Additional file 12 – Sampling bias with validation sets selected from KEGG

In case study 3, there were significant variations in inductive CGP performance between different KEGG pathways. Apart from true indiscriminability of functional categories by phylogenetic profiles, these variations could have been attributed to the *sampling bias* in the validation data sets. KEGG is an useful resource for illustrating the transformation of enzymatic substrates. To depict complex biochemical interactions, it is often required to include neighbouring metabolic pathways in the same pathway map. This may result in mixed gene occurrence profiles which can adversely influence inductive CGP performance.

We manually inspected the worst performing validation set (phenylalanine, tyrosine, and tryptophan biosynthesis pathway, KEGG pathway Id: sag00400), which has genes sharing with 7 (out 81) other functional categories of KEGG. A closer examination revealed that two tRNA synthases genes and alanine/aspartate aminotransferase genes were included in the validation sets. The repeated experiment with the removal of these genes resulted in a significantly improved overall performance (with best AUC of improved from 0.729 to 0.852, Table 1 and 2).

To investigate this effect further, we plotted the extent of gene sharing of different KEGG categories (Figure 1). It was observed that validation sets with few overlaps tend to have better performance (as shown in red, yellow, and blue groups). The validation sets with good AUC [for example, fatty acid biosynthesis (sag00061, AUC: 0.994) and ribosomal genes (sag03010, AUC: 0.930)] have relatively few connections, indicating that only the genes specific to a the function were included. More dense connections were found in pathways that achieved worse AUC (blue and grey groups); although some heavily-connected pathways (for example, the amino-tRNA biosynthesis pathway, sag00970, AUC:

				Algorith	ım		
Dataset	NB	LR	ADTree	IBk	J48	SVM/P	SVM/R
Original (sag00400) Processed (sag00400m)	$0.709 \\ 0.684$	$0.663 \\ 0.652$	$\begin{array}{c} 0.668\\ 0.664\end{array}$	$0.715 \\ 0.773$	$\begin{array}{c} 0.621 \\ 0.669 \end{array}$	0.682 0.851	0.729 0.759

Table 1: Comparison of AUC between the original and processed sag00400 validation sets

The values shown in this table are areas under ROC curve. The generalisation performance was estimated by stratified cross-validation for each algorithm (10-fold cross-validation for sag00400, 9-fold for sag00400m).

Gene locus	Pat	hway	Gene	Annotation	
	sag00400	sag00400m			
SAG0158	\checkmark		tyrS	tyrosyl-tRNA synthetase	
SAG0462	\checkmark	\checkmark	trpG	anthranilate synthase component II	
SAG0525	\checkmark		aspC	aspartate aminotransferase	
SAG0540	\checkmark	\checkmark		hypothetical protein	
SAG0630	\checkmark	\checkmark	aroA	3-phosphoshikimate 1-carboxyvinyltransferase	
SAG0631	\checkmark	\checkmark	aroK	shikimate kinase	
SAG0869	\checkmark		pheS	phenylalanyl-tRNA synthetase subunit α	
SAG0871	\checkmark		pheT	phenylalanyl-tRNA synthetase subunit β	
SAG1377	\checkmark	\checkmark	aroC	chorismate synthase	
SAG1378	\checkmark	\checkmark	aroB	3-dehydroquinate synthase	
SAG1379	\checkmark	\checkmark	aro D	3-dehydroquinate dehydratase	
SAG1676	\checkmark		alaT	aminotransferase AlaT	
SAG1680	\checkmark	\checkmark	aro E	shikimate 5-dehydrogenase	
SAG1686	\checkmark	\checkmark		phospho-2-dehydro-3-heoxyheptonate aldolase	
n	14	9			

Table 2: Genes in the original (sag00400) and the processed (sag00400m) phenylalanine, tyrosine and tryptophan biosynthesis KEGG pathway

0.960) have distinct molecular functional properties (for example, synthesis amino-tRNAs). In the above example with the sag00400 validation set, removal of tRNA synthase and aminotransferase genes (sag00400m) resulted in a reduction of connections with neighbouring pathways. Such "purification" step led to an improvement in CGP performance.

Summary

KEGG is a standardised validation source that is frequently used for benchmarking *in silico* methods of gene function discovery. The map-style of gene curation in KEGG implies that a possibility of mixing functionally distinct genes in the same validation set. In the case of CGP by phylogenetic profiles, inclusion of genes from other functional groups may degrade the quality of training data and resulting in loss of performance. Evaluations of functional prediction methods must thus consider the effect of such sampling bias in the data set.

