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1. Supplementary Results 1 

1.1) Simulation study to find the required sample size and the optimized the parameter α 2 

Theoretical Simulation – We performed two simulation studies to evaluate gene-set analysis methods in 3 

the context of statistical power and type-I error, similar to a prior study [1]. The purpose of the first study 4 

was to find a minimal sample size to guarantee statistical power for gene-set signature identification, 5 

whereas the second was to decide the optimal parameter α for the FAIME algorithm and reveal the effect 6 

of gene-set size when detecting gene-set signatures. We used four different simulation scenarios for each 7 

study, considering strong and weak signal-to-noise ratios (1 and 0.5 respectively) and altered fractions of 8 

differentially expressed (DE) genes (50% and 80% respectively). 9 

 In the first simulation study, we created mimic datasets with increased sample sizes and two gene-10 

sets (GSs) each of a fixed GS size (30 out of 5000 genes), where one GS was differentially expressed 11 

and the other was not. Larger sample size noticeably increased statistical power but not type-I error. 12 

Using 20 samples per group, we could identify GS signatures in strong signal-to-noise-ratio scenarios 13 

(Fig. S1-C3, D3, 60-95% statistical power), using either FAIME.α, GSEA, or GSVA. Additionally, all 14 

methods provided effective control of the type-I error rate when GS having more than 30 gene members. 15 

GSEA and GSVA slightly outperformed FAIME.1 in scenarios with weak signal-to-noise-ratio (Fig. S1-A, 16 

B), while all three algorithms performed equally in the scenarios with strong signal-to-noise-ratio (Fig. S1-17 

C, D). We used the Bioconductor packages PGSEA and GSVA to apply the GSEA and GSVA algorithms 18 

to all gene-sets with five or more genes from the MSigDB. 19 

 In the second simulation study, we repeated all of the aforementioned steps but tested on simulated 20 

GSs of different gene sizes (x=10, 20, 80, and 100). For small GSs (10-20 genes), FAIME showed 21 

statistical advantages with consistently low type-I error (Fig. S1- a1, b1, b2). For other GSs (>=30 genes), 22 

the larger a GS size the lower a statistical power derived from the same sample size in all simulation 23 

scenarios, suggests that 40-60 samples per group are required to test larger GS (>100 genes). 24 

 Alternatively, applying a larger parameter α to FAIME will benefit the analysis of small GS via 25 

weighting more sharply towards the leading expression ranks (Equation 1). In both simulation studies, 26 

FAIME with α =1 by default worked more accurately than α =5 or 10, whereas the latter effectively 27 

controlled the type-I error for small GSs.  28 

1.2) Summary of published LSC-associated gene signatures  29 

Table S1 summarizes nine multiple-gene studies pertaining to LSCs, three of which the original authors 30 

checked prognosis in primary AML samples. These gene signatures can be divided into the three 31 

categories below. For the comparison between AML LSC+ and normal HSC+, we excluded those “HSC” 32 

samples from Table S1 with detectable expression of only CD34+ (neither the mature blood lineages nor 33 
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their committed progenitors markers) because normal CD34+ mononuclear cells contain hematogones (B 1 

lymphocyte precursors) and CD34+ megakaryocytes. 2 

Stemness - We obtained an union set of three published multi-gene signatures, which we refer to as 3 

“LSCvLPC” (Fig. S2). Three studies respectively identified a gene-list that significantly distinguishes 4 

LSC+ populations (CD34
+
CD38

-
) from more mature fraction of the leukemia clone, the leukemia 5 

progenitor cell (LPC) populations (CD34
+
CD38

+
), purified from the same AML samples [2-4]. Ishikawa et 6 

al demonstrated that such LSC+ exclusively recapitulates AML and retains self-renewal capacity in vivo 7 

[2]. Gentles et al showed that expression of their gene-signature in bulk primary AML tumor samples was 8 

associated with clinical outcomes in four independent patient cohorts (n = 1047) [4]. Unfortunately, few 9 

overlaps exist among these three signatures. Only the cell surface marker CD38 was expressed lower in 10 

LSC than in LPC (Fig. S2A1). Additionally, a potential non-stem-cell signature was involved, as both 11 

studies ignored the fact that the CD34
+
CD38

+
 subpopulation may also resides LSCs [5-8]. However, 12 

these three studies are more biologically sensitive by comparing pairwise cell sub-populations purified 13 

from the same patients. Therefore by joining these three published gene signatures, we could generally 14 

characterize leukemia stemness.  15 

 An improved study by Eppert et al verified four divergent LSC+ fractions using xenograft models [5]. 16 

