
HAL Id: tel-00847333
https://theses.hal.science/tel-00847333v1

Submitted on 23 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the neural codes using parallel hardware
Javier Baladron Pezoa

To cite this version:
Javier Baladron Pezoa. Exploring the neural codes using parallel hardware. Other [cs.OH]. Université
Nice Sophia Antipolis, 2013. English. �NNT : 2013NICE4027�. �tel-00847333�

https://theses.hal.science/tel-00847333v1
https://hal.archives-ouvertes.fr

UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L'INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Nice - Sophia Antipolis

Specialty : Computer Science

Defended by

Javier Baladron Pezoa

Exploring the neural codes using
parallel hardware

Thesis Advisor: Olivier Faugeras

prepared at INRIA Sophia Antipolis, Neuromathcomp Team

defended on June 07, 2013

Jury :

Reviewers : Markus Diesmann - Forschungszentrum Juelich

Fred Hamker - Chemnitz University of Technology

Examinators : Felix Schürmann - Blue Brain Project, EPFL

Andrew Davison - UNIC, CNRS

Pierre Kornprobst - Neuromathcomp Team, INRIA Sophia Antipolis

Abstract

The aim of this thesis is to understand the dynamics of large interconnected

populations of neurons. The method we use to reach this objective is a mixture of

mesoscopic modeling and high performance computing. The �rst allows us to reduce

the complexity of the network and the second to perform large scale simulations.

In the �rst part of this thesis a new mean �eld approach for conductance based

neurons is used to study numerically the e�ects of noise on extremely large ensembles

of neurons. Also, the same approach is used to create a model of one hypercolumn

from the primary visual cortex where the basic computational units are large popu-

lations of neurons instead of simple cells. All of these simulations are done by solving

a set of partial di�erential equations that describe the evolution of the probability

density function of the network.

In the second part of this thesis a numerical study of two neural �eld models of

the primary visual cortex is presented. The main focus in both cases is to determine

how edge selection and continuation can be computed in the primary visual cortex.

The di�erence between the two models is in how they represent the orientation

preference of neurons, in one this is a feature of the equations and the connectivity

depends on it, while in the other there is an underlying map which de�nes an input

function.

All the simulations are performed on a Graphic Processing Unit cluster. The

thesis proposes a set of techniques to simulate the models fast enough on this kind

of hardware. The speedup obtained is equivalent to that of a huge standard cluster.

ii

Résumé

L'objectif de cette thèse est de comprendre la dynamique des grandes populations

de neurones interconnectées. La méthode utilisée pour atteindre cet objectif est un

mélange de modèles mésoscopiques et calculs de haute performance. Le premier

permet de réduire la complexité du réseau neuronale et le second de réaliser des

simulations à grandes échelles.

Dans la première partie de cette thèse une nouvelle approche du champ moyen est

utilisée pour étudier numériquement les e�ets du bruit sur un groupe extrêmement

grand de neurones. La même approche a été utilisée pour créer un modèle d' hyper-

colonne du premier cortex visuel d'où l'unité basic, est des grandes populations de

neurones au lieu d'une seule cellule. Les simulations sont réalisées en résolvant un

système d'équation di�érentielle partielle qui décrit l'évolution de la fonction de

densité de probabilité du réseau.

Dans la deuxième partie de cette thèse est présentée une étude numérique de

deux modèles de champs neuronaux du premier cortex visuel. Le principal objec-

tif est de déterminer comment les contours sont sélectionnés dans le cortex visuel.

La di�érence entre les deux modèles est la manière de représenter des préférences

d'orientations des neurones. Pour l'un des modèles, l'orientation est une caractéris-

tique de l'équation et la connectivité dépend d'elle. Dans l'autre, il existe une carte

d'orientation qui dé�nit une fonction d'entrée. Toutes les simulations sont réalisées

sur un cluster de processeurs graphiques.

Cette thèse propose des techniques pour simuler rapidement les modèles proposés

sur ce type de machine. La vitesse atteinte est équivalente à un cluster standard

très grand.

iii

Acknowledgments

I would like to express my gratitude to my supervisor, Olivier Faugeras, for giving

me the oportunity to do a PhD in his team. His vast knowledge and great support

have been extremely important for the development of this thesis.

I would like to thanks the members of my commitee: Fred Hamker, Markus

Diesmann, Andrew Davidson, Felix Schürmann and Pierre Kornprobst. All of you

have spent part of your time in reading and commenting this document. I am sure

that all the feed back that I will receive from you will improve this thesis.

I would also like to thanks my wife, Paulina Flores. Without her, I probably

would not have ended this work.

This work was partially supported by the ERC grant #227747 NerVi, the

FACETS- ITN Marie-Curie Initial Training Network #237955 and the IP project

BrainScaleS #269921.

iv

Introduction

The brain is an extremely complex system composed of a huge number of inter-

connected cells that together are able to e�ciently solve hard problems like object

recognition from images or motor control. Its amazing capabilities have attracted

scientists from several di�erent domains to start applying methods not common in

biology to the study of neurons and realistic neural networks. Nowadays the use of

approaches coming from mathematics, physics or computer science in neuroscience

is usually called computational neuroscience.

This thesis belongs to the relatively new �eld of computational neuroscience.

Our main objective was to study the dynamics of extremely large neural networks

using mesoscopic models of brain activity and high performance computing. These

new approaches come from areas far away from biology but we will show that they

can be useful to improve our understanding of the brain at di�erent scales.

Mesoscopic models and mean �eld approaches are used to reduce the complexity

of the system. They allow us to take a detailed description of a neural network

and reduce its number of equations to a quantity than can be treated numerically

or analytically. This is specially useful for a complex system like the brain that

is made of around 1011 neurons, each receiving signals from around 104 other cells

[Izhikevich 2007]. Just storing the complete amount of connections is almost im-

possible in current computers as it will require at least 1015 �oating point numbers.

Even very speci�c segments of the brain, like the visual cortex, are made of very

large ensembles of neurons. This is why methods that reduce this complexity are

required if we wish to understand how the brain works.

High performance computing allows us to make large simulations that would be

impossible in current laptops or personal computers. The large computing power

is used to extend numerical simulations to match real biological �gures. Although

with current technologies a simulation of the complete brain is extremely di�cult,

we can focus on one speci�c brain area, use mathematical techniques to reduce the

complexity of the models and �nally run a simulation to study its behavior. This

simpler model of brain activity is usually still complex enough to require powerful

hardware.

A large part of this work is focused on brain areas related to vision. One reason

for this is that the primary visual cortex is one of the best studied brain area in

biology. This is due to its position in the back of the head which makes experiments

easier. Another reason for this is that the visual system is extremely e�cient in

solving a large number of task that are still very di�cult for image processing or

computer vision. This makes it an interesting system for reverse engineering as new

ideas for algorithms may be based on its dynamics.

The �rst chapter of this thesis gives an overview of the three di�erent domains

that are involved in this work. It starts by introducing the reader to the biology of

v

the brain by �rst describing the properties of single neurons and simple networks and

then characterizing di�erent areas of the brain cortex involved in visual processing.

Then several mathematical models are presented that take into account all the

information given previously. This second part also �rst deals with single neurons

to then review mean �elds and neural �eld methods. Finally, it shows current

techniques in the �eld of high performance computing. Special emphasis is given to

computing in Graphics Processing Units (GPUs) which is the main approach used

in this thesis.

The second chapter of this thesis shows a set of numerical experiments that al-

low us to characterize the behavior of extremely large networks. This is done by

�rst using a mean �eld reduction that transforms a system of stochastic di�erential

equations, describing explicitly each neuron in the network, to a partial di�erential

equation (PDE) which governs the evolution of the probability density of the com-

plete group. This PDE is solved in a GPU cluster to characterize the dynamics of

a single population. Then the simulations are extended to multipopulation models

of the rat barrel cortex and the primary visual cortex of primates.

The third chapter of this thesis shows large scale simulations of two neural �eld

models of the primary visual cortex. It �rst introduces the reader to a new model

that doesn't use a feature based connectivity and shows the �rst numerical study of

its behavior. Several predictions made on the original proposal and analysis of this

model are rejected through numerical experiments. A second part of this sections,

uses a spatial extension of a neural �eld model of one hypercolumn (group of neurons

that represent the di�erent possible orientations in a region of an image) to study

the e�ects of long range connectivity in edge enhancement and perceptual grouping.

An important result presented in this section are the techniques used for a fast

simulation in GPUs of the corresponding neural �eld models.

A digital version of this document together with several movies that com-

plement the results presented in Chapter 2 can be found in: http://www-

sop.inria.fr/members/Javier.Baladron/thesis.html

vi

Introduction (version française)

Le cerveau est un système extrêmement complexe composé d'un grand nombre

de cellules interconnectées qui ensemble sont capables de résoudre e�cacement de

di�ciles problèmes comme la reconnaissance d'objet en images. Ses surprenantes

capacités ont attirés des scienti�ques de di�érents domaines qui ont commencé à

appliquer des méthodes peu habituelles en biologie pour l'étude de neurones et des

réseaux neuronales réalistes. Aujourd'hui l'utilisation d'approches qui viennent des

mathématiques, de la physique, de l'informatique ou autres domaines similaires en

neuroscience s'appellent neurosciences computationnelles.

Cette thèse appartient à la relative nouvelle aire de neurosciences computation-

nelles. Notre principal objectif fut d'étudier des réseaux neuronaux extrêmement

grands en utilisant des modèles mésoscopiques d'activité cérébrale et de calculs de

haute performance. Ces nouvelles approches viennent de domaines éloignés à la

biologie mais nous démontrerons qu'elles peuvent être utiles pour améliorer la com-

préhension du cerveau à di�érentes échelles.

Des modèles mésoscopiques et de champs moyens sont utilisés pour réduire la

complexité du système. Ceci va permette de réduire le nombre d'équations d'une

description détaillée d'un réseau neuronal à une quantité qui peut être traité analy-

tiquement ou numériquement. C'est spécialement utile pour un système complexe

comme le cerveau qui est composé d'environ 1011 neurones, chacune recevant des

signaux d'environ 104 autres cellules [Izhikevich 2007]. Seulement enregistrer la to-

talité des connections dans les ordinateurs actuelles est presque impossible car on

nécessiterait enregistrer 1015 virgules �ottantes. D'ailleurs des segments très spéci-

�ques du cerveau comme le cortex visuel sont composées de groupes très grands de

neurones. C'est pour cette raison que nous avons besoin de méthodes pour réduire

la complexité pour comprendre comment fonctionne le cerveau.

Le calcul de haute performance nous permet de réaliser de grandes simulations

qui sont impossibles à réaliser sur un ordinateur personnel. La puissance de calcul de

ce type d'ordinateur est utilisée pour étendre les simulations numériques et atteindre

des quantités réalistes. Puisque qu'avec les technologies actuelles une simulation du

cerveau entier est très improbable, il fait se diriger vers une zone spéci�que, ensuite

utiliser des techniques pour réduire la complexité. Malgré tout ce modèle simpli�é,

reste su�samment compliqué pour nécessiter un hardware puissant.

Une grande partie de ce travail est dirigée vers l'aire du cerveau destiné à la

vision. Une des raisons est que le cortex visuel est une des zones les plus étudiées du

cerveau en biologie. Cela est dû au fait qu'elle se trouve à l'arrière de la tête et rend

les expériences plus faciles. Une autre raison pour cela est que le système visuel

est extrêmement e�cient pour résoudre un grand nombre de problèmes qui sont

encore plus di�cile à résoudre pour le traitement d'image numérique ou la vision

par ordinateur. Ceci le rend intéressent pour l'ingénierie inverse car de nouveaux

vii

algorithmes peuvent être basés sur son comportement.

Le premier chapitre de cette thèse présente une vue d'ensemble des trois di�érents

domaines impliqués dans ce travail. Il commence par introduire le lecteur à la

biologie du cerveau décrivant d'abord les propriétés d'un neurone et d'un réseau

simple. Puis caractérise les di�érentes aires du cortex impliquées dans le processus

visuel. Ensuite des modèles mathématiques sont présentés et prennent en comptent

l'information donnée précédemment. Cette seconde partie commence également par

des neurones uniques et ensuite passe par des modèles de champs moyens et de

champs neuronaux. Finalement montre des techniques actuelles dans le champ du

Calcul de haute performance. Une importance spéciale est donnée aux calculs sur

des processeurs graphiques (GPU) qui est la principale technologie utilisée dans

cette thèse.

Le deuxième chapitre de cette thèse montre une série d'expériences numériques

qui a permis de caractériser le comportement de grands réseaux neuronaux. Ceci

est réalisé d'abord en utilisant une réduction de champs moyen qui transforme un

système d'équation di�érentielle stochastique, qui décrie explicitement chaque neu-

rone dans le réseau, en une équation di�érentielle partielle qui gouverne l'évolution

de la densité de probabilité de l'ensemble du groupe.

Le troisième chapitre de cette thèse montre des simulations à grandes échelles

de deux modèles de champs neuronaux du premier cortex visuel. Premièrement il

introduit un nouveau modèle de champs neuronaux qui n'utilise pas une connectivité

basé sur les caractéristiques d'équations et montrent une première étude de son

comportement. Plusieurs prédictions faites dans la proposition initiale du modèle

ont été rejetées par des expériences numériques. La deuxième partie de ce chapitre

utilise une extension spatiale d'un modèle de champs neuronaux d'une hyper-colonne

(groupe de neurones qui représente les di�érentes orientations possibles dans une

section de l'image) pour étudier les e�ets de la connexion à longue distance. Un

résultat important présenté dans ce chapitre, sont les techniques utilisées pour une

simulation rapide en GPU.