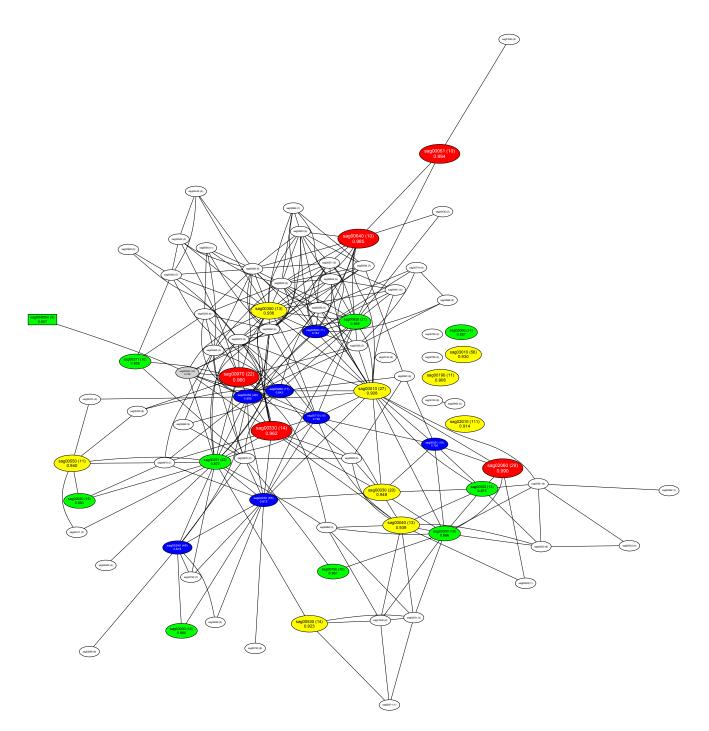


Figure 1: This diagram illustrates the pathways that have shared genes in KEGG. Each node denotes a KEGG functional category, and an edge between nodes indicates that common genes are present in both categories. Pathways with fewer connections are generally associated with better evaluation results, while pathways with poor AUCs are likely to be more heavily interconnected. The original validation set composed of phenylalanine, tyrosine, and tryptophan biosynthesis pathway in KEGG (sag00400, the grey node) contains genes sharing with more neighbouring pathways than the processed validation set (sag00400m, rectangular green node). The pathway names are listed in Table 3. Coloured nodes: red: AUC>0.95; yellow: AUC=0.90–0.95; green: AUC=0.85–0.90; blue: AUC=0.75–0.85; grey: AUC <0.75; White nodes: KEGG pathways with <10 genes in the pathway that (not included in inductive CGP evaluation).

Table 3: KEGG pathway listed in Figure 1

Id	Name
sag00010	Glycolysis / Gluconeogenesis
sag00030	Pentose phosphate pathway
sag00040	Pentose and glucuronate interconversions
sag00051	Fructose and mannose metabolism
sag00052	Galactose metabolism
sag00053	Ascorbate and aldarate metabolism
sag00061	Fatty acid biosynthesis
sag00071	Fatty acid metabolism
sag00100	Biosynthesis of steroids
sag00190	Oxidative phosphorylation
sag00220	Urea cycle and metabolism of amino groups
sag00230	Purine metabolism
sag00240	Pyrimidine metabolism
sag00251	Glutamate metabolism
sag00252	Alanine and aspartate metabolism
sag00260	Glycine, serine and threenine metabolism
sag00271	Methionine metabolism
sag00272	Cysteine metabolism
sag00280	Valine, leucine and isoleucine degradation
sag00290	Valine, leucine and isoleucine biosynthesis
sag00300	Lysine biosynthesis
sag00330	Arginine and proline metabolism
sag00340	Histidine metabolism
sag00350	Tyrosine metabolism
sag00360	Phenylalanine metabolism
sag00380	Tryptophan metabolism
sag00400	Phenylalanine, tyrosine and tryptophan biosynthesis
sag00430	Taurine and hypotaurine metabolism
sag00440	Aminophosphonate metabolism
sag00450	Selenoamino acid metabolism
sag00460	Cyanoamino acid metabolism
sag00471	D-Glutamine and D-glutamate metabolism
sag00473	D-Alanine metabolism
sag00480	Glutathione metabolism
sag00500	Starch and sucrose metabolism
sag00511	N-Glycan degradation
sag00520	Nucleotide sugars metabolism
sag00521	Streptomycin biosynthesis
sag00523	Polyketide sugar unit biosynthesis
sag00530	Aminosugars metabolism
sag00531	Glycosaminoglycan degradation

(Continue on next page)

Id	Name		
sag00550	Peptidoglycan biosynthesis		
sag00561	Glycerolipid metabolism		
sag00562	Inositol phosphate metabolism		
sag00564	Glycerophospholipid metabolism		
sag00620	Pyruvate metabolism		
sag00624	1- and 2-Methylnaphthalene degradation		
sag00630	Glyoxylate and dicarboxylate metabolism		
sag00632	Benzoate degradation via CoA ligation		
sag00640	Propanoate metabolism		
sag00641	3-Chloroacrylic acid degradation		
sag00643	Styrene degradation		
sag00650	Butanoate metabolism		
sag00660	C5-Branched dibasic acid metabolism		
sag00670	One carbon pool by folate		
sag00680	Methane metabolism		
sag00710	Carbon fixation		
sag00730	Thiamine metabolism		
sag00740	Riboflavin metabolism		
sag00760	Nicotinate and nicotinamide metabolism		
sag00770	Pantothenate and CoA biosynthesis		
sag00780	Biotin metabolism		
sag00785	Lipoic acid metabolism		
sag00790	Folate biosynthesis		
sag00860	Porphyrin and chlorophyll metabolism		
sag00900	Terpenoid biosynthesis		
sag00903	Limonene and pinene degradation		
sag00910	Nitrogen metabolism		
sag00920	Sulfur metabolism		
sag00960	Alkaloid biosynthesis II		
sag00970	Aminoacyl-tRNA biosynthesis		
sag01032	Glycan structures - degradation		
sag01040	Polyunsaturated fatty acid biosynthesis		
sag02010	ABC transporters - General		
sag02020	Two-component system - General		
sag02060	Phosphotransferase system (PTS)		
sag03010	Ribosome		
sag03020	RNA polymerase		
sag03030	DNA replication		
sag03060	Protein export		
sag03090	Type II secretion system		

(End of table)