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Supplementary Table 1: Characteristics of the training and tuning datasets. 
 

 

TCGA 
Tertiary 

Teaching 
Hospital 

 
Medical 

Laboratory 

 

Total (%) 

Number of patients 178 204 7 389 

Number of patients excluded due to 
non-gradable prostate cancer variants, 

extensive artifacts, or poor staining 

 

43 

 

4 

 

0 

 

47 

Number of patients included in the 
study 

 
135 

 
200 

 
7 

 
342 

Number of slides 170 1,016 40 1,226 

 
 
 
 
 
 

With 
slide-level 

Gleason scores 

Number of slides 144 988 27 1,159 (100%) 

GG 1 (slides) 18 558 0 576 (50%) 

GG 2 (slides) 32 218 0 250 (22%) 

GG 3 (slides) 21 84 0 105 (9%) 

GG 4-5 (slides) 73 128 27 228 (20%) 

GG 4 12 25 3 40 (3%) 

GG 5 61 103 24 188 (16%) 

 
 
 
 
 

With 
region-level 

Gleason pattern 
annotations 

Number of slides 148 751 13 912 

Number of patches 14,422,449 97,737,450 455,947 112,615,846 
(100%) 

Benign (patches) 11,188,435 93,691,585 364,838 105,244,858 
(93%) 

GP3 (patches) 1,335,165 2,131,666 777 3,467,608 
(3%) 

GP4 (patches) 1,898,849 1,210,348 67,346 3,176,543 
(3%) 

GP5 (patches) 714,666 703,851 22,986 1,441,503 
(1%) 

Supplementary Table 1: Characteristics of the train and tuning datasets. In these datasets, 1-7 
slides from each patient were used, and each slide was reviewed by 3-5 pathologists. Slides were 
excluded from training/tuning if any pathologist deemed the slide ungradable due to variants or poor 
image quality. Slide-level Gleason scores and region-level Gleason pattern annotations were collected for 
overlapping subsets of these slides, with the breakdown described in the table above. 
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Supplementary Table 2: Description of handling of variants. 
 

Prostate Cancer Variant Action 

Small Cell Carcinoma Excluded 

Mucinous prostatic adenocarcinoma Excluded 

Adenocarcinoma with signet ring cell like features Graded via ISUP 2014 recommendations1 

Prostate ductal adenocarcinoma Excluded 

Basal cell carcinoma Excluded 

Histological Variant of Acinar Prostatic 
Adenocarcinoma 

Action 

Mucinous fibroplasia Graded via ISUP 2014 recommendations1 

Foamy gland carcinoma Graded via ISUP 2014 recommendations1 

Paneth cell-like neuroendocrine differentiation. Excluded 

Treated prostatic adenocarcinoma Excluded 

Pseudohyperplastic prostatic adenocarcinoma Graded via ISUP 2014 recommendations1 

Intraductal carcinoma of the prostate When found in conjunction with Gleason Gradable 
tumor, only the Gleason gradable component is 
graded (consistent with ISUP 2014 
recommendations)1 

Supplementary Table 2: Description of handling of prostate cancer variants and acinar 
adenocarcinoma histological variants. Slides containing cancer variants and histological variants that 
are not Gleason gradable were excluded from the study (with the exception of intraductal carcinoma). 
Other variants are graded in a manner consistent with ISUP 2014 recommendations. 

https://paperpile.com/c/ubaOaY/G6CmW
https://paperpile.com/c/ubaOaY/G6CmW
https://paperpile.com/c/ubaOaY/G6CmW
https://paperpile.com/c/ubaOaY/G6CmW
https://paperpile.com/c/ubaOaY/G6CmW
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Supplementary Table 3: Analysis on slides excluded from validation set. 
 
 
Slide 

 
Rationale for lack of confidence in diagnosis Speciali 

st 1 GG 
Speciali 
st 2 GG 

Speciali 
st 3 GG 

DLS 
GG 

1 need IHC - high grade tumor, but needs IHC to assess/quantify IDC vs 
pattern 5 4-5 4-5 4-5 4-5 

2 need IHC - 4+3 vs 4+5 (pattern 5 based on cribriform necrosis), but chatter 
artifact makes it difficult to tell; also would do IHC to r/o IDC vs pattern 4/5 
areas 

 
3 

 
3 

 
3 

 
4-5 

3 need IHC - high grade tumor case, but with areas of IDC vs pattern 4 vs 
pattern 4 with necrosis (pattern 5) 3 4-5 3 4-5 

4 need IHC - areas of IDC vs pattern 4 vs pattern 4 with necrosis (pattern 5) 2 3 2 2 

5 need IHC - likely 4+3 case, but given prominent areas of possible 
HGPIN/IDC need IHC to accurately quant pattern 4 3 3 3 3 

6 need IHC - given large areas of large cribriform glands (DDx HGPIN/IDC vs 
pattern 4), need IHC to accurately quantitate and grade 4-5 4-5 4-5 4-5 

7 need IHC - large areas of possible IDC; need IHC to r/o vs pattern 4 and for 
accurate pattern 4/tumor vol % 3 3 3 3 

