
Notions on optimal transport

Following (1), let us take P(Ω), the space of probability distributions on Ω. For µ, ν in P(Ω),
let us define Π(µ, ν) the set of all probability measures π on Ω × Ω with first marginal µ and
second marginal ν. The optimal transport cost between the two measures is defined as

C(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y) (1)

where c(x, y) is the cost of transporting one unit of mass from x to y. A probability π that
achieves the minimum in (1) is called an optimal coupling, with an associated random variable
(X,Y ) that has joint distribution π. When µ and ν are discrete, i.e., µ =

∑n
i=1 piδxi and

ν =
∑m

j=1 qiδyi , with xi, yj ∈ Rd, the optimal transport problem can be solved as a linear
program (see (2)) where

C(µ, ν) =

n∑
i=1

m∑
j=1

w∗ijc(xi, yj),

and (w∗ij) are the solutions of the optimal transport linear program

minimize
∑n
i=1

∑m
j=1 wijc(xi, yj)

subject to wij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m∑m
j=1 wij = pi, 1 ≤ i ≤ n∑n
i=1 wij = qj , 1 ≤ j ≤ m∑n
i=1

∑m
j=1 wij = 1.

For (Ω = Rd, ‖·‖), with ‖·‖ the Euclidean norm, and p ∈ [1,∞), the p−Wasserstein distance
between µ and ν is defined as

Wp
p (µ, ν) = inf

π∈Π(µ,ν)

∫
‖x− y‖pdπ(x, y)

= inf {E‖X − Y ‖p,L(X) = µ,L(Y ) = ν} ,

where L(X) refers to the law of X.
We present the entropy regularized Wasserstein distance, since it is strictly convex and there

are efficient solutions based on the Sinkhorn algorithm (see (3)). For a fixed γ > 0 the regularized
Wasserstein distance is defined as

Wγ(µ, ν) =
n∑
i=1

m∑
j=1

w∗ij‖xi − yj‖2 + γ
n∑
i=1

m∑
j=1

w∗ij logw∗ij , (2)

where (w∗ij) are the solutions of the optimal transport linear program

minimize
∑n

i=1

∑m
j=1wij‖xi − yj‖2 + γ

∑n
i=1

∑m
j=1wij logwij

subject to wij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m∑m
j=1wij = pi, 1 ≤ i ≤ n∑n
i=1wij = qj , 1 ≤ j ≤ m∑n
i=1

∑m
j=1wij = 1.

Let us denote P2(Rd) the set of probability measures on Rd with finite second moment and
let us consider W2(µ, ν) for µ, ν ∈ P(Rd). In (4) the notions of k-barycenter and trimmed
k-barycenter were introduced, building on the concept of Wasserstein barycenter introduced in
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(5; 6). A k-barycenter of probabilities {µ1, . . . , µn} in P2(Rd) with weights λ1, . . . , λn is any
k-set {µ̄1, . . . , µ̄k} in P2(Rd) such that for any {νi, . . . , νk} ⊂ P2(Rd) we have that

n∑
i=1

λi min
j∈{1,...,k}

W2
2 (µi, µ̄j) ≤

n∑
i=1

λi min
j∈{1,...,k}

W2
2 (µi, νj). (3)

An α-trimmed k-barycenter of {µ1, . . . , µn} with weights as before is any k-set {µ̄1, . . . , µ̄k}
with weights λ̄ = (λ̄1, . . . , λ̄n) ∈ Λα(λ) such that

n∑
i=1

λ̄i min
j∈{1,...,k}

W2
2 (µi, µ̄j) = min

{ν1,...,νk}⊂P2(Rd),λ∗∈Λα(λ)

n∑
i=1

λ∗i min
j∈{1,...,k}

W2
2 (µi, νj), (4)

where Λα(λ) = {λ∗ = (λ∗1, . . . , λ
∗
n) : 0 ≤ λ∗i ≤ λi/(1− α),

∑n
i=1 λ

∗
i = 1}.

Broadly speaking k-barycenters can be thought of as an extension of k-means to the space
of probabilities with finite second order, since we can rewrite (3) as

min
S

k∑
j=1

∑
µi∈Sj

λiW2
2 (µi, µ̄j) (5)

where S = {S1, . . . ,Sk} is a partition of {µ1, . . . , µn} and µ̄j is the barycenter of the elements
in Sj . Therefore, trimmed k-barycenters may be matched to trimmed k-means. As stated in
(4), efficient computations can be done when dealing with location-scatter families of absolutely
continuous distributions in P2(Rd). A notable example being the family of multivariate Gaussian
distributions.
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