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Supplementary Notes 1

There has been extensive work on modeling the spread of infectious diseases in human populations
using data on inter-regional mobility. In this section, we highlight a few key articles that represent
this body of literature, as they fall into one or more of the following broad categories: (a) use of
data on human mobility to model infectious diseases, (b) use of metapopulation models to integrate
mobility information, and (c) forecasting seasonal influenza activity at national and regional levels.
Although we present these in three sub sections for clarity, we note that some of the literature span
across these categories.

Mobility for disease dynamics

Infectious disease spread in human population is facilitated by social contacts, which are in turn
influenced by the movement of individuals. When constructing a model of disease dynamics, even
in the absence of high quality mobility data, one may resort to standard models such as gravity,
radiation, etc. [1] provides an extensive review of such mobility models, and their wide-ranging
applications including in the field of epidemiology. Nowadays, datasets that capture movement
of individuals at micro and macro scales are increasingly available, some of them in the public
domain. For instance, call data records (CDR) [2] provide anonymized individual traces at the
spatial resolution of base stations. [3] and [4] show how such mobile phone call records were used
to model the spread of dengue and malaria in Pakistan and Kenya respectively. Recently in [5]
the authors compare multinational call records, to identify seasonal patterns of mobility between
different regions, and its impact on disease spread. Though promising as a source of individual
level mobility, there are obvious limitations concerning privacy, access, coverage, and noise in CDRs,
which are highlighted in [6]. In the absence of CDRs, one may construct synthetic trajectories for
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Supplementary Table 1: Features comparison across data sources for human mobility

Surveys CDRs Transport services Models GPS traces

Access Public Restricted Public/Restricted N/A Restricted
Coverage Low Low Medium Global Global
Temporal resolution Low High Medium Low High
Update frequency Low High High Low High
Sample size Low High Medium N/A High
Demographic bias Low Medium Medium Low Medium

individuals using activity schedules derived from time use surveys and assigning individuals to
activity locations, as described in [7].

Alternative sources for regional mobility include data released as part of official census surveys,
as well as public databases. Unlike mobile phone call records, these sources provide information on
population mobility in aggregate, which may have its own pros and cons in the context of epidemic
modeling. For instance, [8] compares different mobility proxies for modeling epidemics, including
community networks obtained from census, radiation models and mobile phone call records. In [9],
the authors use airline networks to capture long-distance mobility and the impact of potential travel
restrictions on spread of the 2009 A(H1N1) epidemic. During the same epidemic, authors in [10]
used multi-scale mobility models based on a proxy network of dispersing US dollar bills to produce
spatially explicit real-time forecasts for the outbreak. Data on public transit networks may also aid
in understanding human mobility within a city, as authors in [11] demonstrate using the subway
network to model and simulate an influenza epidemic in New York City.

Supplementary Table 1 lists and contrasts the features of different mobility sources.

Metapopulation models for disease dynamics

When attempting to reconstruct the spatial and temporal evolution of epidemics, metapopulation
models provide an elegant framework to integrate the population and mobility data to simulate
the disease spread. They provide a balance between complex agent-based models which are com-
putationally expensive, and the simple compartmental models which do not capture the spatial
heterogeneity in disease dynamics. For instance [12] incorporated the commuting networks of 29
countries and the international airline network within a metapopulation model, and studied the
combined effect on spatio-temporal patterns in a global epidemic. In [13], the authors used a simi-
lar framework to compare and contrast different large-scale computational approaches to epidemic
modeling and showed that the models are in good agreement, thus hinting at the possibility of
building hybrid approaches. Finally in [14], the authors theoretically analyzed such metapopu-
lation models and showed that scaling properties of human interactions can affect the dynamics
caused by human contacts such as infectious disease dynamics.

Influenza forecasting

Forecasting seasonal influenza, especially within the United States, has been an area of active in-
vestigation in the epidemiological community for nearly a decade; we refer the reader to recent
articles [15, 16, 17, 18, 19] and the references therein. Contests like the CDC Forecasting Chal-
lenge [20, 15] have fostered innovation and constant information exchange among the researchers
in the field. [21] and [22] provide extensive reviews on the different approaches and methodologies
in practice for forecasting seasonal influenza. Influenza activity in the US is reported by the CDC
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on a weekly basis as the percentage of visits with Influenza-Like Illness symptoms to the hospitals
in an outpatient surveillance network known as the ILINet. Currently these are being reported at
national, regional (Health and Human Services (HHS)) and state levels of aggregation. In order to
forecast this influenza activity, researchers have used wide ranging data sources including Google
search trends [23], social media [24], medical claims [25], and weather data [26]. Recently, authors in
[27] adopted a metapopulation approach along with human mobility data to forecast sub-national
influenza activity for 35 US states.

A recent study that combined these different facets and modeled sub-city influenza dynamics
for New York City (NYC) was reported in [28]. Similar to our work, they used a metapopulation
modeling approach to forecast influenza activity at the borough level (and zip code level) within
NYC. The main focus of the authors was to evaluate the presence and absence of travel networks
on the forecast performance. A gravity model was used for the travel network and the surveillance
data used to evaluate the performance was the ILI% obtained at borough level. In contrast, in
our work we test the effectiveness of different networks derived from official surveys, aggregated
location history and mobility models.

