.001.

Fig. S2 Quantitative gene expression profiles of anterior telencephalic genes FOXG1, DACH1, SIX3 and GLI3 throughout the neuronal differentiation of (a) Ctr-Q33 and (b) GEN-Q18. Data is shown as mean \pm SEM; one-way ANOVA followed by Tukey's multiple comparison test, relative to DIV 0, for * P < 0.05, ** P < 0.01, ***P < 0.001; relative to DIV 8 for + P < 0.05, ++ P < 0.01, +++ P < 0.001; and relative to DIV for is \$\$ P < 0.01, \$\$ P < 0.001.

Fig. S3 Quantitative expression profile of DCX, TUBB3 and NMCA1 along (a) Ctr-Q33 and (b) GEN-Q18 neuronal differentiation. Data is shown as mean \pm SEM; One-way ANOVA followed by Tukey's multiple comparison test, to DIV 0 for * P < 0.05, ** P < 0.01, ***P < 0.001, and to DIV 8 for + P < 0.05, ++ P < 0.01, +++ P < 0.001.

Fig. S4 Anterior telencephalic genes expression by GEN-Q18 hESC derived cultures. Quantitative gene expression of subpallial (a-c) and pallial (d-f) gene expression throughout GEN-Q18 neuronal differentiation. Data is shown as mean \pm SEM; One-way ANOVA followed by Tukey's multiple comparison test, relative to DIV 0 for * P < 0.05; to DIV 8 for + P < 0.05; and to DIV 16 for \$ P < 0.05, \$\$ P < 0.01. Abbreviations: VZ: Ventricular zone; SVZ: Subventricular zone; MZ: Mantel zone and CP: Cortical plate.

Fig. S5 GEN-Q18 hiPSC- derived GABAergic neurons at DIV 23 (top) and DIV 37 (bottom). Images show representative GABA (green) immunofluorescence along with the neuronal MAP2b (red) and DAPI (blue) at both DIV. Triangular arrowheads highlight intense GABA+ neurons; spiky arrowheads highlight low GABA+ neurons. Scale bar is 30 μ m.

GEN-Q18 hESC-derived neurons

GEN-Q18 hESC-derived neurons

Fig. S6 GEN-Q18 hiPSC- derived TH (a) and Tbr1-expressing neurons (b) at DIV 23 and DIV 37. Images show representative TH or Tbr1 (green) staining along with MAP2b (red) and DAPI (blue). Triangular arrowheads highlight intense stained-neurons; spiky arrowheads highlight low-stained neurons. Scale bar is $30 \ \mu m$.

Ctr-Q33 iPSC-derived neurons

Fig. S7. Ctr-Q33 iPSC-derived (top) and GEN-Q18 hESC-derived (bottom) striatal GABAergic interneurons expressing TH at 37 DIV. Images show representative GABA (green) and TH (red) immunofluorescence with the nuclei stained with DAPI (blue). Triangular arrowheads indicate neurons expressing only GABA. Spiky arrowheads indicate neurons co-expressing GABA and TH. Scale bar is 30 µm.

Fig. S8 Representative images for DARPP-32 (green) and CTIP2 (red) by GEN-Q18 hESC-derived cultures at (a) DIV 23 and (b) DIV 37. Triangular arrowheads highlight double labelled neurons; spiky arrowheads highlight single labelled-Ctip2 nucleus. Scale bar is 30 µm.

GEN-Q18 hESC-derived neurons

Fig. S9 Calcium imaging and single-cell fluorescence traces. (a) Brightfield and (b) Fluo4-AM loaded fluorescence images of the recorded Field of View, and for a Ctr-Q33 culture at DIV 37. (c) Magnified square regions from (a-b) to show the ability to identify single cells and ascribe them as ROIs. (d) Examples of spontaneous activity fluorescence data for single neurons as a function of time. Fluorescence is expressed as F(t)=100 (F*-F0)/F0 = Δ F/F0 (%). The dashed line provides a reference for the signal baseline.

Fig. S10 Set of neuronal firing features, extracted for each single neuron, and that describe the activity of the hiPSC-derived neurons. (a) The sketch illustrates the definition of each feature, and corresponds to a hand-drawn fluorescence trace with six spikes-like Ca²⁺ fluctuations represented as green boxes. Lines with arrowheads indicate intervals in seconds. Spk: spike; B: bursts; t: time. (b) Features contribution to PCA relative to each feature and first and second axis.