Contents

1 Biology and Computation 1

1.1 Overview of the visual system . 2

1.1.1 Neurons . 2

1.1.2 Retina . 3

1.1.3 Lateral geniculate nucleus . 4

1.1.4 Primary visual cortex . 5

1.2 Mathematical models of brain activity 11

1.2.1 Single neuron models . 11

1.2.2 Synapses . 16

1.2.3 Mean �eld techniques . 18

1.2.4 Neural �eld models of visual areas 19

1.3 High performance computing . 23

1.3.1 Architectures and programming paradigms 24

1.3.2 Current trends of Supercomputing 25

1.3.3 HPC in neuroscience . 26

1.3.4 GPU computing . 27

2 Numerical analysis of large scale neural networks using mean �eld

techniques 33

2.1 A mean �eld reduction for conductance-based neurons 33

2.1.1 Noisy network model . 34

2.1.2 Mean �eld description . 37

2.1.3 Hardware setup . 38

2.1.4 Propagation of chaos in the Hodgkin-Huxley network 39

2.2 One population Fokker-Planck equation 46

2.2.1 Numerical method and implementation 47

2.2.2 Simulation results for the network of FitzHugh-Nagumo neurons 52

2.2.3 Simulation results for the network of Morris-Lecar neurons . . 65

2.2.4 Speed of our implementation 69

2.2.5 Discussion . 75

2.3 Multi population Fokker-Planck equation 77

2.3.1 Implementation issues . 78

2.3.2 Two population network: a barrel cortex model 78

2.3.3 An orientation selectivity model 81

2.3.4 Discussion . 92

2.4 A faster but less accurate numerical method 95

2.4.1 Relaxation techniques . 98

2.4.2 Extended multi population simulations 103

2.4.3 Discussion . 108

x Contents

3 Numerical simulation of neural �eld models of the primary visual

cortex 113

3.1 A model without feature based connectivity 113

3.1.1 Motivation . 113

3.1.2 Description of the model . 114

3.1.3 Implementation . 115

3.1.4 Numerical results . 122

3.1.5 Discussion . 129

3.2 A spatial extension of the Ring Model 130

3.2.1 Motivation . 130

3.2.2 Implementation . 131

3.2.3 Results . 136

3.2.4 Discussion . 141

4 General conclusion 143

5 Conclusion générale (version française) 147

A Numerical methods for di�erential equations 151

A.1 Numerical methods for ordinary di�erential equations 151

A.1.1 Initial value problem . 151

A.1.2 Euler's method . 152

A.1.3 Runge-Kutta methods . 153

A.1.4 Stability analysis . 153

A.1.5 Implicit methods . 156

A.2 Numerical method for stochastic di�erential equations 156

A.2.1 Euler-Maruyama method . 157

A.2.2 Error's order . 158

Bibliography 159

Chapter 1

Biology and Computation

Contents

1.1 Overview of the visual system 2

1.1.1 Neurons . 2

1.1.2 Retina . 3

1.1.3 Lateral geniculate nucleus . 4

1.1.4 Primary visual cortex . 5

1.2 Mathematical models of brain activity 11

1.2.1 Single neuron models . 11

1.2.2 Synapses . 16

1.2.3 Mean �eld techniques . 18

1.2.4 Neural �eld models of visual areas 19

1.3 High performance computing 23

1.3.1 Architectures and programming paradigms 24

1.3.2 Current trends of Supercomputing 25

1.3.3 HPC in neuroscience . 26

1.3.4 GPU computing . 27

The aim of this chapter is to provide an overview of the three di�erent but re-

lated topics that are the core of this thesis. We start by describing some elements

of the nervous system, focusing on its visual processing areas as these are the main

objects of study in the computational experiments that are presented in the fol-

lowing chapters. Some modeling techniques are presented in the following section.

These will allow us to transform part of the biological facts into equations, making

possible an analytic or numerical study of the visual system. Finally we describe

the computational techniques that will allow us to solve these equations. Simulating

these kind of models requires very powerful computers and modern parallelization

techniques which are the focus of thes last section.

The goal of this chapter is not to provide a complete detailed introduction to the

biology of vision, nor of its mathematical modeling. Here, only the theory and facts

necessary for understanding the results of this thesis are presented. For a complete

review on the biology of neural science we recommend the book [Kandel 2000] and

for a more theoretical perspective [Dayan 2001, Gerstner 2002, Ermentrout 2010].

2 Chapter 1. Biology and Computation

1.1 Overview of the visual system

In this section we describe the basic structure of the �rst areas of the nervous system

in charge of processing vision. We start by describing the most basic unit of the

brain, a neuron, and then continue to more complex networks that can be found in

the cerebral cortex.

1.1.1 Neurons

Neurons are the basic component of the brain and the nervous system. It is through

a limited number of this kind of cells (around 1011, [Izhikevich 2007]) that the brain

develops all of its amazing capabilities. Although a great variety of neurons have

been found in di�erent parts of the brain they all have a set of common character-

istics that will be described next.

What makes neurons special is their ability to receive and send electrical signals

from and to long distances. In order to achieve this, each cell is composed of

dendrites, which form a structure to receive the input from other cells, an axon,

which is a tree-like structure that sends signals to other neurons, and a soma, which

is the nucleus of the cell. The main di�erence between neuron types is in the shape

of its dendrites [Ermentrout 2010]. Figure 1.1 shows a representation of a set of

neurons and how axons on one cell contact the dendrites in another.

Figure 1.1: Neuron structure and interconectivity. From [Hubel 1995]

The soma is in charge of integrating the signals received from other neurons

1.1. Overview of the visual system 3

through connections called synapses. Each signal received changes the membrane

potential of the neuron (whic is the di�erence in voltage between the interior and

exterior of the cell) and if the change is big enough a spike is produced. If the

change makes the membrane potential more positive (or less negative) the cells has

depolarized while if it has make the opposite change the cell has hyperpolarized.

The spike (also called action potential), or abrupt change, is transported through

the axon to other cells.

Synapses can be of 2 types: electrical or chemical. This �rst is rare and is a

direct and very fast connection between the 2 cells. In electrical synapses there are

special channels, called gap junctions, that are capable of transporting current and

to induce directly a voltage change in the postsynaptic neuron.

Chemical synapses are more common and when a spike from the emitting cell

(presynaptic neuron) arrives, neurotransmiters are released into a small space that

exists between the axon and the dendrites of the receiving cell (postsynaptic neuron),

called the synaptic cleft. This transmitter is bound to receptors in the dendrites

that �nally produce the change in membrane potential. The e�ect produced by this

kind of synapse depends on the type of neurotransmiter released and it may excite

or inhibit the cell in very complex forms.

1.1.2 Retina

The retina is the �rst part of the central nervous system in charge of processing

the visual information that enters the eye. It is located in the back of the eye so

it receives the light as soon as it has passed through the lens. Only a few types of

neurons are present in it: photoreceptors, horizontal cells, bipolar cells, amacrine

cells and ganglion cells.

The photoreceptor cells are neurons that activate themselves in the presence

of light. There are mainly 2 types: rods and cones. Rods are cells specialized in

dim-light vision, while cones are specialized for situations where a larger amount of

light is present. During the day it is mostly the cones that are active, but at night

our vision is mediated mainly by rods.

The retina is formed �rst by a layer of photoreceptor cells, followed by a synaptic

layer that connects this �rst group of neurons to a layer of bipolar and horizontal

cells. This second layer is then connected through another synaptic layer to ganglion

cells, which send the �nal output of the retina to the rest of the brain. Bipolar cells

can also connect to amacrine cells, which can connect to ganglion cells on the next

layer or send information back to other bipolar cells. This layered structure is the

main organization of the retina and can be seen in �gure 1.2.

Each bipolar cell has a receptive �eld, which is the zone of the visual �eld (the

total area in which objects can be seen) for which a stimulus provokes a change in

its membrane potential. Some of these cells depolarize when a small spot stimulus

is presented in the center of their receptive �eld (ON-center type) and others are

hyperpolarized by the same stimulus (OFF-center cells). Other types of bipolar cells

can also be found in several species. Nonetheless all of these are subtypes of ON

4 Chapter 1. Biology and Computation

or OFF [Nelson 2004]. The di�erent subtypes come from the consideration of other

features such as connectivity with photoreceptors.

Ganglion cells also present receptive �elds but their response to a stimulus is

more complex. They are the only cells in the retina that generate action potentials.

Typically they present a center-surround con�guration and are normally divided

into ON-cells, OFF-cells and ON-OFF cells. The ON-cells activate when a spot of

light is present in the center of the receptive �eld and keep spiking during the whole

duration of the stimulus. The OFF-cells do not generate spikes during a stimulus

in the center of their receptive �elds but produce sustained activity when they are

turned o�. The ON-OFF cells produce small burst of spikes when the stimulus is

turned on or o�. Other types, that are selective to di�erent characteristics of the

input can also be found, but the ON-cells, OFF-cells and the ON-OFF cells are the

most prominent [Cleland 1974].

For more details on the retina, see [Masland 2001a, Masland 2001b, Wassle 2004,

Wohrer 2008].

Figure 1.2: Position of the retina and the back of the eye and its layered structure.

From [Hubel 1995].

1.1.3 Lateral geniculate nucleus

The ganglion cells in the retina connect with the Lateral Geniculate Nucleus (LGN)

in the Thalamus. It serves as the main relay of information coming from the retina

to the cortical areas of the brain, where more complex analyses of the visual input

are made.

1.1. Overview of the visual system 5

The LGN is formed by 6 layers, the 4 upper layers are made of smaller cells and

are called the parvocellular layers while the other 2 are made of larger cells and are

called the magnocellular layers [Kaplan 2004]. Morphologically di�erent ganglion

cells connect to di�erent layers, generating di�erent paths of information.

The P-path starts at the retinal midget ganglion cells, which receive input from

bipolar cells which connect to only one single cone photoreceptor. These ganglion

cells connect to the parvocellular layers of the LGN. The M-path starts at the parasol

ganglion cells of the retina, which receive input from several bipolar cells which are

connected to several photoreceptors. This second type of ganglion cell connect to

the magnocellular layers of the LGN. There is a third, less known, path, called the

K-path, that connects the retina with small layers that are intercalated between the

main parvocellular and magnocellular layers of the LGN. This third smaller type of

layer is called koniocellular. For a detailed comparison between the 3 kind of layers

and their connectivity see [Xu 2001]. A diagram of these connections is presented

in �gure 1.3.

Figure 1.3: Connection from ganglion cells to the di�erent layers in the LGN. The

diagram shows how each di�erent type of ganglion cell connects to di�erent lay-

ers. Also each layer receives input from only one eye. Redrawn and adapted from

[Sherman 2004]

For a detailed review on the structure of the LGN see [Sherman 1996].

1.1.4 Primary visual cortex

All the pathways in the LGN connect to the primary visual cortex or V1, the largest

of a group of cortical areas devoted to visual processing. This is one of the best

known areas of the brain due to its size and to its position at the back of the head

6 Chapter 1. Biology and Computation

which makes biological experiment easier than in other visual regions of the brain.

As the LGN and other areas of the cortex, V1 has a layered structure composed of

6 layers. Most of the input from the LGN is received in layer 4, where the di�erent

paths connect to di�erent regions. More details on the connectivity between the

LGN and V1 (in the macaque monkey) can be found in [Callaway 2004].

1.1.4.1 Receptive �elds

Probably the most interesting thing about the primary visual cortex is the presence

of receptive �elds of a greater complexity than their predecessor neurons in the LGN.

This was originally discovered by Hubel and Wiesel and presented in a seminal paper

[Hubel 1962]. They detected neurons with 2 di�erent types of receptive �elds: they

called them simple cells and complex cells. Simple cells have elongated receptive

�elds that can be separated into 2 regions, one that excites the neuron when light is

presented in it and another region that inhibits the cell. This behavior is similar to a

linear �lter, where the output is the sum of the negative and positive areas. Complex

cell receptive �elds can't be separated into di�erent regions and they are believed

to realize non-linear operations over the input image. The behavior of complex cells

can be seen as a non-linear combination of a set of linear �lters applied to the input

image [Rust 2005].

Two nearby neurons in V1 have receptive �elds that represent nearby sections of

the visual �eld. In this way, the cells in the primary visual cortex create a complete

map of the visual �eld, called the retinotopic map.

As can be seen in the examples given in �gure 1.4 the receptive �elds of simple

cells are elongated and tilted, which are very di�erent from the circular receptive

�elds of LGN cells and retinal ganglion cells. This inclination is not the same in

all cells and produces the existence of a preferred orientation, i.e. the angle of a

bar on the input image that produces the maximum activity. LGN neurons do

not have this property, so this must arise from the connectivity of cells between

the thalamus and the primary visual cortex. With current neuroimaging methods

a map of preferred orientation can be obtained and its structure can be studied

[Okamoto 2011, Ts'o 1990, Slovin 2002]. An example of the kind of map than can

be produced with these modern techniques can be seen in �gure 1.5.

Maps show a continuous structure of orientations except at points where all

the di�erent preferences converge, called pinwheels. The study done in [Ohki 2006]

shows that these kind of points are singularities in the map and their positions

generate an organized structure. It also shows that neurons close to a pinwheel

center have a sharper tuning curve.

1.1.4.2 Neuron selectivity

Neurons in the primary visual cortex do not only present a preferred orientation but

they also favor other, speci�c, attributes of the visual �eld. These preferences are

not present in LGN cells, so the synapses between them and V1 are the main tools

1.1. Overview of the visual system 7

Figure 1.4: Receptive �eld from simple cells in V1. The x's show areas of exci-

tatory responses and triangles show areas of inhibitory responses. Adapted from

[Hubel 1962]

Figure 1.5: Left: orientation map found in the monkey V1. Right: zoom of the

same map. Taken from [Okamoto 2011]

8 Chapter 1. Biology and Computation

for computing these attributes. Current brain imaging techniques can normally

produce maps for each preferred attribute in a similar as is done for orientations.

Some of the characteristics that have been found to dominate the activation of V1

neurons will be described next.

Cells in V1 normally receive inputs from both eyes, di�ering from LGN neurons

where each layer is associated with a particular eye (see �gure 1.3). It is in this piece

of the cortex that the information from the two eyes converges and the di�erence

between both is detected. Neurons with ocular preference were already detected by

Hubel and Wiesel as described in [Hubel 1977]. The data they obtained show that

most of the cells are mainly driven by one eye, and that the amount of neurons that

respond equally to both eyes is small. Several examples of ocular dominance maps

obtained with modern optical imaging can be seen in �gure 1.6.

This disparity preference in the output of simple cells can be understood as the

sum of the application of two linear �lters, one for each eye. Although at the time

when Hubel and Wiesel discovered this selectivity it was believed that the 2 �lters

were the same, current studies show they may di�er and that this di�erence may

explain the binocular activity of cells ([Anzai 1999]). A review of the history of this

discovery and more details on the disparity preference in the visual system can be

found in [Cumming 2001].

Explaining ocular preference in a similar way for complex cells is much more

complicated and several models have been proposed [Cumming 2001]. A model

that provides an explanation for most of the experimental results was proposed in

[Ohzawa 1990]. In this model complex cells are seen as the combination of a set of

simple cells with di�erent disparity tuning.

Figure 1.6: Ocular preference maps from six di�erent monkey subjects, taken from

[Obermayer 1993]. Dark areas indicate a stronger response to stimulation of the

right eye, bright areas indicate stronger response for stimulation to the left eye, and

gray areas indicate equal response to stimulation of either eye.

Neurons in the primary visual cortex are also selective for the direction of motion.

Three types of selectivity can be found in V1: non directional cells, directionally

biased neurons and motion opponent cells [Cli�ord 2003]. Non directional cells only

feature a preferred orientation but not a preferred direction. In a directionally

1.1. Overview of the visual system 9

biased neuron a bar of the preferred orientation passing through the receptive �eld

following a direction perpendicular to this orientation will cause the highest level

of activity. A motion opponent cell respond strongly to its preferred direction but

its inhibited by motion in the opposite direction. An example of a direction map

obtained by optical imaging can be seen in �gure 1.7

Figure 1.7: Direction selectivity map in a monkey subject, taken from [Weliky 1996].

The direction of best response is color coded and represented by arrows whose length

indicates the size of the response.

Optical imaging also show that neurons present preferences for a spatial fre-

quency presented on its receptive �eld. The experiments presented in [Issa 2000]

show high resolution maps of preferred spatial frequencies at the preferred orienta-

tion. This map show a wide range of di�erent preferences and a continuous change

with the presence of pinwheels, similar to orientation maps.

1.1.4.3 Columnar organization

Aside from the horizontal layered structure, the primary visual cortex has a vertical

organization. A similar response is found for neurons located in any line perpen-

dicular to the surface of the cortex. The properties of the neurons, like orientation

or eye preference, change when moving across the surface of V1 but do not change

much with depth [Hubel 1977]. This structure is known as a cortical column.