8 need IHC - focal area of large cribriform glands present, would do both 
stains (r/o IDC vs pattern 4) and also levels as there may be necrosis (IDC 
vs pattern 5) 

 
2 

 
2 

 
2 

 
2 

9 need IHC - definite invasive cancer present, but adjacent large cribriform 
glands with DDx of pattern 4 vs HGPIN needs IHCs to assess/quantitate 3 3 3 3 

10 need IHC - areas of large cribriform glands needing IHC to eval IDC vs 
pattern 4 3 3 3 3 

11 need IHC - areas of definite large crib irregular glands of pattern 4, but some 
areas of probable IDC also (need IHC to accurately quantitate) 4-5 4-5 4-5 4-5 

12 Needs another expert review. There is a pattern 3 that is not recognized. I 
don’t see a pattern 5. 3 3 3 4-5 

13 I suggest this case go to another expert as this case has many patterns and 
is good to our criteria titrated 3 4-5 3 4-5 

14 No agreement among initial reviewers - suggest another expert opinion 4-5 3 3 2 

15 Show to colleague(s) and order serial sections to confirm small % GG4 2 2 2 2 

16 Challenging slide - perhaps tissue was not well fixed as morphology was not 
great for grading. As such, I am not sure about GG5 - would show to a 
colleague(s). 

 
4-5 

 
3 

 
3 

 
4-5 

17 Show to colleague(s) and order serial sections to confirm small % GG4 2 2 2 1 

18 Challenging case - would order serial sections to confirm minor GG5 (rule 
out tangential sectioning of GG4 poorly formed acini) as well as show to a 
colleague 

 
4-5 

 
4-5 

 
3 

 
4-5 

19 require IHC 3 3 2 3 

20 Would use basal cell IHC to rule in/rule out intraductal carcinoma 3 3 2 4-5 
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Supplementary Table 3: Analysis on slides excluded from validation set due to genitourinary 
specialist lack of confidence when diagnosing. 20 slides were excluded from the analysis in the main 
text where the specialist adjudicator was not able to provide a confident diagnosis. Consults were 
subsequently provided by the other two GU experts. Of the 12 cases where the original adjudicator and 
two consulting experts came to a consensus, the DLS was concordant on 9 (highlighted in green) and 
within 1 grouping on the remaining 3 (highlighted in red). 
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Supplementary Table 4: Comparison of DLS to pathologists’ unadjusted 
accuracy. 

 

Grader Unadjusted 
accuracy for 
grade group 

(95% CI) 

p-value for 
comparison 

with DLS 

Years since 
anatomic 
pathology 
residency 

Reported 
monthly 

prostate case 
volume 

Deep learning system 0.698 (0.650, 
0.746) 

n/a   

Mean among all 29 
pathologists 

0.610 (0.563, 
0.660) 

0.002   

Mean among 19-pathologist 
subgroup 

0.596 (0.529, 
0.659) 

 
<0.001 

  

Mean among 10-pathologist 
subgroup 

(A-J below) 

0.637 (0.588, 
0.686) 

0.006   

Pathologist A 0.526 (0.468, 
0.577) 

<0.001  

9 

 

<10 

Pathologist B 0.559 (0.502, 
0.613) 

<0.001  

6 

 

Not reported 

Pathologist C 0.592 (0.538, 
0.644) 

<0.001  

4 

 

<10 

Pathologist D 0.628 (0.574, 
0.680) 

0.027  

10 

 

<10 

Pathologist E 0.647 (0.592, 
0.695) 

0.16  

3 

 

10-20 

Pathologist F 0.640 (0.589, 
0.689) 

0.083  

1 

 

>20 

Pathologist G 0.668 (0.616, 
0.716) 

0.40  

4 

 

Not reported 

Pathologist H 0.671 (0.616, 
0.722) 

0.45  

18 

 

<10 

Pathologist I 0.716 (0.668, 
0.764) 

0.59  

26 

 

>20 

Pathologist J 0.728 (0.683, 
0.776) 

0.33  

16 

 

>20 
Supplementary Table 4: Comparison of unadjusted concordance between the deep learning 
system, the cohort of 29 pathologists, and 10 individual pathologists (A-J). The cohort of 29 
pathologist comprised of 10 pathologists (A-J) that reviewed all 331 slides in the validation dataset and 19 
pathologist that each reviewed a subset of the validation dataset.  For the concordance of the individual 
19 pathologists see Supplementary Table 5. Confidence intervals (CIs) were calculated with 1000 
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bootstrap replications. The statistical significance of the comparisons were performed using the 
permutation test. 
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Supplementary Table 5: Comparisons of unadjusted accuracy on the validation 
set for the 19 pathologists who each reviewed a subset of the validation dataset. 