0.00

0.00

0.00

0.03

0.0

0.3

Re

0.4

2.1

۵

9a

9b

Avg Burst length (s) (1)

Avg Burst length (s) (2)

i																	
			Ν	lumbe	er Spil	(es					Mea	n Inter	Burs	t Interv	/al (IBI) (s)	
	G1	G2	G3	G4	G5	G6	G7	G8		G1	G2	G 3	G4	G5	G6	G7	G8
Mean	54.8	51.9	57.5	39.6	319.6	79.5	182.4	112.6	Mean	302.4	40.6	127.4	1.3	10.1	59.5	15.5	27.2
SD	22.7	14.0	22.2	19.0	75.2	15.9	27.2	17.9	SD	92.0	16.8	31.2	4.2	2.5	16.9	4.2	11.1
SEM	1.0	0.4	0.6	0.3	6.5	0.4	0.9	0.4	SEM	4.2	0.4	0.9	0.1	0.2	0.4	0.1	0.3

	Mean Inter Spike Interval (ISI) (s G1 G2 G3 G4 G5 G6 G7 ean 12.7 11.7 11.7 19.8 1.9 7.6 3.3								Mean Spikes inside a Burst								
	G1	G2	G3	G4	G5	G6	G7	G8		G1	G2	G3	G4	G5	G6	G7	G8
Mean	12.7	11.7	11.7	19.8	1.9	7.6	3.3	5.3	Mean	2.1	2.3	2.2	2.2	4.6	2.3	3.1	2.5
SD	6.0	3.8	5.3	15.9	0.3	1.5	0.5	0.8	SD	0.5	0.5	0.4	0.8	1.5	0.5	0.8	0.5
SEM	0.3	0.1	0.2	0.3	0.0	0.0	0.0	0.0	SEM	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0

			F	iring	Rate (Hz)					Μ	ean IS	l insid	e a Bu	rst (m	s)	
	G1	G2 G3 G4 G5 G6 G7 G8								G1	G2	G3	G4	G5	G6	G7	G8
Mean	0.09	0.09	0.10	0.07	0.54	0.13	0.31	0.19	Mean	628.9	574.0	612.9	636.0	464.3	631.4	539.1	590.2
SD	0.04	0.02	0.04	0.03	0.13	0.03	0.05	0.03	SD	193.1	148.0	164.6	260.5	111.7	128.9	100.8	124.7
SEM	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	SEM	8.9	3.9	4.8	6.2	9.7	3.2	3.5	2.8

				Numb	er Bur	st							Burst	length			
	G1	G2	G3	G4	G5	G6	G7	G8		G1	G2	G3	G4	G5	G6	G7	G8
Mean	2.3	6.7	3.7	1.2	61.3	7.2	37.5	17.4	Mean	4.4	6.6	5.5	5.0	8.6	5.5	7.7	6.5
SD	0.5	4.2	1.3	0.7	16.8	3.3	9.7	7.9	SD	4.0	4.4	6.2	7.1	3.4	3.6	3.6	3.4
SEM	0.0	0.1	0.0	0.0	1.5	0.1	0.3	0.2	SEM	0.2	0.1	0.2	0.2	0.3	0.1	0.1	0.1

Fig. S11 Firing and bursting features of Ctr-Q33 hiPSC-derived neurons clustered in eight characteristic groups at DIV 37. The box plots show: (a) the number of spikes (NS); (b) the frequency (FR, Hz); (c) the Inter-spike-Interval (ISI, s); (d) the number of Bursts; (e) the Inter-Burst interval (IBI, ms); (f) the number of spikes inside a burst; (g) the ISI inside a burst (ms); and (f) the burst length (s). Groups are represented with different colors. The horizontal line within the boxplot shows the mean; the vertical lines show \pm SD. (i) Tables with the Mean, SD and SEM for each feature.