Hubel and Wiesel also proposed another structure called the hypercolumn.

The hypercolumn is made of a group of columns that contains all orientations for

both eyes. This concept has been the basis of several mathematical models of V1

[Hansel 1997, Bresslo� 2001b].

Columns are connected to other nearby columns by synapses whose strength

depends on the distance between the 2 connecting elements [Das 1999]. This short

range interaction connects each element to its neighbors independent of their pre-

ferred orientation. Like this, the position in the orientation map of the cell is critical

in the computation it makes. Each cell is inhibited by cells in its neighborhood that

10 Chapter 1. Biology and Computation

have a perpendicular orientation preference and excited by similar orientation pref-

erences.

Neurons in V1 also send long-range lateral connections to other columns that

contact excitatory and inhibitory cells forming patches of terminals [Lund 2003].

This lateral connectivity is anisotropic, i.e. it follows the direction of the preferred

orientation and connects only with similar elements [Angelucci 2002].

More detail on intra and inter column connectivity can be found in [Tucker 2004].

1.1.4.4 V1 and beyond

The complexity of the visual system is huge as there are 32 neocortical areas involved

in vision processing, where 7 of them are also involved in other tasks [Felleman 1991].

The primary visual cortex is believed to be the �rst one of these, and to be in charge

of extracting information content from the images that is necessary for other higher

cognitive functions that are related to other higher visual areas of the cortex. Like

this, the computation done in V1 extract features that serve as input for more

complex functions.

An example of the above are directional selective neurons in V1 which connect to

area MT, a piece of the cortex believed to be highly specialized in motion processing

[Cli�ord 2003]. Almost all of the cells in MT present a preferred direction of motion

and its output signal is associated to eye movements and optic �ow processing. For

more details on the area MT see [Born 2005].

Cells in the primary visual cortex also connect to visual area V2. In this pro-

jection the di�erent paths are kept segregated, i.e. areas of V1 whose input is

dominated by a similar path connect to a speci�c layers of V2 [Sincich 2002]. It has

been shown that V2 processes more complex geometrical forms than V1. Neurons in

V2 may present preferences to shapes like circles, crosses or others �gures composed

of several edges or lines [Hegde 2000].

Neurons in V1 also connect to area V3. This is a less known area due to its

deeper position in the cortex which makes biological experiment hard. This area

has been divided in several regions that receive connections from di�erent cells in

V1 [Felleman 1997]. The ventral half carries a representation of the upper visual

�eld and receive projections from neurons that are selective for orientation and

wavelength but not for direction while the dorsal half carries a representation of the

lower visual �eld and receive input from cells that are selective to direction of motion.

One of the main conclusion of the study of the functional properties of V3 presented

in [Gegenfurtner 1997] is that its function must be to integrate information.

Areas V2 and V3 connect also to area V4 [Ungerleider 2008]. An interesting

feature of this area is that the receptive �eld properties of its neurons are strongly

a�ected by attention signals ([Connor 1997, McAdams 1999]). Theoretical studies

have shown that a feedback (or attention) signal coming from cells associated with

eye movement may tune the receptive �eld structure in V4 and improve its ob-

ject recognition capabilities ([Hamker 2006, Hamker 2008, Zirnsak 2010]). In this

case, the number of receptive �eld increases around the planned saccade (fast eye

1.2. Mathematical models of brain activity 11

movements).

1.2 Mathematical models of brain activity

In this section we describe several theoretical approaches that transform the biolog-

ical facts described previously into mathematical models of brain activity. These

models allow a better understanding of the phenomena occurring in the brain

through the use of several di�erent approaches that are outside the boundaries of

classical biology. As measurements of real neurons are di�cult to obtain, this kind

of technique is becoming a standard tool in neuroscience.

The �rst part of this section deals with mathematical descriptions of a single

neuron before introducing techniques designed to deal with the complexity of large

scale networks. In order to understand correctly the brain we need not only to

comprehend the dynamics of its forming units but also how they interact with each

other.

1.2.1 Single neuron models

Here we describe several approaches to modeling the dynamics of just one single

neuron. We start with the realistic but complex Hodgkin-Huxley model and then

present some simpli�cations of these equations. These other simpler models are

widely used in the computational neuroscience community as they can explain lots

of biological phenomena with a lower level of complexity.

1.2.1.1 Hodgkin-Huxley model

Alan Lloyd Hodgkin and Andrew Huxley [Hodgkin 1952] proposed in 1952 a math-

ematical model to explain the generation of action potentials in the cells of the

giant squid. This model considers the neurons membrane potential, i.e. the voltage

di�erence between the outside and the inside of the cell, which varies through time.

The voltage changes due to the existence of permeable ion channels, through which

positive or negative ions enter or leave the cell. When a positive ion enters the

neuron the membrane potential rises and when it is a negative ion it is reduced.

The Hodgkin-Huxley model considers 3 kinds of ions that a cell exchanges with its

exterior: Na+, K+ and Cl−.

If no external current is applied to the cell, the electrical potential and concen-

tration di�erence induces the �ow of ions until an equilibrium is reached. The value

of this equilibrium potential is di�erent for each ion and is given by the following

Nernst equation:

Eion =
RT

zF
ln

[Ion]out
[Ion]in

, (1.1)

where: [Ion]out is the concentration of the ion outside the cell, [Ion]in is the con-

centration of the ion inside the cell, R is the universal gas constant (8,315 mJ/(K◦

12 Chapter 1. Biology and Computation

Mol)), T is the temperature in degrees Kelvin, F is the Faraday constant (96,480

Coulombs/Mol) and z is the valence of the ion.

Using the previous facts, a neuron can be represented as an equivalent electrical

circuit where each channel is seen as a battery connected to a resistor and the

membrane as a capacitor. A diagram of this distribution can be seen in �gure 1.8.

Using Kirchho�'s law the current �owing through the membrane potential can be

computed as the sum of all the individual currents:

I = CV̇ + INa + IK + ICl. (1.2)

Figure 1.8: Circuit representing one neuron. Each ion potential is represented by a

battery connected to an ion channel, or resistor. The membrane is represented as a

capacitor.

The conductance of each channel depends on the time and on the current voltage,

except for the Cl− or leakeage channel. Each of them has a maximum conductance

that we denote by: gNa, gK and gCl. 3 other variables are de�ned, m, n and h,

that control the probability that each type of channel is open, giving �nally the

Hodgkin-Huxley equation for the membrane potential:

CV̇ = −gNam3h(V − ENa)− gKn4(V − EK)− gCl(V − ECl) + Iext. (1.3)

The variables m, n and h vary according to the following equations, also de�ned

by Hodgkin-Huxley. The α and β functions are de�ned in table 1.1.

ṁ = αm(V)(1−m)− βm(V)m

ṅ = αn(V)(1− n)− βn(V)n

ḣ = αh(V)(1− h)− βh(V)h.

(1.4)

Figure 1.9 shows the solution of the equation when a constant external current

is applied to the neuron after 1000 milliseconds. Before the input the neuron stays

at a constant potential, its resting state. As soon as the input starts the cells

begins to emit spikes. After each spike the neuron stays for a moment at a very low

potential before starting to increase slowly (depolarization) until an action potential

is produced.

For more details on this model see [Gerstner 2002, Ermentrout 2010,

Izhikevich 2007, Dayan 2001]

1.2. Mathematical models of brain activity 13

x αx(u/mV) βx(u/mV)

m (0.1− 0.01u)/(e1−0.1u − 1) 0.125e−u/80

n (2.5− 0.1u)/(e2.5−0.1u − 1) 4e−u/18

h 0.07e−u/20 1/(e3−0.1u + 1)

Table 1.1: This table shows the functions related to the gating variables of the

Hodgkin-Huxley model. Reproduced from [Gerstner 2002]

Figure 1.9: Example of the solution of the Hodgkin-Huxley equation. The input is

0 until time 1000, when an input value of 14 is applied. For more information see

the text.

14 Chapter 1. Biology and Computation

1.2.1.2 FitzHugh-Nagumo model

The Hodgkin-Huxley equations form a 4 dimensional system which is di�cult to

analyze and due to the di�culty to see more than a two dimensional projection it

is hard to get an intuition of its solution. For this reason FitzHugh [FitzHugh 1955,

Fitzhugh 1966, FitzHugh 1969] proposed a two dimensional reduction of the model

that could keep the majority of the properties and reproduce interesting biological

phenomena. As this model is composed of only 2 equations a geometrical analysis

is possible. The equations for the model as presented in [Izhikevich 2006] are:

V̇ = V − V 3/3−W + I

Ẇ = 0.08(V + 0.7− 0.8W),
(1.5)

where V is the membrane potential, W is a recovery variable and I an external

current. An example of the solution of this equation for a constant input can be

seen in �gure 1.10. This example shows the existence of spikes but of a di�erent

shape than the ones presented in �gure 1.9 for the Hodgkin-Huxley model.

Figure 1.10: Example of the solution of the FitzHugh-Nagumo equation with input

0.7.

The model features one stable �xed point when I is small and an unstable limit

cycle when I is higher. The �xed point produces a resting potential while the limit

cycle produces a periodic activity which represents the emission of action potentials.

For a complete bifurcation analysis of the model see [Izhikevich 2007].

1.2. Mathematical models of brain activity 15

1.2.1.3 Morris-Lecar model

Another two-dimensional reduction of the Hodgkin-Huxley equation is the Morris-

Lecar model [Morris 1981]. In this case the Na+ channel is assumed to approach its

asymptotic value extremely fast. This assumption is based on experimental data.

The equations as presented in [Lecar 2007] are:

CV̇ = −gCaMss(V)(V − ECa)− gKW (V − EK)− gL(V − EL) + Iapp

Ẇ = (WSS(V)−W)/TW (V),
(1.6)

where the conductance functions are given by:

Mss(V) = (1 + tanh[(V − V 1)/V 2])/2

Wss(V) = (1 + tanh[(V − V 3)/V 4])/2.
(1.7)

An example of the solution of this equation is presented in �gure 1.11. The height

of the spikes is much bigger than for the FitzHugh-Nagumo equations giving values

closer to the more realistic Hodgkin-Huxley model. Another di�erence from the

previous 2 dimensional reduction is the possibility to measure all of the parameters

experimentally.

Figure 1.11: Example of the solution of the Morris-Lecar equation with input current

80.

For a complete bifurcation analysis of this model see [Izhikevich 2007].

16 Chapter 1. Biology and Computation

1.2.1.4 Integrate and Fire models

In both previous models the shape of the spike was produced by the equation itself.

In the case of the integrate and �re model only the behavior before the emission of

an action potential is given, and a speci�c threshold is assigned to the neuron. If

the membrane potential exceeds this threshold a spike is emitted and the voltage

variable is reset to its resting potential.

Figure 1.12: Circuit representing an integrate and �re neuron. A capacitor is con-

nected with a resistance. Each time the threshold w is exceeded a pulse is emitted.

Adapted from [Gerstner 2002].

The basic integrate and �re neuron can be seen as the simple circuit presented

in �gure 1.12. This circuit is a simpli�ed version of the one in �gure 1.8: it has a

capacitor connected to just one resistor. An extra element is added that compares

the voltage to the threshold and resets the potential if a spike is emitted. Using the

same procedure as for the Hodgkin-Huxley model, the equation for the potential is:

I(t) =
V (t)
R

+ CV̇ , (1.8)

where R is the resistor conductance and C the capacitance. This equation is normally

multiplied by RC to give:

τmV̇ = −V (t) +RI(t), (1.9)

where τm = RC is a time constant.

Figure 1.13 shows the evolution of the voltage for an integrate and �re neuron

when the threshold is set at 1.0 and the input is 1.5. The main di�erence between

this plot and the previous ones is that the shape of the spike is not seen, as an action

potential is considered a discrete event that occurs when the threshold is reached.

Other more complex and realistic versions of this kind of model can be found in

[Gerstner 2002].

1.2.2 Synapses

In order to understand correctly the collective activity of neuron assemblies we

need not only comprehend the dynamics of a single cell but also how they interact

with each other. The relationship between cells are the basis of the computations

performed in the brain and occur at local synapses between neurons. It is through

1.2. Mathematical models of brain activity 17

Figure 1.13: Solution of the integrate and �re equation. The threshold is set at 1.0.

the synapses that the spikes emitted by one cell modify the membrane potential of

another.

In chemical synapses neurotransmitters are released by the presyanptic neuron

that bind to receptors on the postsynaptic neuron. These receptors when activated

cause the opening of synaptic channels that work in a similar way to other ion chan-

nels [Ermentrout 2010]. For this reason synaptic channels are modeled in agreement

with the other currents entering the cell in the Hodgkin-Huxley model, i.e., with a

product of a conductance and a voltage di�erence:

Isyn(t) = gsyn(t)(V − Esyn). (1.10)

For excitatory synapses the reverse potential, Esyn, is 0 while for inhibitory

synapses it is around -75mV [Gerstner 2002].The shape of the function gsyn(t) de-

pends on the kind of synapse modeled, but a common choice are alpha functions,

as presented in [Ermentrout 2010]:

gsyn(t) = ḡ
∑
k

α(t− tk)

α(t) =
adar
ar − ad

(e−adt − e−art),
(1.11)

where tk are the times at which the presynaptic cell has spiked, ar and ad are

parameters that describe the rise and decay of the synaptic conductance.

The main disadvantage of this model is that it is necessary to save the time of

each of the spikes emitted. Another option for modeling synapses is presented in

18 Chapter 1. Biology and Computation

[Destexhe 1994, Ermentrout 2010] where the conductance is given by:

gsyn(t) = ḡy(t), (1.12)

where y(t) denotes the fraction of open ion channels. This function depends only

on the membrane potential of the presynaptic neuron, Vpre, as:

dy

dt
= arS(Vpre)(1− y)− ady

S(Vpre) =
Tmax

1 + e−(Vpre−VT)/Kp
.

(1.13)

The values proposed by the authors for the parameters are: Tmax = 1mM ,

VT = 2mV and Kp = 5mV .
In electrical synapses (also called gap junctions), the 2 neurons are directly

connected, without the gap where neurotransmitters are released. In this kind of

union the 2 cells are always in communication and not only when a spike is emmited.

This can be modeled in a similar way than before but with a conductance that does

not vary with time:

Igap = ḡgap(Vpost − V pre). (1.14)

1.2.3 Mean �eld techniques

Neural networks in the cortex are composed of a big group of neurons and an even

larger number of synapses. As each of these elements is described by several equa-

tions the complexity of the system is huge. As analyzing analytically or numerically

a large scale network becomes untractable due to its number of components, several

techniques have been applied to face this di�culty, mean �eld methods being one of

them. In this kind of method the whole system of equations is reduced to a few of

them that describe the mean behavior of the system when the number of neurons

tends to in�nity. Some important e�orts in the application of these methods in

neuroscience is presented here.

The application of mean �eld techniques in neuroscience is not new, and can be

dated back to the seminal study of emergent behavior in continuum limits by Wil-

son and Cowan and Amari [Amari 1972, Amari 1977, Wilson 1972, Wilson 1973].

In these cases the equations derived describe a macroscopic characteristic of the

network, like for example the mean �ring rate, by a integro-di�erential equation.

This kind of limit equation is usually called a neural mass or a neural �eld if it

considers space.

