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In the following sections, we report further experiments and analysis to understand the performance of 
REMEDIS. This includes ablation studies to analyze the benefits of the different components underlying 
REMEDIS, comparison with several supervised baselines, and other approaches to leveraging unlabelled 
data. Given the sensitivity of the medical domain and the importance of ensuring AI development methods 
do not propagate existing health equity disparities, we conduct a detailed subgroup analysis in the 
dermatology and mammography setting. Furthermore, we also include results on a non-classification task 
and visualize the learned representations and list detailed t-test statistics for all our experiments. 
 
Supplementary figures 
Supplementary Fig. 1 | Study of the performance of our approach vs. the standard supervised baseline. 
Supplementary Figs. 2 and 3 | Study of the performance of our approach vs. supervised pertaining 
strategies. 
Supplementary Fig. 4 | Ablation of the family of BiT [1] models. 
Supplementary Fig. 5 | Ablation study of the REMEDIS components and their contribution using SimCLR. 
Supplementary Fig. 6 | Ablation study of the REMEDIS components and their contribution using MoCo. 
Supplementary Fig. 7 | Comparison with self-training [2, 3]. 
Supplementary Fig. 8 | Performance analysis across subgroups. 
Supplementary Fig. 9 | Results on mammography localization task. 
Supplementary Fig. 10 | t-SNE visualization of the learned representations. 
Supplementary Figs. 11 – 14 | MoCo variant REMEDIS results. 
Supplementary Figs. 15 – 19 | Detailed results. 
 
Supplementary tables 
Supplementary Table 1 | Pretraining hyper-parameter details. 
Supplementary Table 2 | Fine-tuning hyper-parameter search details. 
Supplementary Table 3 | Fine-tuning hyper-parameter details. 
Supplementary Table 4 | Clinically applicable performance. 
Supplementary Table 5 | Dataset fingerprints. 
Supplementary Table 6 | Analysis of distribution shifts. 
Supplementary Table 7 | Clinical cost analysis of data acquisition and annotation. 
Supplementary Tables 8 | Comparison of REMEDIS MoCo variant and its components. 
Supplementary Tables 9 and 10 | SimCLR and MoCo variant comparison. 
Supplementary Tables 11 – 21 | Detailed performance gains. 
Supplementary Tables 22 – 32 | Detailed t-test statistics for all experiments. 
 
 
  



 

   

 

Ablation studies 
 
Performance of standard supervised transfer-learning Strategy.  In addition to the strong supervised 
baseline discussed in Fig. 3 we also evaluate our method against the standard supervised strategy which is 
defined as transfer learning using models pretrained on 1M natural images from ImageNet-1K dataset. 
Supplementary Fig. 1 shows the overview of the results demonstrating overall performance and data-
efficient generalization of the proposed self-supervised learning strategy, REMEDIS in comparison to the 
standard supervised baseline pre-trained on ImageNet-1K and fine-tuned for the specific medical task. We 
observed significantly improved out-of-distribution generalization and significant reduction in the need for 
labelled medical data when using our proposed approach. REMEDIS exhibits significantly improved in-
distribution performance with up to 11.5% relative improvement in diagnostic accuracy in comparison to the 
standard supervised baseline. Furthermore, REMEDIS leads to strong data-efficient generalization, matching 
the standard supervised baseline using 1% to 31% of retraining data from new clinical development settings 
across tasks. This can translate to a significant reduction in the retraining data and time required to deploy 
medical AI at scale and accelerate the development life cycle of these AI models. 
 
Contribution of large-scale pre-training data.  In Figure 3, Supplementary Fig. 1, Supplementary Fig. 18, 
Supplementary Fig. 19, Supplementary Fig. 16, and Supplementary Fig. 15, we report the comparison of 
REMEDIS with the widely used supervised pre-training baseline. To investigate the contribution of large-
scale pre-training data, here, we also separately compare and contrast the overall performance of REMEDIS 
vs. these baselines. 
 
The strong supervised baseline and REMEDIS both pre-trained on JFT-300M (BiT-L) and relies on large-
scale pre-training while the standard supervised baseline has been trained on a much smaller dataset 
containing only 1M images. Supplementary Fig. 2 demonstrates overall in-distribution performance of 
REMEDIS as well as the supervised baselines trained using both ImageNet-1K and JFT-300M. Moreover, 
we observe that the strong supervised baseline (BiT-L) can provide significantly better in-distribution 
performance against the standard supervised baseline (BiT-S), showing the benefits of large-scale training 
as it has been reported in [4]. 
 
As discussed, the large-scale supervised pre-training (BiT-L) represents a strong supervised baseline for 
medical imaging [4]. Supplementary Fig. 3 shows the overview of the results demonstrating data-efficient 
generalization of our proposed self-supervised learning strategy, REMEDIS as well as the standard and 
strong supervised baseline pre-trained using both ImageNet-1K and JFT-300M. We observed significantly 
improved out-of-distribution generalization and significant reduction in need for annotated medical data when 
using our proposed approach. Moreover, comparing the data-efficient generalization of the strong and 
standard pretrained models, often strong supervised baseline performs significantly better than the standard 
supervised baseline in out-of-distribution regime. Meanwhile REMEDIS holds a steady significantly better 
performance against both strong and standard baseline, in some of the tasks such as Dermatology 
classification (𝑇!) and DME (𝑇") the superior performance of strong supervised baseline in the data-efficient 
generalization regime against the standard baseline can show an unexpected pattern. 
 
Both Supplementary Fig. 2 and Supplementary Fig. 3 indicate that large-scale supervised pre-training is a 
strong component and is a good starting point for developing medical imaging models [4]. To further 
investigate the specific significance of large-scale pretraining and how the choice of supervised pre-training 
impacts REMEDIS, in a new set of experiment we adapt BiT-S, M, and L as our based network and performs 
the self-supervised training on medical data on top of each of these models. The default REMEDIS method 
uses BiT-L as the base-network. 
 
 
This direct comparison is only completed on the dermatology task, due to the high computational cost. The 
results, shown in Supplementary Fig. 4, show that the best results tend to be achieved using BiT-L, but that 
BiT-M can perform competitively. Given that BiT-M is openly available and is not trained on proprietary data, 
we believe that this is a further good indication that large-scale supervised pre-training is valuable and hope 
the wider medical AI community leverages this to build medical imaging models. 
 
Contributions of BiT-L and self-supervised learning.  While our general focus in this study has been to 
compare REMEDIS with supervised baselines (Fig. 3 and Supplementary Fig. 1), it is also of interest to 
understand the contributions of the representation learning strategies underlying REMEDIS and to 



 

   

 

demonstrate the need for supervised pre-training. To this end, we ran ablation studies in which we 
investigated and disentangled the contribution of the large-scale pre-training on natural images and self-
supervised representation learning on medical images as well as the specific architecture choices. For a fair 
comparison, in each case, we follow the same pre-training and fine-tuning protocol as a sour method to 
optimize these models. 
 
Both SimCLR and BiT-L provide benefits over the widely used supervised JFT pre-training baseline for most 
tasks in both in- and out-of-distribution settings (see Supplementary Fig. 5). While for the larger architecture 
such as ResNet-152 (2×), BiT can provide performance gains approximately comparable to REMEDIS in 
some cases, this is not consistent across architectures as well as all the medical imaging tasks considered. 
This is also aligned with previous observations in [6]. Note that SimCLR results for mammography and DME 
classification are missing due to the high computational cost. 
 
In addition, we also repeat these experiments with the MoCo variant of REMEDIS as an alternate state-of-
the-art self-supervised learning method. Supplementary Fig. 6 and Supplementary Table 8 compare the 
MoCo variant of REMEDIS with a strong supervised baseline pre-trained on JFT data as well as pre-training 
using only MoCo and medical data. These results highlight the importance of self-supervision components 
and the superiority of REMEDIS over its component building blocks. 
 
 
 
 
  



 

   

 

Comparison with self-training 
REMEDIS leverages self-supervised pre-training to make use of large amounts of unlabelled medical data 
for learning high-quality representations. However, other approaches enable models to learn from unlabelled 
data. One such approach is self-training [2, 3]. In a typical self-training setting, a teacher network trained on 
labelled data predicts labels on the unlabelled data. Then, a second student model is fine-tuned on the 
original labelled data, as well as the predicted labels. We implement this by training a model on 𝐷 , inferring 
on 𝐷#, and then re-training the model on 𝐷  and 𝐷#. We use the predicted probabilities on 𝐷# as soft labels 
and separately sweep over hyper-parameters for the teacher and student training. We otherwise do not vary 
the training set-up. Due to computational constraints and early evidence of superiority of REMEDIS, we only 
report these numbers for dermatology. 
 
We performed this self-training cycle using models that start from BiT-L, as the most direct comparison to 
REMEDIS, as well as with models that start from the standard supervised baseline and the corresponding 
REMEDIS variant. The results, shown in Supplementary Fig. 7, indicate that self-training can produce high 
quality models on par with REMEDIS especially when using the larger model architecture. However, this is 
not consistent when using smaller architecture sizes. Self-training can also degrade performance when 
applied from the standard supervised baseline, perhaps because self-training relies on the quality of the 
teacher model. Furthermore, self-training requires the representation learning task and the downstream task 
to be well aligned while contrastive pre-training is agnostic to the downstream task leading to representations 
that can be generally applied. Nevertheless, we believe self-training is a promising approach and should be 
considered when appropriate for developing medical imaging AI using unlabelled data. 
 
Performance analysis across subgroups 
Given the importance of fairness in AI, when using pre-trained representations for developing medical 
imaging AI, we are interested in approximate parity of performance across target subgroups of interest so as 
to ensure the models are not amplifying existing health disparities. More specifically, for the deployment of 
such models in clinical settings, it is important to evaluate them comprehensively across protected 
subgroups. This can be of particular concern when leveraging large-scale pre-training datasets, as they may 
be biased towards certain subgroups without the knowledge of the model developer [6]. Thus, we also 
investigated the performance distribution across different subgroups of interest. We focused on subgroups in 
the dermatology and mammography task where we have access to metadata to disentangle them. We are 
particularly interested in how the introduction of large-scale pretraining, or self-supervised pre-training, 
affects performance across these clinically relevant subgroups. 
 
In dermatology, we established subgroups based on age and biological sex. For sex, we considered a binary 
setting and compared 2,564 and 1,505 cases for the in-distribution dataset, and 3,153 and 3,486 cases of 
each sex for the out-of-distribution dataset. For age, we divided the data into four age groups of 18-30, 30-
45,45-65, and 65+ years, which include 1,185, 1,162, 1,495, and 226 cases respectively for the in-
distribution data and 186, 702, 2,560, and 3,181 cases for the out-of-distribution dataset. We compared the 
top-3 accuracy across these groups using the standard and strong supervised baseline and REMEDIS. We 
observed that while the baseline supervised pre-trained model performance drops on some subgroups, 
using intermediate self-supervised pre-training, the model performance is more even across the different 
subgroups (see Supplementary Fig. 8 (a)). This exploratory experiment suggests that the learned 
representations are likely general, and in most of the cases neither pick up spurious correlations during 
pretraining nor are they biased towards particular subgroups. 
 