They identified multiple LSC+ fractions in AML samples using a sensitive xenograft assay and then 17 

identified a LSC-specific signature more highly expressed in LSC+ than in LSC-. They showed this 18 

signature to be a significant and independent predictor of patient survival (n=445). They also identified a 19 

signature specific to normal HSC+ fractions but not normal mature fractions and showed its prognosis in 20 

primary AML [5].  21 

Malignancy - We joined two published gene signatures which we refer to as “LSCvNHSC”. Comparing 22 

refined LSC+ populations (Lin
-
CD34

+
CD38

-
CD90

-
) with normal hematopoietic stem cell enriched (HSC+) 23 

populations (Lin
-
CD34

+
CD38

-
CD90

+
), Majeti et al identified a LSC specific signature [9]. Similarly, Saito et 24 

al identified genes with significantly higher expression in AML LSC+ (CD34
+
CD38

-
) than in normal HSC+ 25 

(CD34
+
CD38

-
) [10].   26 

Other dataset - De Jonge et al reported 50 genes that specifically high-expressed in AML CD34
+
 but not 27 

AML CD34
-
 fractions when compared with normal CD34

+
 compartment [11]. Based on the summed 28 

expression level of three out of the 50 genes, they suggested that a high transcript level of CD34+ cells 29 

was associated with significant unfavorable overall survivals in two independent cohorts (n=381) of 30 

normal karyotype AML. However, the statistical significance is mild as it can be achieved after 31 

trichotomizing bulk samples rather than dichotomizing.  32 
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2. Supplementary Methods 1 

2.1) Data process  2 

Gene expression data. We downloaded the normalized gene expression values and transformed the 3 

values to a logarithmic scale (log2) when required. One RNA-seq dataset of normal HSC samples was 4 

provided by the authors [12]. The measurements were scaled in Reads Per Kilobase of exon model per 5 

Million mapped reads (RPKM) format [13], and genes were annotated by Ensemble IDs. 6 

 MSigDB employs only the official gene symbols and Entrez IDs, leading us to use the Bioconductor 7 

package biomaRt (version 2.16.0) to map all probes on a microarray to Entrez gene IDs as well as all 8 

Ensemble IDs of RNAseq to official gene symbols. To get the best coverage for custom microarray 9 

platforms, we also incorporated the corresponding custom annotation files downloaded from GEO. 10 

Functional gene-sets  - We downloaded three categories of previously defined gene-sets from Molecular 11 

Signature Database (MSigDB, version 4.0) [14]: canonical representations of biological processes 12 

compiled by domain experts (from BIOCARTA, KEGG, and REACTOME) (N=1320), gene-sets 13 

representing expression signatures of genetic and chemical perturbations (CGP, N=3402), and 14 

transcription factor or microRNA targets based on conserved cis-regulatory motifs from a comparative 15 

analysis of the human, mouse, rat, and dog genomes (N=836). The average sizes of gene-members in 16 

these three gene-set categories vary from 29 to 233. CGP gene-sets have on average 45 gene-members 17 

per set (range of 5 to 1972). 18 

2.2) Hypergeometric probability analysis 19 

To estimate the probability of observing n=6 overlapping genes among three instances of random 20 

sampling (Table S2, three DNM GSs using FAIME.5 profiles), we did the following modeling: out of a 21 

space of N=22000 genes, we randomly picked a group of A=11 genes, recorded them and put them back, 22 

then repeated for a group  of B=6 genes and C=19 genes. We wished to compute the probability that out 23 

of the 36=A+B+C recorded genes, exactly n=6 genes appear twice and exactly A+B+C-2n=24 genes 24 

appear once. 25 

 Note that for a gene to appear exactly twice, it must appear in two of the three groups and not in the 26 

third. In particular, any number 0 ≤ n-k ≤ n of the repeated genes may have one of its groups be C, which 27 

means the remaining k genes must be in both A and B. We can arbitrarily pick A, and given those 11 28 

distinct genes, there are a total of
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 There are a total of A+B-k genes in the union of A and B, A+B-2k=17-2k of which only appeared 1 

once. Since we didn’t observe any gene appearing in all three of the groups but we needed to have n-k 2 

more genes repeated for a total of n repeated genes, we chose the n-k genes from the non-repeated pool 3 

of 17-2k genes in A and B to also appear in C. This could be done in 
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 Summing over all k's, we have our desired probability that out of the (A+B+C)=36 recorded genes, 7 

exactly (A+B+C-2n)=24 genes appear once and exactly n=6 genes appear twice is: 8 
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2.3) Gene Ontology sematic similarity evaluation 10 