		rst	inside Bu	ISI i							s	um Spike	Nu			
G7 G	G6	G5	G4	G3	G2	G1		G8	G7	G6	G5	G4	G3	G2	G1	
*** **	ns	***	ns	ns	***		G1	* ***	***	***	***	***	ns	ns		G1
*** n:	***	***	***	***		< 0,0001	G2	* ***	***	***	***	***	***		0.1507	G2
*** **	ns	***	**		< 0,0001	0.6561	G3	* ***	***	***	***	***		< 0,0001	0.2328	G3
*** **	ns	***		0.0061	< 0,0002	0.9925	G4	* ***	***	***	***		< 0,0001	< 0,0001	< 0,0001	G4
*** **	***		< 0,0001	< 0,0001	< 0,0003	< 0,0001	G5	* ***	***	***		< 0,0001	< 0,0001	< 0,0001	< 0,0001	G5
*** **		< 0,0001	0.9929	0.0742	< 0,0004	> 0,9999	G6	* ***	***		< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	G6
**	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0005	< 0,0001	G7	***		< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	G7
< 0,0001	< 0,0001	< 0,0001	< 0,0001	0.0055	0.0998	0.0002	G8	001	< 0,000	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	G8
< 1	< 0,0001 < 0,0001	< 0,0001 < 0,0001 < 0,0001	0.9929 < 0,0001 < 0,0001	0.0742 < 0,0001 0.0055	< 0,0004 < 0,0005 0.0998	 > 0,9999 < 0,0001 0.0002 	G6 G7 G8	**** *** 001	*** < 0,000	< 0,0001 < 0,0001	< 0,0001 < 0,0001 < 0,0001	< 0,0001 < 0,0001 < 0,0001 < 0,0001	< 0,0001 < 0,0001 < 0,0001 < 0,0001	 < 0,0001 < 0,0001 < 0,0001 < 0,0001 	< 0,0001 < 0,0001 < 0,0001 < 0,0001	G6 G7 G8

				151				
	G1	G2	G3	G4	G5	G6	G7	G8
G1		ns	ns	***	***	***	***	***
G2	0.4766		ns	***	***	***	***	***
G3	0.4229	> 0,9999		***	***	***	***	***
G4	< 0,0001	< 0,0001	< 0,0001		***	***	***	***
G5	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	***	**
G6	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	***
G 7	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,7927	< 0,0001		***
G8	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,0019	< 0,0001	< 0,0001	

	Num Spikes inside Burst													
	G1	G2	G3	G4	G5	G6	G7	G8						
G1		***	ns	ns	***	**	***	***						
G2	< 0,0001		***	***	***	ns	***	***						
G3	0.9041	< 0,0001		ns	***	**	***	***						
G4	0.9421	< 0,0001	> 0,9999		***	***	***	***						
G5	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	***	***						
G6	0.0014	0.3713	0.0052	0.0003	< 0,0001		***	***						
G7	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***						
G8	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001							

ns * **

			Ν	um Burst	t							Bu	rst Lengt	h			
	G1	G2	G3	G4	G5	G6	G7	G8		G1	G2	G3	G4	G5	G6	G7	G8
G1		***	***	**	***	***	***	***	G1		***	**	ns	***	**	***	***
G2	< 0,0001		***	***	***	ns	***	***	G2	< 0,0001		***	***	***	**	***	ns
G3	< 0,0001	< 0,0001		***	***	***	***	***	G3	0.0024	< 0,0001		ns	***	ns	***	***
G4	0,0032	< 0,0001	< 0,0001		***	***	***	***	G4	0.3459	< 0,0001	0.1472		***	ns	***	***
G5	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	***	***	G5	< 0,0001	0.0002	< 0,0001	< 0,0001		***	ns	***
G6	< 0,0001	0,0773	< 0,0001	< 0,0001	< 0,0001		***	***	G6	0.0014	< 0,0001	> 0,9999	0.0914	< 0,0001		***	***
G7	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	G7	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0.4502	< 0,0001		***
G8	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001		G8	< 0,0001	0.9749	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	

				IBI					
	G1	G2	G3	G4	G5	G6	G7	G8	
G1		***	***	***	***	***	***	***	
G2	< 0,0001		***	***	***	***	***	***	
G3	< 0,0001	< 0,0001		***	***	***	***	***	p-value
G4	< 0,0001	< 0,0001	< 0,0001		***	***	***	***	> 0.05
G5	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	ns	***	≤ 0.05
G6	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001		***	***	≤ 0.01
G7	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0.3061	< 0,0001		***	≤ 0.001
G8	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001		

Fig. S12 Statistic tables of firing and bursting features of the eight characteristic groups of Ctr-Q33 hiPSC-derived neurons clustered at DIV 37. Coloured matrices represent all possible comparisons on the diagonal (Blue box; Group on which the statistical test is done for all the multiple comparisons); One-ways ANOVA followed by Tukey's multiple comparison test; $P < 0.05^{\circ}$, $P \le 0.01^{\circ}$ and $P \le 0.001^{\circ}$. P > 0.05 (Grey boxes).

Fig. S13. Illustrative Ctr-Q33 hiPSC-derived neurons classified as 'low firing neurons' (LFN) at DIV 37. (a) Representative individual fluorescence traces from group G1 to G4 (a to d). All traces are equally normalized along time. (e) Magnified fluorescence trace of neuron 6 from group G2. (f) Equivalent magnification of neuron 5 from group G4. In general, neurons in these groups elicit single-spikes and short-lasting bursts. Inferred spikes in panels (e)-(f) are represented with the upper blue-dots. All fluorescence traces are normalized as $\Delta F/F0$.