Gerstner in [Gerstner 1995] proposed a mean �eld description for populations

of neurons given by the spike response model. Each population is a dense network

with low weights whose values depend only on the pool to which the postsynaptic

and presynaptic neuron belongs. The equation derived describes the activity of the

whole population instead of the activity of a single unit in each pool.

1.2. Mathematical models of brain activity 19

A mean �eld description for a network of integrate and �re neurons is proposed in

[Brunel 1999]. In this case the connections in the network are sparse, a feature that

produces uncorrelated activity between neurons. A reduced equation that describes

the distribution of potentials in s population of neurons was obtained and used to

understand the appearance of oscillatory solutions.

This approach was extended in [Mattia 2002] where an analysis of the solutions of

the Fokker-Planck equation that describes the evolution of the probability density

of the possible potential values is made. In this work the �nite size e�ects are

considered and the model is extended to a network with multiple populations.

Macroscopic equations based on the population density approach are obtained in

[Chizhov 2007] for a network of more realistic neurons. In this case a simpli�cation

of a detailed current based model for a hippocampal pyramidal neuron is used. The

authors replace the sodium current by a threshold function, obtaining a mechanism

for the generation of action potentials similar to the integrate and �re model .

More recently, a di�erent approach based on the development of a master equa-

tion was proposed in [ElBoustani 2009]. They have developed an equation that

describes the evolution of the probability density that they can't solve exactly, so a

moment expansion is used for further analysis. A truncation after the second mo-

ment is made, giving equations for the mean population activity and the covariance

matrix.

A dynamic mean �eld approach is used in [Faugeras 2009]. In this case a network

of neurons described by stochastic di�erential equations with random weights which

depends only on the presynaptic and postsynaptic population is used. This is a

more complex network topology than the previous approaches. A set of population

activity equations are derived and proved to be well posed. Finally an algorithm for

computing the solution to these equations is provided.

1.2.4 Neural �eld models of visual areas

1.2.4.1 General description

Another way to analyze large scale networks is to take the continuum limit and con-

sider a macroscopic variable, like the mean �ring rate, at every position. These kinds

of models are called neural �elds and have been studied since the works of Wilson

and Cowan and Amari [Amari 1972, Amari 1977, Wilson 1972, Wilson 1973]. The

main advantage of this approach is the development of simpler equations that can

be treated analytically and numerically while its disadvantage is an inability to re-

�ect the e�ects of the inter spike time. A general form for this kind of model, as

described in [Coombes 2005, Bresslo� 2012], is:

1
α

∂V (x, t)
∂t

= −V +
∫ ∞
−∞

w(y)S(V (x− y, t))dy, (1.15)

where V (x, t) is the activity of a population at position x, S is the �ring rate function

and w(y) is the weight between elements separated by distance y. The w function

20 Chapter 1. Biology and Computation

is normally taken to be a Gaussian, an exponential or a mexican hat function that

combines excitatory and inhibitory connections [Ermentrout 1998].

A typical choice for the �ring rate function is a sigmoidal function of the form:

S(x) =
1

1 + e−σ(x−θ) , (1.16)

where σ is the nonlinear gain and θ is the threshold. When σ →∞, the function S

becomes a Heavyside function, H(u−θ). In this case the neuron �res at its maximum

rate or does not �re at all. The threshold determines the minimum potential needed

for the generation of a spike.

Several biologically interesting phenomena have been studied with the use of this

kind of model. Neural �elds are able to maintain a pattern of activation even after

the input has been removed, representing the capacity of the brain to keep informa-

tion for a fast access even after the feature that triggered the activation has been

removed from our senses. Several authors [Laing 2003a, Gutkin 2002, Laing 2003b,

Rubin 2004, Guo 2005a, Guo 2005b] have shown the existence of sustained patterns

of activity using di�erent weight and �ring rate functions. This may be used to

explain working memory or short term memory.

Another phenomenon studied within this framework is the propagation of waves

in cortical tissue. This kind of behavior has been reported in di�erent areas of the

cortex and can be observed with modern optic imaging techniques that measure

a mesoscopic view of the activity [Lee 2005, Golomb 1997, Peinado 2000]. Neural

�elds also can show wave propagation as has been presented in [Coombes 2005,

Bresslo� 2001a, Kilpatrick 2008].

1.2.4.2 Models of the primary visual cortex

The primary visual cortex has been the subject of several modeling e�orts as it

is one of the areas of the cortex which has been studied experimentally the most.

Several approaches have used the neural �eld techniques to explain some of the com-

putation done in V1. One of the main objectives of using this method is to reduce

the complexity of the complete network but to keep the properties that produce

interesting phenomena. The columnar organization of V1 can be represented very

naturally using a neural �eld approach as will be described later.

A neural �eld model for one hypercolumn of V1 known as The Ring Model of

Orientation was introduced in [Hansel 1997]. As described earlier one hypercolumn

groups several columns with di�erent orientation preference but similar receptive

�eld. In this case the space variable of the general model is used to represent the

possible orientations, and a periodic weight function is used. The original equation

for the model is:

τȦ(x, t) = −A(x, t) + S

[∫ π/2

−π/2
J(x− y)A(y, t)dy/π + εI(x)

]
, (1.17)

1.2. Mathematical models of brain activity 21

where A is the activity of the population with orientation preference x, J is a π

periodic weight function and I represents the input coming from other areas of the

brain. A change of variables of the form V =
∫ π/2
−π/2 J(x − y)A(y, t)dy/π + εI(x),

gives an equation similar to the general case presented in (1.15):

τ V̇ = −V +
∫ π/2

−π/2
J(x− y)S(V (y, t))dy + εI(x). (1.18)

Several di�erent weight functions have been proposed for this model.

In [Bresslo� 2000, Bresslo� 2001b] a di�erence of Gausian is used while in

[Ben-Yishai 1995, Veltz 2011] a function of the following form is used:

J(x) = J0 + J1 cos(2x). (1.19)

The input function has the form:

I(x) = 1− β + β cos(2(x− x0)). (1.20)

This function has a weakly tuned shape with a peak at the angle x0.

The model presents solutions that enhance the tuning of the input function, i.e.,

the function A has a sharper shape than I with a peak at the same angle. This kind

of process improves the angle detection procedures that are done in the retina and

the LGN. Figure 1.14 presents an example of this, on the left side the input function

is shown and on the right the stationary solution of equation (1.17). The parameters

for the simulation are given in the �gure. For the input function presented is di�cult

to select an orientation as all of them have a similar activity. It is much easier to

select an angle in the stationary solution as several orientations present no activity

and the height of the peak is bigger.

Figure 1.14: Left: input function for the ring model with β=0.05 and x0=0. Right:

stationary solution of the ring model with ε = 0.01, σ = 23 and θ = 2

A previous work reported in [Veltz 2011] describes the conditions for the param-

eters in order for the proper tuning curve to exist. The setting of the nonlinear gain

is critical as normally three solutions to 1.17 exist and two of them disappear at a

bifurcation point leaving only the correct one. The author even shows the existence

22 Chapter 1. Biology and Computation

of an illusion as under certain condition an input with a peak at 0 can have an

output tuning curve peaked at π/2.
Bresslof et. al. [Bresslo� 2001b] used a spatial extension of the Ring Model

to represent the complete primary visual cortex and to explain some visual hal-

lucinations. In their model there is an in�nite number of hypercolumns, one at

each possible position, each represented by a Ring Model equation. They also

add long range lateral connectivity between hypercolumns following biological con-

strains. The equation for the model is:

∂V (r, θ, t)
∂t

= −αV (r, θ, t) + µ

∫ π

0

∫
R2

w(r, θ|r′, θ′)S(V (r′, θ′, t))
dr′dθ′

π
+ I(r, θ, t),

(1.21)

where α and µ are decay and coupling coe�cients.

The weight function, w is the sum of a local part and a lateral or long range

one. The local part is non-zero only on elements with the same position and has

the same shape as the Ring model of connectivity. The lateral connectivity ful�lls

the following biological constrains: only elements of similar orientation preference

are connected, the connections only join elements in the direction of the preferred

orientation, they present short range excitation and long range inhibition. The �nal

form of the weight function is:

w(r, θ|r′, θ′) = wloc(θ − θ′)δ(r − r′) + wlat(r − r′, θ)δ(θ − θ′), (1.22)

with:

wlat = ŵ(Rθr)

ŵ =
∫ ∞

0
g(s)[δ(r − sr0) + δ(r + sr0)]ds,

(1.23)

where r0 = (1, 0) and Rθ is the rotation of angle θ.

The authors make a bifurcation analysis with respect to the parameter µ that

shows the existence of multiple solutions that represent well known visual hallucina-

tion when transformed from the retinotopical map to visual space coordinates. Some

examples of the patterns they could compute are shown on �gure 1.15. This analysis

was extended in [Bresslo� 2002b] where they show the e�ect of lateral connection

on the shape of the tuning curves.

A di�erent model is proposed in [Chossat 2009, Faye 2011], where each popula-

tion in the primary visual cortex is considered to represent a structure tensor of the

image, which contains information not only about edges but also about textures.

They use the same general equation (1.17) but the spatial variable instead of repre-

senting just the orientation preference as in the Ring Model, represents a structure

tensor. Although there is not enough biological evidence that columns in V1 use this

kind of structure the authors provide enough theoretical analysis for experimenters

to create a protocol to study this hypothesis.

1.3. High performance computing 23

Figure 1.15: Hallucinations computed with the model of [Bresslo� 2001b].

The structure tensor is a nonlinear representation of the image �rst derivative.

It can be computed by �rst convolving the image with an isotropic or circulary

symmetric Gaussian function with 0 mean and variance σ2
1. Then the derivative at

each point is computed for the new image. A 2x2 matrix is formed by applying a

tensor product to the 2-dimensional vector resulting from the derivative computation

by itself. Finally this matrix is convolved with a di�erent Gaussian function with

variance σ2
2.

The parameters σ1 and σ2 represent the spatial scales. The �rst one, σ1, indicates

the minimum level of detail to which the structure tensor is sensitive. The second

one, σ2, is related to the size of the texture to be represented and to the size of the

receptive �eld.

The distribution of the 2 eigenvalues of the structure tensor, λ1 and λ2, represent

the organization of the intensities in the image. If an area has a constant intensity

the 2 eigenvalues are 0, if a straight edge is present λ1 >> λ2 w 0 and if a corner

is present λ1 ≥ λ2 >> 0. The di�erence between the eigenvalues becomes large for

anisotropic textures.

1.3 High performance computing

High performance computing consists in the use of computers with a high number of

processors (also called supercomputers) for solving complex problems that normally

could not be solved on a personal computer. This kind of technique is useful when

the problem consists of analyzing large volumes of data or when the algorithm needs

to execute a big number of instructions. Not all large programs can be divided in

di�erent tasks to be made in parallel as normally there is a dependency between

consecutive instructions.

24 Chapter 1. Biology and Computation

Supercomputers started with Seymour Cray in the 1960s, who designed comput-

ers that were more powerful than any other at its time [Sisson 2006]. Since then the

computational power and number of processor per machines have been increasing,

and currently even a ranking has been created to keep track of the most powerful

machines (TOP500). In fact, parallel computing techniques have become of more

importance in the last decade, as the increase in the processor speed is reaching

its limits [Lundstrom 2003] but the reduction in size has allowed the designers to

incorporate more than one processor in just one chip. Nowadays even mobile phones

that can be kept in a pocket have more than just one processor.

1.3.1 Architectures and programming paradigms

Several architectures have been proposed for the interconnection of di�erent proces-

sors, each one providing a di�erent way of programming the resulting machine. Some

e�orts have been made on normalizing the programming paradigm but normally at

least the memory distribution needs to be accounted for. The main categories of

current parallel machines and how they are programmed is described next.

The most well known way to characterize a parallel machine is by the

use of the Flynn's taxonomy [Mattson 2004, Hennessy 2007, Flynn 1972]. In

his approach there are 4 options: Single-instruction-single-data (SISD), Single-

instruction-multiple-data (SIMD), Multiple-instruction-single-data (MISD) and

Multiple-instruction-multiple-data (MIMD). A sequential computer is considered

a SISD system, where one processor operates on one input stream. In a SIMD sys-

tem each processor executes the same instruction but to a di�erent data stream. In

a MISD system multiple instruccions operate on a single data, this kind of architec-

ture is hard to �nd in reality. In a MIMD system each processor executes a di�erent

instruction on its own data stream. This is the most general case and most modern

computer clusters �t in this category.

Another way of classifying parallel machines is to divide them according to their

memory structure [Mattson 2004, Hennessy 2007]. In a shared-memory environ-

ment there is just one single main memory for all the processing elements and on a

distributed-memory environment each processor has its own private memory. The

communication between processors is extremely di�erent between the 2 modalities

as in the �rst case each processor can read directly from the centralized memory

data written by others while this is impossible in the distributed memory case. Dis-

tributed memory machines normally support a larger amount of processors and a

bigger amount of total memory.

The easiest way to exploit the parallelism of a machine is to leave the compiler

extract independent task from a sequential code [Kuck 2011]. The output code

of the compiler will make the machine execute each of this task in parallel with-

out the user managing explicitily the architecture. Some libraries, like OpenMP

[Chapman 2008], allow the user to explicitly indicate which parts of the code must

be parallelized by the compiler and give some guidance and how to treat them by

setting some parameters in the code itself.

1.3. High performance computing 25

In some cases the code provided by a compiler is not enough to obtain the

maximum pro�t from the parallel machine. The code generated may not be as

e�cient as it could be given the hardware constrains or the parallelization strategy

is too complex for the compiler to handle it automatically. For these cases several

programming models have been proposed but only 3 are the main cores of most of

modern programming languages [Kuck 2011]. Message passing is the �rst model,

where each process is independent and may send or receive data to or from others via

packaged messages. The Message Passing Interface, MPI, is the most used standard

for this approach. A complete description of MPI can be found in [Gropp 1994].

Another programming model is the Fork-join structure where any process may

separate in 2 or more independent elements. These new processes or threads (de-

pending on the library used) are executed separately and they may be joined or

combined when �nished. The communication is normally done using shared mem-

ory. A widely used example of this kind of model is the POSIX thread API, also

called pthread, for UNIX type machines [Butenhof 1997]. This is a group of C types

and functions that allow the programmer to create, join and synchronize threads.

A third model is used in the data parallel languages where a great deal of low

level detail is expressed in the data itself. This is normally used in SIMD arquitec-

tures where an array of values is updated in parallel. An example of this is GPU

computing, for which more detail will be given later.

1.3.2 Current trends of Supercomputing

The amount of processors and cores on supercomputers is increasing every year.

The current fastest supercomputer, as presented in the TOP500 list (November,

2012), has already 560,640 processor. Also, an important trend in the area is to

start including new accelerators like GPUs (see 1.3.4) or FPGAs ([Sulaiman 2009]),

that can work together with the processors to increase the speed. Already 13 of the

�rst 100 supercomputers on the TOP500 list include GPUs and this number has

been increasing in the last years. For a complete analysis of the November 2012

TOP500 list see [Deng 2013].