 

 
 

Grader 

 
Number of 
slides in 
subset 

 
Pathologist 
accuracy on 

subset 
(95% CI) 

 
DLS accuracy on 

subset 
(95% CI) 

Years 
since 

anatomic 
pathology 
residency 

Reported 
monthly 

prostate case 
volume 

 
Pathologist K 

62 0.306 (0.194, 
0.435) 

0.742 (0.629, 0.840)  
3 

 
<10 

 
Pathologist L 

64 0.422 (0.312, 
0.555) 

0.672 (0.570, 0.774)  
2 

 
>20 

 
Pathologist M 

55 0.545 (0.400, 
0.655) 

0.618 (0.500, 0.746)  
28 

 
<10 

 
Pathologist N 

58 0.552 (0.414, 
0.655) 

0.603 (0.483, 0.716)  
20 

 
10-20 

 
Pathologist O 

54 0.556 (0.444, 
0.648) 

0.630 (0.519, 0.759)  
19 

 
Not reported 

 
Pathologist P 

57 0.561 (0.439, 
0.684) 

0.789 (0.675, 0.877)  
20 

 
10-20 

 
Pathologist Q 

49 0.571 (0.438, 
0.694) 

0.694 (0.592, 0.807)  
22 

 
10-20 

 
Pathologist R 

40 0.575 (0.450, 
0.725) 

0.700 (0.575, 0.850)  
37 

 
10-20 

 
Pathologist S 

50 0.580 (0.440, 
0.730) 

0.700 (0.600, 0.800)  
24 

 
10-20 

 
Pathologist T 

50 0.580 (0.460, 
0.690) 

0.700 (0.599, 0.850)  
3 

 
10-20 

 
Pathologist U 

53 0.623 (0.500, 
0.736) 

0.642 (0.528, 0.774)  
4 

 
Not reported 

 
Pathologist V 

49 0.633 (0.510, 
0.755) 

0.673 (0.550, 0.786)  
3 

 
10-20 

 
Pathologist W 

57 0.649 (0.509, 
0.772) 

0.737 (0.622, 0.851)  
11 

 
Not reported 

 
Pathologist X 

60 0.650 (0.500, 
0.750) 

0.700 (0.600, 0.800)  
14 

 
Not reported 

 
Pathologist Y 

46 0.674 (0.543, 
0.783) 

0.652 (0.510, 0.761)  
1 

 
Not reported 

 
Pathologist Z 

44 0.682 (0.500, 
0.818) 

0.705 (0.579, 0.818)  
6 

 
Not reported 

 
Pathologist AA 

50 0.700 (0.560, 
0.820) 

0.700 (0.540, 0.830)  
16 

 
<10 
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Pathologist AB 

41 0.732 (0.610, 
0.854) 

0.732 (0.597, 0.878)  
14 

 
Not reported 

 
Pathologist AC 

53 0.736 (0.623, 
0.887) 

0.698 (0.584, 0.821)  
2 

 
10-20 

Supplementary Table 5: Comparisons of unadjusted accuracy on overlapping subsets of the 
validation set for the cohort of 19 pathologists. Each pathologist reviewed a subset of the validation 
dataset, that collectively provided 3 annotations per slide for each of the 331 validation slides. In this 
subgroup analysis, the DLS’s accuracy is greater than that of 14 of the 19 pathologists. 
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Supplementary Table 6: Comparison of DLS to pathologists using other 
evaluation metrics. 

 

 
 

Grader 

Population-adju 
sted accuracy 

for grade group 
(95% CI) 

 
p-value for 
comparison 

with DLS 

Cohen’s 
kappa for 

grade group 
(95% CI) 

 
p-value for 

comparison 
with DLS 

Accuracy for 
Gleason 

score (6-10) 
(95% CI) 

 
p-value for 

comparison 
with DLS 

Deep learning 
system 

0.720 
(0.675, 0.762) 

 
n/a 0.585 

(0.520, 0.651) 

 
n/a 0.770 

(0.722, 0.813) 

 
n/a 

Mean among 
all 29 

pathologists 

 
0.628 

(0.578, 0.674) 

 

<0.001 

 
0.466 

(0.398, 0.527) 

 

0.001 

 
0.681 

(0.638, 0.725) 

 

<0.001 

 
Pathologist A 0.515 

(0.459, 0.569) 

 
<0.001 0.365 

(0.290, 0.430) 

 
<0.001 0.672 

(0.623, 0.723) 

 
0.002 

 
Pathologist B 0.572 

(0.519, 0.625) 

 
<0.001 0.412 

(0.341, 0.481) 

 
<0.001 0.593 

(0.540, 0.646) 

 
<0.001 

 
Pathologist C 0.615 

(0.565, 0.660) 

 
<0.001 0.457 

(0.389, 0.522) 

 
0.001 0.703 

(0.651, 0.752) 

 
0.039 

 
Pathologist D 0.679 

(0.635, 0.720) 

 
0.16 0.489 

(0.415, 0.556) 

 
0.018 0.659 

(0.607, 0.710) 

 
<0.001 

 
Pathologist E 0.603 

(0.549, 0.655) 

 
0.003 0.506 

(0.428, 0.573) 

 
0.10 0.734 

(0.689, 0.777) 

 
0.27 

 
Pathologist F 0.634 

(0.581, 0.685) 

 
0.011 0.514 

(0.441, 0.577) 

 
0.088 0.729 

(0.683, 0.777) 

 
0.19 

 
Pathologist G 0.656 

(0.605, 0.712) 

 
0.070 0.530 

(0.459, 0.600) 

 
0.21 0.734 

(0.686, 0.782) 