For the mammography classification task, we compared subgroups based on age and breast density (which 
can be correlated with age and ethnicity). The test data is divided into four age groups of 30-45, 45-65 and 
more than 65+ years of age which include 0, 9,901, and 2,547 cases, respectively, for the in-distribution data 
and 2,963, 7,109, and 109 cases for the out-of-distribution dataset. The four different density categories 
include 585, 3,606, 2,314, and 957 cases for the in-distribution dataset, and 109, 612, 741, and 71 cases for 
the out-of-distribution dataset. Density level of four is associated with a denser breast based on BI-RADS 
[116] assessments. The results, shown in Supplementary Fig. 8 (b), show the distribution of performance 
across these subgroups. With the exception of a couple of the breast density categories, REMEDIS 
consistently improves performance. We believe that these subgroup performance disparities are unlikely to 
be caused by intrinsic biases in the pretraining mechanism, but future work should investigate specific pre-
training strategies such as dataset re-sampling to mitigate performance drops. 
 
 



 

   

 

 
Mammography-localization results 
In addition to classification tasks, we also evaluated our method and the baseline on a localization task. For 
this purpose, we considered the cancer localization task in mammography images (T7). In this task, the goal 
is to localize cancerous lesions. This task is evaluated using the mean average precision (mAP). Matches 
between ground truth and predicted bounding boxes are considered positive when the intersection-over-
union (IOU) is higher than 10%. The pretraining setup and data were identical to 𝑇$’s. Due to the 
computational complexity of training these models, we report only partial results. For training the localization 
model, only positive cases were included. The labels in this task consisted of the coordinates of the 
bounding boxes derived by human radiologists a-posteriori having access to all mammograms, biopsy 
results, and radiology text reports. The pretrained CNN backbones were the same as inT6, but an additional 
feature pyramid network was added on top of the CNN [8]. 
 
The dataset contains 3,727 cases, including 5,854 ground truth bounding boxes across all mammograms. 
2,909 cases were used for training, 158 for tuning, and 660 for test. When using REMEDIS, the model 
shows significant improvement over the baseline, moving from a mAP of 0.805 to a mAP of 0.855. We used 
the Adam optimizer with an exponential learning rate decay in breast cancer localization task where we 
performed a rigorous grid search to select the initial learning rate, decay steps, and decay factor. All of the 
models were trained for a maximum of 200K steps. For this task, scaled 2048×2048 pixels mammography 
images go through the augmentation process including random flipping, random shifting, and random color 
distortion. We selected the learning rate, decay steps, and decay factor after a grid search of three 
logarithmically spaced learning rates between 10%&.( and 10%).( and three decay steps in {10𝐾, 25𝐾, 50𝐾}, 
and three decay factor in decay steps in {0.1,0.25,0.5}. 
 
 
 
  



 

   

 

t-SNE Visualization of representations 
To gain more insight into the high dimensional embedding representations learned by models considered in 
this study, we use t-SNE visualization [158]. For this purpose we focus on the pathology metastases task (𝑇)) 
which has a binary label space and includes two out-of-distribution datasets. The t-SNE visualization of the 
best REMEDIS and best supervised model representation embeddings obtained from the test in-distribution 
and out-of-distribution examples of the pathology metastases task (𝑇)) are depicted in Supplementary Fig. 10 
These models are only fine-tuned with the in-distribution train dataset and not the out-of-distribution data. 
The binary labels of this task are color-coded. The visualizations (Supplementary Fig. 10) qualitatively 
indicate that clusters associated with each class are better separated in the REMEDIS feature space 
compared to the supervised baseline. 
 
 
Momentum contrastive learning 
REMEDIS leverages the generic form of contrastive pre-training based on SimCLR [10] to learn medical 
domain-specific representations. Although there have been several studies investigating self-supervised 
representation learning for medical imaging AI applications (such as [11]), these studies consider a limited 
number of modalities and they do not consider how they might be combined with other representation 
learning strategies and often rely on task-specific design choices. In contrast, our study is comprehensive, 
and we demonstrate here that the core self-supervised learning method in REMEDIS can be modified with 
other strong alternatives. 
 
Supplementary Fig.12 and Supplementary Fig. 13 show detailed performance of the MoCo variant of 
REMEDIS where the generic self-supervised learning method is replaced with improved MoCo [12]. Overall, 
our results indicate that REMEDIS is compatible with momentum contrastive learning as an alternative self-
supervised learning technique as REMEDIS still results in data-efficient generalization and introduces 
significant performance improvements over the strong supervised baseline. 
 
Supplementary Fig.11, Supplementary Fig. 14, Supplementary Table 9 and Supplementary Table 10 provide 
a direct comparison between SimCLR and MoCo variants of REMEDIS vs. the strong and standard 
supervised baseline. Overall, in this experiment, we do not observe any significant improvement for task 𝑇! 
when using the MoCo variant over the SimCLR variant. Meanwhile, in task 𝑇", SimCLR variant results are 
still significantly better than the MoCo variant. Thus, the translation of improved MoCo components to the 
improved discriminative properties of self-supervised pre-training in the medical domain is inconclusive. 
 
 
 
  



 

   

 

Additional experimental results 
The following figures show additional experimental results that compare the in-distribution and out-of-
distribution performance of REMEDIS vs. the supervised baseline in further detail. Specifically, in this 
section, we investigate the performance of models for both architectures ResNet-50 (1×) and ResNet-152 
(2×), and multiple additional out-of-distribution datasets for certain tasks. This section provides the followings 
supplementary figures: 
 

● Supplementary Fig. 15 provides detailed in-distribution and zero-shot out-of-distribution performance 
for all datasets grouped by network architectures and compares REMEDIS vs. the strong supervised 
baseline trained on JFT-300M dataset. 

● Supplementary Fig. 16 provides detailed in-distribution and zero-shot out-of-distribution performance 
for all datasets grouped by network architectures and compares REMEDIS vs. the standard 
supervised baseline trained on ImageNet-1K dataset. 

● Supplementary Fig. 18 provides detailed data-efficient generalization results using common axes 
range for visualization and grouped by network architecture and compares REMEDIS vs. the strong 
supervised baseline trained on JFT-300M dataset. 

● Supplementary Fig. 19 provides detailed data-efficient generalization results using a common axes 
range for visualization and grouped by network architecture and compares REMEDIS vs. the 
standard supervised baseline trained on ImageNet-1K dataset. 

● Supplementary Tables 11 – 20 provide detailed performance values for zero-shot out-of-distribution 
gains using REMEDIS and the supervised baseline. 

● Supplementary Tables 21 – 32 list detailed t-test statistics for all experiments including REMEDIS, 
baselines, and multiple ablation studies. 

● Supplementary Fig. 17 shows a breakdown of in-distribution gains vs. zero-shot out-of-distribution 
gains using REMEDIS and the supervised baseline. 

 
Specifically, Supplementary Fig. 15 and Supplementary Fig. 16 provide in-distribution performance gains vs. 
zero-shot out-of-distribution performance gains using REMEDIS and supervised baselines. Unlike previous 
visualizations in Figure 3, the results are grouped based on the base network architecture, not the best 
overall performing model for each task. In all plots, the 95% confidence intervals were calculated by running 
each experiment ten times and are shown using the error bars. 
 
In addition, we also provide additional zero-shot out-of-distribution results for multiple tasks using additional 
out-of-distribution datasets in these figures. This includes: (1) an additional out-of-distribution dataset for 
diabetic macular edema classification (𝑇") which includes 323 de-identified fundus images collected in India, 
(2) a non-overlapping fraction of the CAMELYON-17 dataset for pathology metastases detection (𝑇)), which 
includes 273 pathology slides that do not appear in CAMELYON-16 pathology, or the original CAMELYON-
17 dataset. These datasets are considered small-scale and are not suitable for data-efficient generalization 
evaluations; for example, they contain only 2-3 examples at 1% data fraction which is not enough to capture 
all possible variability in the corresponding tasks and also not relevant in real world deployment settings. Due 
to computational limits, we were not able to train models using the ResNet-152 (2×) architecture for 
pathology tasks. These results also suggest that the ResNet-152 (2×) architecture often leads to the highest 
performance. 
 
Supplementary Fig. 17 shows the relationship between in-distribution vs. zero-shot out-of-distribution 
performance using REMEDIS and the supervised baseline. As discussed, 95% confidence intervals of our 
experiments were calculated by running each experiment ten times. Each point in this plot corresponds to 
one of these repeated runs and the coordinates were obtained by calculating the in-distribution and zero-
shot out-of-distribution for the target task.  These plots confirm that dataset shift greatly impacts the 
performance of models when evaluated on the out-of-distribution dataset. However, our results suggest that 
REMEDIS improves out-of-distribution performance without decreasing in-distribution performance, and 
REMEDIS has higher performance for both in-distribution and out-of-distribution data. 
 
Lastly, Supplementary Fig. 18 and Supplementary Fig. 19 show results demonstrating data-efficient 
generalization of our method vs. the strong supervised baseline pretrained on JFT-300M and also the 
standard supervised baseline pre-trained onImageNet-1K. Unlike the previous visualizations in Fig. 3 and 
Supplementary Fig. 1, these graphs were scaled based on a unified performance range axes and the results 
are grouped based on the base network architecture, not the best overall results for a given task. In 
particular, each graph depicts performance (measured by top-3 accuracy or area under the curve) when 



 

   

 

using different data fractions/data counts of out-of-distribution data to fine-tune the model for the 
dermatology condition classification (𝑇!), diabetic macular edema classification (𝑇"), chest X-ray condition 
classification (T3), pathology metastases detection (𝑇)), pathology colorectal survival prediction (𝑇&), and 
mammography classification (T6) as well as two architectures ResNet-50 (1×) and ResNet-152 (2×). We also 
calculate a 95% confidence interval by running each label fraction and experiment ten times and intervals 
are shown using the shaded area and error bars. A two-sided t-test was also calculated for each label 
fraction as well as in-distribution results and p-value for several thresholds comparing any significant 
improvement of our method against these baselines. We observe significantly (𝑝 < 0.05) improved out-of-
distribution generalization and a significant reduction in the need for labelled medical data when using 
REMEDIS. 
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Supplementary Fig. 1 | REMEDIS vs. Standard Supervised Baseline. Overview of the results 
demonstrating overall performance and generalization of our proposed strategy as well as the standard 
supervised baseline pretrained on ImageNet-1K. We observed significantly improved out-of-distribution 
generalization and significant reduction in need for labelled medical data when using our proposed 
approach. 95% confidence intervals were calculated by running each label fraction and experiment up to ten 
times and intervals are shown using the shaded area and error bars. A two-sided 𝑡-test was also done for 
each experiment. If no * is shown, the p-value is less than 0.001, otherwise, the p-value is as indicated. The 
red lines indicate the amount of data that REMEDIS needs to match the highest standard supervised 
baseline performance when simulated in a new OOD clinical deployment setting and summarize the amount 
of annotated data and clinician hours potentially saved by using REMEDIS for each medical task. 

  



 

   

 

 

Supplementary Fig. 2 | Overall in-distribution performance. Overview of the results demonstrating 
overall in-distribution performance of REMEDIS as well as the standard and strong supervised baselines 
trained using both ImageNet-1K and JFT-300M. We observed significantly improved in-distribution 
performance using our proposed strategy vs. the standard and strong transfer learning strategies. Moreover, 
the strong supervised baseline (BiT-L) can provide significantly better in-distribution performance against the 
standard supervised baseline. 95% confidence intervals were calculated by running each label fraction and 
experiment up to ten times and intervals are shown using the error bars. A two-sided 𝑡t-test was also done 
for each label fraction as well as when computing the in-distribution results. If no * is shown, the p-value is 
less than 0.001, otherwise, the p-value is as indicated. 