One of the most important problem in the design of current Supercomputers

is energy consumption. As more processors are included more electrical power is

required for them to work. The �nancial cost of this situation and the e�ect on

the environment limit the possible size of machines. Currently, chips designers are

moving to simpler cores that can work together to obtain a good performance but

keeping the power consumption very low.

Another issue with this kind of machine is how to create software that is really

able to use and take full advantage of this type of machine. Current parallel soft-

ware should be able to scale to future machines with more and more processors.

The problem is that the speedup of a program will still be limited by its sequen-

tial fraction and the comunication cost. This is normally called the Amdahl's law

[Amdahl 1967].

Current analysis of supercomputers consider another way of scalability in which

26 Chapter 1. Biology and Computation

assumes that more powerful machines are created for more complex problems. For

very large machines the time for solving the problem as a function of the number of

processors is not measured with a �xed problem size (strong scaling) but for a �xed

size per processor. This means that newer, more powerful machines, are thought to

be used for larger problems. In many domains, models can be enhanced by adding

more detail which makes the simulation more complex. More powerful machines

will allow scientists to add this information to their equations and run simulations

that approach realisitic �gures.

1.3.3 HPC in neuroscience

High performance computing has been extensively used for the simulation of spiking

neural networks. One of the main challenges of neural simulation is to deal with the

large numbers of neurons or synapses. HPC provides an option for facing this kind

of problem by the uses of its larger computational power and memory. Simulations

can approach real biological �gures when a large computer cluster is used.

Several softwares have been created for the simulation of spiking neural network.

Some of them, like NEST [Gewaltig 2007] or NEURON [Hines 2002], are designed

to take advantage of computer clusters when available. For a review on the di�erent

available tools see [Brette 2007]. The general approach is that the user expresses the

network characteristics independently of the machine where the simulation is going

to take place and then the simulator automatically deals with the parallelization.

Numerous new problems arise when moving from a sequential simulation to a

parallel one. The �rst problem is to determine the distribution of neurons and

synapses between the di�erent processors. Depending on the organization, synapses

may be between cells on di�erent machines, increasing the amount of communication

needed for the simulation. The data structures representing the network topology

also need to consider this fact.

A second problem is to create an e�cient communication scheme to spread the

spike information. It is necessary to minimize the number of exchanges as they have

a large in�uence on the total computational time. Coordination is also important

as spikes may be lost due to a bad communication strategy.

The solution of these and other problems depends on the simulator. The algo-

rithms used in the software NEST are presented in [Morrison 2005]. This software

is specially designed to run spiking neuron simulations on large computational clus-

ters. The solutions the authors propose were tested on di�erent clusters and show

a linear increase in performance when increasing the number of processors.

A di�erent view on the use of HPC in neuroscience is presented in [Hines 2008].

The authors do not distribute a neural network among the processors but do so

for just one neuron described by a very detailed model. The model considers the

cell real shape and divides it into small compartments, each described by a di�erent

equation. In this approach di�erent cell sections are connected together and it is this

dependency that must be considered for the communication strategy. As such, the

load balancing problem still exists. An implementation is available on the software

1.3. High performance computing 27

NEURON, where even a network of compartmental cells can be simulated in parallel.

Tests show an ideal scaling with the number of processors.

To our knowledge the majority of the e�orts in the use of high performance

computing in neuroscience do not deal with mesoscopic or macroscopic models but

only with spiking neurons. This is probably due to the fact that normally the

reduction of complexity given by the simpli�ed population equations is enough as

to solve the system in a sequential computer. We will show in this thesis that this

is not true when the population equations for a more realistic model are derived.

Also we will show that when a very large piece of the cortex needs to be simulated

a mixture of mesoscopic modeling and parallel computing is extremely useful.

1.3.4 GPU computing

Graphic processing units, GPUs, where introduced in the 90s to improve real time

graphic performance for games. They were originally designed for fast �oating

point arithmetic to calculate 3D geometry and update pixel values [Nickolls 2010].

As the years passed the technology evolved and currently GPUs have become more

�exible and are not only used for games but also for scienti�c applications. See

[Garland 2008] for a review on common applications on science and engineering.

Modern GPUs are low cost highly parallel devices that present a cheaper and

powerful option to computer clusters and standard high performance computing so-

lutions. Any workstation can be transformed into s small supercomputer by adding

one of these cards. Also any supercomputer may been�t from this technology by

connecting several GPUs in parallel to work together with its standard processors

[Kindratenko 2009]. In fact, as of November 2012, the most powerful supercomputer

in the word, as selected in the TOP500 list, and several others in the �rst 10 use

GPUs by nVidia to power up their computation.

The core of modern GPUs are a set of streaming multiprocesors that work in a

SIMD manner [Owens 2008]. Each processor executes the same set of instructions

on di�erent pixels values, in the case of graphics applications, or over di�erent array

values in the case of scienti�c applications. This �rst constraint limit the variety of

problems for which GPUs are useful, but as will be showed later, several neuroscience

applications are well suited for this kind of hardware.

There are mainly 2 companies that produce GPUs that can be used for gen-

eral computation, nVidia and ATI [Owens 2008]. In order to describe in detail the

architecture of a GPU this document will focus on the nVidia cards (Fermi archi-

tecture) and their programming model, as it is the one used for the experiments

presented later. For more information about ATI cards see [Bayoumi 2009] and on

the programming paradigm used for them, called OpenCl, see [Stone 2010]. OpenCl

is an interesting approach to the programming of parallel devices as it is indepen-

dent of the architecture, the language is designed for the same code to run on any

multiprocessor machine, like GPUs.

A block diagram of the nVidia Fermi architecture for GPUs ([Glaskowsky 2009,

Wittenbrink 2011]) is presented in �gure 1.16. The green elements of the �gure are

28 Chapter 1. Biology and Computation

a set of streaming multiprocessors, each consisting of 32 cores. The GigaThread

element, in orange, is in charge of scheduling. The blue elements are in charge of

accessing DRAM and a L2 cache is included. The majority of the space is used

for the computational elements which may execute a huge amount of threads in

parallel. As mentioned in [Glaskowsky 2009], this is the main di�erence with Intel

type processors, where most of the space is dedicated to speculation on the next

possible instruction to be needed.

Figure 1.16: Block diagram of the nVidia Fermi architecture. Taken from

[Glaskowsky 2009]. More details in text.

A block diagram for a single streaming multiprocessor is presented in �gure

1.17. Each of them includes 32 cores, as indicated in green in the diagram, these

can execute one single precision operation per clock period. A set of 16 load store

units (LD/ST) are in charge of memory operations. These can handle addresses

in term of 2 dimensional arrays and perform format conversions. Special Function

Units (SFU) are available to handle special operations like sin, cos or exp.

Threads are divided in a three-dimensional grid of blocks and then joined in

groups of 32, called warps. This gives the maximum number of instructions that

can be executed in parallel. The cores are divided in 2 groups of 16, called execution

blocks. The warp scheduler and the dispatch unit are in charge of assigning the

instructions either to one of the 2 execution blocks, to the load/store units or to

the SFUs. A warp of special functions takes eight cycles to complete on the four

1.3. High performance computing 29

Figure 1.17: Block diagram of the nVidia multiprocessor. Taken from

[Glaskowsky 2009]. More details in text.

30 Chapter 1. Biology and Computation

available SFUs while a normal one takes 2.

A small local memory is present on each multiprocessor. This very fast memory

may be managed by the programmer (shared memory) or left to work automatically

as cache. Shared memory can be accessed by all the threads in a block and it

is normally used for storing intermediate results or moderate amounts of common

data. The e�ciency of an algorithm may depend severely on its shared memory use

as one access may be several orders of magnitude faster than a fetch from global

memory.

CUDA is the programming model that nVidia has created to deal with their

graphic processing units. It is available as a set of libraries and extensions to stan-

dard C/C++. The company provides a special compiler for this kind of code called

nvcc. The core of the system is the separation of host code, to be run on a standard

Intel type processor, and a device code to be executed in the gpu.

The functions written for execution on the device are called kernels. The kernels

span a large amount of threads and the same code is executed on all of them. A

typical example is a matrix times matrix multiplication where one thread is created

for each element of the resulting matrix [Kirk 2010]. The programmer must create

a three dimensional grid of thread blocks before the execution of any kernel. The

limit for the shape of this grid depends on the card to be used but it is normally

recommended not to use the maximum but a combination that maintains the mul-

tiprocessors completely occupied (generally a multiple of the numbers of cores, 32

on Fermi).

In CUDA the programmer must manage explicitly the host memory and the

device memory. As both elements are separate units they can't access other's mem-

ory directly. The language provides primitives for allocating space in GPUs global

memory and copying data from and to it. If an algorithm is input-output inten-

sive this may become a bottleneck as most of the time may be spent sending data.

Well suited applications for GPU computing normally are computationally intensive

tasks where only a few memory transfers between host and device are performed.

There have already been some e�orts on running spiking neural networks simula-

tions on GPUs. Some works in this direction were done even before CUDA appeared

[Bernhard 2006]. Nemo [Fidjeland 2009] is an open source simulator developed for

the simulation of Izhikevich type neurons on CUDA-enabled GPUs. They use a

similar approach to the one proposed in [Nageswaran 2009]. In both cases one of

their main problems is to create data structures that can maintain a coalesced access

when reading the synapses values.

A spiking network designed for an image processing task is used a benchmark

to compare the performance of GPUs vs other multiprocessors architectures in

[Mohammad A. Bhuiyan 2010]. Their results show that when the Hodgkin-Huxley

model is used GPUs present the greatest speed while for the simpler Izhikevich

model an Intel Xeon processor is the fastest. The amount of operations done for up-

dating one Izhikevich neuron is much smaller that for the Hodgkin-Huxley, making

the task a less computationally demanding problem, less suited for GPUs. This con-

dition probably changes if the network is big enough but the authors do not study

1.3. High performance computing 31

this e�ect. Although their results depend heavily on the optimization techniques

used in each case they show an expected behaviour given the constraints of GPU

computing.

Chapter 2

Numerical analysis of large scale

neural networks using mean �eld

techniques

Contents

2.1 A mean �eld reduction for conductance-based neurons . . . 33

2.1.1 Noisy network model . 34

2.1.2 Mean �eld description . 37

2.1.3 Hardware setup . 38

2.1.4 Propagation of chaos in the Hodgkin-Huxley network 39

2.2 One population Fokker-Planck equation 46

2.2.1 Numerical method and implementation 47

2.2.2 Simulation results for the network of FitzHugh-Nagumo neurons 52

2.2.3 Simulation results for the network of Morris-Lecar neurons . 65

2.2.4 Speed of our implementation 69

2.2.5 Discussion . 75

2.3 Multi population Fokker-Planck equation 77

2.3.1 Implementation issues . 78

2.3.2 Two population network: a barrel cortex model 78

2.3.3 An orientation selectivity model 81

2.3.4 Discussion . 92

2.4 A faster but less accurate numerical method 95

2.4.1 Relaxation techniques . 98

2.4.2 Extended multi population simulations 103

2.4.3 Discussion . 108

2.1 A mean �eld reduction for conductance-based neu-

rons

All the mean �eld techniques described earlier use a neuron model that includes

a threshold for the generation of action potentials. The equations that describe

34

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

a cell in these approaches are simpler than the more realistic Hodgkin-Huxley or

its 2 dimensional reductions. Due to this di�erence in complexity a mean �eld de-

scription of a network of conductance-based models requires di�erent mathematical

techniques.

In this section a new approach for the derivation of mean �eld equations for a

noisy version of a network of conductance-based neurons is presented as it has been

published in [Baladron 2012b]. A detailed description of all the proofs will not be

given as this falls outside the scope of this thesis, only the necessary information to

understand the numerical analysis that is presented later will be given.

2.1.1 Noisy network model

The original derivation of current based models presented in section 1.2.1 do not

consider the stochastic nature of the environment or of the channels that are present

in the membrane of the cells. This can be incorporated, in the case of the Hodgkin-

Huxley model, by adding a stochastic part to the external current and by modifying

the equations for the gating variables. Similar changes can be made to the other

models. The stochastic networks considered in this thesis will be described next.

The equations (1.4) for the gating variables of the Hodgkin-Huxley model are

obtained when the proportion of open channels is computed using a Markov chain

model. The process obtained can be shown to converge to equations (1.4) considering

a in�nite number of channels and other standard assumptions [Pakdaman 2010,

Goldwyn 2011]. A more realistic approach taking into account the �nite number

of channels through the Langevin approximation results in the following stochastic

di�erential equations [Wainrib 2010]:

dx = (αx(V)(1− x)− βx(V)x) dt+
√
αx(V)(1− x) + βx(V)x χ(x) dW x

t , (2.1)

where x = {m,n, h}, W x
t are independent standard Brownian motions and χ(x)

is a function that vanishes outside (0,1). This guarantees that the solution stays

between 0 and 1 for all times.

By considering an external current with a stochastic and a deterministic part the

equation for the membrane potential of the Hodgkin-Huxley model are transformed

into the following stochastic di�erential equations:

CdVt =
(
I(t)− gKn4(Vt−EK)− gNam3h(Vt−ENa)− gCl(Vt−ECl)

)
dt+σext dWt.

(2.2)

The same change to the external current can be made to the FitzHugh-Nagumo

model giving the following general stochastic di�erential equations:

dVt = (Vt −
V 3
t

3
− wt + I(t)) dt+ σext dWt

dwt = c (Vt + a− bwt) dt,
(2.3)

2.1. A mean �eld reduction for conductance-based neurons 35

Figure 2.1 gives an example of the evolution of the membrane potential for the

2 models. These were obtained using the Euler-Maruyama method [Mao 2007]. In

both cases the shape of the voltage is di�erent to the previous examples concerning

the deterministic models (see �gure 1.9 for Hodgkin-Huxley and �gure 1.10 for the

FitzHugh-Nagumo) but action potentials are still present.

Figure 2.1: Examples of the solution to the stochastic models (2.3) and (2.2). Top

FitzHugh-Nagumo, bottom Hodgkin-Huxley. For the FitzHugh-Nagumo the exter-

nal noise intensity (σext) is 0.27 and the deterministic input is constant and 0.7. For

the Hodgkin-Huxley the external noise intensity (σext) is 0.1 and the deterministic

input is constant and equal to 3.0

For the synapses we consider the model described by equations (1.13) with a

variable, y, that describes the fraction of open synaptic channels on each neuron.

The maximum conductance, ḡ, is considered to depend on time and on the presy-

naptic and postsynaptic neuron populations. These values will also be called the

weights of the network. The stochasticity of the synaptic channels is considered by

modifying the equation in the same way that was done for the gating variables. Fi-

nally, the evolution of the variable y is given by the following stochastic di�erential

equation:

36

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

dyjt =
(
aγrSγ(V j

t)(1− yjt)− a
γ
dy

j
t

)
dt+ σyγ(V j

t , y
j
t) dW

j,y
t , (2.4)

where j is the neuron index (ranging from 1 to the total number of neurons, N),

γ is the population of neuron j (it varies between 1 and P), W j,y are independent

standard Brownian motions and the function σ is given by:

σyγ(V j , yj) =
√
aγrSγ(V j)(1− yj) + aγdy

jχ(yj). (2.5)

The maximum conductances are considered to be independent di�usion processes

with mean
J̄φγ
Nγ

and standard deviation σJφγ , where Nγ is the amount of neurons in

population γ. This can be expressed in the following equation:

Jiγ(t) =
J̄φγ
Nγ

+
σJφγ
Nγ

ξi, γ(t), (2.6)

where φ is the population of neuron i and the ξi, γ(t), i = 1, . . . , N , γ = 1, . . . , P ,
are independent zero mean unit variance white noise processes.

