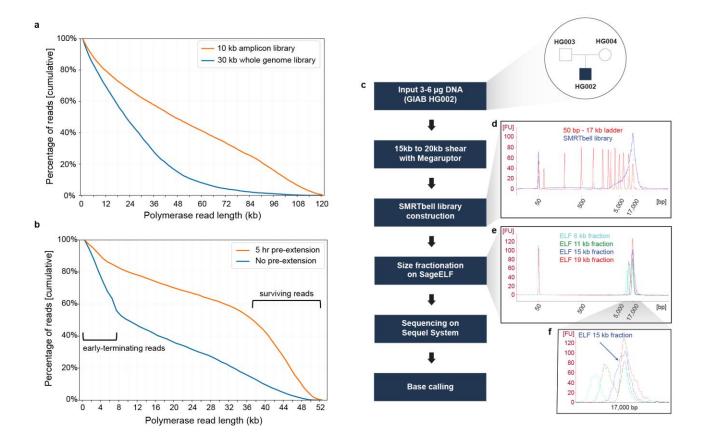
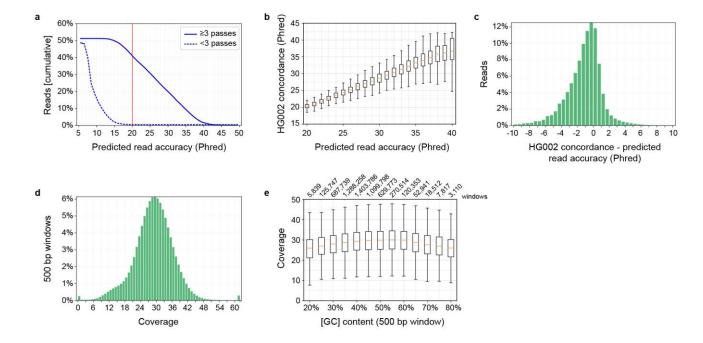


SUPPLEMENTARY INFORMATION

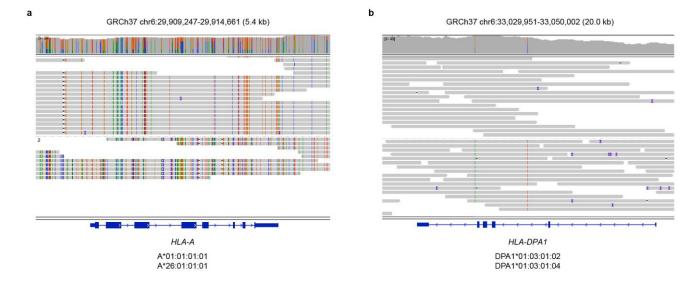

https://doi.org/10.1038/s41587-019-0217-9

In the format provided by the authors and unedited.

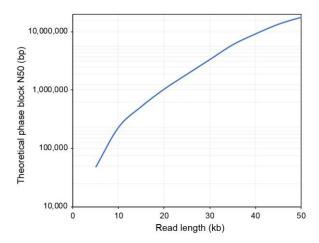
Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome


Aaron M. Wenger 1,14, Paul Peluso 1,14, William J. Rowell 1, Pi-Chuan Chang 2, Richard J. Hall, Gregory T. Concepcion 1, Jana Ebler 3,4,5, Arkarachai Fungtammasan 6, Alexey Kolesnikov 2, Nathan D. Olson 7, Armin Töpfer 1, Michael Alonge 8, Medhat Mahmoud 9, Yufeng Qian 1, Chen-Shan Chin 6, Adam M. Phillippy 10, Michael C. Schatz 8, Gene Myers 11, Mark A. DePristo 2, Jue Ruan 12, Tobias Marschall 3,4, Fritz J. Sedlazeck 9, Justin M. Zook 7, Heng Li 13, Sergey Koren 10, Andrew Carroll 2, David R. Rank 1,4 and Michael W. Hunkapiller 1,4