  



 

   

 

 

Supplementary Fig. 3 | REMEDIS overall data-efficiency performance.  Overview of the results 
demonstrating data-efficient generalization of our proposed self-supervised learning strategy, REMEDIS as 
well as the standard and strong supervised baseline pretrained using both ImageNet-1K and JFT-300M. We 
observed significantly improved out-of-distribution generalization and significant reduction in need for 
annotated medical data when using our proposed approach. Moreover, comparing the data- efficient 
generalization of the strong and standard pretrained models, often string supervised baseline performs 
significantly better than the standard supervised baseline in out-of-distribution regime. 95% confidence 
intervals were calculated by running each label fraction and experiment up to ten times and intervals are 
shown using the shaded area. A two-sided 𝑡-test was also done for each label fraction. If no * is shown, the 
p-value is less than 0.001, otherwise, the p-value is as indicated. 

  



 

   

 

 

Supplementary Fig. 4 | Ablation of different BiT models used in both REMEDIS and the BiT Baseline, 
for the dermatology Task, T1. The BiT model type shown is used in both REMEDIS and BiT for this 
comparison. BiT-L is the largest BiT model, trained on JFT, and is the default BiT model used in REMEDIS. 
BiT-M is trained on ImageNet 21k, while BiT-S is trained on ImageNet. 

  



 

   

 

 

Supplementary Fig. 5 | Contribution of BiT-L and SimCLR. Both large-scale supervised pretraining and 
self-supervised pretraining separately provide benefits. A two-sided 𝑡-test is performed between each 
baseline model and REMEDIS, and a symbol above the bar being compared to REMEDIS shows the 
relevant p-value range. If no symbol is shown, the p-value is less than 0.001. REMEDIS outperforms both of 
its building components, BiT-L and SimCLR. 

  



 

   

 

 

Supplementary Fig. 6 | Contribution of BiT-L and MoCo in REMEDIS MoCo variant. When using 
ResNet-152 (2×), both large-scale supervised pretraining and self-supervised pretraining separately provide 
benefits. A two-sided 𝑡-test is performed between each baseline model and REMEDIS MoCo variant, and a 
symbol above the bar being compared to REMEDIS shows the relevant p-value range. If no symbol is 
shown, the p-value is less than 0.001. REMEDIS MoCo variant outperforms both of its component building 
blocks, BiT-L and MoCo. 

  



 

   

 

 

Supplementary Fig. 7 | Self-training vs. REMEDIS. Comparison of our proposed self-supervised method, 
REMEDIS as well as the strong and standard supervised baseline with self-training approach [12] for 
leveraging unlabelled medical data on the dermatology task. We observe that while self-training can produce 
high performance models on par with REMEDIS when using large architecture, it does not consistently 
provide benefits across all the settings considered. This is possibly due to the requirement for a good 
teacher model when using self-training. Furthermore, self-training requires the representation learning task 
and the downstream task to be well aligned while contrastive pretraining is agnostic to the downstream task 
leading to representations that can be generally applied. 

  



 

   

 

 

Supplementary Fig. 8 | Performance analysis across subgroups. Comparison of REMEDIS and the 
supervised baseline on subgroups of interest in the dermatology and mammography tasks. 95% confidence 
intervals were calculated by running each label fraction and experiment ten times and is shown with the error 
bars. In particular, we note that our method leads to improvement consistently across all subgroups of 
interest across both the tasks. 

  



 

   

 

 

Supplementary Fig. 9 | Mammography localization performance, measured using the mean average 
precision of the localized cancer. 95% confidence intervals were calculated by running each label fraction 
and experiment ten times and is shown with the shaded area and error bars. A two-sided 𝑡-test was also 
done, which showed a p-value less than 0.001. Specifically, the t-Statistic was 57.14, the p-value is 3.54e-
52, and the degree of freedom is 57. 

  



 

   

 

 

Supplementary Fig. 10 | t-SNE visualization of representations. The embedding representations 
obtained using REMEDIS and supervised baseline models are visualized for both the in-distribution and out-
of-distribution datasets of the pathology metastases task. Clusters associated with various classes are better 
separated in the REMEDIS feature space as compared to the baseline. 

  



 

   

 

 

Supplementary Fig. 11 | Data-efficient generalization results of REMEDIS using MoCo for self-
supervised learning. Overview of the results demonstrating overall performance and data-efficient 
generalization of our proposed self-supervised learning method, MoCo variant of REMEDIS as well as the 
strong supervised baseline pretrained on JFT-300M for the dermatology condition classification (T1) and the 
diabetic macular edema classification (T2).  We observed that REMEDIS is compatible with momentum 
contrastive learning as an alternative self-supervised learning technique.  If no * is shown, the p-value is less 
than 0.001, otherwise, the p-value is as indicated. The red lines indicate the amount of data that MoCo 
variant REMEDIS needs to match the best supervised AI baseline performance when simulated in a new 
clinical deployment setting and summarizes the savings in data annotation and clinician hours. 

  



 

   

 

 

Supplementary Fig. 12 | Detailed in-distribution and zero-shot out-of-distribution performance for all 
architectures. We show the superior in-distribution performance of MoCo variant REMEDIS across T1 and 
T2 vs. strong supervised baseline trained on JFT-300M. The 95% confidence intervals were calculated by 
running each label fraction and experiment ten times and are shown with the shaded area and error bars. A 
two-sided 𝑡-test was also conducted for each pair of results. If no * is shown the p-value is less than 0.001, 
otherwise, the p-value is as indicated. Unlike previous visualizations, here we group the results based on the 
base network architecture not the architecture with the overall best performance. 

  



 

   

 

 

Supplementary Fig. 13 | Detailed generalization results for the MoCo variant REMEDIS vs. strong 
supervised baseline. Overview of the results demonstrating data-efficient generalization of MoCo variant 
REMEDIS vs. the strong supervised baseline pretrained on JFT-300M for all architectures. This includes the 
dermatology condition classification (T1), diabetic macular edema classification (T2) as well as two 
architectures ResNet-50 (1×) and ResNet-152 (2×). In particular, we observe significantly improved out-of-
distribution generalization and a significant reduction in the need for labelled medical data when using our 
REMEDIS. 95% confidence intervals were calculated by running each label fraction and experiment ten 
times and intervals are shown using the shaded area and error bars. A two-sided 𝑡-test was also done for 
each label fraction as well as in-distribution results. If no * is shown, the p-value is less than 0.001, 
otherwise, the p-value is as indicated. Unlike previous visualizations, here we scale all of the graphs using a 
unified range and group the results based on the base network architecture. 

  



 

   

 

 

Supplementary Fig. 14 | Comparison of Performance of REMEDIS SimCLR and MoCo variant. 
Comparison of MoCo variant REMEDIS, SimCLR variant REMEDIS as well as the strong supervised 
baseline for the dermatology condition classification (T1) and diabetic macular edema classification (T2) for 
two architectures ResNet-50 (1×) and ResNet-152 (2×). 95% confidence intervals were calculated by 
running each label fraction and experiment ten times and is shown with the error bars. In particular, we note 
that our method leads to improvement consistently across all subgroups of interest across both the tasks. 

  



 

   

 

 

Supplementary Fig. 15 | Detailed in-distribution and zero-shot out-of-distribution performance for all 
architectures and all datasets considered in this study. We show the superior in-distribution performance 
of REMEDIS across all tasks and all datasets vs. strong supervised baseline trained on JFT-300M. The 95% 
confidence intervals were calculated by running each label fraction and experiment ten times and are shown 
with the shaded area and error bars. A two-sided 𝑡-test was also conducted for each pair of results. If no * is 
shown the p-value is less than 0.001, otherwise, the p-value is as indicated. Unlike previous visualizations, 
here we group the results based on the base network architecture not the architecture with the overall best 
performance. 

  



 

   

 

 

Supplementary Fig. 16 | Detailed in-distribution and zero-shot out-of-distribution performance for all 
architectures and all datasets considered in this study. We show the superior in-distribution performance 
of REMEDIS across all tasks and all datasets vs. the standard supervised baseline pretrained on ImageNet-
1K. The 95% confidence intervals were calculated by running each label fraction and experiment ten times 
and are shown with the shaded area and error bars. A two-sided 𝑡-test was also conducted for each pair of 
results. If no * is shown the p-value is less than 0.001, otherwise, the p-value is as indicated. Unlike previous 
visualizations, here we group the results based on the base network architecture not the architecture with the 
overall best performance. 

  



 

   

 

 

Supplementary Fig. 17 | In-distribution Performance vs. Zero-shot Out-of-distribution Performance. 
We show that REMEDIS produces a consistently superior model performance in comparison to the strong 
supervised baseline trained using JFT-300M both in- and out-of-distribution. 95% confidence intervals of our 
experiments were calculated by running each experiment ten times. Each point in this plot corresponds to 
one of these repeated runs and its coordinates are obtained by calculating the in-distribution and zero-shot 
out-of-distribution for the target task. These plots suggest REMEDIS improves out-of-distribution 
performance without decreasing in-distribution performance and REMEDIS models have higher in-
distribution and out-of-distribution performance. 

  



 

   

 

 

Supplementary Fig. 18 | Detailed generalization results for REMEDIS vs. strong supervised baseline. 
Overview of the results demonstrating data-efficient generalization of our method vs. the strong supervised 
baseline pretrained on JFT-300M for all tasks and architectures. This includes the dermatology condition 
classification (T1), diabetic macular edema classification (T2), chest X-ray condition classification (T3), 
pathology metastases detection (T4), pathology colorectal survival prediction (T5), and mammography 
classification (T6) as well as two architectures ResNet-50 (1×) and ResNet-152 (2×). In particular, we 
observe significantly improved out-of-distribution generalization and a significant reduction in the need for 
labelled medical data when using our proposed approach. 95% confidence intervals were calculated by 
running each label fraction and experiment ten times and intervals are shown using the shaded area and 
error bars. A two-sided 𝑡-test was also done for each label fraction as well as in-distribution results. If no * is 
shown, the p-value is less than 0.001, otherwise, the p-value is as indicated. Unlike previous visualizations, 
here we scale all of the graphs using a unified range and group the results based on the base network 
architecture. 

  



 

   

 

 

Supplementary Fig. 19 | Detailed generalization results for REMEDIS vs. standard supervised 
baseline. Overview of the results demonstrating data-efficient generalization of our method vs. the standard 
supervised baseline pretrained on ImageNet-1K for all tasks and architectures. This includes the 
dermatology condition classification (T1), diabetic macular edema classification (T2), chest X-ray condition 
classification (T3), pathology metastases detection (T4), pathology colorectal survival prediction (T5), and 
mammography classification (T6) as well as two architectures ResNet-50 (1×) and ResNet-152 (2×). In 
particular, we observe significantly improved out-of-distribution generalization and a significant reduction in 
the need for labelled medical data when using our proposed approach. 95% confidence intervals were 
calculated by running each label fraction and experiment ten times and intervals are shown using the shaded 
area and error bars. A two-sided 𝑡-test was also done for each label fraction as well as in-distribution results. 
If no * is shown, the p-value is less than 0.001, otherwise, the p-value is as indicated. Unlike previous 
visualizations, here we scale all of the graphs using a unified range and group the results based on the base 
network architecture. 