Supplementary Methods

As described earlier, we use a metapopulation modeling framework to simulate the disease dynamics
at the county level. In order to simulate and validate the model against observed ground truth, we
need to perform the following steps:

• Data preparation: This pertains to preparing both the input data (mobility flows) and the
ground truth data (disease surveillance) to match the requirements of the disease model.

• Disease simulation: The disease model is responsible for using the population and mobility
information in order to generate simulated trajectories of disease evolution, which can then
be calibrated to and compared against the ground truth surveillance. For this purpose, we
use a metapopulation modeling framework (referred to as PatchSim).

• Model calibration: In order to generate short-term and seasonal target forecasts from the
disease model, it needs to be calibrated against the ground truth surveillance. We adopt a
Bayesian approach to calibrate the model and estimate the unknown parameters.

Before describing each of these steps in detail, we provide a description of the mobility map
(AMM) as obtained from Google Location Services.

AMM Description

With the aim to better understand and improve infrastructure development and health factors,
we use aggregate mobility data from Google Location Services. All data was anonymized and
aggregated using a differentially private Laplace mechanism. The automated Laplace mechanism
adds random noise drawn from a zero mean Laplace distribution and yields (ε, δ)-differential privacy
guarantee of ε = 0.66 and δ = 2.1×10−29 per metric. Specifically, for each week W and each location
pair (A,B), we compute the number of unique users who took a trip from location A to location
B during week W. To each of these metrics, we add Laplace noise from a zero-mean distribution
of scale 1/0.66. We then remove all metrics for which the noisy number of users is lower than 100,
and publish the rest. This yields that each metric we publish satisfies (ε, δ)-differential privacy with
values defined above.
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The parameter ε controls the noise intensity in terms of its variance, while δ represents the
deviation from pure ε-privacy. The closer they are to zero, the stronger the privacy guarantees.
For example, with these values of the parameters, an attacker with perfect knowledge on all users
except user U would increase the level of certainty as to whether U went from geographical area A
to area B during a given week no more than 16%. Each user contributes at most one increment to
each partition. If they go from a region A to another region B multiple times in the same week,
they only contribute once to the aggregation count. No individual user data was ever manually
inspected, only heavily aggregated flows of large populations were handled.

Opted-in devices securely send periodic location updates containing timestamped geolocation
(latitude, longitude, time). The location is inferred from a variety of signals on-device including
GPS, WiFi and cell tower triangulation. We first apply machine learning to the anonymized data
to segment a raw GPS trace into semantic trips. The system automatically finds trips by taking
into account a variety of signals, such as timing of location points, dwell times, and other factors.
You can privately view your own detected trips in Google Maps, using the Timeline feature. We
only consider location readings that are accurate within the given geographical area (e.g. NYC
boroughs). We ”snap” each reading into a spacetime bucket by discretizing time into longer intervals
(e.g., weeks) and each (latitude, longitude) pair into a unique identifier of the geographical area
(e.g., ”Manhattan, NY”) using publicly available data on region boundaries. As can be seen,
aggregating into these large spacetime buckets further protects privacy. Finally, for each pair of
geographical areas (a, b) and time interval t, the system computes the relative flow fr between
the areas within the interval, applies differential privacy filters, and outputs the anonymized and
aggregated mobility map. The relative flow fr(a, b, t) is computed as a proportion of a given flow
to the maximal flow in the map.

fr(a, b, t) =
f(a, b, t)

maxi,j,t′f(i, j, t′)

The resulting map is indexed for efficient lookup as used to fuel the modeling described herein.
In this paper, we aggregate flows within the US spatially at county level and temporally at week

level to obtain the mobility map (AMM). AMM contains normalized flows between pairs of counties

in each week. The normalized flows are of the form
Ut,ij

C , where Ut,ij is the number of unique users
making a trip from county i to county j in week t, and C is an undisclosed constant larger than
the maximum flow over the entire year C > maxt,i,jUt,ij . This dataset covers most counties (3099)
in the US except those in Hawaii and DC. By checking the Pearson correlation between flows of
different years (aligned on week, source, and destination), the flows are highly positively correlated
(0.99) across different years.

Data preparation

Mobility data preparation

In this work, we construct mobility networks (i.e. commuting flows between counties) based on
various mobility datasets, including AMM, the commute flow data obtained from the American
Community Survey (ACS), unconstrained gravity model and radiation model. For any region R, as
a subset of the US counties, e.g. New York City, we generate a directed weighted network G(V,E),
where V represents counties of R; E = {e(i, j, Fij)|i, j ∈ V } is the edge set where e(i, j, Fij) denotes
the edge from i to j with edge’s weight Fij . Edge weight is defined as

Fij =
fi,j∑
k∈V fi,k
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where flow fi,j comes from the underlying mobility model or dataset. Note that by definition∑
j∈V Fij = 1.
Based on the AMM data, commuter flow data, gravity and radiation models, we construct

four mobility networks namely AMM, COMMUTE, GRAVITY, and RADIATION. (i) AMM: fi,j

is the normalized Google mobility flows
Ut,ij

C averaged across weeks in the influenza season (for
example, 2016-17 season spans from 2016 week 35 to 2017 week 34). (ii) COMMUTE: fi,j is the
commuter count from county i to county j where i 6= j, obtained from ACS 2009-2013. In addition
to the commuters within county i, the flow fi,i includes the non-commuting population calculated
by subtracting all commuter counts from population size Pi of county i: Pi −