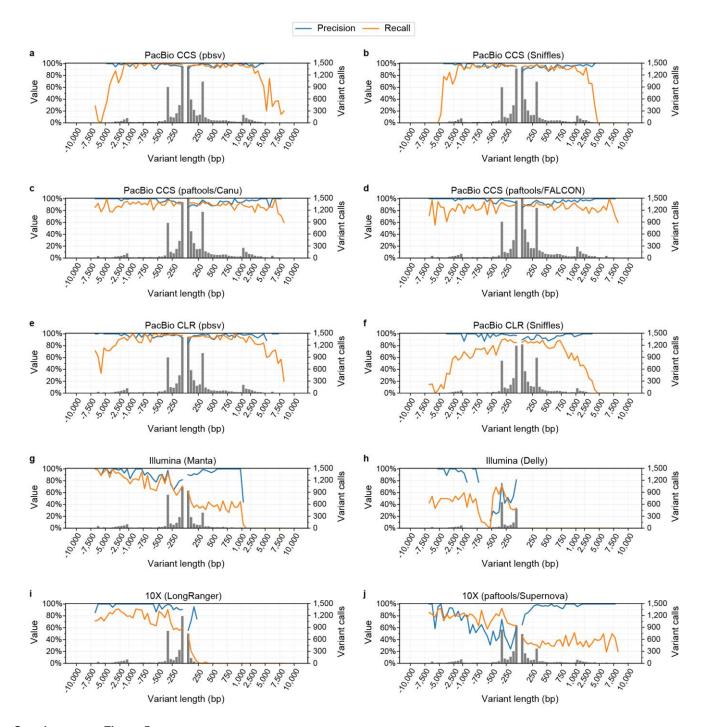
Pacific Biosciences, Menlo Park, CA, USA. ²Google Inc., Mountain View, CA, USA. ³Center for Bioinformatics, Saarland University, Saarbrücken, Germany. ⁴Max Planck Institute for Informatics, Saarbrücken, Germany. ⁵Graduate School of Computer Science, Saarland University, Saarbrücken, Germany. ⁶DNAnexus, Mountain View, CA, USA. ⁷National Institute of Standards and Technology, Gaithersburg, MD, USA. ⁸Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. ⁹Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA. ¹⁰Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA. ¹¹Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. ¹²Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China. ¹³Dana-Farber Cancer Institute, Boston, MA, USA. ¹⁴These authors contributed equally: Aaron M. Wenger, Paul Peluso. *e-mail: drank@pacb.com; mhunkapiller@pacb.com


CCS protocol development.

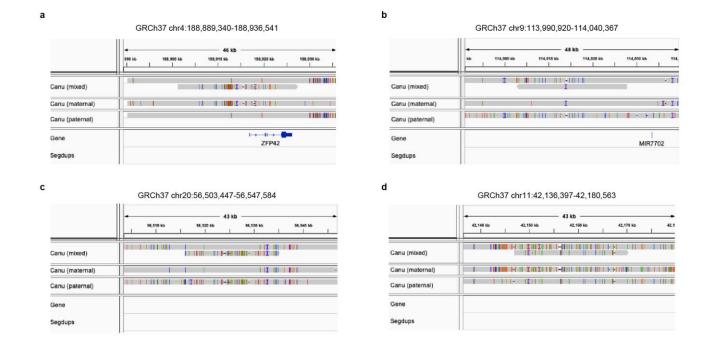
(a) Distribution of polymerase read lengths for a 10 kb *E.coli* amplicon library and 30 kb *E. coli* whole genome library sequenced for 10 hours with identical conditions. (b) Distribution of polymerase read lengths for an 8 kb fragment from a BsaAl-digested lambda library sequenced for 4 hours with (5 hour) and without (0 hour) pre-extension to reduce "early-terminating" reads and select surviving polymerase-template complexes. (c) Sample preparation and sequencing workflow. (d) BioAnalyzer trace for the SMRTbell library, sheared to target 15-20 kb fragments. "FU" is fluorescence units. (e) BioAnalyzer trace for ELF fractions of the SMRTbell library. (f) The fraction centered around 15 kb was used for sequencing.


CCS read accuracy and coverage uniformity.

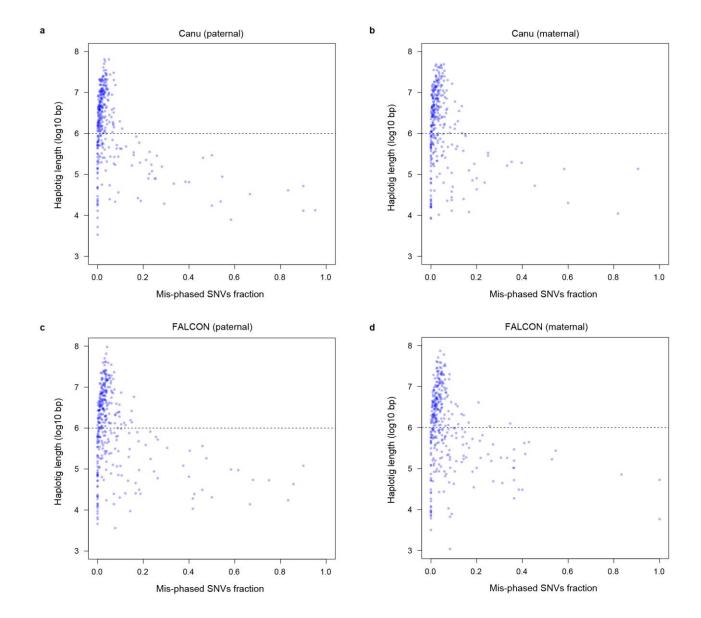
(a) Distribution of accuracy predicted by the CCS algorithm for reads with fewer than 3 passes and at least 3 passes, which we consider a minimum pass count for CCS. Approximately half of reads have 3 or more passes; among those nearly all achieve Q20 predicted accuracy. (b) Distributions of HG002 concordance, measured against the GIAB benchmark, at levels of predicted read accuracy (R² of median = 0.9980). Orange lines are medians; boxes extend from lower to upper quartiles; whiskers extend 1.5 interquartile distances; n=1,000 reads at each predicted accuracy. (c) Distribution of difference between concordance and predicted read accuracy shows that the prediction is well-calibrated to the empirical concordance. (d) Distribution of coverage in 500 bp windows at non-gap positions in GRCh37. (e) Coverage distributions at levels of [GC] content, measured in 500 bp windows. Orange lines are medians; boxes extend from lower to upper quartiles; whiskers extend 1.5 interquartile distances; n per distribution is listed above the plot.