 
 
 

  



 

   

 

Supplementary Table 1 | Pretraining hyper-parameter details. We pre-trained the models using the 
following hyperparameter ranges for self-supervised learning with learning rate ( lr ) in {0.1 ,0.3}, temperature 
(τ) in {0.1, 0.2}, and batch size (B) in {1024, 2048, 4096}. We used random cropping (C), random color 
distortion (D), rotation (R), random Gaussian blur (G), histogram equalization (H), and elastic deformation (E) 
as the data augmentation strategies. We use LARS optimizer [115] and our experiments suggest that in all 
tasks, pretraining for 1000 epochs using a lr = 0.3 and τ = 0.1 tends to lead to optimal performance. 

 
Tasks Augmentations Max Iteration (M) Batch Size (B) Architectures 
T1 C, D, R, G 202K 1024 ResNet-50 (1×) and ResNet-152 (2×) 
T2 C, D, R, G 2,229K 1024 ResNet-50 (1×) and ResNet-152 (2×) 
T3 C, D, R, G, H 210K 1024 ResNet-50 (1×) and ResNet-152 (2×) 
T4 , T5 C, D, R, G 1,220K 4096 ResNet-50 (1×) Only 
T6 C, D, R, G, H, E 302K 1024 ResNet-50 (1×) and ResNet-152 (2×) 
 
  



 

   

 

Supplementary Table 2 | Fine-tuning hyper-parameter search details. In the fine-tuning step, we 
investigated learning rate (lr),weight decay (w), the choice of optimizer and the decay step. In each case, we 
performed a grid search of logarithmically spaced samples for learning rate and weight decay and performed 
model selection based on the performance on the validation set in both ID and OOD settings 

Tasks Optimizer Learning rate (lr) Weight decay (w) Max steps 
(M) 

Decay step 

T1 Adam Linear 7 samples ∈ [10-6.0,10-4.0] {0, 10-6.0, 10-5.0, 10-4.0} 150K N/A 

T2 SGD Exponential 8 samples ∈ [10-4.0,10-0.5] {0, 10-5.0, 10-4.0, 10-3.0} 1K {50, 100} 
T3 SGD Exponential 5 samples ∈ [10-5.0,10-2.0] {0, 10-6.0, 10-5.0} 250K {10K, 25K} 
T4 , T5 Adam Linear 4 samples ∈ [10-7.0,10-4.0] N/A 25K N/A 
T6 SGD Exponential 5 samples ∈ [10-4.0,10-2.0] {0, 10-6.0, 10-5.0, 10-4.0} 100K {10K, 25K} 
  



 

   

 

Supplementary Table 3 | Fine-tuning hyper-parameter details. In our hyper-parameter search, we 
investigated the choice of optimizer, learning rate, weight decay, decay step, and the network architecture. 
The table summarizes the selected hyper-parameters for fine-tuning REMEDIS and both strong and 
standard supervised baseline models pretrained on JFT-300M and ImageNet-1K dataset for both the ID and 
OOD settings. 

 Parameters T1 T2 T3 T4 T5 T6 

Data 
Input size 448×448 587×587 224×224 224×224 224×22

4 
2048×204
8 

Batch size 16 8 64 8 8 1 
Shuffle buffer 256 64 256 N/A N/A 256 

Optimization 

Optimizer Adam SGD Adam Adam Adam SGD 

Schedule Linear Exponent
ial 

Exponent
ial Linear Linear Exponenti

al 
Max training 150K 100K 250K 25K 25K 100K 

Hyper-
parameters 
REMEDIS (Din) 

Architecture R-152 
(2×) 

R-152 
(2×) 

R-152 
(2×) R-50 (1×) R-50 

(1×) 
R-152 
(2×) 

Learning rate 0.0003 0.3 0.001 0.0001 0.0001 0.0003 
Decay factor N/A 0.99 0.9 N/A N/A 0.1 
Decay step N/A 50 10K N/A N/A 10K 
Weight decay 10-5.0 0.0001 10-5.0 N/A N/A 0.001 

 
Hyper-
parameters 
REMEDIS (Dout) 

Architecture R-152 
(2×) 

R-152 
(2×) 

R-152 
(2×) R-50 (1×) R-50 

(1×) 
R-152 
(2×) 

Learning rate 0.0001 0.3 0.001 0.0001 0.0001 0.0001 
Decay factor N/A 0.99 0.9 N/A N/A 0.1 
Decay step N/A 100 10K N/A N/A 10K 
Weight decay 10-5.0 0 10-5.0 N/A N/A 0.0001 

Hyper-
parameters 
Strong 
Baseline(Din) 

Architecture R-152 
(2×) 

R-152 
(2×) 

R-152 
(2×) R-50 (1×) R-50 

(1×) 
R-152 
(2×) 

Learning rate 0.0001 0.01 0.0001 10-4.0 10-5.0 0.01 
Decay factor N/A 0.99 0.9 N/A N/A 0.1 
Decay step N/A 50 10K N/A N/A 10K 
Weight decay 0.0001 0.0001 10-5.0 N/A N/A 0 

Hyper-
parameters 
Strong 
Baseline(Dout) 

Architecture R-152 
(2×) 

R-152 
(2×) 

R-152 
(2×) R-50 (1×) R-50 

(1×) 
R-152 
(2×) 

Learning rate 0.001 0.1 10-5.0 10-5.0 10-7.0 0.0001 
Decay factor N/A 0.99 0.9 N/A N/A 0.1 
Decay step N/A 100 N/A N/A N/A 10K 
Weight decay 10-6.0 0 10-5.0 N/A N/A 0.0001 

Hyper-
parameters 
Standard 
Baseline(Din) 

Architecture R-152 
(2×) 

R-152 
(2×) 

R-152 
(2×) R-50 (1×) R-50 

(1×) 
R-152 
(2×) 

Learning rate 0.0001 0.003 0.001 10-5.0 10-6.0 0.01 
Decay factor N/A 0.99 0.9 N/A N/A 0.1 
Decay step N/A 50 10K N/A N/A 10K 
Weight decay 0 10-5.0 0 N/A N/A 0 

Hyper-
parameters 
Standard 
Baseline(Dout) 

Architecture R-152 
(2×) 

R-152 
(2×) 

R-152 
(2×) R-50 (1×) R-50 

(1×) 
R-152 
(2×) 

Learning rate 0.001 0.1 0.001 10-5.0 10-6.0 0.0001 
Decay factor N/A 0.99 0.9 N/A N/A 0.1 
Decay step N/A 100 N/A N/A N/A 10K 

Weight decay 0.001 0 10-5.0 N/A N/A 0 
 
Supplementary Table 4 | Clinically applicable performance. Summary of clinically applicable 



 

   

 

performance range across the medical imaging tasks considered in this study in the OOD clinical setting 
wherever available. 

Tasks Task name Clinician performance 
T1 Dermatology    0.650 (95% CI 0.545–0.755) 
T3 Chest-X-ray classification    0.869 (95% CI 0.843–0.894) 
T5 Survival prediction (pathology)    0.684 (95% CI 0.639-0.716) 
 
 
  



 

   

 

Supplementary Table 5 | Dataset fingerprints. The above table illustrates the size and characteristics of 
the labelled, unlabelled and OOD dataset across the different medical imaging tasks we considered in this 
study. 

Task Du Din Dout Secondary Dout 
  Training Validation Test Training Validation Test  
T1 207,032 15,340 1,190 4,146 17,322 4,339 6,639 – 
T2 2,287,716 3,874 973 1,192 2,524 643 612 323 
T3 215,695 201,055 9,027 13,332 27,978 17,723 1,998 – 
T4 10,705 216 54 129 2,577 1,295 1,289 273 
T5 10,705 2,236 1,128 1,132 402 101 168 – 
T6 77,340 26,739 49,831 12,448 17,178 11,551 12,314 – 
 

  



 

   

 

Supplementary Table 6 | Analysis of distribution shifts. The three most frequent sources of data 
distribution shifts in medical ML datasets are population shifts, technology shifts, and behavioral shifts, each 
arising from various influencing factors such as changes in acquisition devices, disease prevalence, etc. [27]. 
The check-mark (✓) and dash sign ( − ) indicate the existence or absence of the shift factor, and U indicates 
whether the evidence showing the factor is unknown or undefined in the metadata information associated 
with the datasets considered for the given medical imaging task. 

Tasks T1 T2 T3 T4 T5 T6 
Technology shift Acquisition device shift ✓ ✓ U ✓ ✓ ✓ 

 IT practice, software, terminology shift ✓ ✓ ✓ ✓ – ✓ 

Population Shift Demographic shift ✓ ✓ ✓ – – ✓ 

 Clinical setting shift ✓ – – – – ✓ 

 Disease prevalence shift ✓ ✓ – ✓ U ✓ 

 Seasonal shift ✓ U U – – – 

Behaviour shift Clinical behaviour and incentives shift U ✓ – – ✓ ✓ 

 Patient behaviour change U U – U ✓ U 

 Clinical practice change U U – U ✓ U 

 Clinical nomenclature shift U U – U ✓ U 

 
  



 

   

 

Supplementary Table 7 | Clinical cost analysis of data acquisition and annotation. The table below 
provides a summary of clinical costs associated with the collection of the OOD dataset for all the medical 
imaging tasks considered in this study. In all cases, we focus on the train splits of the dataset. The 
acquisition time for each task approximates the time that it took to collect each dataset starting from the first 
patient recruitment. The cost and hour savings are calculated based on the percentage of the data that 
REMEDIS requires to match the performance of the strong supervised baseline pretrained on JFT-300M 
dataset as depicted in Fig. 3. The overall annotation cost of a dataset is equal to (average annotation cost 
per image) × (number of training images) and the overall clinician hours for each dataset is equal to (average 
annotation time per image) × (number of training images). 

Tasks T1 T2 T3 T4 T5 T6 
Number of training images 17,322 2,524 27,978 17,904 3,873 17,178 
Average annotation time per 
image (second) 

60 345 122 600 600 360 

Average hourly wage of 
clinician ($) 

$172 $147 $205 $138 $138 $205 

Average cost of annotation per 
image ($) 

$2.86 $14 $6.95 $23 $23 $20.5 

Clinical hours cost of dataset 
(hour) 

289 242 948 2,984 645 1,718 

Annotation cost of dataset ($) $49K $35K $194K $411K $89K $352K 
Acquisition Time (Years) 9 7 23 23 5 17 
Acquisition Period 2007-2016 2003-2020 1992-2015 1984-2007 2008-2013 2001-2018 
Percentage of data saved 
using REMEDIS 

67% 93% 83% 94% 86% 91% 

Amount of data saved using 
REMEDIS 

11,578 2,342 23,278 16,872 3,325 15,689 

Clinical annotation hours 
saved (hour) 

193 224 789 2,812 554 1,569 

Approximate annotation cost 
saved ($) 

$33K $33K $162K $385K $76K $322K 

 

 

 

  



 

   

 

Supplementary Table 8 | Contribution of BiT-L and MoCo in REMEDIS MoCo variant. The table 
contains the exact metrics for Supplementary Figure 6.  When using ResNet-152 (2× ) and for T1, T2 , both 
large-scale supervised pretraining and self-supervised pretraining separately provide benefits. A two-sided t-
test is performed between each baseline model and REMEDIS MoCo variant and the p-value more than 0.05 
has been indicated with † and If no symbol is shown, the p-value is less than 0.001. 