∑
j 6=i fi,j . (iii)

GRAVITY: fi,j is the gravity flow calculated as
PiPj

(dij+1)2
, where Pi, Pj represent the population

sizes (of year 2013 from US Census) of county i and j, and dij denotes the distance between i
and j computed as the great-circle distance between the county centroids. (iv) RADIATION:
Using distances and population sizes as above for GRAVITY model, and by the definition in [29],

we compute the radiation model flows fi,j as Ti
PiPj

(Pi+Pj+Sij)(Pi+Sij) where Sij =
∑

k:dik≤dij Pk is the

total population in the circle centered at i and radius dij . Ti is the total commuter outflow from
each patch, and is modeled as Ti = γPi, with (1− γ)Pi set as the self-loop flow. For NYC and NJ
experiments, based on US commuter data analysis in [29] we set γ = 0.11. These flows are then
normalized to be compatible with the simulation model. The mobility networks are constructed for
New York City (consisting of five counties) and a region of two states, New York plus New Jersey
(consisting of 83 counties) based on the above equations.

We adopted a similar approach to obtain the COMMUTE, GRAVITY, RADIATION and AMM
flows for Australia. While in NYC we simulated at the level of boroughs (counties), for Australia,
we chose to simulate at the spatial scale of states, based on surveillance data availability and also
to showcase the generality of the AMM dataset. Interstate commuter flows were obtained from
the Australian Labor Market Statistics (cat. no. 6105.0) based on the 2006 Census data. For the
RADIATION model, based on median commuter outflow ratio to population sizes, γ was set to
be 0.004. Comparison of the normalized mobility flows of COMMUTE, GRAVITY and AMM for
Australia is provided as part of Additional Analyses and Results.

Surveillance data preparation

The surveillance data used in this work includes:

• ILI Emergency Department (ED) visits for NYC provided by the NYC Department
of Health. It contains daily ED visits for ILI per county within NYC for the past ten seasons.
For instance, the daily ED counts are shown in Supplementary Figure 1a, where Sim Day
0 corresponds to the beginning of MMWR week 40, 2016. Before using this for calibration,
the daily ED visits are aggregated to weekly data and scaled by the influenza virus isolation
rates (aka percent positive, provided by WHO-NREVSS) to obtain the ILI+ epicurves. We
used the isolation rates corresponding to HHS Region 2, which includes NYC. The resulting
ILI+ curve is shown in Supplementary Figure 1b.

• Flu positive counts for NJ state provided by the NJ Department of Health. It is a weekly
cumulative laboratory count for ILI per county for the past three seasons from week 40 to
the next year’s week 20. We calculate the weekly new infected case count by subtracting the
cumulative case count of the previous week from that of the current week. The 2016-2017
season is shown in Supplementary Figure 1c.
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(a) NYC ILI ED visits (daily)
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Supplementary Figure 1: Surveillance data. (a) ILI ED visits in NYC boroughs. Sim Day denotes
the days of season 2016-17 starting from the first day of epi-week 40. (b) ILI+ ED visits in NYC
boroughs. Sim Week denotes the epi-weeks within season 2016-17 starting from MMWR week
40. (c) Flu positive counts in NJ counties. The x-axis denotes the MMWR weeks from 2016 week
40 to 2017 week 20. (d) Lab confirmed influenza counts at state level for Australia from May to
December 2016

• ILI % for NY state and HHS2 region provided by the Centers for Disease Control and
Prevention (CDC). It is the weekly new infected case count of the past three seasons.

• Lab confirmed influenza for Australia Influenza surveillance data for the year of 2016
was obtained from the National Notifiable Disease Surveillance System (NNDSS) maintained
by the Australian Government Department of Health (http://www9.health.gov.au/cda/
source/pub_influ.cfm ). The public dataset contains notification data collected on labora-
tory confirmed influenza via NNDSS at weekly resolution, for the states (excluding Australian
Capital Territory), classified by type/subtype, age, sex etc. We computed the total influenza
positive counts per week (Supplementary Figure 1d) from May to December 2016. Since
the states differed in typical positive counts during non-influenza weeks, we removed the
baseline (the minimum count for that state in the year) to obtain the ground truth for the
metapopulation model.
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Disease simulation

Mechanistic approaches to disease simulation often fall under one of two categories:

• Compartmental models Approaches of this kind are based on ordinary differential equa-
tions with the central assumption being homogeneous mixing of individuals within the pop-
ulation of interest. While easy to setup and simulate, they often cannot reproduce spatial or
social heterogeneity observed in the ground truth.

• Networked agent-based models Approaches of this kind simulate the disease dynamics on
a graph (e.g., social network) where disease propagates from infected to susceptible individuals
through the edges of the graph, capturing social interactions. They are implemented in an
agent-based manner and allow for high fidelity of representation. However, such models are
tough to setup and pose computational challenges in model simulation and calibration.

Metapopulation models take advantage of both these approaches, and are well suited to capture
spatial heterogeneity in disease dynamics. The population of interest is divided into spatially dis-
tinct patches, and within each patch the disease dynamics are simulated with a homogeneous mixing
assumption. The patches are also connected to each other through a weighted directed network
capturing movement of individuals between the patches. The movement is often representative
of commuting (as against migration), thus preserving the home population counts of each patch.
While within a single patch the disease evolution resembles a homogeneous compartmental model,
the mobility network generates heterogeneity and longer hops between the spatial sub-populations.
PatchSim is a deterministic implementation of this approach.