The main disadvantage of this approach is that if the noise level σJφγ is increased

the probability that Jφγ becomes negative also increases. To solve this problem the

dynamics proposed in [Cox 1985] can be used:

dJij(t) = θφγ(
J̄φγ
Nγ
− Jij(t))dt+

σJφγ
Nγ

√
Jij(t)dBi, γ(t). (2.7)

If the initial value is positive and the condition 2Nγθαγ J̄αγ ≥ (σJαγ)2 holds the

process is guaranteed to be strictly greater than zero [Cox 1985].

Finally, if we collect the synapses and the neurons equations, a network of N

Hodgkin-Huxley type neurons is described by the following 5N stochastic di�erential

equations:

CdV i
t =

(
Iφ(t)− ḡKn4

i (V
i
t − EK)− ¯gNam3

ihi(V
i
t − ENa)− ḡL(V i

t − EL)
)
dt−(∑P

γ=1
1
Nγ

∑
j, p(j)=γ J̄φγ(V i

t − V
φγ

rev)yjt
)
dt−∑P

γ=1
1
Nγ

(∑
j, p(j)=γ σ

J
φγ(V i

t − V
φγ

rev)yjt
)
dBi, γ

t +

σφext dW
i
t

dxit = (αφx(V i)(1− xit)− βx(V i)xit) dt+ σx(V i, xit)dW
x,i
t x ∈ {n, m, h}

dyit =
(
aφrSφ(V i

t)(1− yit)− a
φ
dy

i
t

)
dt+ σyφ(V i

t , y
i
t)dW

i, y
t ,

(2.8)

where p(j) is the population of neuron j, P is the total number of populations and

φ is the population of neuron i.

In the case of the FitzHugh-Nagumo model it is described by the following 3N

stochastic di�erential equations:

2.1. A mean �eld reduction for conductance-based neurons 37

dV i
t =

(
V i
t −

(V it)3

3 − wit + Iφ(t)
)
dt−(∑P

γ=1
1
Nγ

∑
j, p(j)=γ J̄φγ(V i

t − V
φγ

rev)yjt
)
dt−∑P

γ=1
1
Nγ

(∑
j, p(j)=γ σ

J
φγ(V i

t − V
φγ

rev)yjt
)
dBi, γ

t +

σφext dW
i
t

dwit = cφ
(
V i
t + aφ − bφwit

)
dt+ σwdW

i,w
t

dyit =
(
aφrSφ(V i

t)(1− yit)− a
φ
dy

i
t

)
dt+ σyφ(V i

t , y
i
t)dW

i, y
t .

(2.9)

2.1.2 Mean �eld description

It is proven in [Baladron 2012b] that this kind of network presents the propagation

of chaos property which shows that when the initial conditions are independent and

the number of neurons tends to in�nity the cells become independent. This is only

possible if the network has a tight interconnectivity and many independent sources

of noise. The biological experiments in [Ecker 2010] agree with this theory.

Since, thanks to the propagation of chaos all the neurons become independent,

the dynamic of each individual neuron is described by the same stochastic process.

This process is not described by 3N or 5N equations as the complete network but

by just 3P or 5P depending on the neuron model. The evolution of each cell can

be understood as a sample of this process.

This new process that describes the law of each neuron can be obtained by

changing the sum over all the connections present on the network equation by the

mean value of y. This approximation is only accurate if the network has a dense

connectivity. For the FitzHugh-Nagumo model the behavior of the neurons is ruled

by the following 3 stochastic di�erential equations:

dV φ
t =

(
V φ
t −

(V φt)3

3 − wφt + Iφ(t)
)
dt−(∑P

γ=1 J̄φγ(V φ
t − V

φγ
rev)

∫
yPγ(V,w, y, t)dV dwdy

)
dt−∑P

γ=1

(
σJφγ(V φ

t − V
φγ

rev)
∫
yPγ(V,w, y, t)dV dwdy

)
dBφ, γ

t +

σφext dW
i
t

dwit = cφ
(
V i
t + aφ − bφwit

)
dt+ σwdW

i, w
t

dyit =
(
aφrSφ(V i

t)(1− yit)− a
φ
dy

i
t

)
dt+ σyφ(V i

t , y
i
t)dW

i, y
t ,

(2.10)

where Pγ(V,w, y, t) is the probability density function, for the possible states of a

neuron in population γ at time t. A similar approach can be used to obtain the

mean �eld equations for the Hodgkin-Huxley model.

Equations (2.10) can't be solved unless the values of Pγ(V,w, y, t) are known.

These quantities can't be computed beforehand unless the network equations are

solved. One option is to numerically simulate the network in a Monte Carlo fashion

to produce samples and then use them to approximate the probability density. These

38

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

seems to contradict the original objective of the mean �eld approach to reduce the

complexity of the system.

Another approach is to transform the mean �eld equation into a Fokker-Planck

Equation that describes the evolution of the probability density function itself. This

is a partial di�erential equation (PDE), which is completely deterministic, for which

no previous computations are needed as the probability density is the unknown. In

[Baladron 2012b] it is proven that the mean �eld equations described earlier can be

expressed as its equivalent Fokker-Planck equation. For the case of equation (2.10)

the corresponding Fokker-Planck equation is:

∂tPφ(t, V, w, y) =
P∑
γ=1

1
2

(σJφγ)2ȳ2
γ(t)

∂2

∂V 2

[
(V − V φγ

rev)
2Pφ(t, V, w, y)

]
+

1
2
∂2

∂y2
[σ2
Y (V, y)Pφ(t, V, w, y)] +

1
2
σ2
ext

∂2

∂V 2
[Pφ(t, V, w, y)] +

1
2
σ2
w

∂2

∂w2
[Pφ(t, V, w, y)]

− ∂

∂V

V − V 3

3
− w + Iext(t)−

P∑
γ=1

J̄φγ(V − V φγ
rev)ȳγ(t)

Pφ(t, V, w, y)

− ∂

∂w
[a(V + b− cw)Pφ(t, V, w, y)]− ∂

∂y
[(αrS(V)(1− y)− αdy)Pφ(t, V, w, y)] ,

(2.11)

where ȳγ(t) =
∫
yPγ(t, V, w, y)dV dwdy.

Equation (2.11) is a 4 dimensional nonlinear and nonlocal partial di�erential

equation. The integral term di�erentiates this from most other Fokker-Planck for-

malism where simpler equations are normally obtained. This equation can be solved

with numerical methods designed for solving PDE as will be shown later.

The network of Hodgkin-Huxley neurons can also be reduced to its mean �eld

equation and then to its Fokker-Planck reduction obtaining a 6 dimensional PDE.

This high dimensionality is a challenge for current numerical methods and comput-

ers. The equations are not written here as they are not used afterwards in this thesis

and would require an enormous amount of space.

By computing the solution to the Fokker-Planck equation all the dynamics of

the network can be obtained. All the possible statistics from the network, like for

example the mean �ring rate, can be computed using this solution. Also samples

from the process can be obtained from the probability density, representing voltage

traces of neurons in the network.

2.1.3 Hardware setup

We have used a GPU cluster to run all the simulations presented in this thesis,

getting an amazing increase in speed as has been reported in [Baladron 2012a]. The

hardware is composed of 2 machines, each one with 7 nVidia Tesla cards. The cards

in the 2 computers are di�erent, one being the Tesla C2070 and the other the C2050

2.1. A mean �eld reduction for conductance-based neurons 39

Number of CUDA cores 448

Frequency of CUDA cores 1.15GHz

Double precision �oating point performance 515 G�ops

Single precision �oating point performance 1.03 T�ops

Memory Speed 1.5Ghz

Table 2.1: Detailed information about the GPUs

Processor type Xeon 2665

Number of processors 2

Number of cores per processor 6

Clock speed 2.66 GHz

Cache memory 12M

Number of PCI slots 7

Number of Tesla cards 7

PCI express version gen2 16x interface

Memory Type ECC DDR3 1333Mhz

Amount of memory 72Gb

Max memory bandwith 32GB/s

Network connection in�niband QDR (32 Gbit/s)

Table 2.2: Hardware capabilities of each of the 2 available machines

cards. For detailed information about the cards see table 2.1. The only di�erence

between the 2 is the amount of available memory. A block diagram of the cluster

is presented in �gure 2.2. The yellow squares in the �gure show that there is at

least one processor per card and that the communication between them can be done

through shared memory, if they are in the same machine, or via a high speed network

connection, if they are on di�erent computers.

The computer has 2 Intel dual-Xeon X5650 processors, each one composed of 6

cores running at 2.67 GHz. More information about the hardware can be found in

table 2.2

Using this kind of hardware requires the synchronization of 3 di�erent levels of

parallelism. The �rst one is inside each card, where multiple threads run concur-

rently. The second is inside each computer, where the di�erent processor/GPU pairs

must be coordinated. Finally, the third level is between the 2 computers that must

work together and not independently of each other. Any software must provide a

way to manage each of these levels.

2.1.4 Propagation of chaos in the Hodgkin-Huxley network

The propagation of chaos property shows that when the number of neurons tends

to in�nity they should become independent. This can be measured numerically by

solving the network equations and measuring the correlations between any pair of

40

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.2: Block diagram of the GPU cluster on which all the numerical simulation

presented in this document were performed.

2.1. A mean �eld reduction for conductance-based neurons 41

elements. We expect this value tp be large for small network and to diminuish as

the size increases.

In order to see the propagation of chaos in a network of the Hodgkin-Huxley

type, we solve the network equationsM times for 0 ≤ t < T (of course, we discretize

time) and for each simulation j we keep track of the trajectories of 2 randomly chosen

neurons, i1 and i2. Then the following quantity was computed:

Corri1,i2(t) =
1
M

M∑
j=1

V i1
j (t)− V̄ i1(t)

σi1(t)
×
V i2
j (t)− V̄ i2(t)

σi2(t)
. (2.12)

This is an estimate of the correlation between the membrane potential values of the

neurons i1 and i2. This procedure was repeated for di�erent network sizes.

As the standard deviation in Monte-Carlo simulations is of the order of 1√
M

,

we need large values of M (beside large values of N) to test our hypotheses. In

order to see the real quantities the magnitude of the error must be smaller than the

correlation value. As this last number should be small for large N, the number of

simulations required is enormous transforming this problem into a big computational

challenge.

Another computational challenge in this kind of simulation is the generation

of uncorrelated random numbers. The Brownians shown in equations (2.8) are as-

sumed to be independent, and any correlation between them may change the results.

We are approximating the solution of the equations by the Euler-Maruyama method

[Mao 2007] which requires at each time step the generation of 6N uncorrelated ran-

dom numbers. For large N and long simulations, as in our case, this becomes an

extremely hard task.

A completely connected network is the simpler topology for which the dense

connectivity required by the propagation of chaos e�ect is ful�lled. The simulations

we have done use this kind of structure which also allows us to avoid the construction

of complex data structures to handle synapses. This is one of the main problems

faced by the kind of software tool described in section 1.3.3. In our case we just

need to sum over the y variables of all the cells.

The generation of random numbers in parallel is not simple and is the bottleneck

of any Monte Carlo method, including ours [Srinivasana 2003]. The simplest way to

do this is to make each simulation in a di�erent processor using multiple instances

of the same sequential generator. In this case each process would run without

communicating with the others until all the simulations assigned to it are �nished.

Then, once all the process are terminated, another step is necessary to join the results

from all the simulations. This is an interesting approach as it has no communication

delays. The problem is that correlation between the random numbers should be 0,

independent of the processor where they were generated or the simulation for which

they were used. Normally this is a di�cult constraint to satisfy as the generated

values depends on the seed assigned to each generator. If all the seeds are the same,

the numbers are all the same, while if they are di�erent, the selection may cause

undesired correlations. As the original algorithm is designed to work sequentially it

42

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

can't assure that independence will happen between sequences with di�erent seeds.

The problem of choosing a correct set of seeds becomes harder as the number of

processors increases and tests are required to determine the existence of correlations

between streams [Coddington 1998]. Another approach is to design random number

generator algorithms that are adapted to distributed environments and that can use

just one seed for all the processes [Jeng 2000, Ackermann 2001].

The most useful tool for solving this problem in our simulations is the Curand

library develop by nVidia for its graphic cards, and that can be used in CUDA

programs. This library allows us to generate a huge amount of high quality un-

correlated random numbers in parallel by providing just one seed. The results are

stored inside the card and can afterwards be used to compute the righthand side of

equation (2.8), as required by the integration scheme, without any memory transfer

to the CPU.

The version of Curand we have used contains an implementation of a XORWOW

type random number generator, which is very well suited for GPUs. This algorithm

is di�erent from the standard algorithm used for the sequential generation of high

quality random numbers, called the Mersenne Twister [Makoto 1998]. When our

implementation was written the only available implementation of Mersenne Twister

for GPUs was an example provided in the Cuda Software Development Kit. This

version used a simpli�cation of the original algorithm with a reduced state which

was small enough to be used with the small amount of memory of the GPU. Because

of this change, some statistical tests were not passed by the algorithm, reason why

it was not included in Curand. The current version of Curand (released after the

development of our implementation but before the �nal version of this document

was �nished) includes a newer version of Mersenne Twister. This is not the same

algorithm as in the Software Development Kit, but an improved version. A possible

upgrade to our code should consider changing the random number generator to this

new version of Mersenne Twister, this should reduce even more the correlation.

To test the quality of the version of the Curand random number generator we

have used, we measured the correlation between the random numbers used for solv-

ing the voltage equation on a simulation of a 1,000 neuron network. We recorded

the values that were generated for 2 randomly chosen cells at each of the 10,000

simulations performed. Figure 2.3 shows the results. All of the values are close to

0 and the highest ones are close to the order of magnitude of the error given the

number of simulations that were performed (1√
10,000

).

In our implementations each card is controlled by a di�erent processor. At the

beginning of the execution each processor is assigned to a distinct GPU and it do

not use any other one. The CUDA version used for this implementation did not

allow the use of more than one GPU per processor, although more modern versions

do. In any case it is faster to parallelize the host - device coordination than to use

the serialized version currently available.

We generate 2 MPI process, one on each computer. Each of these span a number

of light-weight threads equal to the number of GPUs in the machine using the

pthread library. The communication between the 2 computers is done through

2.1. A mean �eld reduction for conductance-based neurons 43

Figure 2.3: Correlation of random numbers used in a 1,000 neuron network simula-

tion after 10,000 executions.

message passing while internally in each machine only shared memory is used. This

allows us to reduce the use of the network, thereby increasing the execution speed.

Another option would have been to create a di�erent MPI process for each processor-

GPU pair. In this case all the communication would have been done via message

passing. Although modern MPI implementations bene�t from shared memory when

available there is a packaging process necessary for the creation of messages that

our implementation avoids.

In order to numerically compute the righthand side of the system in the cluster,

we �rst divide equally the number of neurons among the cards. For each time step

the GPUs �rst compute the necessary random numbers using the Curand library.