Task 
(Metric) 

Method In-distribution Out-of-dist. (0%) Out-of-dist. (100%) 

Task 1 
(Top-3 Acc.) 

REMEDIS (JFT + MoCo) 0.918 (0.917,0.920) 0.775 (0.767,0.784) 0.868 (0.866,0.869) 
MoCo Pretrain Only 0.906 (0.903,0.909) 0.717 (0.704,0.731) 0.861 (0.860,0.862) 
Baseline Supervised (JFT) 0.912 (0.910,0.914) 0.755 (0.750,0.760) 0.844 (0.842,0.845) 

Task 2 
(AUC) 

REMEDIS (JFT + MoCo) 0.906 (0.904,0.908) 0.730 (0.723,0.736) 0.775 (0.772,0.779) 
MoCo Pretrain Only 0.894 (0.892,0.895)  0.723 (0.716,0.730) † 0.766 (0.759,0.772) 
Baseline Supervised (JFT) 0.883 (0.879,0.887) 0.701 (0.686,0.717) 0.740 (0.732,0.748) 

 

  



 

   

 

Supplementary Table 9 | Comparison of in-distribution improvement between MoCo and SimCLR 
variant REMEDIS vs. the strong supervised baseline. The absolute and relative improvement in the main 
task metrics between two variants of REMEDIS over the strong supervised baseline (JFT) for the in-
distribution dataset is calculated. This data is represented in Figure 3 and Supplementary Fig. 11 for T1 and 
T2. 

Task (Metric) Method Absolute Improvement Relative Improvement (%) 
Task 1  
(Top-3 Accuracy) 

REMEDIS (MoCo) 0.006 (0.003, 0.009) 0.7 (0.3, 1.0) 
REMEDIS (SimCLR) 0.003 (0.000, 0.005) 0.3 (0.0, 0.6) 

Task 2  
(AUC) 

REMEDIS (MoCo) 0.007 (0.004, 0.01) 0.8 (0.4, 1.1) 
REMEDIS (SimCLR) 0.024 (0.018, 0.028) 2.7 (2.1, 3.2) 

 

  



 

   

 

Supplementary Table 10 | Comparison of out-of-distribution improvement between MoCo and 
SimCLR variant REMEDIS vs. the strong supervised baseline. The absolute and relative improvement in 
the metrics between two variants of REMEDIS over the strong supervised baseline (JFT), using 0% and 
100% of the out-of-distribution dataset is calculated. This data is represented in Figure 3 and Supplementary 
Fig.13 for T1 and T2. 

Task (Metric) Percentage Method Absolute Improvement Relative Improvement 
(%) 

Task 1  
(Top-3 Accuracy) 

0 REMEDIS (MoCo) 0.025 (0.017, 0.033) 3.3 (2.2, 4.4) 
0 REMEDIS (SimCLR) 0.025 (0.016, 0.035) 3.4 (2.2, 4.7) 
100 REMEDIS (MoCo) 0.024 (0.021, 0.027) 2.8 (2.5, 3.2) 
100 REMEDIS (SimCLR) 0.025 (0.022, 0.028) 3.0 (2.7, 3.4) 

Task 2 (AUC) 0 REMEDIS (MoCo) 0.006 (-0.003, 0.015) 0.9 (-0.4, 2.1) 
0 REMEDIS (SimCLR) 0.047 (0.039, 0.054) 6.8 (5.7, 7.9) 
100 REMEDIS (MoCo) 0.023 (0.016, 0.031) 3.1 (2.1, 4.2) 
100 REMEDIS (SimCLR) 0.054 (0.046, 0.062) 7.1 (6.1, 8.2) 

 

  



 

   

 

Supplementary Table 11 | Detailed in-distribution results. The table contains the numeric results 
displayed in Fig. 3 and Supplementary Fig. 1, specifically the average in-distribution performance values, 
with 95% confidence intervals in parentheses. 

Task and Metric Method Metric 
Task 1 (Top-3 Accuracy) Baseline Supervised (ImageNet) 0.900 (0.897,0.903) 

Baseline Supervised (JFT) 0.923 (0.922,0.925) 
REMEDIS 0.926 (0.925,0.928) 

Task 2 (AUC) Baseline Supervised (ImageNet) 0.887 (0.886,0.887) 
Baseline Supervised (JFT) 0.883 (0.880,0.886) 
REMEDIS 0.902 (0.900,0.902) 

Task 3 (AUC) Baseline Supervised (ImageNet) 0.818 (0.818,0.819) 
Baseline Supervised (JFT) 0.816 (0.815,0.816) 
REMEDIS 0.833 (0.832,0.833) 

Task 4 (AUC) Baseline Supervised (ImageNet) 0.856 (0.851,0.864) 
Baseline Supervised (JFT) 0.916 (0.916,0.917) 
REMEDIS 0.954 (0.950,0.960) 

Task 5 (AUC) Baseline Supervised (ImageNet) 0.714 (0.712,0.715) 
Baseline Supervised (JFT) 0.699 (0.698,0.699) 
REMEDIS 0.748 (0.747,0.748) 

Task 6 (AUC) Baseline Supervised (ImageNet) 0.852 (0.848,0.856) 
Baseline Supervised (JFT) 0.855 (0.853,0.858) 
REMEDIS 0.870 (0.868,0.872) 

 

  



 

   

 

Supplementary Table 12 | In-distribution improvement between REMEDIS and the strong supervised 
baseline. The absolute and relative improvement in the main task metrics between REMEDIS and the strong 
supervised baseline (JFT) for the in-distribution dataset. This data is represented in Fig. 3. 

Task (Metric) Absolute Improvement Relative Improvement (%) 
Task 1 (Top-3 Accuracy) 0.003 (0.000, 0.005) 0.3 (0.0, 0.6) 
Task 2 (AUC) 0.024 (0.018, 0.028) 2.7 (2.1, 3.2) 
Task 3 (AUC) 0.017 (0.016, 0.018) 2.1 (1.9, 2.3) 
Task 4 (AUC) 0.038 (0.032, 0.044) 4.1 (3.5, 4.8) 
Task 5 (AUC) 0.049 (0.047, 0.051) 7.0 (6.8, 7.2) 
Task 6 (AUC) 0.001 (-0.005, 0.006) 0.1 (-0.5, 0.7) 
 

 

  



 

   

 

Supplementary Table 13 | In-distribution improvement between REMEDIS and the standard 
supervised baseline. The absolute and relative improvement in the main task metrics between REMEDIS 
and the standard supervised baseline (ImageNet) for the in-distribution dataset. This data is represented in 
Supplementary Fig. 1. 

Task (Metric) Absolute Improvement Relative Improvement (%) 
Task 1 (Top-3 Accuracy) 0.026 (0.022, 0.03) 2.9 (2.4, 3.4) 
Task 2 (AUC) 0.015 (0.013, 0.017) 1.7 (1.5, 1.9) 
Task 3 (AUC) 0.014 (0.013, 0.016) 1.8 (1.6, 1.9) 
Task 4 (AUC) 0.098 (0.085, 0.109) 11.5 (9.9, 12.8) 
Task 5 (AUC) 0.034 (0.031, 0.036) 4.7 (4.4, 5.1) 
Task 6 (AUC) 0.018 (0.012, 0.024) 2.1 (1.4, 2.8) 
 

  



 

   

 

Supplementary Table 14 | Out-of-distribution data efficiency metrics vs. Clinician. This table contains 
the percentage and absolute numbers of the training set necessary for REMEDIS to match the strong 
supervised baseline (JFT) performance, as shown in Fig. 3, as well as the estimated clinician hours saved. 

Task Proportion required to meet baseline 
performance 

Count of samples saved Estimated clinician hours 
saved 

Task 1 33.2% (25.7%, 39.3%) 11,578 (10510, 12862) 193 (175, 214) 
Task 2 7.2% (4.0% , 10.3%) 2,342 (2263, 2423) 224 (217, 232) 
Task 3 16.8% (12.0%, 22.8%) 23,278 (21588, 24620) 789 (732, 834) 
Task 4 5.7% (2.3% 7.3%) 16,872 (16596, 17482) 2,812 (2766, 2914) 
Task 5 14.1% (9.0% , 18.8% ) 3,325 (3145, 3522) 554 (524, 587) 
Task 6 8.7% (4.6%, 15.1%) 15,689 (14575, 16390) 1,569 (1457, 1639) 
 

  



 

   

 

Supplementary Table 15 | Out-of-distribution data efficiency metrics vs. Clinician. This table contains 
the percentage and absolute numbers of the training set necessary for REMEDIS to match the standard 
supervised (ImageNet) performance, as shown in Supplementary Fig. 1, as well as the estimated clinician 
hours saved. 

Task Proportion required to meet baseline 
performance 

Count of samples saved Estimated clinician hours 
saved 

Task 1 30.7% (25.14%, 36.9%) 11,990 (10920, 12967) 200 (182, 216) 
Task 2 8.9% (6.6%, 12.9%) 2,297 (2196, 3356) 220 (210, 226) 
Task 3 5.9% (2.8%, 8.9%) 26,315 (25467, 25467) 219 (212, 226) 
Task 4 3.5% (0.6%, 4.5%) 17,269 (17095, 17788) 2,878 (2849, 2965) 
Task 5 3.7% (1.2%, 10.7%) 3,727 (3460, 3826) 621 (577, 638) 
Task 6 1.4% (0.0%, 4.9%) 16,924 (16323, 17178) 1,692 (1632, 1718) 
 

 

 

 

  



 

   

 

Supplementary Table 16 | Out-of-distribution Best-vs-Best Metrics - Part 1 The table contains the exact 
metrics for Fig. 3 and Supplementary Fig. 1, specifically the out-of-distribution data efficiency metrics values 
for REMEDIS vs. the strong and standard supervised baselines for tasks T1, T2, T3. 
 

Task (Metric) Method Percentage Metric 

Task 1 (Top-3 Accuracy) Baseline Supervised 0 0.738 (0.734,0.743) 
 (ImageNet) 10 0.816 (0.814,0.819) 
  20 0.826 (0.823,0.830) 
  50 0.837 (0.836,0.838) 
  100 0.839 (0.838,0.840) 
 Baseline Supervised 0 0.755 (0.750,0.760) 
 (JFT) 10 0.817 (0.814,0.819) 
  20 0.828 (0.826,0.831) 
  50 0.837 (0.836,0.839) 
  100 0.844 (0.842,0.845) 
 REMEDIS 0 0.763 (0.760,0.769) 
  10 0.824 (0.822,0.827) 
  20 0.836 (0.834,0.839) 
  50 0.853 (0.851,0.855) 
  100 0.864 (0.863,0.866) 
Task 2 (AUC) Baseline Supervised 0 0.685 (0.682,0.688) 
 (ImageNet) 10 0.734 (0.732,0.737) 
  20 0.733 (0.731,0.735) 
  50 0.756 (0.751,0.760) 
  100 0.761 (0.759,0.764) 
 Baseline Supervised 0 0.718 (0.715,0.720) 
 (JFT) 10 0.740 (0.737,0.742) 
  20 0.747 (0.742,0.753) 
  50 0.757 (0.753,0.761) 
  100 0.755 (0.750,0.761) 
 REMEDIS 0 0.731 (0.727,0.736) 
  10 0.765 (0.760,0.770) 
  20 0.782 (0.774,0.791) 
  50 0.796 (0.792,0.801) 
  100 0.816 (0.811,0.821) 
Task 3 (AUC) Baseline Supervised 0 0.786 (0.783,0.788) 
 (ImageNet) 10 0.788 (0.777,0.800) 
  20 0.801 (0.798,0.802) 
  50 0.810 (0.803,0.816) 
  100 0.812 (0.807,0.817) 
 Baseline Supervised 0 0.785 (0.781,0.788) 
 (JFT) 10 0.809 (0.808,0.810) 
  20 0.815 (0.813,0.816) 
  50 0.818 (0.817,0.819) 
  100 0.825 (0.824,0.826) 
 REMEDIS 0 0.798 (0.796,0.800) 
  10 0.822 (0.819,0.824) 
  20 0.828 (0.826,0.830) 
  50 0.833 (0.832,0.833) 
  100 0.835 (0.834,0.836) 

 
  



 

   

 

Supplementary Table 17 | Out-of-distribution Best-vs-Best Metrics - Part 2 The table contains the exact 
metrics for Fig. 3 and Supplementary Fig. 1, specifically the out-of-distribution data efficiency metrics values 
for REMEDIS vs. the strong and standard supervised baselines for tasks T4, T5, T6. 
 