Let N represent the set of all patches (with N = |N |). Associated with each patch i, we have
population Pi, and state tuple Zi(t) denoting number of individuals in each of the disease states
at time t. For a typical SEIR (Susceptible → Exposed → Infected → Recovered) model, the set
of states is given by Z = {S,E, I,R}. The state tuple is then Zi(t) = (Si(t), Ei(t), Ii(t), Ri(t)),
with

∑
z∈Z zi(t) = Pi. Between a pair of patches i and j, we have the flow Fij , denoting the

fraction of individuals belonging to home patch i spending their day in away patch j. In order to
conserve patch populations (i.e., commuting model), we assume

∑
j∈N Fij = 1. The mobility is

assumed to be homogeneous and memory-less, i.e., the commuting individuals according to Fij are
assumed to be picked at random from the population Pi independent of their disease state, and
independently for each day of the simulation. Due to the movement of individuals, the effective
population of patches may differ from their home population Pi. This in turn also affects the state
tuple Zi. We denote the effective population as P eff

i and the effective state tuple as Zeff
i (t). Then,

P eff
i =

∑
k∈N FkiPi and zeffi =

∑
k∈N Fkizi for z ∈ Z.

PatchSim steps through the disease simulation in daily epochs. In order to compute the change
in state tuple ∆Z(t) = Z(t + 1) − Z(t), it incorporates (i) movement of individuals from their
respective home patches to away patches according to Fij , (ii) exposures, infections, and recoveries
happening in the away patches, and (iii) integration of state updates at the home patches. Let β
represent the probability of exposure per day per S− I contact, α the infection rate and γ recovery
rate. α can be thought of as the reciprocal of mean incubation period, and γ the reciprocal of
mean infectious period. Additionally, let Xi(t) represent the spatio-temporal seeding profile. This
captures the number of individuals of patch i who are extraneously moved from S to E to indicate
external exposure (‘seed’ cases). The state update equations can then be written down as below
for each z ∈ Z (omitting time index t for clarity):

7



∆Si = −Xi −
∑
j∈N

Fijβ
Ieffj

P eff
j

Si (1)

∆Ei = Xi +
∑
j∈N

Fijβ
Ieffj

P eff
j

Si − αEi (2)

∆Ii = αEi − γIi (3)

∆Ri = γIi (4)

The summation in Equation 1 captures new exposures for individuals with home patch i,

summed across potential away patches j. Fij denotes the movement to away patch j,
Ieffj

P eff
j

is

the proportion of infectious individuals in the effective population at patch j, and β the probability
of exposure given contact. Note that, unlike exposure, becoming infectious (E → I) and recovery
(I → R) are independent of the away patch j visited by an individual, hence need not be explicitly
summed across j ∈ N .

Thus, given the disease parameters (β, α, γ) and a seeding profile X, PatchSim uses the popu-
lation vector P and flow matrix F to produce the spatio-temporal evolution of disease states Z. In
the context of the NY-NJ study, the population vector P is given by the county populations ob-
tained from Census (for the counties in New York/New Jersey) and F is obtained from the various
mobility models/data sources (GRAVITY, COMMUTE, RADIATION and AMM). The disease
parameters and seeding profile X are estimated via calibration. Further, since the surveillance
data is aggregated at weekly resolution, we aggregate the model output (which is daily) to match
the ground truth. A scaling factor sf is also used to translate infection case counts produced by
PatchSim to emergency department visits.

Model calibration

Model calibration is the process of estimating the unknown parameters of the model with the help
of observed data. Here, we will estimate the disease parameters and seeding profile of our disease
simulation PatchSim using observed ground truth of influenza surveillance. We adopt a Bayesian
approach to calibrate the PatchSim model, where we begin with a prior distribution on the unknown
parameters, which are then combined with the data likelihood to produce the posterior distribution
on the parameter space. Inferences on parameters are carried out by sampling from the posterior.
We first describe the general framework below.

We define a statistical model for the observed data as a noisy version of model output (in this
case, PatchSim). Let

yi(t) = ηi(t, θ) + εi(t), i ∈ N , t ∈ [1, T ] (5)

where yi(t) is the ground truth data for patch i at time t, ηi(t, θ) is the corresponding PatchSim

output given model parameters θ and εi(t)
iid∼ N(0, σ2). T is the data horizon, i.e., the number

of time steps in the observed ground truth. Assuming independent error terms across (i, t), the
likelihood of observing the ground truth, given the PatchSim with parameter θ can be written as:

L(y|θ) =
1

(
√

2πσ)|N |T

∏
i∈|N |

∏
t∈[0,T ]

exp
{
− (yi(t)− ηi(t, θ))2

2σ2

}
(6)
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Given the prior distribution π(θ) and the data likelihood L(y|θ), the posterior distribution can
be written as:

π(θ|y) =
L(y|θ)π(θ)

π(y)
∝ L(y|θ)π(θ)

where, π(y) =
∫
θ L(y|θ)π(θ) dθ, is the normalization constant.