The Gene Ontology (GO) sematic similarity between pair-wise gene members of the identified 25- or 30-11 

gene signature was estimated using Lin’s method [15]. Given two genes x and y, Lin’s method assigns a 12 

sematic similarity score, 
),(),(

),(
2),(

yysimxxsim

yxsim
yxSim


 . We employed the Bioconductor package 13 

GOSim to run the calculation (similarity="funSimMax", similarityTerm="relevance", normalization=TRUE) 14 

[16], respecting the GO biological process and GO molecular function respectively. To estimate the 15 

empirical p-value of an observed similarity score, we ran the same calculation for 1000 pairs of randomly 16 

selected genes.   17 

2.4) Enrichment analysis (EA) on the published gene lists 18 

For LSC stemness (LSC+ compared to LSC-), we focused on the gene-sets that were identified by two 19 

out of the three gene lists: the joint gene-set LSCvLPC, AML stemness, and normal stemness in Eppert 20 

study (Fig. S2A2, yellow circles). For LSC malignancy (AML LSC+ compared to normal HSC+), we 21 

focused on the gene-sets identified by both the jointed LSCvNHSC list (Fig. S2A2, dash-lined pink circles) 22 

and LSC highly expressed gene-sets in De Jonge’s study (Fig. S2A2, blue circles). To interrogate the 23 

LSC stemness, we reported the gene-sets that were significantly enriched in two out of the three gene-24 

lists (Fig. S2A2, yellow circles). Specifically for enriched gene-set in Eppert study (GES30377), we 25 

merged our EA identification with three additional author-reported LSC-associated gene-sets 26 

(BENPORATH PRC2 TARGETS, PARK HSC VS MULTIPOTENT PROGENITORS UP, and IVANOVA 27 

HEMATOPOIESIS EARLY PROGENITOR). We did so because these three gene-sets are LSC-specific 28 
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(LSC p<0.05 but HSC p>0.05, see the Table S14 in the original publication) and can be mapped into the 1 

newest MsigDB v4.1 version. To interrogate the malignancy, we reported the gene-sets that were 2 

significantly enriched in both two gene-lists (Fig. S2A2, blue and pink circles). Note that there are no 3 

overlaps between stemness and malignancy for the LSC+ population, suggesting their distinct properties.  4 

 As we observed before [17], functional-level EA exhibits remarkably greater cross-study 5 

reproducibility than gene-level significance analysis. We observed 60% repetition of enriched canonical 6 

pathways on average (5-100%, FET p<0.05, gene count≥3, Fig. S2B) and 56% repetition  of targets of 7 

chemical and genetic perturbations (15%-73%). 8 

3. Limitation 9 

Our study has some limitations. First, FAIME is designed to identify up-regulated or down-regulated gene-10 

sets. However, genes in the same pathway are not always differentially expressed in the same direction. 11 

Some disease condition associated pathways may contain both up- and down-expressed genes caused 12 

by feedback loops, such as the p53 pathway [18]. Whereas GSVA and GSAA [19] can identify this type of 13 

concerted gene-set expression using a non-parametric KS-test. Second, based on an arbitrary cutoff of 14 

significance at the gene-set level, identifications that have borderline differential activities or modest effect 15 

size may be lost when applying inter-group comparison for both FAIME and GSVA methods. On the other 16 

hand, some false positive identifications met the criteria of significance, suggesting that we should apply 17 

FAIME/GSEA on the data with symmetric differential expression background at gene level. Third, the 18 

‘inter-dataset’ normalization is a straightforward use of Z-scores. This type of standardization has been 19 

successfully applied to integrate gene-set scores of differentially expressed genes and of trait-associated 20 

genetic markers [19]. Even so, a standard deviation parameter for the normalization of all gene-sets, 21 

including over- and under-represented gene-sets, may reduce the over-representation of some gene-sets 22 

while increasing the under-representation of others. In such cases, distinct standard deviation parameters 23 

for the over- and under-represented gene-sets are suggested for future discussion.  Finally, gene-sets 24 

only reflect an approximation of biological functions or pathways and are pre-defined. Only a subset of 25 

genes within a set may contribute to a gene-set expression signature. Different gene-sets may have 26 

similar signatures pertaining to the same phenotype, owing to either an overlap between the gene-sets or 27 

co-regulation of non-overlapping gene-sets. Grouping correlated gene-sets and extending the interaction 28 

of their gene members, perhaps by modeling on additional information, is a potentially promising 29 

approach to define new functional gene-sets. 30 
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