
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

The ZJU EDL System for Entity Discovery and Linking at TAC KBP 2019

Yufeng Hu∗, Haochen Shi∗, Tao Chen, Siliang Tang †,
Quan liu, Zhigang Chen, Xiang Ren, Fei Wu, Yueting Zhuang

Zhejiang University, Hangzhou, Zhejiang, P. R. China
{xiaofeem, hcshi, tchen ckc, siliang, wufei, yzhuang}@zju.edu.cn

iFLYTEK Research, Anhui, Hefei, P. R. China
{zgchen, quanliu}@iflytek.com

University of Southern California, Los Angeles, California, United States
xiangren@usc.edu.cn

Abstract

This report gives a detailed description
of ZJU EDL system manufacture by team
ZJU EDL, which submitted to the NIST TAC
Knowledge Base Population (KBP2019) En-
tity Discovery and Linking Track. Our system
consists of two cascaded components, use Lo-
cation Model to detect the mentions from doc-
uments and Typing Model distribute a single
label to the mentions with the assistant of Link-
ing Model. Since the datasets we have are all
generated from distant supervision, we also ap-
ply a series of methods to denoise our dataset.

1 Introduction

This report gives a detailed description of
ZJU EDL system manufacture by the team
ZJU EDL. As shown in figure (1), our system con-
sists of two cascaded components, use the Location
Model to detect the mentions from documents and
Typing Model distribute a single label to the men-
tions with the assistant of the Linking Model. In
the mention detection part, In the mention detection
part, the system takes a document as input. It first
splits the document into sentences, and further use
bert extracts word-level features for each sentence,
Then a deep sequence labeling model will annotate
each word with I-O-B tag (Ramshaw and Marcus,
1995) to detect the span and send mention to the
Typing model.

We use bert (Devlin et al., 2019) to extract the
features and standard entity typing model to dis-
tribute a single type to the target mention. Since
the datasets we have are all generated from distant
supervision, we also apply a series of methods to
denoise our dataset. simultaneously, we apply a
linking system to mask the unrelated labels that

∗These authors contributed equally to this work and share
first authorship.

†Corresponding author.

generate from the typing system by a finely de-
signed rule.

Since the datasets we have are all generated from
distant supervision, we also apply a series of meth-
ods to denoise our dataset. For the noise in the
typing trainset we proposed a method called recur-
sive denoising procedure to denoise the dataset.

2 Dataset

2.1 Dataset Merge
To generate a training set, we merge our dataset
from four different datasets.

• Fine-Grained Entity Recognizer (Figer)
Dataset (Ling and Weld, 2012): Figer is a
fine grain dataset that formulates the tagging
problem as a multi-class, multi-label classi-
fication problem. It introduces a set of 112
overlapping entity types curated from Free-
base types. However multi-label is unfit for
our task, the problem happens in Figer and
Ultra-fine which will be mentioned in the next
item. As a result we have to refine the labels,
then choose the single label instances among
them. Unbalancing between types also trou-
bles us a lot in which the top 5 types cover 80
percent of the data in Figer.

• Ultra-fine Entity Typing Dataset (Choi
et al., 2018): The ultra-fine dataset is much
more diverse and fine grained when compared
to most existing datasets. The entity is di-
vided into NOM and NAM, and the Ultra-fine
dataset generated from head-word supervision
is full of NOM, we use the Entity-Linking su-
pervision dataset only.

• Wikipedia Dataset: In order to avoid the
multi-type problem, We construct a dataset
from single linking from Wikipedia, and we
choose the single type instances among it.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Word segmentation
Sentence split

Mention

Mention

Mention

Typing

Model

Linking

Model

KB

MASK Logits

Source Documents Masked LogitsMasked Logits

Location

Model

Document

Level

Rectify

Figure 1: ZJU-EDL System Overview.

• RPI Dataset (Pan et al., 2017): RPI
created silver-standard annotation de-
rived from Wikipedia markups for 16K+
YAGO (Suchanek et al., 2007) entity types.
Although the RPI is one of the most complete
data we got, the noise in the RPI dataset is so
vast that an entity could gain a lot of different
kinds of labels in the dataset. In this paper,
we gather the information of all RPI mention
to types count, and choose the top one type as
mention’s type.

2.2 Type Mapping
Since the task was change from YAGO types
to Active Interpretation of Disparate Alternatives
(AIDA) types, we have to make a type mapping to
make our dataset still usable, To convert the label
space, we manually map a single label from our
AIDA vocabulary to each formal-language type in
the YAGO, Figer and Ultra-fine ontology. We first
add up the types that appear in the dataset, and
sort to get top use type that appears in the dataset,
and we collect the description sentence to generate
vector then use dot product similarity match as a
candidate recommend type. With the information
and helper of similarity score, we ask crowd an-
notators to annotate top types map. We make two
assumptions:

Assumption 2.1 If type A is an ancestor of type B,
then the type map of A is also usable for type B.
Under the guidance of this assumption, we finally
map 4000 Yago types to AIDA types.