 
0.25 

 
Pathologist H 0.669 

(0.618, 0.721) 

 
0.12 0.548 

(0.475, 0.618) 

 
0.37 0.690 

(0.638, 0.736) 

 
0.007 

 
Pathologist I 0.727 

(0.679, 0.775) 

 
0.81 0.613 

(0.548, 0.678) 

 
0.45 0.769 

(0.720, 0.815) 

 
>.99 

 
Pathologist J 0.758 

(0.714, 0.801) 

 
0.18 0.622 

(0.561, 0.690) 

 
0.33 0.773 

(0.727, 0.818) 

 
>.99 

Supplementary Table 6: Comparison of other evaluation metrics (adjusted accuracy for grade 
group, Cohen’s Kappa for grade group, and accuracy for Gleason score) between the deep 
learning system (DLS), the cohort of 29 pathologists, and 10 individual pathologists (A-J). The 
adjusted accuracy reflects a population-level GG distribution of 7397:8353:3106:1968.2 Confidence 
intervals (CIs) were calculated with 1000 bootstrap replications. The statistical significance of the 
comparisons were performed using the permutation test. 

https://paperpile.com/c/ubaOaY/APi9r
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Supplementary Table 7: Comparison of %GP 3,4,5 quantitation. 
 
 

Grader 
Mean absolute 
error for %GP3 

(95% CI) 

p-value for 
comparison 

with DLS 

Mean absolute 
error for %GP4 

(95% CI) 

p-value for 
comparison 

with DLS 

Mean absolute 
error for %GP5 

(95% CI) 

p-value for 
comparison 

with DLS 

Deep learning 
system 

11.9 
(10.0, 13.9) 

 
n/a 11.8 

(10.5, 13.2) 

 
n/a 4.5 

(3.4, 5.7) 

 
n/a 

Mean among 
all 29 

pathologists 

 
16.0 

(13.3, 18.7) 

 

0.004 

 
17.8 

(15.1, 20.7) 

 

<0.001 

 
5.2 

(3.9, 6.6) 

 

0.26 

 
Pathologist A 19.4 

(16.9, 21.8) 

 
<0.001 22.0 

(19.3, 24.7) 

 
<0.001 4.2 

(3.0, 5.4) 

 
0.43 

 
Pathologist B 19.5 

(17.0, 22.3) 

 
<0.001 22.6 

(19.8, 25.5) 

 
<0.001 5.4 

(3.9, 6.9) 

 
0.19 

 
Pathologist C 18.5 

(15.9, 21.1) 

 
<0.001 21.0 

(18.3, 23.9) 

 
<0.001 4.2 

(3.1, 5.6) 

 
0.49 

 
Pathologist D 13.1 

(11.3, 14.9) 

 
0.36 15.8 

(13.9, 17.7) 

 
<0.001 5.0 

(3.7, 6.5) 

 
0.50 

 
Pathologist E 15.6 

(13.7, 17.6) 

 
0.002 18.8 

(16.8, 20.7) 

 
<0.001 4.3 

(3.3, 5.6) 

 
0.80 

 
Pathologist F 15.2 

(13.0, 17.4) 

 
0.002 17.0 

(14.7, 19.3) 

 
<0.001 4.9 

(3.6, 6.2) 

 
0.51 

 
Pathologist G 10.4 

(9.1, 12.0) 

 
0.19 14.6 

(12.8, 16.5) 

 
0.001 6.9 

(5.5, 8.4) 

 
<0.001 

 
Pathologist H 10.2 

(8.8, 11.7) 

 
0.12 14.5 

(12.5, 16.3) 

 
0.003 6.5 

(4.9, 8.2) 

 
<0.001 

 
Pathologist I 9.8 

(8.3, 11.2) 

 
0.083 11.9 

(10.3, 13.4) 

 
>0.99 4.2 

(3.2, 5.5) 

 
0.55 

 
Pathologist J 10.2 

(8.6, 11.8) 

 
0.13 12.2 

(10.5, 14.0) 

 
0.68 3.9 

(2.9, 5.0) 

 
0.10 

Supplementary Table 7: Comparison of Gleason pattern (GP) quantitation between the deep 
learning system (DLS), the cohort of 29 pathologists, and 10 individual pathologists. Confidence 
intervals (CIs) were calculated with 1000 bootstrap replications. The statistical significance of the 
comparisons were performed using the permutation test. 
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Supplementary Table 8: Comparison of %GP4 quantitation in GG2-3 slides and 
%GP5 quantitation in GG4-5 slides. 