A brief primer on importance sampling: The posterior distribution often does not be-
long to known family of distributions, because of the complex simulation model η. Monte Carlo
approaches to explore the posterior space are used in such situations. Importance sampling is one
such technique to generate realizations from a given distribution. For instance, given a probability
density function p on Ω ∈ Rd to compute the expectation µ = Ep(f(X)), we can rewrite it as

E(f(X)) =

∫
Ω
f(x)p(x)dx =

∫
Ω

f(x)p(x)

q(x)
q(x)dx = Eq

(
f(x)p(x)

q(x)

)
where, Eq denotes the expectation with respect to the probability density function q, defined on
Rd. q is called an importance distribution, which is usually a known distribution, easy to sample
from, and the ratio p(x)/q(x) is known as the importance ratio, which accounts for the adjustment
since x’s are sampled from q rather than from p. A Monte Carlo estimate of this expectation can
then be computed by sampling x1, · · · , xn from q and by calculating

µ̂ =
1

n

n∑
i=1

f(xi)p(xi)

q(xi)
.

Similarly any such random sample x1, · · · , xn from q along with their normalized importance weights
wi = p(xi)/q(xi) (so that

∑
iwi = 1) provides a direct approximation of p by,

p̂ =
n∑
i=1

wiδ(xi).

where δ(xi) is a Dirac delta function at xi. We use importance sampling to sample from out
posterior distribution π(θ|y) (corresponding to p(x) above). Our choice of importance distribution
(corresponding to q(x) above) is the prior π(θ). This reduces the calculation of importance weights
to just computing the data likelihood L at each sample from the prior, i.e.

wi =
π(θi|y)

π(θi)
=
L(y|θi)π(θi)

π(θi)
= L(y|θi). (7)

A re-sample {θ̂1, · · · , θ̂m} from {θ1, · · · , θn} with probabilities proportional to {w1, · · · , wn}, with
replacement constitutes a sample of size m from the posterior π(θ|y). The calibrated forecast can
then be produced by running the PatchSim model at the parameter values θ̂i, which produces m
time series, which are then used to compute other summary statistics on the forecast.

In our context, in addition to the disease parameters β, α, and γ, we also want to estimate
the seeding profile. However X is |N | × T -dimensional, and is prohibitively expensive to calibrate.
Hence, we parameterize the seeding using two additional parameters seedT and seedN . seedT
represents the noise level in the ground truth above which the seeding is assumed to occur, and
seedN controls the number of patches in which the seeding is done. For instance if seedT = 5 and
seedN = 3, we first identify the weeks Wi at which each of the counties exceed five ED visits. We
identify the three earliest counties to reach the threshold (least Wi) and seed them respectively
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Supplementary Table 2: Parameter ranges

Parameter Range

Exposure Rate (β) [0.5,0.9]
Infection Rate (α) [0.5,0.9]
Recovery Rate (γ) [0.5,0.9]
Seeding Threshold (seedT ) [5,25]
Seeding Patch Count (seedN) [1,5]
Scaling Factor (sf) [0.001, 0.005]

on week Wi with count ED(Wi). The complete set of parameters with their ranges are given in
Table 2. With slight abuse of notation, we use θ to denote all the parameters being calibrated,
including seedT , seedN , and sf with the SEIR parameters β, α, and γ.

We generated a full-factorial design Θ on these parameters, with 10 levels each for disease
parameters and 5 levels each for other parameters (125000 experiment cells in all), assuming discrete
uniform prior π(θ) over the parameter space. Note that, any other suitable distribution instead of
discrete uniform can be used which may reflect prior knowledge on the parameters. These are taken
to be samples from the importance distribution and the normalized importance weight is computed
as:

w(θ) =
L(y|θ)∑
θ∈Θ L(y|θ)

, θ ∈ Θ

A re-sample from Θ with corresponding weights w is then considered as the sample from the target
posterior distribution.

We observed that the per capita emergency department visit rate varied significantly across the
counties in NYC. In order to account for this, we computed EDfrac(i) as follows:

EDfrac(i) =
EDi/Popi

EDNY C/PopNY C

Table 3 shows the EDfrac for the past three influenza seasons. The reciprocal of this value is used
to scale the ED visit counts in each of the boroughs to eliminate the bias for calibration.

Supplementary Table 3: Normalized per capita ED visits (EDfrac)

Borough 2015-16 2016-17 2017-18

Bronx 1.3623 1.2838 1.3607
Brooklyn 0.8526 0.9814 0.9137
Manhattan 0.6939 0.7083 0.7290
Queens 1.221 1.1179 1.133
Staten Island 0.7046 0.6862 0.6791

Parameters for Australia: While the calibration methodology remained the same for the
Australia forecasts, we modified the parameter ranges to account for variations in disease intensity,
spatial heterogeneity and surveillance data. Further, the equivalent of the normalized per capita ED
visits (used as an additional data-driven scaling factor per patch in NYC) was not stable across the
past three years. Hence in this case, we calibrated the scaling factor for each patch separately. Also
given the increased number of parameters, we used a uniform sampling of 100000 configurations
from the parameter space.
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Supplementary Table 4: Parameter ranges for Australia

Parameter Range

Exposure Rate (β) [0.3,0.9]
Infection Rate (α) [0.3,0.9]
Recovery Rate (γ) [0.3,0.9]
Seeding Threshold (seedT ) [10,100]
Seeding Patch Count (seedN) [6,8]
Scaling Factor (sf) per patch [0.01, 0.02]

Supplementary Table 5: Network structures

Network Nodes Edges Density
Average
clustering
coefficient

Average
shortest
path
length

AMM 83 2634 0.39 0.0138 213
COMMUTE 83 2990 0.44 0.0041 293
GRAVITY 83 6806 1.00 0.0053 2649
RADIATION 83 6806 1.00 0.0017 539

Supplementary Notes 2

In this section we present additional analyses and results for the different mobility networks and
subsequently influenza forecasting performance across seasons.