To solve the shortage of some specific types data,
we finally have to face the serious multi-type prob-
lem, for example, ’country’ is always co-occur with
’government’ in Figer, we have to force the type to

single country for whose frequency is more often.
As a result, our Map gain more than 82 percent of
labels appear in AIDA labels and we finally own
our new AIDA dataset with amount of 8 million.

3 Data Processing

Since the dataset is constructed through distance
supervision, there is a lot of noise in the dataset for
entity typing. The noise in the constructed dataset
mainly consists of the following three different
types of noise:

• Wrong Entity Types: the entities are as-
signed with wrong entity types as labels. For
example, there is a large percentage of men-
tion ”U.S.” in the constructed dataset is as-
signed the label ”Cash”, but in the context, its
true label should be ”Country”.

• Wrong Entity Name Extent: the extent of
entity names labeled in the dataset is incorrect.
For example, ”the Eiffel Tower” is labeled as
an entity name in the dataset, however, the
correct extent should be ”Eiffel Tower”.

• Misspelling of Entity Names: the names of
entities is misspelled.

We focus on the Wrong Entity Types noise which
is the dominant one among the above three types
of noise. In order to reduce the impact of this kind
of noise, we proposed a method called recursive
denoising procedure to denoise the dataset, which
will be described in the next subsection.

3.1 Recursive Denoising Procedure
Although a certain percentage of mentions in the
dataset are labeled with incorrect entity types, there

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

FigerOpenWiki RPI

Original AIDA Dataset

Cross

Validation

Divide

...
Train

Dev

Denoised Dataset

Mention Mask

Typing Model
Mention Mask

Typing Model
...

Rectify via

Confidence Gap

merge

Denoise

Type

Map

Figure 2: Dataset and Denoise.

are still a large number of correctly labeled ex-
amples for each entity type. Named entities of
the same entity type often appear in similar con-
texts and act as homogeneous semantic roles, so
we can use the context of these entities to correct
the labels of examples that are mislabeled. For
instance, there are many instances of ”U.S.” in
the dataset that should be labeled ”Country” be-
ing incorrectly labeled ”Cash”, but there are more
mentions with context similar to ”U.S.” correctly
labeled as ”Country”. To do so, we trained an en-
tity typing model by masking the mentions with a
high probability to force the model to make predic-
tions using the context, so that the model can be
used to correct the incorrect labels of the examples.
Figure 2 illustrates the process, which is described
as follows:

1. For every example ei in an entity typing
dataset D, the sentence, mention string and
labeled entity type of ei are denoted as
si, xi, ylabeli respectively. Let current dataset
Dc be the origin entity typing dataset Ds and
n be the number of all possible entity types.

2. Split Dc into k-folds (k=5 in our experiments)
sets {D1, ..., Dk} by tuple (xi, ylabeli), so
that there is no identical (xi, ylabeli) in each
fold.

3. Do k-fold cross-validation on {D1, ..., Dk}
by using each fold Di (i = 1, ..., k) once as
validation set while the k-1 remaining folds
form the training set. During the training and
validation stages of each round of the k-fold
cross-validation, the mention x of every ex-
ample e is masked. For each example e in Di

with label ylabelj (j = 1, ..., n), the trained
entity typing model will give the probability
of each entity type. If the probability ppred of
predicted entity type ypred and the probability
plabel of labeled entity type ylabel satisfy:

ppred − plabel >= gj

where gj(j = 1, ..., n) is a predefined gap
for each entity type, we change the label of e
to ypred. After doing so, we could get new k-
folds sets {D′1, ..., D′k}. let Dc =

∑k
i=1D

′
i

4. Repeat step2, 3 for 2 times. Let the finall
denoised dataset Dd be Dc.

3.2 Entity Typing Model
Our entity typing model aimed to generate classifi-
cation results from the combined input of mention
and its context. For an instance, ’China’ is the de-
tected mention with context ’He is from China’,
model will tell us ’China’ is a ’Country’ based on
specific context.

In this sense, our model needs to pay more at-
tention to construct the representations of mention
and context.

Bert model is responsible for generating origin
simple representations of mention and context inde-
pendently, and then more complicate mechanisms
like attention (Vaswani et al., 2017), fusion (Xiong
et al., 2019) will be introduced to form more accu-
rate representations.

Once we get the attentive representation, a sim-
ple fully connected layer will be adopted as classi-
fication decoder, and some hierarchy loss (Xu and
Barbosa, 2018) can be added to model complex
hierarchy structure.

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

The United States and Russia shared similar ...United States

...

United States

Entity Typing Model Mention Mask Entity
 Typing Model

Attention

Bi-LSTM

Char Emb

Figure 3: Entity Typing Model and Mention Mask Entity Typing Model.