Fig. S14 Illustrative Ctr-Q33 hiPSC-derived neurons classified as 'intermediate firing neurons' (IFN) at DIV 37. (a)-(b) Representative individual fluorescence traces from group G6 and G8. (c) Magnified fluorescence trace of neuron 10 from group G6. (d) Equivalent magnification of neuron 9 from group G8. Inferred spikes are represented with the upper blue-dots. All fluorescence traces are normalized as $\Delta F/F0$.

Fig. S15 Illustrative Ctr-Q33 hiPSC-derived neurons classified as 'high firing neurons' (HFN) at DIV 37. (a)-(b) Representative individual fluorescence traces from group G5 and G7. (c) Magnified fluorescence trace of neuron 9 from group G5. (d) Equivalent magnification of neuron 8 from group G7. Both neurons exhibit a large number and long-lasting bursts. Inferred spikes are represented with the upper blue-dots. All fluorescence traces are normalized as Δ F/ F0.

Fig. S16 Expression of Voltage-Gated ion channels by Ctr-Q33 hiPSC along the neuronal differentiation. Quantitative gene expression of (a) VGNC (b) VGCC (c) the K/Cl cotransporter, (d) VGKC and (e) VGCC by Ctr-Q33 hiPSC along the differentiation. Represented in colour-matrices, the gene expression comparison for each DIV. One-way ANOVA followed by Tukey's multiple comparison test was performed between DIV (0 to 37). Colored matrices represent all possible comparisons on the diagonal (Blue box; DIV on which the statistical test is done for all the multiple comparisons); Non-expressing genes are represented as grey boxes. Color-boxes are expressing genes with p < 0.05. Up-regulated and down-regulated genes are represented by red and green respectively with increasing three color-scale intensities for $P \le 0.5$, $P \le 0.005$ and $P \le 0.0005$ respectively.

≤0.005 ≤0.0005 а

DIV	DIV
0 4 8 12 16 23 37	0 4 8 12 16 23 37
SYNGR2	KCNC4
SYNPO	KCND1
SYT6	KCND2
AMPH	KCNA2
DLG1	KCNA3
DLG3	KCNB1
DLG4	KCNQ2
PPP1R9A	KCNQ3
PPP1R9B	KCNQ4
GRIN2D	KCNG1
GRIN3B	KCNS3
GRINA	KCNK10
GRIA1	KCNJ4
GRIA3	KCNN1
GRIA4	KCNN2
GRIK3	KCNN3
GRIK4	CACNA1A
GRIK5	CACNA1H
GABRB2	CACNB1
GABRQ	CACNB2
GABRB2	CACNB3
GABRQ	CAMK1G
HTR1B	CAMK4
P2RX4	CASK
P2RY1	CREB1
SCN5A	ADAM10
SCN9A	BDNF
CLCN2	NTRK3
CLCN5	PDE10A
CLCN6	GAP43
CLCN7	SLC12A2
CLIC1	SLC12A5
CLIC2	SLC37A1

Fig. S17 List of mature genes that do no show significant changes along the neuronal differentiation of Ctr-Q33. (a) Genes that are expressed all DIVs and (b) genes that are not expressed at all DIVs. Gene are represented from DIV 0 to DIV 37 and clustered according to its cellular function as indicated in the right-bottom colour-panel. Gray boxes represents no geneexpression and blue box expression but without significance compared to the other days. One-way ANOVA followed by Turkey multiple comparison test, significance value p-value $\geq 0,05$.

		DIV						
Γ	GENE	0	4	8	12	16	23	37
	SYT12							
	GRIA2							
	GRIK1							
	GABRA1							
	GABRE							
	GABRG1							
	GABRP							
	DRD3							
	GLRA1							
	GLRA3							
	P2RX7							
	SCN1A							
	SCN3A							
	SCN7A							
	CLCA1							
	KCNAB1							
	KCNE1							
	KCNA10							
	KCNA5							
	KCNC1							
	KCNQ1							
	KCNS1							
-								
ŀ	KCNK9							
	KCNMB1							
	KCNJ5							
	CACNG2							
	NEUROD1							
	NTF3							
	NTRK2							
	NTRK2b							
	SLC5A11							
	SLC32A1							

b

Presynaptic Postsynaptic Glutamate Receptors Gaba Receptors Dopamine Receptors Tachykinin receptor Glycine Receptors Serotonine Receptors Purinergic Receptor Sodium channels Chloride channels Potassium Channels Calcium channels and proteins Other neuronal genes