Exploratory data analysis of mobility networks

Influenza spreads from an infected individual to a susceptible individual. As a result, social prox-
imity networks play an important role in disease transmission. Thus a realistic representation of
human mobility and their human interactions are likely to to improve the quality of mathematical
models for forecasting ILI dynamics.

To further explore the four mobility networks generated in this paper, we compare their struc-
tural features with the NY-NJ networks as an example. To eliminate the effect of large self-loop
flows during the comparison, we removed self-loops from the three networks. In Supplementary
Table 5, we show the basic network features. Among these features, the density and average
shortest path length are computed on the weighted directed networks, while the average clustering
coefficient is computed on weighted undirected networks where the weight of an edge between two
nodes is the summation of the weights of two directional edges. We can observe that the densities
of AMM and COMMUTE networks are about 0.4. The average clustering coefficient of AMM is
much larger than that of COMMUTE, GRAVITY and RADIATION, which indicates that AMM
has greater local connectivity among people than the other mobility networks. In addition, AMM
shows the smallest average shortest path length (with distance dist(i, j) = 1/w(i, j)) among the
networks, which indicates that AMM has stronger global connectivity than the other two. Dur-
ing an epidemic transmission a stronger connectivity among regions may lead to faster and wider
spread of the disease.

In Supplementary Figure 2, we show the adjacency matrices of the different networks as heat
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(a) AMM (b) COMMUTE (c) GRAVITY (d) RADIATION

(e) correlation

Supplementary Figure 2: Adjacency matrix. Color represents w(i, j) (darker color denotes larger
edge weight). The counties are arranged according to spatial neighborhood. The flows are aligned
by source and destination nodes. AMMand COMMUTE have highly positive correlation value
(0.90), followed by RADIATION model (0.71 with AMM).

maps. From the figure we can observe that the networks are asymmetric, i.e. the flow from county
i to county j is not equal to the flow from county j to county i. We also observe that while
AMMand COMMUTE are sparser and seem to be clustered, GRAVITY network, by virtue of its
definition, is more homogeneous. RADIATION model seems to be dense, but captures some of the
local neighborhood patterns visible in COMMUTE or AMM. The correlations between networks
(Supplementary Figure 2e) show that AMMand COMMUTE are highly positively correlated, fol-
lowed by the RADIATION model while GRAVITY has relatively small positive correlation with
the other networks.

In Supplementary Figure 5, we show a histogram of incoming flow (sum of weights of all incoming
edges to county i except the self-loop

∑
j,i,j 6=i Fji) and outgoing flow (sum of weights of all outgoing

edges from county i except the self-loop
∑

i,j,j 6=i Fij) for each county, respectively. The x-axis
denotes incoming (outgoing) flows. The y-axis denotes frequency. The red dotted curves are
estimated probability density functions, fitted and chosen as follows. We fit the flow data to
several reference distributions, including exponential, normal, exponential power, gamma, and
log-normal distributions. Then we run the KS-test (the null hypothesis being that the sample
is drawn from the reference distribution) to choose a distribution with the highest significance.
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Supplementary Figure 3: Adjacency matrix of AMM with the counties of NY arranged according
to spatial neighborhood. We use the Regions of New York as defined by the New York State
Department of Economic Development [30]. We use the first week of 2017 as an example, since
there are no qualitative visual differences across the weeks. Also note that the visualization shows
the raw flows, instead of the normalized flows shown in 2. The self loop flows are not shown, since
they’re an order of magnitude larger than the rest. In the bigger image the colormap is capped at
75th percentile, and the smaller inset shows the full colormap where the counties of NYC dominate
the others. The heatmap shows significant clustering within regions, with a few counties well
connected to parts of New York City and New Jersey. Also, New York City, Hudson valley and
Long Island in New York are well connected to New Jersey, due to spatial proximity.

The scale and location together with the significant value are shown in the plots. The major
observations are: (i) all incoming flows follow exponential distribution, (ii) AMM, COMMUTE and
RADIATION flows follow normal distribution whereas GRAVITY follows exponential distribution.
According to the observations from Supplementary Figure 2 and 5, we would expect that the
epidemic simulations based on AMM COMMUTE and RADIATION show greater similarity than
that based on GRAVITY, which matches our forecasting performance results.

Among the centrality measures, such as degree, closeness, and betweenness, assesses the degree
to which a node lies on the shortest path between any two other nodes, and is able to funnel the
flow in the network. During an epidemic, a county with high betweenness probably plays a crucial
role of disease spread. Controlling the infections of the county can effectively reduce the spread of
the disease. Thus, whether the nodes with high betweenness in a mobility network are realistic in
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Supplementary Figure 4: Adjacency matrix of Commute flows with the counties of NY arranged
according to spatial neighborhood. We use the Regions of New York as defined by the New York
State Department of Economic Development [30]. Also note that the visualization shows the
raw flows, instead of the normalized flows shown in 2. The self loop flows are not shown, since
they’re an order of magnitude larger than the rest. In the bigger image the colormap is capped
at 75th percentile, and the smaller inset shows the full colormap where the counties of NYC
dominate the others. Unlike the 3, we see higher number of inter-regional flows, going beyond
spatial neighborhood. We can especially see significant number of commute from almost all counties
in NY and NJ to the New York City.