CCS read pileups at HLA genes.

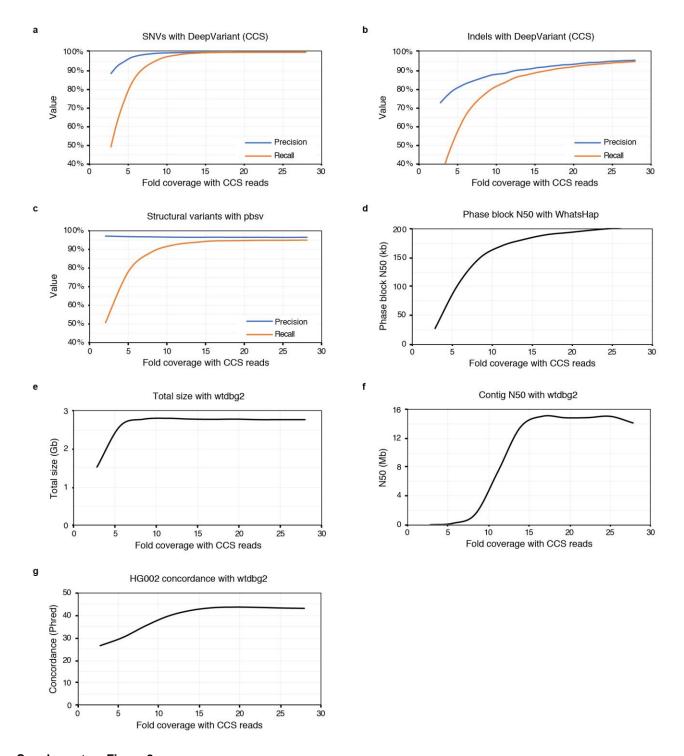
The 13.5 kb CCS reads provide phasing and full four-field resolution of HLA class I and II genes (Methods Mol. Biol. 1802, 135-153, 2018), including (a) *HLA-A* for which HG002 has alleles that differ in the first field, and (b) *HLA-DPA1* for which HG002 has alleles that differ only in the fourth field from two intronic single nucleotide polymorphisms across 20 kb.


Theoretical phase block N50 in HG002 at different read lengths.

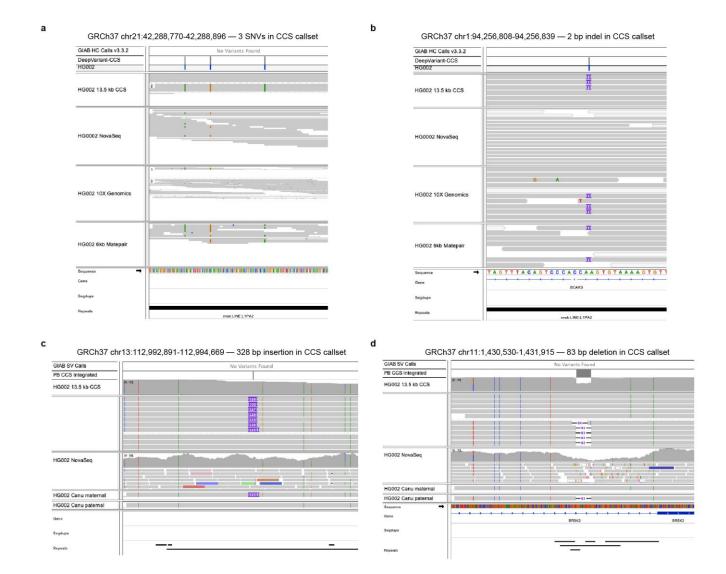
To model the phase blocks achievable with a given read length, cuts were introduced between heterozygous variants in the GIAB triophased HG002 variant callset that are separated by more than the read length, which effectively assumes that adjacent heterozygous variants separated by less than the read length can be phased.


Structural variant calling performance.

Precision, recall, and number of variant calls in the GIAB benchmark regions for the PacBio CCS mapping-based variant callers (a) pbsv and (b) Sniffles; the PacBio CCS assembly-based callers (c) paftools/Canu (polished) and (d) paftools/FALCON (unpolished); the PacBio CLR mapping-based callers (e) pbsv and (f) Sniffles; the Illumina short-read callers (g) Manta and (h) Delly; and the 10X Genomics callers (i) LongRanger and (j) paftools/Supernova. Negative length indicates a deletion; positive length indicates an insertion. The histogram bin size is 50 bp for variants shorter than 1 kb, and 500 bp for variants >1 kb. Precision and recall are measured with Truvari against the GIAB benchmark.


Haplotype resolution in the Canu mixed assembly.

The Canu mixed assembly is larger than the haploid human genome size because it resolves some heterozygous loci into separate maternal and paternal haplotypes. (a) (b) Loci where the long primary contig matches the paternal haplotype and a smaller contig matches the maternal haplotype. (c) (d) Similar loci where the long primary contig matches the maternal haplotype and a smaller contig matches the paternal haplotype.