 

Grader Mean absolute 
error for %GP4 
in GG 2-3 slides 

(95% CI) 

p-value for 
comparison with 

DLS 

Mean absolute 
error for %GP5 
in GG 4-5 slides 

(95% CI) 

p-value for 
comparison with 

DLS 

Deep Learning 
System 

13.0 (11.5, 14.7) n/a 18.7 (14.3, 23.2) n/a 

Mean among all 
29 pathologists 

20.5 (17.6, 24.0) <0.001 22.0 (18.0, 26.9) 0.30 

Pathologist A 27.3 (23.8, 30.8) <0.001 18.0 (13.5, 23.2) 0.76 

Pathologist B 25.1 (21.7, 28.7) <0.001 24.7 (19.3, 30.4) 0.076 

Pathologist C 25.5 (22.1, 28.9) <0.001 19.6 (14.0, 25.4) 0.79 

Pathologist D 19.1 (16.6, 21.7) <0.001 24.2 (19.0, 29.6) 0.12 

Pathologist E 19.3 (17.0, 21.7) <0.001 20.6 (16.1, 25.0) 0.58 

Pathologist F 18.0 (15.5, 20.6) <0.001 19.0 (13.9, 24.3) 0.89 

Pathologist G 16.1 (14.0, 18.3) 0.007 20.9 (15.7, 26.3) 0.35 

Pathologist H 15.4 (13.2, 17.6) 0.044 24.0 (18.2, 31.0) 0.046 

Pathologist I 13.9 (12.0, 15.8) 0.38 17.5 (12.8, 22.7) 0.49 

Pathologist J 14.6 (12.6, 16.8) 0.12 17.4 (13.1, 22.0) 0.53 

Supplementary Table 8: Comparison of Gleason pattern (GP) in Grade Groups (GG) 2-3 and 4-5 
between the deep learning system (DLS), the cohort of 29 pathologists, and 10 individual 
pathologists (A-J). Confidence intervals (CIs) were calculated with 1000 bootstrap replications. The 
statistical significance of the comparisons were performed using the permutation test. 
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Supplementary Table 9: Sensitivity analysis excluding consult cases. 
 
 
 

Grader 

Number of Slides 
excluded due to 
indication of a 
non-confident 

diagnosis 

 
Pathologist’s 

accuracy 
excluding consult 

cases (95% CI) 

 
DLS accuracy 
excluding the 
same cases 

(95% CI) 

 

p-value for 
comparison with 

DLS 

Pathologist A 3 52.0 (46.7, 57.3) 69.2 (64.2, 74.1) <0.001 

Pathologist B 6 56.2 (50.6, 61.8) 69.6 (64.8, 74.7) <0.001 

Pathologist C 2 59.9 (54.2, 65.3) 69.4 (64.7, 74.3) 0.002 

Pathologist D 10 63.3 (58.0, 68.5) 69.8 (65.0, 74.4) 0.048 

Pathologist E 3 64.7 (59.7, 69.7) 69.3 (64.5, 74.4) 0.22 

Pathologist F 7 63.7 (58.4, 68.6) 69.5 (64.7, 74.5) 0.074 

Pathologist G 2 67.0 (62.0, 72.2) 69.5 (64.7, 74.4) 0.50 

Pathologist H 8 66.5 (61.5, 71.8) 69.6 (64.8, 74.4) 0.37 

Pathologist I 9 71.4 (66.9, 76.0) 69.6 (64.5, 74.4) 0.60 

Pathologist J 1 73.8 (69.1, 78.6) 69.5 (64.6, 74.6) 0.17 

Supplementary Table 9: Comparison between pathologists and DLS on Gleason scoring excluding 
slides indicated by pathologists as non-confident diagnosis. The results are qualitatively similar to 
the results in Supplementary Table 4 with no material differences. Confidence intervals (CIs) were 
calculated with 1000 bootstrap replications. The statistical significance of the comparisons were 
performed using the permutation test. 
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Supplementary Table 10: Adverse Clinical Event Models Derived From Gleason 
Pattern Quantitation and Fine-Grained Gleason Pattern Quantitation. 

 
 

Source of Gleason pattern 
quantitation 

Input features to Cox 
regression model describing 
tumor composition: (all based 
on % Gleason pattern) 

C-index (95% CI) 

Cohort-of-29 general 
pathologists 

3, 4, 5 0.674 (0.564, 0.782) 

Genitourinary specialist 
pathologists 

3, 4, 5 0.690 (0.582, 0.800) 

DLS 3, 4, 5 0.697 (0.579, 0.790) 

DLS 3, 3.5, 4, 5 0.704 (0.586, 0.814) 

DLS 3, 3.5, 4, 4.5, 5 0.702 (0.577,0.812) 

Supplementary Table 10: Comparison of Cox models for adverse clinical events 
(progression/biochemical recurrence) trained directly on quantified Gleason patterns and 
fine-grained Gleason Patterns. Cox proportional hazards regression models were trained and evaluated 
on the validation set (n=331 slides), with Gleason patterns quantitation as input features. Features were 
provided by the cohort-of-29 pathologists, genitourinary specialists comprising the reference standard, 
and the DLS. As proof-of-concept, Cox models were also trained with additional features that provide 
finer-grained representations of tumor differentiation (see “Fine-grained Gleason Pattern” in 
Supplementary Methods). Confidence intervals (CI) were calculated via bootstrapping, and the median 
concordance index is presented for the cohort-of-29 pathologists (see Supplementary Methods). 
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Supplementary Fig. 1: Confusion Matrices for the DLS and two pathologist 
subgroups 

 
 
 

 
Supplementary Fig. 1: Confusion matrices highlighting the distribution of errors made by the DLS 
and two pathologist subcohorts. The DLS is compared to the subgroup of 10 pathologists where each 
pathologist individually annotated every validation set slide, as well as the subgroup of 19 pathologists 
that collectively provided 3 reviews for every slide. The DLS shows greater accuracy in classifying slides 
as GG1, GG2, and GG4-5, and lower accuracy in classification of GG3 on the validation set as compared 
to these cohorts. 
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Supplementary Fig. 2: Model and pathologist concordance with mixed grade 
labels. 