Similar training strategies are adopted like previ-
ous Bert entity recognition model.

Besides, the entity model also plays the role
of data denoising model. During the denoising
process, the only difference is that the mention is
masked, more details can be refered to sec 3.1.

4 Mention Detection and Denoising

Bert Entity Recognition: our entity recognition
model inherits the classic named entity recog-
nition architecture which uses BiLSTM (Schus-
ter and Paliwal, 1997) CRF (conditional random
field) (Lafferty et al., 2001) to generate sequence
output of ”BIO” tags from origin word sequence
input. With regard to this entity recognition task,
we only need to find the boundaries of the entity
without having to judge the specific type of the en-
tity. For example, if origin word sequence is ”He
is from China”, model will generate an output like
”O O O B”, which pointed out the word ”China” is
a named entity. In order to introduce the powerful
representation ability of pretrained model, we use
Bert as our word representation instead of simple
word vector, and followed by the classic Bi-LSTM
CRF architecture.

In the training stage, we firstly only train the
Bi-LSTM CRF framework with a larger learning
rate, and then train both Bert and Bi-LSTM CRF
with a smaller learning rate jointly.

In the stage for practical application, python
package Spacy is added to assist entity recognition.
Just take the previous sentence as an example, ”He
is from China” will be firstly tokenized by Spacy
to generate several tokens, ’He’, ’is’, ’from’ and
’China’, both our Bert model and Spacy model will

The United States and Russia shared similar ...

...Attention

Char Emb

Bert

O B I O B O O ...
CRF ...

Figure 4: Mention Detection Model.

give their options about ’BIO’ tags of the tokens.
According to our observation results,

Spacy (Honnibal and Montani, 2017) will
have a lower recall but a higher accuracy than our
Bert model. So the results generated from Spacy
are used to fix Bert model’s results, some issues
such as wrong entity extents can be solved in this
way. After some rule-based method like this, final
recognition result will be given out.

5 Linking and RPI Search Engine

Entity linking and RPI search engine also play a
vital role in assisting entity typing.

Linking model tries to link the simple mention
to a trusted named entity. For example, mention
’China’ will be linked to country entity ’China’.
It can be seen that the linking process has consid-
ered both the mention itself and its specific con-
text, so the linking result should have a high con-
fidence. Once an entity is linked, the provided
table(yago at least 10.json) which maps entity to
its types will be used to get the entity’s type set

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

mask.
Sometimes we will encounter the situation that

one mention can’t be linked to a specific entity,
so it’s necessary to get a type mask from another
way. We notice a pretty large corpus called RPI
was released as optional material, but this corpus
is not suitable for training data because of its noise,
and not reliable for using because of its data size.
So we develop a search engine under these circum-
stances, the search engine will tell us which types
can the mention be founded, in other words, this
information can be used as an additional type mask
as well.

6 Submission Strategy

We basically designed two submission strategies.
The first submission is the best of our model, The
second is based on the first one, we add document
level information by electing the type with the high-
est score through all the same mention in the same
document as mention’s final type.

The best results of ZJU-EDL System of two eval-
uation windows can be found in Table 1.

Window P R score
Window 1 0.375 0.418 0.395
Window 2 0.423 0.472 0.446

Table 1: The Official Results of ZJU-EDL System in
2019 TAC-KBP EDL Evaluation.

7 Acknowledgements

This work has been supported in part by Na-
tional Key Research and Development Pro-
gram of China (SQ2018AAA010010), NSFC
(No.61751209, U1611461), Zhejiang University
iFLYTEK Joint Research Center, Chinese Knowl-
edge Center of Engineering Science and Technol-
ogy (CKCEST), Engineering Research Center of
Digital Library, Ministry of Education. FInally we
would like to thank the following contributors from
ZJU for their work on dataset collecting, system
debugging and testing: Sheng Lin, Bo Chen and
Luye Zheng.

References

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. arXiv
preprint arXiv:1807.04905.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Xiao Ling and Daniel S Weld. 2012. Fine-grained en-
tity recognition. In Twenty-Sixth AAAI Conference
on Artificial Intelligence.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

M. Schuster and K.K. Paliwal. 1997. Bidirectional
recurrent neural networks. Trans. Sig. Proc.,
45(11):2673–2681.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, WWW ’07, pages 697–
706, New York, NY, USA. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Wenhan Xiong, Jiawei Wu, Deren Lei, Mo Yu, Shiyu
Chang, Xiaoxiao Guo, and William Yang Wang.
2019. Imposing label-relational inductive bias for
extremely fine-grained entity typing. arXiv preprint
arXiv:1903.02591.

Peng Xu and Denilson Barbosa. 2018. Neural fine-
grained entity type classification with hierarchy-
aware loss. arXiv preprint arXiv:1803.03378.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667