real world scenarios is crucial for a realistic simulation based on the network.
Supplementary Figure 6 shows the county betweenness of three networks, and Supplementary

Table 6 displays the top 5 counties of the highest betweenness. Firstly, the networks show different
structures in terms of betweenness. While AMM and RADIATION show similar counties with
top betweenness, COMMUTE picks distinct but neighboring counties. These counties connect
rural counties, e.g. Allegany, NY or St. Lawrence, NY or Cape May, NJ, to highly urbanized
counties like Manhattan or Brooklyn. GRAVITY model does not show any significant patterns in
the top betweenness counties. These observations indicate that AMMcan capture some realistic
geographical characteristics of people’s mobility behavior related to the traffic and urbanization of
the counties. As discussed, these realistic characteristics are crucial for better epidemic forecasting
of influenza.

Gravity model calibration: In the main paper, we use an uncalibrated gravity model with
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(a) Incoming flow distribution

(b) Outgoing flow distribution

Supplementary Figure 5: Flow distributions. The x-axis denotes incoming flow (sum of weights of
all incoming edges to county i except the self-loop

∑
j,i,j 6=i Fji) and outgoing flow (sum of weights

of all outgoing edges from county i except the self-loop
∑

i,j,j 6=i Fij) for each county, respectively.
The y-axis denotes frequency. The red dotted curves are estimated probability density functions.
The scale and location together with the significant value are shown in legends. (a) Incoming flow
distribution. All three flows follow exponential distributions. (b) Outgoing flow distributions of
AMM COMMUTE and RADIATION are similar.

Supplementary Figure 6: Structural measures. Node betweenness centrality of different counties
for the AMM, COMMUTE, GRAVITY, RADIATION networks. Note that AMM and Radiation
detect similar counties as having high betweenness centrality.

distance exponent of 2, for forecast performance comparison with the COMMUTE and AMM. As
mentioned earlier, this is to ensure that the networks being compared are generated independent
of each other. In Supplementary Table 7, we report the coefficients estimated using a generalized
linear model fitted to the COMMUTE dataset using a single parameter Poisson model as below:
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Supplementary Table 6: The top 5 counties with highest betweenness in the NY-NJ networks

AMM COMMUTE GRAVITY RADIATION

36001 Albany, NY
36071 Orange, NY
36039 Greene, NY
36111 Ulster, NY

36087 Rockland, NY

36061 Manhattan, NY
36109 Tompkins, NY
36025 Delaware, NY
36007 Broome, NY
36107 Tioga, NY

36041 Hamilton, NY
36047 Brooklyn, NY

36029 Erie, NY
36085 Staten Islands, NY

36097 Schuyler, NY

36001 Albany, NY
36111 Ulster, NY
36039 Greene, NY
34031 Passaic, NJ

36057 Montgomery, NY

Supplementary Table 7: Coefficients for the gravity model fitted to the COMMUTE dataset for
counties in New York and New Jersey (n=130400) obtained via Generalized Linear Model Re-
gression along with the z-values (Wald statistic for the two-sided test for the hypothesis that the
estimate is zero).

coef std err z P > |z| [0.025 0.975]

Intercept -0.8241 0.002 -463.264 0.000 -0.828 -0.821
logOi 0.4581 0.000 3823.140 0.000 0.458 0.458
logDj 0.7334 0.000 5707.439 0.000 0.733 0.734
log dij -1.8384 0.000 −1.13e04 0.000 -1.839 -1.838

log(Fij) = β0 + β1 ∗ logOi + β2 ∗ logDj + β3 ∗ log dij

where Oi, Dj are the population sizes of origin and destination patches, and dij is the distance
between the patches (ignoring self-loop flows).

Stationarity of AMM: Although there are temporal variations in the flows (as shown in
Supplementary Figure 7(a)), the autocorrelation plots are relatively flat through the entire duration
(Supplementary Figures 7(b)&(c)). We only show the self-loop flows, although similar conclusions
hold for each entry of the flow matrix. We also use only the normalized versions of the flows since
they serve as inputs to the simulation model. The observed stationarity motivates the use of annual
average of the normalized AMMflows as input to the metapopulation model.

Mobility data comparison for Australia: Supplementary Figure 8 shows the different
mobility networks used for Australia. The values reported are the logarithm of the normalized
flows between a pair of states. Given the sparsity of the population and coarseness of the spatial
resolution, we see that all patches have high self-loop flows. For the non self-loop flows, we see that
there higher similarity in magnitude and distribution between COMMUTE and AMM.

Calibration results

We tested our modeling and calibration approach on three models based on the AMM, COM-
MUTE, GRAVITY and RADIATION networks described in the Supplementary Methods for NYC.
A comparison is also done between models using mobility data (the aforementioned four networks)
and a model without mobility, calling it as Baseline model. To compare among these five different
network models, we consider 4 week look ahead median predictions for each of the five counties.
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(a) (b) (c)

Supplementary Figure 7: Temporal variations in normalized AMM in NY-NJ network. (a) Nor-
malized self-loop flows. (b)Autocorrelation of self-loop flows. (c) Sample autocorrelation plot for
one of the counties.