Then, one thread is created for each cell asigned to the card. Each of these compute

the value for the next time step, for all the equations of a di�erent neuron, using

the Euler-Maruyama method. The threads are grouped in a one dimensional array,

divided in blocks whose size maximize the usage of the processor (any factor of 32

which is the number of cores in one processor, see 1.3.4). Once all the threads in

the GPU have �nished, another function is run that sums the values of the all the

y variables. Finally, the total is broadcasted by the use of shared memory.

Summing the values of an array in the GPU is not simple because the hardware

is designed for SIMD operations, which means that each thread must be indepen-

dent to obtain the best performance possible. One common way to compute a

sum like this using multiple processes is to create a variable in shared memory and

protect it from multiple accesses. This approach doesn't ful�ll the constraints of

GPU computing. We have solved this problem by creating a small number of

threads and letting each of them compute a completely di�erent partial sum. The

44

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

�nal result can be obtained by adding the values computed at each thread. To en-

hance coalesced memory access each thread i iterates over the elements at positions

(number of threads× j + i) for j = 0 . . . array size
number of threads

.

Our approach only requires the transfer of one number at the beginning of each

time step and of a small array at the end. This is much smaller than transfering

the complete array for computing the sum at the CPU. Figure 2.4 presents a block

diagram of the process. The computations performed in the GPU and in the CPU

are divided into di�erent zones and there are only 2 arrows that crosses from one to

another, corresponding to the 2 memory transfers. Each of the squares in the GPU

zone correspond to a di�erent kernel, which are started by a call from the CPU once

the previous has �nished.

Figure 2.5 shows the correlation obtained for 3 di�erent network sizes. The

plot on the left shows the correlation for a 2 neuron network computed after 10,000

simulations, while the one in the center shows the same result but for a 1,000 neuron

network. There is clear di�erence between the 2 as in the smaller network the

correlation varies between -0.2 and 0.1 and in the bigger network it varies between

-0.025 and 0.015. The results show that the correlation is indeed reduced when

the amount of neurons is increased. The third plot in the �gure, shows the same

results as the one in the center but when the number of simulations is increased to

1,000,000. As the error in this case is smaller the correlations are reduced even more.

We believe that the peak in the plot is due to the e�ect of the initial conditions, but

even this high value is smaller that the ones obtained with less simulations.

Running 1,000,000 simulations to obtain the results in the plot at the right

of �gure 2.5 is a computational intensive task. For each simulation, at each of

the 2,000 time step, the right hand side of 5,000 nonlinear equations need to be

computed. This gives a total of 1013 function evaluations. For just one simulation

the total number of uncorrelated random numbers generated is 2, 000× 6× 1, 000 =
12 × 106. The total amount of random numbers used in one complete execution is

then 12×1012. Dealing with this kind of �gures is di�cult for any personal computer

using standard scienti�c computing software like Matlab or Python.

We have measured the amount of time taken for the simulation of 2,000 time

steps for a 10,000 neuron network, with di�erent amount of cards. In each case we

average the time after 100 runs. The results are shown on the left of �gure 2.6. The

maximum speed is reached for three GPUs after that it starts to decrease. This is

because after each computation of the right side of Equation (2.8), the threads that

control each GPU must be coordinated, and the connectivity (y) needs to be shared

before starting the next step. Synchronizing the threads is an expensive task that

requires more time as more cards are used.

Another factor that could in�uence the change in speed when using more than

three cards is the reduction in the number of threads inside each GPU. Indeed,

when the number of neurons is kept constant, adding more cards implies that fewer

neurons are assigned to each one; hence, fewer threads are used. Tesla cards are

known to work better when there are many threads or the amount of computation in

each thread is large enough. Without these conditions, the amount of time used in

2.1. A mean �eld reduction for conductance-based neurons 45

Figure 2.4: Flow diagram representing the Monte Carlo simulations of the Hodgkin-

Huxley network. The values Y1, Y2, .., are the partial sums computed by each thread.

See text for more details.

46

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.5: Left: time variation of the correlation in a 2 neuron network with 10,000

executions. Center: same with a 1,000 neuron network. Right: same as center but

with 1,000,000 executions

memory transfer, context creation, and kernel launch inside the card will probably

be too large compared to the real computation. To support this hypothesis, we

increased the number of neurons to 100,000 and, as �gure 2.6 shows, the maximum

speed is reached for the six-card con�guration: As more computations are needed

for simulating the larger network, the total time is larger, but the largest speedup

is reached for a larger number of cards than for a 10,000-neuron network.

Figure 2.6: Left: time taken for one Monte Carlo simulation of 2,000 time steps for

a 10,000 neuron network. Right: same for a 100,000 neurons network

2.2 One population Fokker-Planck equation

We have also solved the Fokker-Planck equation for the FitzHugh-Nagumo network

using the GPU cluster available. In this section we describe the numerical methods

and how they are implemented in the hardware. Then the result of several simula-

tions are shown. As the Fokker-Planck equation describes the complete dynamics of

a very large network, the results presented here show some interesting phenomena

that can occur in extremely large systems.

2.2. One population Fokker-Planck equation 47

2.2.1 Numerical method and implementation

We use the method of lines [Schiesser 1991] for solving the partial di�erential equa-

tion (2.11) when P = 1. We have chosen this method because of its simplicity

and because it allow us to take the advantage of any approach designed originally

for ODEs. It is also well suited for SIMD hardware architectures. The domain is

discretized but the time is kept continuous. Each of the derivatives, with respect

to the V , w and y variables are approximated using �nite di�erences. This results

in a big set of ordinary di�erential equations (one per point in the discretization),

ODEs, that are solved using the GPU cluster.

First, we choose a �nite volume in (V, y, w) space outside of which we assume

that the probability density function is zero. This is done considering the maximum

and minimum values seen for each variable in small network simulations. Then the

volume is discretized in a total of nV × nw × ny points, where nV is the number

of points for the V variable, nw for the w variable, and ny for the y variable.

The probability at each point outside the volume is considered to be 0 (Dirichlet

boundary conditions).

The derivatives are approximated using the following fourth order central di�er-

ence scheme, see [Khan 1999, Morton 2005]:

df(x)
dx

≈ f(x− 2∆x)− 8f(x−∆x) + 8f(x+ ∆x)− f(x+ 2∆x)
12∆x

, (2.13)

d2f(x)
dx2

≈ −f(x− 2∆x) + 16f(x−∆x)− 30f(x) + 16f(x+ ∆x)− f(x+ 2∆x)
12∆x2

.

(2.14)

For the time integration the Runge-Kutta 4 scheme is used. The initial condition is

given by the following Gaussian probability density:

p(0, V, w, y) =
1

(2π)3/2σV0σw0σy0

e
− (V−V 0)2

2σ2
V0

− (w−w0)2

2σ2
w0

− (y−y0)2

2σ2
y0 . (2.15)

With this approach the total number of ODEs we need to solve is nV nwny. This

can become fairly large if we increase the precision of the phase space discretization.

Moreover, increasing the precision of the simulation in the phase space requires, in

order to ensure the numerical stability of the method of lines, to decrease the time

step ∆t used in the time integration scheme.

The Courant�Friedrichs�Lewy condition (see [Strikwerda 2004] for more details)

states that in order for the method of lines to be stable with an explicit time inte-

gration the following relation must be ful�lled:

∆t
N∑
i=1

uxi
∆xi

≤ 1

48

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

where N is the number of dimensions, uxi is the derivative with respect to the vari-

able xi and ∆xi is the distance between 2 points in the xi direction. This condition

determines how much the time step must be reduced for �ner discretizations.

It is possible to solve this equation with a very small grid and for short time

periods in a personal computer using scienti�c software. The problem with this

kind of approach is that due to the low number of points and large time step size,

the instability of the method leads to the appearance of negative vealues. These

are numerical errors that have an extremely strong e�ect on a probability density

function which by de�nition can only have positive values. Our experiments also

shows that the e�ect of the errors grows with time. This kind of small simulation

can only be done for a small period of time after which errors dominate the solution

and the shape of the probability density function is completely lost.

We have created the necessary software to solve equation (2.11) using the GPU

cluster described in 2.1.4. The main objective was to study the e�ect of some

parameters, mainly noise values, on the solution. For doing this we divide the

computation into 2 steps: �rst the mean value of y (the integral in the right hand

side) is computed and then the probability value at each point of the grid is updated.

Being three dimensional, this integral is computationally demanding because all the

grid points must be sampled.

The full domain is a cube, which is equally divided into smaller cubes, and in

each combination processor/card the integral over this smaller domain is computed

as follows. In each card, we �rst create a 2D array whose elements are the 1D

integrals computed with respect to one of the three variables, keeping the other two

constant. By summing the rows of the array, we obtain a 1D array of 2D integrals

with respect to two of the three variables. These values are then sent to the CPU,

where the �nal integral is computed and communicated to the other processes in

the same machine via shared memory, and then to the others via an MPI message.

Only one message is needed that contains the sum over all the integrals computed

in the machine, having a small communication cost. Each processor after receiving

the values from all the others, it adds them all up to obtain the whole integral.

The three steps required for computing the local integral in each processor-card

pair are shown in the diagram of �gure 2.7. Each dashed arrow in the diagram rep-

resents the direction of the integrals computed in each step. The process starts with

a cube, then generates a matrix, then a vector and �nally just one value. The arrows

with solid lines represent the 2 kernels involved in the algorithm. Both of them work

in a similar way, they create one thread per point of the new matrix/vector to be

computed and then each solves one of the required integrals.

Each card computes the right hand side of equation (2.11) at all the points

assigned to the card in the smaller cubes. One thread is created inside the card for

each point, and it computes the corresponding value at that position. Because the

sub domain is the same as it is in the integral, the data is sent only once to the

GPU. Once the computation is �nished the processor copies the boundaries of its

assigned small domain to the shared memory. These values will be needed for the

next computation in the neighboring cards. Finally the values at the half of the

2.2. One population Fokker-Planck equation 49

Figure 2.7: Diagram showing the process for the computation of ȳ

cube domain are sent via an MPI message. This is a bigger message than the one

sent during the processing of the integral because it contains all the points assigned

to one computer that will be needed by the others afterwards. The amount of values

contained in this transmission is 4nV nw. The distribution of points is represented

in the diagram of �gure 2.8 and a �ow chart of the process is shown in �gure 2.9.

Figure 2.8: Diagram showing the organization of points in the 2 computers. The

cube formed by all the smaller ones represent the complete V-w-y domain, which

is cut in the y direction. The green lines indicate the limits between the processor-

GPU pairs. The boundary points, in red, are transferred to shared memory after

updating their value. The points in the limit between the 2 computers, in light blue,

are sent through the network. The points in the middle of each sub-cube are kept

in each GPU.

50

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

One di�erent array is created in the GPU for the results of each of the 4 right

hand calls necessary in the Runge-Kutta 4 scheme, one for each intermediate incre-

ment (k1, k2, k3 and k4). This is where the values are store after each call. The �nal

values for the next time step are computed locally in each GPU by combining the

4 arrays following the integration method. Another set of 3 arrays is used for the

input to each of the intermediate calls to the right hand side. The values of this

arrays depends on the values of the probability at the last time step and on the

previous right hand side call. One �nal array stores the solution obtained at the

prior time. This gives a total memory usage of
8nV nwny
num GPUs

.

A di�erent approach for the computation of three dimensional �nite di�erences

is taken in [Micikevicius 2009]. At the time this work was performed, GPUs did not

have any automatic cache capabilities and all the shared memory management had

to be done by the programmer. All the techniques developed were designed to use

the small amount of shared memory e�ciently. Current cards, as the one used in

this thesis, have an automatic cache and do not require this kind of method. This

has also been mentioned in the study of [Michea 2010].

We have set the values of the weights in such a way that the probability of

a synapse changing sign is 0. This is done by setting a synapse noise level (σφγ
in equation (2.6)) small in comparison to J̄αγ , de�ned in equation (2.6). With this

technique we avoid the use of the more complex connectivity of equation (2.7), which

would increase the dimensionality of the resulting Fokker-Planck equation. These

and other parameters that are common for all the simulations are presented in table

2.3.

The χ function used in all the simulations is:

χ(y) = 0.1e−0.5/(1−(2y−1)2)

Initial Condition Phase space Stochastic Synaptic

FN neuron Weights

V 0 = 0.0 Vmin = −4 a = 0.7 J = 1
σV0 = 0.2 Vmax = 4 b = 0.8 σJ = 0.01
w0 = −0.5 ∆V = 0.027 c = 0.08
σw0 = 0.2 wmin = −3 σw = 0.0007
y0 = 0.3 wmax = 3
σy0 = 0.05 ∆w = 0.02
∆t = 0.001 ymin = 0

ymax = 1
∆y = 0.003

Table 2.3: Common parameters used in all of the simulations of the Fokker-Planck

equation

2.2. One population Fokker-Planck equation 51

Figure 2.9: Flow diagram showing the di�erent steps involved in each computation

of the right hand side. The arrows that cross between CPU/GPU areas indicate

how much data is sent.

52

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

A small independent noise, of intensity σw, is added to the w variable in order

to make the numerical method stable. If the equation was left without noise the

resulting Fokker-Planck equation would not include the second derivative with re-

spect to the w variable, as in (2.11). Our numerical experiment have shown that

the error provoked by the removal of any second derivative makes some probability

mass go out of the de�ned volume, and then bounce back from the boundary. This

e�ect creates negative ripples that should not be present in a probability distribu-

tion. The chosen value is small enough not to disturb the solution but keep the

numerical method stable.

If the noise in the w variable needs to be removed a more complex �nite dif-

ference approximation may be used. There are some schemes that are stable even

if one of the drift terms is missing. One option is to use a Flux Limiting Scheme

([Roe 1986]), these are designed to limit the solution gradient near sharp changes

in the solution domain. Also, an adaptive �nite di�erence approximation, as the

WINO scheme used in [Caceres 2011] for a Fokker-Planck equation obtained for a

network of integrate and �re neurons could be implemented. In both cases it is

necessary to study if the �nal equations are well suited for GPU computing.

2.2.2 Simulation results for the network of FitzHugh-Nagumo neu-

rons

2.2.2.1 Stationary solutions

Four snapshots of the solution are shown in �gure 2.10 (corresponding to the val-

ues I = 0.4 and σext = 0.27) and three in �gure 2.11 (corresponding to the values

I = 0.7, σext = 0.45). In the �gures the left column corresponds to the values of the

marginal p(t, V, w), the right column to the values of the marginal p(t, V, y). Both
are necessary to get an idea of the shape of the full distribution p(t, V, w, y). The

�rst row of �gure 2.10 shows the initial conditions. They are the same for the results

shown in �gure 2.11. The second, third and fourth rows of �gure 2.10 show the time

instants t = 30.0, t = 50.0 and the stationary solution. The three rows of �gure 2.11

show the time instants t = 30.0, t = 50.0 and at convergence. In both cases the solu-

tion appears to converge to a stationary distribution whose mass is distributed over a

�blurred� version of the limit cycle of the isolated neuron. The �blurriness� increases

with the variance of the noise. The four movies for these two cases are available for

download at http://www-sop.inria.fr/members/Javier.Baladron/thesis.html

The limit cycle of the isolated neuron is shown in �gure 2.12. The plots there

correspond to the result of simulations with just one unconnected neuron and the

same parameters as in the experiment of �gure 2.10 and 2.11. Each plot shows how

the neuron traverses the phase space, going around a cycle, which has a similar

shape to the one presented in the solution of the Fokker-Planck equation.