Mis-phasing analysis of parental assemblies.

Parent-specific heterozygous SNVs were identified in the GIAB benchmark callset. The "Mis-phased SNVs fraction" is the fraction of parent-specific SNVs from the wrong parent (e.g. [SNV_{pat}]/[SNV_{pat}+SNV_{mat}] in a maternal contig). No large contigs have a high misphased SNVs ratio, which suggests proper phasing of the (a) Canu paternal, (b) Canu maternal, (c) FALCON paternal, and (d) FALCON maternal assemblies.

Coverage titration for variant calling, phasing, and assembly.

Precision and recall for (a) SNVs and (b) indels called with DeepVariant (CCS), subsampling in steps of 3%. (c) Precision and recall for structural variants called with pbsv, subsampling in steps of 10%. (d) Phase block N50 for phasing of the 28-fold DeepVariant (CCS) callset with WhatsHap, subsampling in steps of 10%. Phasing performance is similar with a callset produced at matched coverage (not shown). *De novo* assembly (e) completeness measured as total assembly size, (f) contiguity measured as contig N50, and (g) correctness measured as concordance to the HG002 GIAB benchmark for wtdbg2 assembly, subsampling reads in steps of 10%.

Likely errors in the GIAB benchmark identified by CCS callsets.

Manual curation of discrepancies between the GIAB benchmark and CCS variant callsets identifies benchmark errors for all variant types that are correctable using the CCS variant callsets. Shown are four loci that the GIAB benchmark records as homozygous reference where CCS reads identify likely heterozygous variation: (a) Three SNVs supported by CCS reads and 6 kb matepair reads. (b) A 2 bp insertion supported by CCS reads, 10X Genomics reads, and 6 kb matepair reads. (c) A 328 bp insertion supported by CCS reads and assemblies. (d) An 83 bp deletion supported by CCS reads.

Selected insert size (kb)	Pre-extension time (hrs)	Collection time (hrs)	Average polymerase read length (kb)	Average CCS read length (kb)	Yield of CCS reads (Gb)	Average predicted CCS read accuracy (Phred)
10	4	20	64.9	9.6	2.3	25
* 15	12	24	100.3	13.5	2.3	27
18	12	30	115.0	17.4	2.1	25

Supplementary Table 1. CCS read yield and accuracy for different insert sizes. Run design and output for three size fractions of an HG002 library. The polymerase read is the full sequence of nucleotides detected for a circular SMRTbell template, which includes one or more passes of the template and intervening adapters. "*" Insert size selected for high-coverage sequencing.

	CCS reads					
Discordance	%	Frequency (1/bp)	Concor	dance		
Mismatch	3.4%	13,048	99.992%	(Q41)		
Non-homopolymer indel	4.6%	9,669	99.990%	(Q39)		
Non-homopolymer insertion	3.6%	12,359	99.991%	(Q41)		
Non-homopolymer deletion	1.0%	44,425	99.998%	(Q46)		
Homopolymer indel	92.0%	477	99.790%	(Q27)		
Homopolymer insertion	42.3%	1,037	99.903%	(Q30)		
Homopolymer deletion	49.7%	884	99.887%	(Q29)		
Total	100%	439	99.772%	(Q26)		

NGS	(2×151	bn	NovaSeq)	reads
1100	2 ~131	\mathbf{p}	NOVACEU	leaus

Discordance	%	Frequency (1/bp)	Concord	dance
Mismatch	99.1%	761	99.869%	(Q29)
Non-homopolymer indel	0.3%	241,876	99.999%	(Q54)
Non-homopolymer insertion	0.1%	884,457	99.999%	(Q59)
Non-homopolymer deletion	0.2%	332,920	99.999%	(Q55)
Homopolymer indel	0.6%	124,943	99.999%	(Q51)
Homopolymer insertion	0.1%	523,665	99.999%	(Q57)
Homopolymer deletion	0.5%	164,096	99.999%	(Q52)
Total	100%	748	99.866%	(Q29)

NGS (2×250 bp HiSeq 2500) reads

Discordance	%	Frequency (1/bp)	Concord	dance
Mismatch	99.0%	218	99.542%	(Q23)
Non-homopolymer indel	0.4%	53,619	99.998%	(Q47)
Non-homopolymer insertion	0.1%	216,562	99.999%	(Q53)
Non-homopolymer deletion	0.3%	71,264	99.999%	(Q49)
Homopolymer indel	0.6%	37,648	99.997%	(Q46)
Homopolymer insertion	0.2%	137,601	99.999%	(Q51)
Homopolymer deletion	0.4%	51,828	99.998%	(Q47)
Total	100%	216	99.537%	(Q23)

Supplementary Table 2. Discordances between read alignments and the HG002 GIAB benchmark for CCS and NGS reads. An indel is considered a homopolymer event if the inserted/deleted basepairs match either the preceding or following reference basepair. "Percentage" is over all discordances, by type. "Frequency" is the number of read basepairs between discordances. "Concordance" considers only discordances of the given type. The "Q" value is concordance in Phred scale.