Task (Metric) Method Percentage Metric 
Task 4 (AUC) Baseline Supervised 0 0.757 (0.755,0.758) 
 (ImageNet) 10 0.870 (0.869,0.872) 
  20 0.877 (0.873,0.882) 
  50 0.892 (0.885,0.895) 
  100 0.892 (0.886,0.895) 
 Baseline Supervised 0 0.791 (0.790,0.792) 
 (JFT) 10 0.879 (0.868,0.891) 
  20 0.897 (0.893,0.904) 
  50 0.904 (0.899,0.909) 
  100 0.905 (0.897,0.911) 
 REMEDIS 0 0.876 (0.876,0.876) 
  10 0.931 (0.926,0.935) 
  20 0.947 (0.942,0.952) 
  50 0.958 (0.954,0.962) 
  100 0.958 (0.956,0.960) 
Task 5 (AUC) Baseline Supervised 0 0.649 (0.645,0.655) 
 (ImageNet) 10 0.702 (0.697,0.708) 
  20 0.707 (0.700,0.715) 
  50 0.717 (0.710,0.725) 
  100 0.725 (0.719,0.729) 
 Baseline Supervised 0 0.664 (0.661,0.667) 
 (JFT) 10 0.717 (0.709,0.726) 
  20 0.729 (0.720,0.737) 
  50 0.741 (0.733,0.746) 
  100 0.760 (0.757,0.763) 
 REMEDIS 0 0.712 (0.710,0.714) 
  10 0.745 (0.726,0.761) 
  20 0.782 (0.768,0.795) 
  50 0.792 (0.783,0.803) 
  100 0.798 (0.792,0.804) 
Task 6 (AUC) Baseline Supervised 0 0.700 (0.697,0.702) 
 (ImageNet) 10 0.715 (0.711,0.718) 
  20 0.722 (0.719,0.724) 
  50 0.724 (0.720,0.728) 
  100 0.727 (0.725,0.728) 
 Baseline Supervised 0 0.711 (0.709,0.715) 
 (JFT) 10 0.720 (0.717,0.722) 
  20 0.720 (0.717,0.723) 
  50 0.726 (0.723,0.728) 
  100 0.734 (0.732,0.736) 
 REMEDIS 0 0.725 (0.724,0.726) 
  10 0.735 (0.733,0.738) 
  20 0.741 (0.739,0.743) 
  50 0.746 (0.743,0.749) 
  100 0.750 (0.749,0.751) 
 

  



 

   

 

Supplementary Table 18 | Out-of-distribution Best-vs-Best Metrics for the MoCo variant of REMEDIS. 
The table contains the exact metrics values for Supplementary Fig. 11, specifically the out-of-distribution 
data efficiency metrics values for the MoCo variant of REMEDIS vs. the strong supervised baselines for 
tasks T1, T2. 

Task (Metric) Method Percentage Metric 
Task 1 (Top-3 Accuracy) Baseline Supervised 0 0.755 (0.750,0.760) 
 (JFT) 10 0.817 (0.814,0.819) 
  20 0.828 (0.826,0.831) 
  50 0.837 (0.836,0.839) 
  100 0.844 (0.842,0.845) 
 REMEDIS (MoCo + JFT) 0 0.782 (0.777,0.787) 
  10 0.834 (0.832,0.837) 
  20 0.850 (0.848,0.853) 
  50 0.858 (0.857,0.860) 
  100 0.868 (0.867,0.869) 
Task 2 (AUC) Baseline Supervised 0 0.718 (0.715,0.720) 
 (JFT) 10 0.740 (0.737,0.742) 
  20 0.747 (0.742,0.753) 
  50 0.757 (0.753,0.761) 
  100 0.755 (0.750,0.761) 
 REMEDIS (MoCo + JFT) 0 0.724 (0.718,0.730) 
  10 0.760 (0.755,0.768) 
  20 0.767 (0.764,0.769) 
  50 0.778 (0.775,0.781) 
  100 0.779 (0.777,0.781) 
 

  



 

   

 

Supplementary Table 19 | Out-of-distribution relative improvement between REMEDIS and the strong 
supervised baseline. The absolute and relative improvement in the metrics between REMEDIS and the 
strong supervised baseline (JFT), using 0% and 100% of the Out-of-distribution dataset. This data is 
represented in Figure 3. 

Task (Metric) Percentage Absolute Improvement Relative Improvement (%) 
Task 1 (Top-3 Accuracy) 0 0.009 (0.000, 0.018) 1.2 (0.0, 2.5) 
 100 0.020 (0.017, 0.023) 2.4 (2.1, 2.8) 
Task 2 (AUC) 0 0.014 (0.007, 0.021) 1.9 (0.9, 3.0) 
 100 0.060 (0.050, 0.071) 8.0 (6.6, 9.5) 
Task 3 (AUC) 0 0.014 (0.008, 0.019) 1.7 (1.1, 2.4) 
 100 0.009 (0.007, 0.011) 1.1 (0.9, 1.3) 
Task 4 (AUC) 0 0.085 (0.084, 0.086) 10.7 (10.6, 10.9) 
 100 0.053 (0.045, 0.063) 5.8 (5.0, 7.0) 
Task 5 (AUC) 0 0.048 (0.043, 0.052) 7.2 (6.5, 7.9) 
 100 0.038 (0.029, 0.047) 5.0 (3.8, 6.2) 
Task 6 (AUC) 0 0.014 (0.009, 0.018) 1.9 (1.2, 2.5) 
 100 0.016 (0.012, 0.019) 2.2 (1.7, 2.6) 
 

  



 

   

 

Supplementary Table 20 | Out-of-distribution relative improvement between REMEDIS and the 
standard supervised baseline. The absolute and relative improvement in the metrics between REMEDIS 
and the standard supervised baseline (ImageNet), using 0% and 100% of the Out-of-distribution dataset. 
This data is represented in Supplementary Fig. 1. 

Task (Metric) Percentage Absolute Improvement Relative Improvement (%) 
Task 1 (Top-3 Accuracy) 0 0.025 (0.016, 0.035) 3.4 (2.2, 4.7) 
 100 0.025 (0.022, 0.028) 3.0 (2.7, 3.4) 
Task 2 (AUC) 0 0.047 (0.039, 0.054) 6.8 (5.7, 7.9) 
 100 0.054 (0.046, 0.062) 7.1 (6.1, 8.2) 
Task 3 (AUC) 0 0.013 (0.009, 0.017) 1.6 (1.1, 2.2) 
 100 0.022 (0.017, 0.028) 2.7 (2.0, 3.5) 
Task 4 (AUC) 0 0.119 (0.117, 0.121) 15.8 (15.5, 16.1) 
 100 0.066 (0.061, 0.074) 7.4 (6.8, 8.4) 
Task 5 (AUC) 0 0.063 (0.055, 0.068) 9.8 (8.4, 10.5) 
 100 0.074 (0.064, 0.084) 10.2 (8.8, 11.7) 
Task 6 (AUC) 0 0.025 (0.021, 0.029) 3.6 (3.0, 4.2) 
 100 0.023 (0.02, 0.026) 3.2 (2.8, 3.6) 
 

 

  



 

   

 

Supplementary Table 21 | Ablation Study Statistics The table contains the corresponding two-sided t-test 
statistics for Supplementary Fig. 5, specifically the metrics produced for REMEDIS vs. each of the different 
techniques. This t-test was done without the assumption that the variances are equal. 

Task Distribution Architecture Comparison 
Method 

T-Statistic p-value Degrees of 
Freedom 

Task 1 In-distribution R-152(2x) BiT-L 1.83 8.848414e-02 14.06 
Task 1 In-distribution R-152(2x) SimCLR 10.29 6.815352e-09 17.69 
Task 1 In-distribution R-50(1x) BiT-L 7.22 2.571443e-06 15.40 
Task 1 In-distribution R-50(1x) SimCLR 5.36 7.154525e-05 15.46 
Task 1 Out-of-distribution R-152(2x) BiT-L 1.54 1.411247e-01 17.58 
Task 1 Out-of-distribution R-152(2x) SimCLR 6.95 2.933571e-06 16.34 
Task 1 Out-of-distribution R-50(1x) BiT-L 5.59 5.035536e-05 15.06 
Task 1 Out-of-distribution R-50(1x) SimCLR 14.68 1.041017e-10 16.02 
Task 3 In-distribution R-152(2x) BiT-L 31.20 2.842220e-14 13.91 
Task 3 In-distribution R-152(2x) SimCLR 62.10 1.797997e-19 14.96 
Task 3 In-distribution R-50(1x) BiT-L 3.52 4.608371e-03 11.28 
Task 3 In-distribution R-50(1x) SimCLR 3.95 3.307544e-03 9.09 
Task 3 Out-of-distribution R-152(2x) BiT-L 6.75 7.829244e-06 14.47 
Task 3 Out-of-distribution R-152(2x) SimCLR 8.04 7.225264e-06 10.74 
Task 3 Out-of-distribution R-50(1x) BiT-L 9.19 5.085610e-06 9.46 
Task 3 Out-of-distribution R-50(1x) SimCLR -8.48 1.152971e-05 9.27 
Task 4 In-distribution R-50(1x) BiT-L 3.61 2.847966e-02 3.49 
Task 4 In-distribution R-50(1x) SimCLR 0.66 5.547361e-01 3.15 
Task 4 Out-of-distribution R-50(1x)) BiT-L 27.16 9.455735e-05 3.06 
Task 4 Out-of-distribution R-50(1x)) SimCLR 13.51 8.170055e-04 3.04 
Task 5 In-distribution R-50(1x) BiT-L 10.81 1.523292e-03 3.07 
Task 5 In-distribution R-50(1x) SimCLR 19.42 2.716788e-04 3.04 
Task 5 Out-of-distribution R-50(1x) BiT-L 3.52 3.805765e-02 3.05 
Task 5 Out-of-distribution R-50(1x) SimCLR 12.04 1.120045e-03 3.06 
 

 

 

 

 

 

 

 

 

  



 

   

 

Supplementary Table 22 | Task Statistics REMEDIS vs. the strong supervised baseline (JFT). The 
table contains the corresponding two-sided t-test statistics for Supplementary Fig. 15, specifically the metrics 
produced for REMEDIS vs. the strong supervised baseline (JFT). This t-test was done without the 
assumption that the variances are equal. 