Protocol	hSC	Components	DIV	TUJ	MAP2	GABA	DARPP3 2	CTIP2
Aubry et al. 2008	PSC	Feeder MS5 cells (Day 0-21/23). MO-GO: BDNF, SHH, DKK-1, dbcAMP and VPA	62 days	About 30%	22,2%	36%* (7,8%+)	53%* (11,8%+)	-
The HD iPSC Consortiu m (2012)	iPSC	Feeder layer+ FGF2 (Aggregated to generate NPC). MO-GO: BDNF, rhSHH, DKK-1, dbcAMP, VPA	86 days	-	10%	-	5%* (0,5%+)	-
Delli Carri et al 2012	iPSC ESC	MO-GO: Dorsomorphin, Noggin, SB431542, SHHC-25II and DKK-1 (Day 0-15); B27 and BDNF (Day 15-onwards)	80 days	-	51%	78,4%* (40%+)	20%* (10,2%+)	60,3%* (30,7%+)
Ma et al 2013	ESC	MO: SHH and RA. Day 26-47; MO- GO-NT-O: BDNF, GDNF, IGF, AA and cAMP	47 days	43,2%	-	90,2%# (40%+)	89,7%# (38,7%+)	-
Victor et al. 2014	Postnatal fibroblast	miR-9/9*-124; miR-BCL11, DLX1/2, MYT1L	35 days	87%	90%	90%* (81%+)	70%* (63%+)	-
Telezhkin et al 2015 + This work	iPSC	Day 0-16; MO: SB, LDN, IWR1. Day 16-37; MO-		-	94,5%	29,8%* (28,1%+)	6,3%* (5,9%+)	54,8* (51,8%+)
	ESC	GO-NT-O: PD, DAPT, CH, B27- RA, AA GABA, FK, BDNF and Ca2+	37 days	-	98,3%	46,6* (45,8%+)	4,2%* (4,1%+)	42,7 (41,9%+)
Lin et al. 2015	NPC	MO-GF: BDNF,	60 days	-	63%	96%* (60.5%+)	21%* (13.2%+)	-
	iPSC- derived NPC	SHH, DKK-1, Y- 27632		-	69%	965* (66,2%+)	86%* (60%+)	-
Arber et al. 2015	iPSC ESC	Day 0-5/9; MO: SB, LDN. Day 9- 22; MO: Activine (Act). Day 25-36; MO: Act, GDNF, BDFN	43 days	-	-	-	20-50%	10-80%

Fig. S18 List of MSNs differentiation protocols from hSC. Relative to # BIII-Tubulin, to * MAP2 and to + Dapi. Abbreviations: TUJ: β III-Tubulin, MO: morphogen, GO: Growth Factors, NT: Neurotransmitter.

	Mathada	Tim	e of analy	Total	
Centine	methods	1 month	3 mc	onths	IOLAI
Ct., 033 CED	Tissue processing	IHC	IHC	TEM	17
Ctr-Q33-GFP	Number of mice	6	8	3	17

Transplanted mice (3 months)	Graft volume (x10 ⁶ μm ³)
Mouse #1	87
Mouse #2	103
Mouse #3	79
Mouse #4	90
Mouse #5	81
Mouse #6	96
Mouse #7	112
Mouse #8	78
Mean ± SEM	91 ± 4.3

Cell marker	Time of analysis	Total number of cells (Mean ± SEM)
MAP2	1 month	3188.7 ± 153.6
CTIP2	1 month	3462.0 ± 158.1
	3 months	3754.7 ± 690.0
DARPP-32	1 month	266.1 ± 49.4
	3 months	230.5 ± 76.9
HNA	1 month	3948.0 ± 194.7
	3 months	4394.0 ± 705.9

Fig. S19 Assessment of graft size and neuronal fate in cell transplantation experiments. (a) Table indicating the number of transplanted mice employed for immunohistochemical (IHC) or transmission electron microscopy (TEM) analysis at 1 and 3 months PST. (b) Representative schema of rostro-caudal spreading of transplanted cells and quantification of graft volume at 3 months PST (n=8). (c) Quantification of the number of grafted human cells (HNA⁺) expressing the neuronal marker MAP2 and the striatal neuronal markers CTIP2 and DARPP-32 at 1 and 3 months PST (n=6).

b

С

а

Fig. S20 (refers to Fig. 16, showing the three color channels independently). Transplanted hNPC-derived neurons project towards MSN targets. Sagittal sections of the mouse striatum showing CTIP2⁺ human cells extending GFP⁺ projections towards the external globus pallidus area. *St*, Striatum; *GP*, Globus pallidus. Scale bars: 50 μ m