			SNVs			Indels	
Platform	Variant caller (training model)	Precision	Recall	F1 ^	Precision	Recall	F1
Illumina (NovaSeq)	DeepVariant (Illumina model)	99.925%	99.940%	<u>99.933%</u>	<u>99.450%</u>	99.233%	<u>99.341%</u>
Illumina (NovaSeq)	GATK HaplotypeCaller (no filter)	99.824%	99.920%	99.872%	99.230%	98.898%	99.064%
PacBio (CCS)	DeepVariant (haplotype-sorted CCS model)	99.778%	99.937%	99.858%	96.860%	96.035%	96.446%
PacBio (CCS)	DeepVariant (CCS model)	99.807%	99.904%	99.855%	95.387%	94.501%	94.942%
PacBio (CCS)	DeepVariant (Illumina model)	99.533%	99.793%	99.663%	23.991%	81.692%	37.090%
PacBio (CCS)	GATK HaplotypeCaller (hard filter)	99.408%	99.531%	99.469%	77.137%	79.941%	78.514%

Supplementary Table 3. Performance of small variant calling with CCS reads on chromosome 20. DeepVariant models were not presented with chromosome 20 data before variant calling, so accuracy evaluations between GATK and DeepVariant are most comparable for chromosome 20. Bold indicates the highest value in each column. Underline indicates a value higher than the GATK HaplotypeCaller run on 30-fold Illumina NovaSeq reads. Coverage is 28-fold for PacBio CCS and 30-fold for Illumina NovaSeq. Callers are sorted ("^") based on F1 for SNVs.

GRCh37 chrom	Heterozygous variants	% phased	Phase blocks	Phase block N50 (bp)	Hamming error rate	Switch errors	Switch error rate
1	220,180	99.61%	1,585	225,534	1.53%	1,168	0.65%
2	212,809	99.62%	1,879	179,190	1.53%	373	0.21%
3	193,762	99.73%	1,312	259,761	1.63%	408	0.25%
4	199,451	99.70%	1,338	238,088	1.65%	547	0.33%
5	186,023	99.75%	1,115	277,697	1.06%	237	0.15%
6	177,458	99.71%	1,160	265,656	0.96%	303	0.20%
7	166,051	99.70%	1,048	246,748	2.23%	1,105	0.80%
8	153,941	99.71%	1,002	250,705	1.22%	322	0.25%
9	119,897	99.72%	778	207,951	1.30%	362	0.36%
10	141,433	99.72%	840	255,026	2.13%	344	0.29%
11	128,503	99.67%	948	203,073	1.24%	169	0.16%
12	135,470	99.72%	832	292,306	3.51%	229	0.20%
13	100,628	99.69%	638	244,289	2.19%	123	0.14%
14	93,645	99.68%	548	292,617	2.70%	520	0.66%
15	81,981	99.61%	609	188,168	0.71%	411	0.61%
16	87,697	99.71%	596	198,059	4.69%	455	0.63%
17	78,865	99.65%	569	209,363	3.06%	380	0.61%
18	74,575	99.68%	568	215,577	2.44%	95	0.15%
19	70,975	99.78%	345	283,264	2.17%	149	0.26%
20	61,413	99.65%	425	207,556	3.53%	165	0.33%
21	44,142	99.49%	257	178,353	4.29%	545	1.60%
22	38,604	99.71%	249	221,143	1.29%	87	0.28%
Autosomes	2,779,801	99.64%	19,215	206,063	1.91%	8,497	0.37%

Supplementary Table 4. WhatsHap phasing performance on DeepVariant (CCS) callset. WhatsHap provides highly complete phasing (99.64%) of heterozygous variants in the DeepVariant (CCS) callset that is concordant with the GIAB Trio/10X Genomics phasing benchmark set. Statistics are reported by WhatsHap with Hamming and switch error rates evaluated against the benchmark.

		All variants		Deletions		Insertions				
Platform	Caller	Prec.	Recall	F1 ^	Prec.	Recall	F1	Prec.	Recall	F1
PacBio (CCS)	Integrated	96.13%	95.99%	96.06%	97.66%	96.88%	97.27%	94.97%	95.30%	95.13%
PacBio (CCS)	pbsv	96.26%	94.93%	95.59%	96.71%	94.98%	95.84%	95.95%	94.89%	95.42%
PacBio (CLR)	pbsv	94.64%	94.48%	94.56%	96.70%	95.57%	96.13%	93.11%	93.64%	93.37%
PacBio (CCS)	Sniffles	94.28%	91.76%	93.01%	96.56%	92.19%	94.32%	92.59%	91.44%	92.01%
PacBio (CCS)	paftools/Canu †‡	93.16%	92.32%	92.74%	95.84%	92.76%	94.28%	91.48%	91.99%	91.73%
PacBio (CCS)	paftools/FALCON †	93.25%	89.14%	91.15%	95.99%	89.00%	92.36%	91.64%	89.25%	90.43%
PacBio (CLR)	Sniffles	95.66%	79.33%	86.73%	98.19%	80.07%	88.21%	93.80%	78.76%	85.62%
Illumina	Manta	85.34%	55.88%	67.53%	85.95%	76.90%	81.17%	92.12%	39.65%	55.44%
10X	paftools/Supernova	64.52%	52.74%	58.04%	55.37%	73.71%	63.24%	82.74%	36.57%	50.72%
10X	LongRanger	83.79%	39.83%	53.99%	94.66%	70.18%	80.60%	59.39%	16.41%	25.71%
Illumina	Delly	65.92%	19.90%	30.58%	65.92%	45.70%	53.98%	0.00%	0.00%	0.00%

Supplementary Table 5. Structural variant calling performance. Precision and recall are measured with Truvari against the GIAB benchmark. **Bold** indicates the highest value in each column; callers are sorted ("^") based on F1 for all variants. † union of maternal and paternal assemblies; ‡ polished with Arrow.