Task Distribution Architecture T-Statistic p-value Degrees of Freedom 
Task 1 In-distribution R-152(2x) 2.74 1.333964e-02 17.97 
Task 1 In-distribution R-50(1x) 6.53 1.478805e-05 13.71 
Task 1 Out-of-distribution R-152(2x) 2.76 1.331786e-02 16.98 
Task 1 Out-of-distribution R-50(1x) 7.97 2.626604e-07 17.98 
Task 2 In-distribution R-152(2x) 11.91 8.600512e-08 11.42 
Task 2 In-distribution R-50(1x) 9.91 8.610633e-08 14.31 
Task 2 Out-of-distribution Dataset 1 (R-152(2x)) 6.27 4.792115e-05 11.61 
Task 2 Out-of-distribution Dataset 1 (R-50(1x)) 4.24 4.932287e-04 17.93 
Task 2 Out-of-distribution Dataset 2 (R-152(2x)) 5.87 2.889648e-04 8.56 
Task 2 Out-of-distribution Dataset 2 (R-50(1x)) 7.49 3.946623e-06 13.32 
Task 3 In-distribution R-152(2x) 31.20 2.842220e-14 13.91 
Task 3 In-distribution R-50(1x) 3.52 4.608371e-03 11.28 
Task 3 Out-of-distribution R-152(2x) 6.75 7.829244e-06 14.47 
Task 3 Out-of-distribution R-50(1x) 9.19 5.085610e-06 9.46 
Task 4 In-distribution R-50(1x) 12.74 8.643737e-04 3.11 
Task 4 Out-of-distribution Dataset 1 (R-50(1x)) 154.09 1.267567e-10 5.14 
Task 4 Out-of-distribution Dataset 2 (R-50(1x)) 5.11 4.485801e-03 4.69 
Task 5 In-distribution R-50(1x) 71.75 1.512674e-09 5.62 
Task 5 Out-of-distribution R-50(1x) 23.65 4.808754e-06 4.67 
Task 6 In-distribution R-152(2x) 0.40 6.933459e-01 15.07 
Task 6 In-distribution R-50(1x) 2.50 2.251765e-02 17.35 
Task 6 Out-of-distribution R-152(2x) 7.24 6.630100e-06 12.99 
Task 6 Out-of-distribution R-50(1x) 5.87 1.624941e-05 17.61 
 

 

 

 

 

 

 

 

 

 

  



 

   

 

Supplementary Table 23 | Task Statistics MoCo variant of REMEDIS vs. the strong supervised 
baseline (JFT). The table contains the corresponding two-sided t-test statistics for Supplementary Fig. 12, 
specifically the metrics produced for REMEDIS vs. the strong supervised baseline (JFT). This t-test was 
done without the assumption that the variances are equal. 

Task Distribution Architecture T-Statistic p-value Degrees of Freedom 
Task 1 In-distribution R-152(2x) 4.98 1.001209e-04 17.76 

Task 1 In-distribution R-50(1x) 3.34 3.755625e-03 17.59 

Task 1 Out-of-distribution R-152(2x) 5.25 8.540898e-05 15.59 

Task 1 Out-of-distribution R-50(1x) 3.58 3.075927e-03 13.75 

Task 2 In-distribution R-152(2x) 11.86 7.279249e-07 9.16 

Task 2 In-distribution R-50(1x) 5.50 3.976754e-05 16.87 

Task 2 Out-of-distribution R-152(2x) 3.83 9.103610e-03 5.84 

Task 2 Out-of-distribution R-50(1x) 3.18 2.204511e-02 5.42 

 

  



 

   

 

Supplementary Table 24 | Task Statistics REMEDIS vs. the standard supervised baseline (ImageNet). 
The table contains the corresponding two-sided t-test statistics for Supplementary Fig. 16, specifically the 
metrics produced for REMEDIS vs. the standard supervised baseline (ImageNet). This t-test was done 
without the assumption that the variances are equal. 

Task Distribution Architecture T-Statistic p-value Degrees of Freedom 
Task 1 In-distribution R-152(2x) 14.60 4.509936e-09 12.16 
Task 1 In-distribution R-50(1x) 12.70 2.120881e-10 17.93 
Task 1 Out-of-distribution R-152(2x) 6.89 2.967478e-06 16.64 
Task 1 Out-of-distribution R-50(1x) 10.51 4.458786e-09 17.86 
Task 2 In-distribution R-152(2x) 5.10 8.239890e-05 17.48 
Task 2 In-distribution R-50(1x) 23.57 6.420586e-13 14.42 
Task 2 Out-of-distribution Dataset 1 (R-152(2x)) 1.47 1.609929e-01 16.13 
Task 2 Out-of-distribution Dataset 1 (R-50(1x)) 15.63 1.932572e-10 14.42 
Task 2 Out-of-distribution Dataset 2 (R-152(2x)) 5.18 6.678261e-05 17.63 
Task 2 Out-of-distribution Dataset 2 (R-50(1x)) 9.97 1.046290e-08 17.79 
Task 3 In-distribution R-152(2x) 33.52 7.022141e-17 16.87 
Task 3 In-distribution R-50(1x) 87.58 4.931182e-18 11.85 
Task 3 Out-of-distribution R-152(2x) 7.09 7.861702e-06 13.08 
Task 3 Out-of-distribution R-50(1x) 53.01 4.713106e-14 10.46 
Task 4 In-distribution R-50(1x) 19.97 2.152548e-06 5.56 
Task 4 Out-of-distribution Dataset 1 (R-50(1x)) 115.92 1.737752e-07 3.55 
Task 4 Out-of-distribution Dataset 2 (R-50(1x)) 12.32 3.173486e-04 3.84 
Task 5 In-distribution R-50(1x) 34.87 2.018287e-06 4.28 
Task 5 Out-of-distribution R-50(1x) 19.40 9.161187e-05 3.59 
Task 6 In-distribution R-152(2x) 7.77 2.269294e-06 13.64 
Task 6 In-distribution R-50(1x) 4.29 4.640856e-04 17.51 
Task 6 Out-of-distribution R-152(2x) 15.93 1.118564e-10 14.70 
Task 6 Out-of-distribution R-50(1x) 5.61 3.515448e-05 16.49 
 

 

  



 

   

 

Supplementary Table 25 | Self-Training Statistics The table contains the corresponding two-sided t-test 
statistics for Supplementary Fig. 7, specifically the metrics produced for REMEDIS vs. strong supervised 
baseline (JFT) and standard supervised baseline (ImageNet) further improved using the self-training 
strategy. This t-test was done without the assumption that the variances are equal. 

Distribution Architecture Comparison Method T-Statistic p-value Degrees of 
Freedom 

In-distribution R-152(2x) Baseline (ImageNet) + 
Self-training 

20.11 3.165953e-12 14.93 

In-distribution R-50(1x) Baseline (ImageNet) + 
Self-training 

26.10 1.893045e-15 17.48 

In-distribution R-152(2x) Baseline (JFT) + Self-
training 

3.83 1.242247e-03 17.74 

In-distribution R-50(1x) Baseline (JFT) + self-
training 

9.22 2.136911e-07 14.30 

Out-of-distribution R-152(2x) Baseline (ImageNet) + 
Self-training 

11.24 1.445689e-09 17.98 

Out-of-distribution R-50(1x) Baseline (ImageNet) + 
Self-training 

23.11 7.005811e-12 12.90 

Out-of-distribution R-152(2x) Baseline (JFT) + Self-
training 

2.54 2.067761e-02 17.92 

Out-of-distribution R-50(1x) Baseline (JFT) + Self-
training 

9.00 3.058183e-07 14.19 

 

  



 

   

 

Supplementary Table 26 | Data Efficiency Statistics. The table contains the corresponding two-sided t-
test statistics for Supplementary Fig. 18, specifically the metrics produced for REMEDIS vs. the Supervised 
Baseline (JFT). This t-test was done without the assumption that the variances are equal. 

Task Architecture Data Percentage T-Statistic p-value Degrees of Freedom 
Task 1 R-152(2x) 0 2.76 1.331786e-02 16.98 
Task 1 R-152(2x) 20 3.63 1.933656e-03 17.92 
Task 1 R-152(2x) 50 12.77 2.331362e-10 17.68 
Task 1 R-152(2x) 100 17.72 7.793245e-13 17.99 
Task 1 R-50(1x) 0 7.97 2.626604e-07 17.98 
Task 1 R-50(1x) 10 2.18 4.994976e-02 11.99 
Task 1 R-50(1x) 20 7.86 3.178482e-07 17.97 
Task 1 R-50(1x) 50 18.86 8.870438e-11 12.91 
Task 1 R-50(1x) 100 26.29 7.120434e-14 14.86 
Task 2 R-152(2x) 0 6.27 4.792115e-05 11.61 
Task 2 R-152(2x) 20 4.69 3.102928e-04 14.61 
Task 2 R-152(2x) 50 4.40 3.894299e-04 17.09 
Task 2 R-152(2x) 100 8.21 1.751132e-07 17.92 
Task 2 R-50(1x) 0 4.24 4.932287e-04 17.93 
Task 2 R-50(1x) 10 5.77 3.875014e-05 14.82 
Task 2 R-50(1x) 20 4.85 3.352278e-04 12.78 
Task 2 R-50(1x) 50 11.09 5.125399e-09 16.33 
Task 2 R-50(1x) 100 10.71 3.319600e-09 17.86 
Task 3 R-152(2x) 0 6.75 7.829244e-06 14.47 
Task 3 R-152(2x) 20 12.56 5.229848e-09 14.00 
Task 3 R-152(2x) 50 17.66 1.508450e-10 13.16 
Task 3 R-152(2x) 100 12.34 4.003740e-07 9.41 
Task 3 R-50(1x) 0 9.19 5.085610e-06 9.46 
Task 3 R-50(1x) 20 8.08 2.927787e-05 8.47 
Task 3 R-50(1x) 50 6.95 7.986308e-05 8.69 
Task 3 R-50(1x) 100 9.26 7.933072e-06 8.80 
Task 4 R-50(1x) 0 154.09 1.267567e-10 5.14 
Task 4 R-50(1x) 20 11.76 3.351396e-06 7.72 
Task 4 R-50(1x) 50 14.39 5.197559e-08 10.00 
Task 4 R-50(1x) 100 13.23 9.434235e-06 6.16 
Task 5 R-50(1x) 10 2.50 4.056904e-02 7.08 
Task 5 R-50(1x) 20 5.90 1.593510e-04 9.88 
Task 5 R-50(1x) 50 7.92 1.644582e-05 9.59 
Task 5 R-50(1x) 100 10.58 1.012535e-07 12.89 
Task 6 R-152(2x) 0 7.24 6.630100e-06 12.99 
Task 6 R-152(2x) 20 11.68 1.294562e-09 17.24 
Task 6 R-152(2x) 50 10.88 2.767563e-09 17.77 
Task 6 R-152(2x) 100 11.77 1.061911e-08 14.15 
Task 6 R-50(1x) 0 5.87 1.624941e-05 17.61 
Task 6 R-50(1x) 20 7.68 6.774580e-07 16.82 
Task 6 R-50(1x) 50 7.66 6.151014e-07 17.17 
Task 6 R-50(1x) 100 23.96 4.955856e-15 17.87 
  



 

   

 

Supplementary Table 27 | Data Efficiency Statistics. The table contains the corresponding two-sided t-
test statistics for Supplementary Fig. 19, specifically the metrics produced for REMEDIS vs. the Supervised 
Baseline (ImageNet). This t-test was done without the assumption that the variances are equal. 
 