 

 
Supplementary Fig. 2: Model and pathologist concordance with mixed grade labels. When 
pathologists could not assign a single Gleason pattern to a region, they were instructed to assign a mixed 
grade label. Available mixed grade labels were ‘3+4’, ‘4+3’, ‘4+5’, and ‘5+4’. These indicate that a region 
exhibits histological patterns characteristic of both Gleason patterns at the level of glands, and they are 
an extension to the Gleason grading system which allow humans to represent a small slice of the 
continuum of Gleason grading. To further investigate the deep learning system’s ability to quantitatively 
represent the ambiguities present in the Gleason grading system, we examine the model’s output in those 
cases in which a pathologist provided a mixed grade. A, Distributions of predicted likelihood of each GP 
by the DLS on patches labeled as a mixed grade by at least one pathologist. The DLS represents 
“in-between” patterns by exhibiting mixed likelihood between multiple labels. B, The distribution of other 
pathologist grades for those patches which were given a mixed grade by at least one pathologist. 
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Supplementary Fig. 3: Extended visualization of Gleason patterns. 
 

 
Supplementary Fig. 3: Extended visualization of Gleason patterns. The continuum of prostate cancer 
Gleason Patterns (GP) learned by the DLS reveals finer categorization of the well-to-poorly differentiated 
spectrum. The top row highlights the DLS GP categorization followed by H&E images that are predicted 
to be the corresponding quantitative GP. Columns 1, 5, and 9 represent 100% confidence in GP 3, 4, and 
5 respectively. The columns in between represent quantitative GPs that are in between these defined 
categories. 
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Supplementary Fig. 4: Screenshot of the tool used for region-level annotations. 
 

 
Supplementary Fig. 4: Screenshots of the tool used for region-level annotations. A, An overview of 
the tool zoomed out to 0.625X. A user annotates a region by first selecting a label category on the left and 
then outlining the corresponding regions direct on the slide. This custom free-hand drawing tool also has 
the ability to zoom between different objective powers as appropriate. B, Screenshots of annotations on 
tissue regions at additional magnifications: 2.5X and 10X. Most annotations were done between 5-20X. 
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Supplementary Fig. 5: Development of datasets used for training, tuning, and validation. 
Region-level datasets and the slide-level training datasets were provided by pathologists, while the 
generation of the slide-level tuning and validation datasets involved genitourinary expert pathologists. 
More details can be found in the Grading sections of the Methods and the Supplementary Methods. 
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Supplementary Methods 
 
 
Grading 

 
 
Pathologist Slide-Level Gleason Scoring Protocol 

 
Slides used for training were reviewed by at least 3 and up to 7 pathologists (median 4). The label 

for each slide was determined by the most common annotation provided by the pathologists, while 

breaking ties in favor of the more severe grade to encourage higher DLS sensitivity. Tuning slides were 

initially reviewed by 3 to 5 pathologists and subsequently adjudicated by 1 of 3 genitourinary specialists 

(similar to the validation dataset). 

We derived the slide-level Gleason score (e.g. 3+4) from the predominant GP and next-most-common 

GP. This is used instead of the directly provided Gleason scores because we noted inconsistent 

application of tertiary replacement (replacing the secondary Gleason score with ‘5’ if %GP5 is greater 

than 5%), leading to even greater diagnostic variability.2 The GG (e.g. GG2) was then directly determined 

using the Gleason score using the published definitions.2 Pathologists were additionally instructed to note 

if a slide contained histologic variants (listed in Supplementary Table 2), did not contain tumor, or if they 

were not confident in their diagnosis. 

 
Pathologist Region-Level Annotation Protocol 

 
The region-annotations for all datasets (training, tuning, and validation) were performed using 

custom free-hand drawing tools in a custom histopathology viewer (see Supplementary Fig. 4) with the 

ability to zoom between magnifications. Most annotations were performed between 5X and 20X 

magnifications. Artifacts that affected the ability to make a confident interpretation were labeled as 

artifacts, and regions where the pathologists were not able to assign confident categorizations based on 

their best clinical judgement were assigned a “consult” label. Regions where different GPs were either 

ambiguous or difficult to delineate exactly were assigned mixed-grade labels such as ‘3+4’. Perineural 

and lymphovascular invasive tumor and intraductal carcinoma were labeled as non-Gleason-gradable 

tumors. 

https://paperpile.com/c/ubaOaY/APi9r
https://paperpile.com/c/ubaOaY/APi9r
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For the training slides, at least one pathologist non-exhaustively annotated characteristic regions 

of each slide (annotated tissue for each slide <1% to 100%, median of 57%). For the tuning slides, we 

obtained higher-confidence labels by asking three pathologists for exhaustive annotations. In this set, to 

improve annotation efficiency (retaining slide-level diversity while reducing the overall annotation 

workload), the pathologists annotated only a subset of each slide, specifically two 3.8x3.8mm square 

regions from each quadrant on the slide. The locations of the two squares within each quadrant were 

randomly selected, and all three pathologists annotated the same eight regions (annotated tissue for each 

slide <1% to 35%, median of 14%). Only image patches with concordance between at least two 

annotators were used. 