		CPU core hours				
Haplotype	Assembler	Trio binning	Assembly	Arrow polishing		
Mixed	Canu	n/a	2,136	-		
Mixed	FALCON	n/a	2,650	-		
Mixed	wtdbg2	n/a	380	-		
Maternal	Canu	350	751	71,226*		
Maternal	FALCON	350	1,683	26,137		
Maternal	wtdbg2	350	182	-		
Paternal	Canu	350	841	70,069*		
Paternal	FALCON	350	1,568	26,183		
Paternal	wtdbg2	350	187	-		

Supplementary Table 6. CPU core hours for *de novo* assembly and polishing. The CPU core hours required for trio binning, assembly, and polishing were recorded using the Unix time command. Assembly time includes read correction built into the assembler but excludes the total upfront CCS read generation (118,365 CPU core hours). The assemblers were run by different groups on different hardware, and thus times are not directly comparable. "*" Arrow polishing was run for one round on FALCON and two rounds on Canu; "n/a" = not applicable; "-" = not done

	% reads assigned to haplotype					
k-mer (bp)	Maternal	Paternal	Unassigned			
21	35.3%	33.6%	31.1%			
51	40.4%	38.1%	21.5%			
91	40.5%	38.7%	20.8%			

Supplementary Table 7. CCS read classification by trio binning. The percentage of CCS reads assigned to the maternal and paternal haplotype by k-mer size used in trio binning. CCS reads with an insufficient number of distinguishing k-mers are assigned to the "unassigned" haplotype, which includes reads from homozygous regions.

NCBI accession	Platform	Sample	Assembler + polish	Concordance ^
GCA_004796285.1	PacBio (CCS)	HG002 (pat.)	Canu + Arrow	99.9983% (Q47.7)
GCA_004796485.1	PacBio (CCS)	HG002 (mat.)	Canu + Arrow	99.9981% (Q47.2)
-	PacBio (CCS)	HG002	wtdbg2	99.9965% (Q44.6)
GCA_001542345.1	PacBio (CLR)	HG002	PBcR + Quiver	99.9900% (Q40.0)
GCA_002077035.3	PacBio (CLR)	HG001	FALCON + Quiver	99.9893% (Q39.7)
GCA_900232925.2	ONT + Illumina	HG001	Canu + Nanopolish×2, Pilon×2, Racon×2	99.8694% (Q28.8)
-	ONT	HG001	Canu + Nanopolish×2	99.6566% (Q24.6)

Supplementary Table 8. Reference concordance of assemblies from different platforms. Concordance is measured against the GIAB HG002 benchmark. The three CCS read assemblies have higher concordance than accessioned assemblies provided with PacBio continuous long reads (CLR) or Oxford Nanopore read (ONT). ONT HG001 assembly is from

https://obj.umiacs.umd.edu/marbl_publications/triobinning/albacore_canu_nanopolish2.f asta or https://bit.ly/2HBOjyq. "pat.": paternal, "mat.": maternal.

		Segdups				
Haplotype	Assembler	Spanned (Mb)	Not spanned (Mb)			
Mixed	Canu	63.6	111.8			
Mixed	FALCON	46.1	129.3			
Mixed	wtdbg2	26.4	149.0			
Maternal	Canu	60.2	115.2			
Maternal	FALCON	43.2	132.2			
Maternal	wtdbg2	28.9	146.5			
Paternal	Canu	60.0	115.4			
Paternal	FALCON	41.7	133.7			
Paternal	wtdbg2	27.2	148.2			

Supplementary Table 9. Assembly of segmental duplications. A segmental duplication in GRCh38 is considered spanned by an assembly if a contig alignment extends fully through the segmental duplication and into at least 50 kb of unique sequence on each flank as reported by segDupPlots (https://github.com/mvollger/segDupPlots) (Nat. Methods 16, 88-94, 2019).