Task Architecture Data Percentage T-Statistic p-value Degrees of Freedom 
Task 1 R-152(2x) 0 6.89 2.967478e-06 16.64 
Task 1 R-152(2x) 20 3.65 1.907543e-03 17.61 
Task 1 R-152(2x) 50 13.12 1.832681e-10 17.43 
Task 1 R-152(2x) 100 23.52 7.950471e-15 17.75 
Task 1 R-50(1x) 0 10.51 4.458786e-09 17.86 
Task 1 R-50(1x) 20 5.93 1.300896e-05 17.96 
Task 1 R-50(1x) 50 27.75 2.010226e-14 15.18 
Task 1 R-50(1x) 100 26.63 5.431880e-15 16.50 
Task 2 R-152(2x) 0 1.47 1.609929e-01 16.13 
Task 2 R-152(2x) 20 8.16 8.407498e-07 14.52 
Task 2 R-152(2x) 50 5.97 1.253138e-05 17.85 
Task 2 R-152(2x) 100 9.66 1.970495e-08 17.49 
Task 2 R-50(1x) 0 15.63 1.932572e-10 14.42 

Task 2 R-50(1x) 20 8.17 2.718045e-05 8.45 
Task 2 R-50(1x) 50 9.98 3.059094e-08 15.85 
Task 2 R-50(1x) 100 11.16 1.388359e-07 11.69 
Task 3 R-152(2x) 0 7.09 7.861702e-06 13.08 
Task 3 R-152(2x) 20 18.57 7.939195e-09 9.57 
Task 3 R-152(2x) 50 7.31 6.422479e-04 5.19 
Task 3 R-152(2x) 100 7.73 1.315057e-02 2.16 
Task 3 R-50(1x) 0 53.01 4.713106e-14 10.46 
Task 3 R-50(1x) 20 13.78 3.765202e-10 15.61 
Task 3 R-50(1x) 50 21.43 2.470986e-10 11.02 
Task 3 R-50(1x) 100 18.36 1.472381e-08 9.20 
Task 4 R-50(1x) 0 115.92 1.737752e-07 3.55 
Task 4 R-50(1x) 20 18.89 3.125792e-06 5.52 
Task 4 R-50(1x) 50 16.96 4.186965e-05 4.30 
Task 4 R-50(1x) 100 20.71 2.223103e-05 4.19 
Task 5 R-50(1x) 0 4.05 6.974446e-03 5.91 
Task 5 R-50(1x) 20 8.73 1.006661e-05 9.12 
Task 5 R-50(1x) 50 10.91 1.699557e-07 11.74 
Task 5 R-50(1x) 100 18.17 4.321376e-12 15.97 
Task 6 R-152(2x) 0 15.93 1.118564e-10 14.70 
Task 6 R-152(2x) 20 11.85 6.268180e-10 17.98 
Task 6 R-152(2x) 50 8.24 6.353943e-07 14.86 
Task 6 R-152(2x) 100 20.90 2.851323e-13 16.44 
Task 6 R-50(1x) 0 5.61 3.515448e-05 16.49 
Task 6 R-50(1x) 20 8.36 1.530384e-07 17.62 
Task 6 R-50(1x) 50 10.50 4.249521e-09 17.97 
Task 6 R-50(1x) 100 19.89 4.476769e-11 12.92 
 

  



 

   

 

Supplementary Table 28 | Data Efficiency Statistics. The table contains the corresponding two-sided t-
test statistics for Supplementary Fig. 12, specifically the metrics produced for the MoCo variant of REMEDIS 
vs. the Supervised Baseline (JFT). This t-test was done without the assumption that the variances are equal. 

Task Architecture Data Percentage T-Statistic ρ-value Degrees of Freedom 
Task 1 R-152(2x) 0 4.76 1.618803e-04 17.70 
Task 1 R-152(2x) 10 8.90 6.387647e-08 17.57 
Task 1 R-152(2x) 20 10.83 6.111205e-09 16.60 
Task 1 R-152(2x) 50 20.14 2.002568e-13 17.25 
Task 1 R-152(2x) 100 14.09 6.071464e-10 14.72 
Task 1 R-50(1x) 0 3.82 1.824086e-03 14.24 
Task 1 R-50(1x) 10 3.44 2.974323e-03 17.58 
Task 1 R-50(1x) 20 10.85 2.714267e-09 17.87 
Task 1 R-50(1x) 50 18.12 7.510653e-13 17.65 
Task 1 R-50(1x) 100 31.26 1.572047e-16 17.10 
Task 2 R-152(2x) 0 3.56 6.465063e-03 8.66 
Task 2 R-152(2x) 10 6.61 1.614792e-05 13.10 
Task 2 R-152(2x) 20 5.34 1.100929e-04 13.80 
Task 2 R-152(2x) 50 5.79 4.804796e-05 13.92 
Task 2 R-152(2x) 100 9.72 3.987116e-07 12.30 
Task 2 R-50(1x) 0 0.66 5.213446e-01 10.39 
Task 2 R-50(1x) 10 4.58 4.530154e-04 13.73 
Task 2 R-50(1x) 20 3.85 1.296325e-03 17.00 
Task 2 R-50(1x) 50 8.20 4.806925e-07 15.60 
Task 2 R-50(1x) 100 7.24 1.873378e-05 10.77 
 

  



 

   

 

Supplementary Table 29 | In-distribution Best-vs-Best Statistics. The table contains the corresponding 
two-sided t-test statistics for Fig. 3, specifically the metrics produced for REMEDIS vs. the Baseline 
Supervised (JFT) for in-distribution. This t-test was done without the assumption that the variances are 
equal. 

Task T-Statistic p-value Degrees of Freedom 
Task 1 2.74 1.333964e-02 17.97 
Task 2 11.91 8.600512e-08 11.42 
Task 3 31.20 2.842220e-14 13.91 
Task 4 12.74 8.643737e-04 3.11 
Task 5 71.75 1.512674e-09 5.62 
Task 6 8.71 8.879738e-08 17.53 
 

  



 

   

 

Supplementary Table 30 | In-distribution Best-vs-Best Statistics. The table contains the corresponding 
two-sided t-test statistics for Fig. 3, specifically the metrics produced for REMEDIS vs. the Baseline 
Supervised (ImageNet) for in-distribution. This t-test was done without the assumption that the variances are 
equal. 

Task T-Statistic p-value Degrees of Freedom 
Task 1 9.56 5.179113e-07 12.18 
Task 2 5.10 8.239890e-05 17.48 
Task 3 33.52 7.022141e-17 16.87 
Task 4 19.97 2.152548e-06 5.56 
Task 5 34.87 2.018287e-06 4.28 
Task 6 9.31 1.612389e-07 14.57 
 

  



 

   

 

Supplementary Table 31 | Out-of-distribution Best-vs-Best Statistics. The table contains the 
corresponding two-sided t-test statistics for Fig. 3, specifically the metrics produced for REMEDIS vs. the 
Baseline Supervised (JFT) for out-of-distribution. This t-test was done without the assumption that the 
variances are equal. 

Task Percentage T-Statistic p-value Degrees of Freedom 
Task 1 0 2.44 2.661145e-02 15.99 
Task 1 10 3.80 1.334593e-03 17.76 
Task 1 20 4.29 5.605730e-04 15.99 
Task 1 50 12.77 2.331362e-10 17.68 
Task 1 100 17.72 7.793245e-13 17.99 
Task 2 0 4.60 4.244625e-04 13.83 
Task 2 10 8.47 1.155962e-05 9.27 
Task 2 20 6.28 6.872213e-05 10.67 
Task 2 50 12.92 7.661154e-10 15.88 
Task 2 100 14.78 1.658754e-09 13.00 
Task 3 0 6.75 7.829244e-06 14.47 
Task 3 10 8.06 6.161851e-06 10.98 
Task 3 20 12.56 5.229848e-09 14.00 
Task 3 50 17.66 1.508450e-10 13.16 
Task 3 100 12.34 4.003740e-07 9.41 
Task 4 0 154.09 1.267567e-10 5.14 
Task 4 10 7.44 7.674238e-05 7.93 
Task 4 20 11.76 3.351396e-06 7.72 
Task 4 50 14.39 5.197559e-08 10.00 
Task 4 100 13.23 9.434235e-06 6.16 
Task 5 0 23.65 4.808754e-06 4.67 
Task 5 10 2.50 4.056904e-02 7.08 
Task 5 20 5.90 1.593510e-04 9.88 
Task 5 50 7.92 1.644582e-05 9.59 
Task 5 100 10.58 1.012535e-07 12.89 
Task 6 0 7.24 6.630100e-06 12.99 
Task 6 10 7.66 4.733065e-07 17.89 
Task 6 20 11.68 1.294562e-09 17.24 
Task 6 50 10.88 2.767563e-09 17.77 
Task 6 100 11.77 1.061911e-08 14.15 
 
 

  



 

   

 

Supplementary Table 32 | Out-of-distribution Best-vs-Best Statistics. The table contains the 
corresponding two-sided t-test statistics for Fig. 3, specifically the metrics produced for REMEDIS vs. the 
Baseline Supervised (ImageNet) for out-of-distribution. This t-test was done without the assumption that the 
variances are equal. 

Task Percentage T-Statistic p-value Degrees of Freedom 
Task 1 0 7.02 2.936831e-06 15.98 
Task 1 10 4.20 6.026055e-04 16.92 
Task 1 20 4.30 5.412103e-04 16.15 
Task 1 50 13.12 1.832681e-10 17.43 
Task 1 100 23.52 7.950471e-15 17.75 
Task 2 0 15.63 1.932572e-10 14.42 
Task 2 10 10.63 3.205746e-06 8.56 
Task 2 20 10.32 3.102720e-05 6.43 
Task 2 50 12.60 6.866748e-09 13.61 
Task 2 100 16.99 1.627972e-08 9.66 
Task 3 0 7.67 4.755322e-06 12.38 
Task 3 10 4.91 1.384528e-02 3.20 
Task 3 20 18.57 7.939195e-09 9.57 
Task 3 50 5.49 1.104863e-02 3.09 
Task 3 100 7.73 1.315057e-02 2.16 
Task 4 0 115.92 1.737752e-07 3.55 
Task 4 10 21.63 9.742293e-06 4.52 
Task 4 20 18.89 3.125792e-06 5.52 
Task 4 50 16.96 4.186965e-05 4.30 
Task 4 100 20.71 2.223103e-05 4.19 
Task 5 0 19.40 9.161187e-05 3.59 
Task 5 10 4.05 6.974446e-03 5.91 
Task 5 20 8.73 1.006661e-05 9.12 
Task 5 50 10.91 1.699557e-07 11.74 
Task 5 100 18.17 4.321376e-12 15.97 
Task 6 0 15.93 1.118564e-10 14.70 
Task 6 10 9.09 5.692101e-08 17.16 
Task 6 20 11.85 6.268180e-10 17.98 
Task 6 50 8.24 6.353943e-07 14.86 
Task 6 100 20.90 2.851323e-13 16.44 
 