To train the stage-1 DLS, we processed the training dataset annotations to retain only regions 

with unambiguous labels. Ambiguity arising from multiple different labels were resolved by majority vote. 

Regions labeled ‘artifact’ were interpreted as non-tumor to reduce false positive predictions on 

artifact-containing regions. Regions labeled as ‘mixed-grade’ were interpreted as the primary pattern 

(e.g., ‘5+4’ was interpreted as GP5), based on empirical observations of a resultant boost in stage-1 

region-level accuracy. For the tuning datasets, only regions for which all three annotators provided a label 

were considered (similar to the validation dataset). In the main text, we report results only for patches 

labeled non-tumor, GP3, GP4, GP5. The analysis of image patches that are labeled with mixed-grades 

are presented in Supplementary Fig. 2. 

 
Development of the Deep Learning System 

 
We used a Inception-V33 image classification network, with fewer filters per layer 

(depth_multiplier=0.1) and modified to be fully-convolutional to improve inference throughput on 

whole-slide images (manuscript under review). To avoid introducing grid artifacts, the fully-convolutional 

modification involved using ‘VALID’ instead of ‘SAME’ padding in convolutions and differential cropping of 

the output of ‘branches’ in the Inception architecture. This network takes as input image patches of size 

911x911 pixels at 10X magnification (equivalent to 911 ✕ 911 µm). The region “assessed” by the network 
 
is a 32 ✕ 32 µm region centered in each image patch. 

 
The training process involved feeding image patches into the network with a specific sampling 

strategy to avoid bias towards specific slides or classes: first select a class according to the ratios 4:2:2:1 

https://paperpile.com/c/ubaOaY/kbv0X
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for the four classes respectively, then select a slide containing regions labeled as that class, and finally 

select an image patch from that slide. To help improve generalization performance, we applied data 

augmentation techniques to randomly perturb the actual images seen by the neural network (image 

perturbations for saturation, contrast, brightness, hue, and orientation) during training.4 Training was 

performed in TensorFlow5 using an RMSProp optimizer6 and the softmax cross-entropy loss function. 

Hyperparameters such as the four-class sampling ratios, magnitude of image perturbations, the learning 

rate decay schedule, and L2 regularization decay were tuned via Gaussian-Bandit search on Google 

Vizier.7 After tuning model hyperparameters, hard negative mining and ensembling were employed to 

further improve model performance. See below section for details of hard-negative mining. 

After model convergence (as determined by the patch-level four-way classification performance 

on the tuning set, as measured by Cohen’s kappa), we applied ensembling at three levels. First, the 

actual network weights used were smoothed using an exponential moving average with decay constant of 

0.9999. Second, for each patch, the model predictions across eight image orientations (4 90° rotations 

and 2 left-right flips) were averaged using the geometric mean. Lastly, these orientation-averaged 

predictions were again averaged across four independently trained models (each with a separate 

hard-negative mining process), again using the geometric mean. 
 

In the second stage of the DLS, we first calibrated each region’s class predicted likelihoods. The 

calibration weights were determined empirically to produce the best slide-level predictions on the tuning 

set. Next, to obtain a categorical prediction for each patch, we applied the argmax function. Finally, each 

slide’s patch-level predictions were summarized as four features: %Tumor, %GP3, %GP4, and %GP5. 

We linearly rescaled these features to have a minimum of 0 and a maximum of 1 in the training set, and 

trained a k-nearest neighbor (kNN) model for each prediction task: 4-way GG classification (GG 1, 2, 3 or 

4-5), and each of the three binary classifications of GG > 2, GG > 3, and GG > 4. The hyperparameter “k” 

(number of nearest neighbors) and neighbor-weighting method (uniform versus reciprocal of distance) 

were selected based on the performance of each model on the tuning set, as measured by kappa for GG 

and area under receiver operating characteristic (AUC) for the binary predictions. Our final selected 

hyperparameters were k=24 with uniform neighbor weighting. In addition, we evaluated the performance 

of several other machine learning algorithms, such as logistic regression, and random forest on the tuning 

https://paperpile.com/c/ubaOaY/YPPtV
https://paperpile.com/c/ubaOaY/SgbB3
https://paperpile.com/c/ubaOaY/3NcuH
https://paperpile.com/c/ubaOaY/vPcd4
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set. kNN was selected to avoid over-fitting based on the limited size of the slide-level dataset and for ease 

of interpretability (as visualized in Fig. 1). 

 
Hard-Negative Mining 

 
Our DLS stage-1 development process includes large scale, continuous “hard-negative mining” 

which aims to improve algorithm performance by running inference on the entire training dataset to isolate 

the hardest examples and further refine the algorithm using these examples. 

In hard negative mining, inference was run hourly by applying the partially-trained network to the 

entire training dataset (over 112 million image patches) for the entire duration of the training. These 

inference results were then used to alter the patch-sampling probabilities for every slide in the training set. 