			Homopolymer	ĺ	l		
	Variant	Repeat family	length (bp)				
Discrepancy	type	(if ≥1 kb)	(if ≥6 bp)	Correct call	Chr	Position	Variant
AM	INDEL		19	GIAB	2	9,591,845	CT/C
AM AM	INDEL			GIAB	2	232,051,483	GCA/GCATCATGGAGAATGGGACATCTC
	INDEL			GIAB		37,083,407	G/GA
AM	INDEL	1.4540		CCS	4	11,468,804	CACACATATAT/C
AM	INDEL	L1PA2	M 47	CCS	5	42,740,225	CT/C
AM	INDEL		Nearby 17	GIAB GIAB	6	41,984,320	ACTAT/A TAAAA/T
AM AM	INDEL INDEL		16 13	GIAB	8	73,675,279	G/GA
AM	INDEL		16		13 15	76,646,445	
			13	GIAB		44,350,983	C/CA
AM	INDEL SNP	HERVH-int	13	GIAB	19 2	1,586,670 5,143,996	A/ATTT G/A
AM AM	SNP	HERVH-IIIL			2		A/G
	SNP	L1PA2		GIAB CCS		230,174,543	T/C
AM	SNP	LIPAZ	8	GIAB	4	165,276,021	A/C
AM			8	GIAB	5	16,287,108	
AM	SNP SNP			GIAB	11	41,384,344	C/T
AM AM	SNP		20 9	GIAB	12 13	51,793,781 34,840,815	A/C G/T
		14040	9				
AM	SNP	L1PA3	12	CCS	13	48,291,499	A/C
AM AM	SNP SNP		12	GIAB GIAB	13	71,512,745 25.668.597	A/T G/A
FN				GIAB	21		
FN	INDEL INDEL		12	GIAB	1 2	162,491,859 152,262,374	A/ATGTCTAG G/GTT
FN	INDEL		14	GIAB	2	236,062,930	G/GTT
FN	INDEL	L1PA2	9	GIAB	3		
FN	INDEL	LIPAZ	18	GIAB	4	107,982,543 149,672,221	AT/A A/ATT
FN	INDEL		10	CCS	8	5,930,728	TACAC/T
FN	INDEL		6	GIAB	10	29,087,199	T/TCC
FN	INDEL		U	GIAB	15	26,120,981	C/CTTACACTGGGCTTTTTGTAAGGA
FN	INDEL			CCS	15	41,943,823	T/TCCTCTTCTCTCCTCTCC
FN	INDEL		15	GIAB	17	5,198,683	C/CA
FN	SNP		16	GIAB	5	55,201,041	A/G
FN	SNP		10	GIAB	6	8,353,625	C/T
FN	SNP			CCS	6	9,737,425	T/C
FN	SNP			GIAB	6	57,283,620	T/C
FN	SNP		13	GIAB	7	135,981,582	T/A
FN	SNP		10	CCS	7	157,385,671	A/G
FN	SNP			GIAB	9	117,917,190	A/C
FN	SNP		13	GIAB	9	129,471,234	T/A
FN	SNP		5	CCS	17	32,064,214	A/G
FN	SNP		25	GIAB	17	68,021,050	T/A
FP	INDEL	L1PA2		CCS	1	94,256,825	A/AAC
FP	INDEL	L1HS		ccs	2	153,864,971	AT/A
FP	INDEL	L1M2	13	GIAB	3	97,014,398	AT/A
FP	INDEL	L1HS	7	CCS	4	112,819,087	GA/G
FP	INDEL	L1PA2	•	ccs	4	165,026,074	A/AG
FP	INDEL		10	GIAB	6	64,897,720	A/AT
FP	INDEL		15	GIAB	7	38,338,238	C/CA
FP	INDEL			GIAB	8	132,575,025	C/CAAAAAAAA
FP	INDEL	L1P1		CCS	11	23,338,682	C/CT
FP	INDEL		20	GIAB	11	61,993,476	CA/C
FP	SNP	L1HS		CCS	1	35,034,071	T/C
FP	SNP	L1HS		ccs	3	79,181,734	C/T
FP	SNP		Nearby 8	GIAB	4	55,520,593	G/A
FP	SNP	L1HS	7	CCS	4	94,532,444	T/G
FP	SNP	ALR/Alpha		ccs	8	46,873,565	C/T
FP	SNP		11	GIAB	9	6,900,971	C/T
FP	SNP	L1PA2		CCS	9	22,350,168	A/C
FP	SNP		13	GIAB	20	1,347,896	A/G
FP	SNP		12	GIAB	20	4,159,335	C/T
FP	SNP	L1PA2		CCS	21	42,288,851	C/A
		•					

Supplementary Table 10. Manual curation of small variant discrepancies between CCS callset and GIAB benchmark. For the "Discrepancy" column, "AM" means genotype difference, "FN" means false negative (in benchmark but not callset), and "FP" means false positive (in callset but not benchmark). "Repeat family" column is from the RepeatMasker track from the UCSC Genome Browser. "Correct call" column is "GIAB" when the benchmark was deemed correct by expert curators, and "CCS" when the CCS callset was deemed correct. Rows where the correct call is from the CCS callset are colored blue.