Supplementary Figure 8: Normalized mobility flows of AMM COMMUTE, GRAVITY and RADI-
ATION for Australia.

17



The overall mean absolute percentage error (MAPE) for 4 week look ahead prediction is defined as

1

5

5∑
s=1

1

4

4∑
t=1

∣∣∣yst − ŷst
yst

∣∣∣
We also provide the model performances in estimating the seasonal targets. i.e., peak time, peak
size and onset time for each of the five boroughs.
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Season 2015-2016

Supplementary Figure 9: Top: Mean absolute prediction error (MAPE) for 4 week look ahead
prediction, averaging over 4 weeks and 5 boroughs at prediction horizon from week 50 of 2015
to week 12 of 2016 for NYC. Bottom: MAPE for 4 week look ahead prediction for each borough
separately (NYC, 2015-16 season).

(a) Calibration and prediction at pre-peak (b) Calibration and prediction at post-peak

Supplementary Figure 10: Pre and post peak 4 week ahead 90% prediction interval for the 5 models,
NYC 2015-16 season.

19



Supplementary Figure 11: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of peak intensity for 5 boroughs from 5 models at different prediction horizons (n=1000).
The horizontal dashed line represents the ground truth. (NYC, 2015-16 season)
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Supplementary Figure 12: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of time to peak for 5 boroughs from 5 models at different prediction horizons (n=1000).
The horizontal dashed line represents the ground truth. (NYC, 2015-16 season)
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Supplementary Figure 13: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of time to onset (we defined onset to be 10% of the peak intensity) for 5 boroughs from 5
models at different prediction horizons (n=1000). The horizontal dashed line represents the ground
truth. (NYC, 2015-16 season)
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Season 2016-2017

Supplementary Figure 14: Top: Mean absolute prediction error (MAPE) for 4 week look ahead
prediction, averaging over 4 weeks and 5 boroughs at prediction horizon from week 50 of 2016
to week 12 of 2017 (NYC). Bottom: MAPE for 4 week look ahead prediction for each borough
separately (NYC, 2016-17 season).

(a) Calibration and prediction at pre-peak (b) Calibration and prediction at post-peak

Supplementary Figure 15: Pre and post peak 4 week ahead 90% prediction interval for 5 models
(NYC, 2016-17 season).
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Supplementary Figure 16: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of peak intensity for 5 boroughs from 5 models at different prediction horizons (n=1000).
The horizontal dashed line represents the ground truth (NYC, 2016-17 season).
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Supplementary Figure 17: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of time to peak for 5 boroughs from 5 models at different prediction horizons (n=1000).
The horizontal dashed line represents the ground truth (NYC, 2016-17 season).
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Supplementary Figure 18: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of time to onset (we defined onset to be 10% of the peak intensity) for 5 boroughs from 5
models at different prediction horizons (n=1000). The horizontal dashed line represents the ground
truth (NYC, 2016-17 season).
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Season 2017-2018

Supplementary Figure 19: Top: Mean absolute prediction error (MAPE) for 4 week look ahead
prediction, averaging over 4 weeks and 5 boroughs at prediction horizon from week 50 of 2017
to week 12 of 2018 (NYC). Bottom: MAPE for 4 week look ahead prediction for each borough
separately (NYC, 2017-18 season).

(a) Calibration and prediction at pre-peak (b) Calibration and prediction at post-peak

Supplementary Figure 20: Pre and post peak 4 week ahead 90% prediction interval for 5 models
(NYC, 2017-18 season).
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Supplementary Figure 21: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of peak intensity for 5 boroughs from 5 models at different prediction horizons (n=1000).
The horizontal dashed line represents the ground truth (NYC, 2017-18 season).
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Supplementary Figure 22: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of time to peak for 5 boroughs from 5 models at different prediction horizons (n=1000).
The horizontal dashed line represents the ground truth (NYC, 2017-18 season).
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Supplementary Figure 23: The boxplots (median, IQR and whiskers at 1.5IQR) show the posterior
prediction of time to onset (we defined onset to be 10% of the peak intensity) for 5 boroughs from 5
models at different prediction horizons (n=1000). The horizontal dashed line represents the ground
truth (NYC, 2017-18).

NY-NJ (HHS Region 2), 2016-17

Australia, 2016 season
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(a) NY state ILIPlus (b) HHS region 2 ILIPlus

Supplementary Figure 24: The black lines shows the ILI plus ground truth for (left) NY state
and (right) HHS 2 region, and the blue curves are the posterior predictions obtained from the
calibrated PatchSim model, where the calibration is done only based on the ED visit data from the
NYC boroughs (NY, HHS Region 2, 2016-17 season).
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Supplementary Figure 25: Simulation output with observed ground truth for (some of) the counties
in New York and New Jersey. The simulation was calibrated only with respect to the NYC counties
(NY-NJ, 2016-17 season).
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Supplementary Figure 26: Top: Mean absolute prediction error (MAPE) for 4 week look ahead
prediction, averaging over 4 weeks and 7 states at prediction horizon from week 29 to week 43 of
2016 for Australia. Bottom: MAPE for 4 week look ahead prediction for each borough separately
(Australia, 2016 season).

(a) Calibration and prediction at pre-peak (b) Calibration and prediction at post-peak

Supplementary Figure 27: Pre and post peak 4 week ahead 90% prediction interval for the four
models (Australia, 2016 season

.
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