For a given class in each slide, these sampling probabilities were initialized at the start of training to be 

uniform across all image patches. After every inference round, the sampling probabilities were updated to 

be proportional to the cross-entropy loss of each patch, such that incorrect classifications were sampled 

more frequently. In other words, as training proceeded, the DLS learned from harder and harder 

examples, which improved its accuracy more efficiently than random examples. While previous works 

employing deep learning on histopathology images have employed hard negative mining in an offline 

“batch-mode”8–10, we observed that performance improves with the frequency of inference on the entire 

training dataset, resulting in the “quasi-online” hard-negative mining approach (>30,000 DLS stage-1 

inferences per second) used here. We anticipate that the benefits of this continuous hard negative mining 

approach may be applicable to developing other deep learning algorithms on histopathology images as 

well. 

 

Fine-grained Gleason Pattern (GP) 
 

To provide a more quantitative GP that smoothly interpolates between existing GPs (3, 4, and 5), we 

processed the calibrated DLS-predicted likelihood for each GP. First, the predictions for the two GPs with 

highest confidences were used to interpolate between the two GPs using the formula likelihood1 / 

(likelihood1 + likelihood2). For example, if the GP 3,4,5 predictions were [0.7, 0.2, 0.1], then the computed 

value was 0.7 / (0.7 + 0.2) = 0.78, and the quantitative GP was 3+0.78 = 3.78. To visualize these 

quantitative GPs (e.g. in Fig. 4a), we used the International Commission on Illumination “Lab” (CIELAB) 

https://paperpile.com/c/ubaOaY/hOXmp%2BDtRuL%2Bz1vqS
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color space, which is designed to be perceptually uniform with respect to the underlying numerical values. 

To select regions that represent desired quantitative GPs (Fig. 4c and Supplementary Fig. 3), we located 

the image patches among all validation dataset slides for which the computed quantitative GP most 

closely matched the desired GP (e.g. 3.5). 

 

Statistical Analysis 
 
 
Comparison with the Cohort-of-29 

 
Comparison of the DLS with the cohort-of-29 pathologists required a modified permutation test11 

to account for the different numbers of slide-level annotations provided by each pathologist. Specifically, 

10 pathologists annotated all the slides (331 annotations each), while 19 pathologists collectively 

annotated all the slides 3 times (about 50±10 annotated slides by each pathologist). The 10 pathologists 

that annotated all the slides were selected based on slide reviewing speed and availability. To represent 

each pathologist equally, we modify the permutation test as follows: define our test statistic as the 

difference between the DLS accuracy and the mean accuracy among pathologists in the cohort-of-29. In 

each iteration of the permutation test, for each slide, randomly swap the model's given rating with one of 

the 14 ratings given for that slide (allowing the model to "swap" with itself with probability 1/14), and 

compute the test statistic on the result. After 5000 iterations, this gives a null distribution of the test 

statistic against which we compare the observed difference to compute a two-tailed p value. 

In the risk stratification analyses, the cohort-of-29 pathologists annotations were sampled to 

approximate equal representation of each pathologist. For each slide, the sampled annotation can come 

from either one of  subgroup-of-10 annotations or one of the 3 available subgroup-of-19 annotations. 

Specifically, for each slide, an annotation was selected from one of the 10 available subgroup-of-10 

annotations with 1/29 probability, or from one of the 3 available subgroup-of-19 annotations with 

(19/29)*(1/3) probability. 

 
Bootstrap Approach for Confidence Intervals 

 
To compute confidence intervals for the pools of 10, 19, and 29, we bootstrapped both slides and 

annotators by resampling both with replacement in each iteration of the bootstrap. In the case of the pool 

https://paperpile.com/c/ubaOaY/JueR
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of 29, to replicate our experimental design in each iteration, we separately resampled the subsets of 10 

and 19. 

 
 
Supplementary Results 

 
DLS Region-level Errors 

 
Here, we present a qualitative analysis of the errors made by the DLS’s first stage, at the region 

level. Several errors were related to spatial localization. For example, the spatial extent of each predicted 

Gleason pattern region was sometimes imprecise; if two tumor-containing regions were separated by a 

small strip of non-tumor tissue, the DLS would sometimes categorize the intervening non-tumor as tumor. 

Similarly, delineating the precise stroma-tumor interface was difficult for the DLS, in particular for 

GP5 and stroma (non-tumor). This was likely because GP5 can present as individual tumor cells in a 

background of connective tissue, and outlining each individual cell was impractical. The “impurity” of the 

underlying region-level annotation made it difficult to develop a DLS that was precision with respect to the 

boundary. 

In many other cases, the errors made by the DLS was one where the underlying histology was 

ambiguous, such as when a tangential cut into a GP3 region caused it to resemble the fused-gland 

pattern that defines GP4. Because the DLS was trained to interpret the image patch surrounding the 

region, it will not take into account context from beyond its input image. 

The remaining region-level errors involved true prediction mistakes that will naturally improve with 

more data. The second stage of the DLS is fairly robust against all of these errors by summarizing the 

predictions from all regions on the slide as a small number of features. 
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