Discrepancy Variant type Length (bp) length (if ≥100 bp) Simple repeat period (bp) Correct call Chr Position FN DEL -32,196 GIAB 1 152,555 FN DEL -2,269 GIAB 2 159,958	,543
FN DEL -32,196 GIAB 1 152,555	,543
FN DEI -2 269 GIAR 2 150 958	799
FN DEL -49,058 172 71 - 4 34,779	,881
FN DEL -127 466 127 GIAB 4 123,733	,539
FN DEL -357 1,921 20 GIAB 13 30,131	,788
FN DEL -108 589 54 GIAB 13 114,841	,327
FN DEL -52 GIAB 16 85,800	,468
FN DEL -565 1,403 561 - 19 4,884	,873
FN DEL -55 GIAB 19 57,683	,315
FN DEL -120 917 40 GIAB 20 62,510	,913
FN INS 62 GIAB 2 228,113	,946
FN INS 104 163 27 GIAB 3 66,992	,107
FN INS 52 GIAB 3 172,678	,665
FN INS 125 230 23 GIAB 5 105,107	,607
FN INS 727 651 65 - 6 40,459	,830
FN INS 172 815 4 - 9 135,394	,538
FN INS 6,179 GIAB 12 71,053	,961
FN INS 51 125 3 GIAB 13 29,161	,602
FN INS 3,268 GIAB 14 67,862	,850
FN INS 58 472 33 CCS 19 14,488	,489
FP DEL -1,432 - 1 108,735	,819
FP DEL -50 CCS 2 65939	,406
FP DEL -80 1,274 16 CCS 6 167,162	,349
	,149
FP DEL -65 632 168 - 10 134,253	,963
FP DEL -83 333 83 CCS 11 1,431	,223
FP DEL -74 1,674 74 CCS 12 6,038	,958
FP DEL -128 - 13 107,435	,844
FP DEL -63 1,227 22 GIAB 17 230	,498
FP DEL -300 1,923 60 GIAB 18 77,569	,248
FP INS 103 CCS 4 141,283	,453
FP INS 52 588 26 CCS 4 190,329	,327
FP INS 202 893 18 - 8 146,172	,196
FP INS 176 1,184 24 - 10 132,840	,681
FP INS 783 1,184 24 - 10 132,841	,387
FP INS 328 CCS 13 112,993	,782
FP INS 60 312 4 CCS 16 85,867	,748
FP INS 54 527 18 - 17 10,662	,861
FP INS 84 CCS 18 53,029	,667
FP INS 267 641 37 CCS X 67,035	,046

Supplementary Table 11. Manual curation of structural variant discrepancies between CCS callset and GIAB benchmark. For the "Discrepancy" column, "FN" means false negative (in benchmark but not callset), and "FP" means false positive (in callset but not benchmark). "Simple repeat length" and "Simple repeat period" are from the simpleRepeat track from the UCSC Genome Browser. "Correct call" column is "GIAB" when the benchmark was deemed correct by expert curators, "CCS" when the CCS callset was deemed correct, and "-" when it is unclear which callset is correct (typically due to complex tandem repeats that permit multiple representations of the same variant). Rows where the correct call is from the CCS callset are colored blue.

Step	Instrument	Notes	Time
Library preparation			
Input DNA	-	3-6 µg	-
Shear DNA	Megaruptor	15-20 kb	2 hrs
Ligate hairpin adapters	Thermocycler	500:1 adapter:template	Overnight
Size select library	SageELF	6 fractions 8-18 kb	6 hrs
Adjust concentration	Ampure beads	-	2 hrs
Anneal primer	Thermocycler	20:1 primer:template	0.5 hrs
Bind polymerase	Thermocycler	10:1 polymerase:template	4 hrs
Sequencing			
Sequence to 15-fold coverage	Sequel System	20 SMRT Cells 1M × 24 hrs + 5 × 12 hrs pre-extension†	23 days
	-or-		
		2-3 SMRT Cells 8M* × 30 hrs +	
Sequence to 15-fold coverage	Sequel II System	12 hrs pre-extension†	3-5 days
Consensus read generation			
Generate CCS reads	Compute cluster	1,000 CPU cores in cluster	5 days

Supplementary Table 12. Basic workflow, resources, and time required to generate 15-fold CCS read coverage of a human genome. "*" The number of SMRT Cells 8M required for 15-fold coverage is based on SRX5527202 and SRX5633451. The Sequel II System was not available at the time of this study. "†" Pre-extension time delays the start of the only the first of 4 SMRT Cells per run.

Supplementary Note – Detailed Author Contributions

CCS Library Preparation and Sequencing: D.R.R., P.P., Y.Q.

Quality Evaluation of CCS Reads: A.M.W., G.M., R.J.H.

Increased Mappability of CCS Reads: R.J.H.

Small Variant Detection in CCS Reads: A.C., A.K., C-S.C., F.J.S., J.M.Z., M.A.D., N.D.O., P.C., W.J.R.

Phasing Small Variants: J.E., T.M., W.J.R.

Improving Small Variant Detection with Haplotype Phasing: A.C., A.K., M.A.D., P.C., W.J.R.

Structural Variant Detection in CCS Reads: A.M.W., A.T., F.J.S., H.L., M.C.S., M.A., M.M.

De Novo Assembly of CCS Reads: A.F., A.M.P., A.M.W., D.R.R., J.R., G.T.C., S.K.

Coverage Requirements for Variant Calling and De Novo Assembly: A.C., A.K., A.M.W., G.T.C., J.E., T.M., W.J.R.

Revising and Expanding Genome in a Bottle Benchmarks: A.M.W., J.M.Z., N.D.O.