In order to characterize the solution of the Fokker-Plank equation we study how

the dynamics changed when some parameters were varied. We focus our analysis

on the di�erent noise sources as it has been shown that they may not only have a

2.2. One population Fokker-Planck equation 53

disturbing e�ect but they may also improve the information processing capabilities

of the brain [Rolls 2010]. Also on the work presented in [Touboul 2012] it is shown

that the noise level may change completely the structure of the solutions of a similar

equation coming from the mean �eld approximation of a �ring rate model. For this

reason, in the �rst set of experiments we made, the value of the external noise, σext
was changed, and all the other parameters were �xed.

2.2.2.2 Speed of convergence

In each experiment, with di�erent external noise level, the convergence rate was

measured using the following equation:

Cr =
∫

(P (t−∆t, V, w, y)− P (t, V, w, y))2dV dwdy.

To compute this quantity, �rst the di�erence between 2 consecutives steps is

obtained, and then the integral is solved using the trapezoidal rule. If this value

is close to 0 the solution is stationary while if it is large the solution may have big

abrupt changes. The simulations have shown that the convergence is faster when

the noise level is increased as can be seen on the plot of �gure 2.13.

This plot also shows that the di�erence in convergence speed between noise levels

is higher for low values. In fact, the curves for the 2 highest noise levels are very

close to each other. This may indicate the existence of a limit in the amount of

speed it is possible to gain by increasing the noise level. It is probable that for even

higher levels of noise the stationary solution will not be achieved earlier in time.

2.2.2.3 Firing rate and mean voltage

The gain in convergence speed with higher noise levels is potentially useful only if

the stationary solution found for each noise level is similar. If all solutions were

completely di�erent, noise would have only a disturbing e�ect and computing with

higher levels of noise would require complex procedures to extract useful information.

We have measured the mean voltage and the mean �ring rate (to be explained below)

in each case as shown in �gure 2.14. In all cases the solution seems to be converging

to the same values.

The mean voltage has a similar behavior but the bigger variability for lower levels

of noise is more evident as can be seen in �gure 2.14 top. The general tendency of

all the simulations is to converge to a common value but the simulations with low

levels of noise require more time. This can be noticed as the size of the waves is

decreasing with time for all the curves

The �ring rate was computed following the method proposed in [Fourcaud 2002]

for integrate and �re neurons. There the Fokker-Planck equation is rewritten as:

∂

∂t
p(t, ~X) = −~∇ ~X

~J(t, ~X), (2.16)

where ~X = (V,w, y) and in our case:

54

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.10: Marginals with respect to the V and w variables (Left) and to the V and

y variables (Right) of the solution of the McKean-Vlasov-Fokker-Planck equation.

The �rst row shows the initial condition, the second shows the marginals at time

30.0, the third the marginals at time 50.0 and the fourth the stationary (large time)

solutions. The input current I is equal to 0.4 and σext = 0.27. These are screenshots
at di�erent times of movies available in the web page.

2.2. One population Fokker-Planck equation 55

Figure 2.11: Marginals with respect to the V and w variables (Left) and to the V and

y variables (Right) of the solution of the McKean-Vlasov-Fokker-Planck equation.

The �rst row shows the marginals at time 30.0, the second the marginals at time

50.0 and the third the stationary (large time) solutions. The input current I is equal

to 0.7 and σext = 0.45. These are screenshots at di�erent times of movies available

in the web page.

56

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.12: Traces of an isolated neuron showing the limit cycle. The �rst row

corresponds to the a neuron with the same parameters as the experiment shown

in �gure 2.10 and the second to the one shown in �gure 2.11. The �rst column

corresponds to the V-w marginals and the second to the V-y marginals.

Figure 2.13: Convergence rate with di�erent external noise levels for a limited period

of time.

2.2. One population Fokker-Planck equation 57

~J = JV V̂ + Jwŵ + Jyŷ, (2.17)

JV =
[
V − V 3

3
− w + I − J̄(V − Vrev)

∫
y′P (t, V ′, w′, y′)dV ′dw′dy′

]
P (t, V, w, y)

− 1
2
∂

∂V

{[
σ2
ext + σ2

J(V − Vrev)2

∫
y′P (t, V ′, w′, y′)dV ′dw′dy′

]
P (t, V, w, y)

}
Jw = c(V + a− bw)− 1

2
σ2
w

∂

∂w
P (t, V, w, y)

Jy = [arS(V)(1− y)− ady]P (t, V, w, y)− 1
2
∂

∂y

{[
arS(V)(1− y) + ady

]
χ2(y)P (t, V, w, y)

}
,

(2.18)

~J is the probability current of the system, JV , Jw , Jy are its components in the

three directions of the phase space and �nally V̂ , ŵ, ŷ are the vectors that specify

such directions.

Now, if we choose a volume Ω in the phase space with surface SΩ and we integrate

on this volume both the sides of equation (2.17) using the Divergence Theorem on

the right hand side, we obtain:

∂

∂t

∫
Ω
P (t, ~X)d ~X = −

∮
SΩ

~J(t, ~X) · n̂dS, (2.19)

where n̂ is the outward pointing vector normal to the surface SΩ.

Therefore the right hand side of (2.19), without the minus sign, represents the

amount of probability per unit of time that is �owing through the surface SΩ. This

value is positive if the probability is �owing outside the volume Ω.
Now, if we choose Ω = {(V,w, y) : V ≥ Θ} , where Θ is a prede�ned threshold,

this means that SΩ is the hyperplane V = Θ and therefore
∮
SΩ

~J(t, ~X) · n̂dS =∫
R×[0,1]

~J(t,Θ, w, y) · V̂ dwdy =
∫

R×[0,1] JV (t,Θ, w, y)dwdy represents the amount of

probability that �ows through it per unit of time.

This term contains the contributions of both the probability that is �owing

outside (positive contribution) and the probability that is �owing inside (negative

contribution) the volume Ω. More speci�cally, the positive contribution represents

the case when the membrane potential is increasing in time and crosses the threshold

V = Θ during the initial evolution of the spike, while the negative contribution

represents the �nal part of its evolution, namely when the membrane potential is

decreasing in time and crosses the threshold. These two contributions cancel each

other when the solution is stationary, and therefore we want to keep only one of

them in order to represent the spiking activity of the neuron

We can modify slightly the previous equation in order to �t it to our goal, which

is to measure the amount of probability �owing through the threshold from below.

In fact, we can see that:

58

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

∫
R×[0,1]

JV (t,Θ, w, y)dwdy =
∫

R
JmargV (t,Θ, w)dw

where:

JmargV (t,Θ, w) =
∫

[0,1]
JV (t,Θ, w, y)dy =[

V − V 3

3
− w + I − J̄(V − Vrev)

∫
R2×[0,1]

y′p(t, V ′, w′, y′)dV ′dw′dy′
]
pmarg(t,Θ, w)

(2.20)

− 1
2
∂

∂V

{[
σ2
ext + σ2

J(V − Vrev)2

∫
R2×[0,1]

y′p(t, V ′, w′, y′)dV ′dw′dy′
]
pmarg(t,Θ, w)

}
(2.21)

Therefore the marginal probability current JmargV (t,Θ, w) is the V̂ compo-

nent of the probability current associated to the marginal probability density

pmarg(t, V, w) =
∫

[0,1] p(t, V, w, y)dy evaluated on the hyperplane V = Θ.

When the noise in the system is not small enough, the disturbance doesn't cause

neurons to jump to a di�erent branch of the limit cycle in the (V,w) plane. Each

cell follows a trajectory close to the one of a noiseless neuron For this reason we

have �xed our attention on it and not on the planes (V, y) or (w, y) which are shown

in �gures 2.10 and 2.11 left. Finally, we can isolate only the positive contributions

to JmargV (t,Θ, w) and compute:∫
Ξ(t)

JmargV (t,Θ, w)dw, (2.22)

where Ξ(t) = w : JmargV (t,Θ, w) > 0 on the line V = Θ
If we interpret p(t, V, w, y)dV dwdy as the probability of �nding the state of a

given neuron in the cube [V, V + dV] × [w,w + dw] × [y, y + dy] at time t (this is

possible due to the independence resulting from the propagation of chaos e�ect),

equation (2.22) is the mean �ring rate of a real neuron.

As shown in �gure 2.14 the above quantity is similar in all the simulations. The

di�erence between them can be found when computing the variance. As can be

expected, higher levels of noise produce a higher variance. Noise makes neurons

deviate from the limit cycle before being reatracted to it. This may cause some

neurons to move slower or faster than a noiseless cell, as they do not follow the cycle

exactly. Because noise is di�erent for each element they end up spreading over all

the possible values. Figure 2.15 shows the variance in all the cases.

2.2.2.4 E�ects of the deterministic input value

In the next set of experiments we �x the external noise but changed the input value.

For every case we compute the mean �ring rate as described above. This should

give us an idea of the information processing capabilities of the network.

2.2. One population Fokker-Planck equation 59

Figure 2.14: Top: mean voltage for the di�erent external noise levels. Bottom:

mean �ring rate for the di�erent external noise levels

60

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.15: Variance for simulations with di�erent external noise levels

Figure 2.16 shows the �ring rate as a function of the input value for the last time

step of our simulation. The images there are just a screenshot of 2 movies available

at the web page. The plots and movies show how the �ring rate increases with

the input until it reaches a maximum value and then starts falling. This happens

for the 2 levels of noise and can be seen during the whole simulation. The reason

for this drop is that at the input value that produces the maximum �ring rate the

limit cycle for the isolated neuron has disappeared. The solution to the mean �eld

equation for high input values is just a single bump whose center position depends

on the input value. Increasing the input moves the center further from the spike

threshold producing the decrease in the �ring rate. Larger levels of noise increase

the width of the bump.

In order to further check this we have solved the mean �eld equations (2.10)

with a high input value that should not produce any spiking. We have taken the

probability distribution computed by solving the Fokker-Planck equation and use

this together with the mean �eld equation to generate samples of the process. Some

samples are presented in �gure 2.17. The examples show that the voltages �uctuate

around a mean value, which is close to 1.5. No clear spikes can be detected in the

shape of the curves, unlike in �gure 2.1.

Both movies show that the �ring rate converges quickly for high levels of input

while it continues to oscillate during the whole duration for very small values. We

computed the convergence rate for some input values where the limit cycle exists and

2.2. One population Fokker-Planck equation 61

Figure 2.16: Firing rate for di�erent input value at the �nal time step of the sim-

ulation. The external noise is 0.27 for the plot on the top and 0.45 for the one on

the bottom. Movies for both simulations can be found on the web page.

62

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.17: The green and blue line are voltage traces obtained as samples from

the stochastic process described by the mean �eld equation. The input value used

for the simulations is high, in a level where no spiking occurs

set the external noise level to 0.27 and 0.45. These results are shown in �gure 2.18

where a plot of the convergence for the �nal time steps of the simulation is presented.

In both cases, starting from input 0.6, the convergence is faster with higher input.

This phenomenon is similar to what was seen for the external noise levels. In the

case of input 0.4 the convergence is faster than other higher values of noise, not

ful�lling the previous pattern. This is because the value of the deterministic part of

the input is too low compared to the noise level. In this case the input signal the

neurons are receiving is mainly composed of noise

In a third group of experiments the value of the noise level at the synapses, σJ ,

was varied and the rest of the parameters were �xed. This is the second important

source of noise of the model, and as the �rst one (σext), has important e�ects on

the solution we expected this one to completely change the �nal probability density.

This was not the case, as with the 3 con�guration we tested, presented in �gure

2.19, no important change, neither in shape nor in convergence, was detected

In the �nal experiment with the Fokker-Planck equation, we used an input func-

tion that changed in time. We let the system converge to the stationary regime

and then change the input value to a slightly smaller one. This allow us to see the

changes in the probability distribution when the initial conditions are distributed

along the limit cycle and determine how fast the system can react to �uctuations

in the input. The �ring rate for this experiment is presented in �gure 2.20 and the

movie for this simulation is included in the web page. The results show that the

system was able to react very fast, as the probability start to change as soon as the

input varies. The convergence to a new stationary solution is achieved faster that

with the initial condition from the previous experiments.

2.2. One population Fokker-Planck equation 63

Figure 2.18: Convergence rate for the last time steps of the simulation. The external

noise for the plot on the top is 0.27 and for the one on the bottom is 0.45.

64

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.19: Left: probability distribution for the di�erent di�usion processes used

in the experiments. This describe the law of the possible values taken by the weights.

The max conductance of the process is 1 in both cases. The width of the curve is

given by the value of σJ . Right: the �ring rate obtained with the 3 di�erent synapse

con�gurations

Figure 2.20: Firing rate for a simulation when the external input value is varied at

time step 750. The plot shows how the system adapts to this new input value. A

movie of this simulation can be found in the web page

2.2. One population Fokker-Planck equation 65

2.2.2.5 Comparison to isolated neuron

To determine the e�ect of the network on the dynamic, we computed the proba-

bility density function of an isolated neuron with the same parameters as in the

experiments presented in �gure 2.10 and 2.11. To do this we used Monte-Carlo

simulations in a similar way as was done for the Hodgkin-Huxley network in section

2.1.4. In each simulation we considered a sample of the process and used this to

construct an approximation of the probability density function. We have chosen

this method, instead of solving the corresponding Fokker-Planck equation, because

it requires solving just 3 stochastic equations instead of a large set of ODEs. Solv-

ing the Fokker-Planck equation would have required the same discretization size as

before (to be able to compare) and would take a similar amount of computational

time. Instead, solving directly the neuron equation allow us to create a faster im-

plementation, especially if we use a parallel random number generator like Curand.

The simulation with external noise 0.27 and input value 0.4 of an isolated neuron

didn't converge to a stationary solution as the one showed in �gure 2.10. A movie

for this simulation is available at the web page and a screenshot of the �nal time

step is presented in �gure 2.21 left. Instead, the experiment with noise 0.45 and

input 0.7 did converge but to a di�erent solution than the one of the network (shown

in �gure 2.11). A movie for this experiment is also available at the web page and

a plot of the stationary solution is shown in �gure 2.21 right. The quality of both

movies is worse than the experiments with the Fokker-Planck equation because we

have only used 10,000 simulations. Increasing enough this number should produce

a similar quality but would slow down the simulations

The e�ect shown by these simulations is similar to what was shown on those with

di�erent input values (see �gure 2.18). The input to each neuron is composed of the

external signal plus the current sent through synapses from other cells. The total

input of the isolated neuron is smaller than the one a cell in a network receives (there

are only excitatory connections). Given the behavior found in previous simulations,

the system should converge only if the input is high enough, which may not be the

case in the �rst isolated neuron experiment but may happen in the second. This is

an example of an interesting change in the dynamics, produced by letting a neuron

interact with others.

2.2.3 Simulation results for the network of Morris-Lecar neurons

We repeated some of the previous numerical experiments with the more realistic

Morris-Lecar neuron model described by equations (1.6). The shape of the spikes

produced by this model is closer to those produced by the Hodgkin-Huxley type

than the ones produced by the FitzHugh-Nagumo model. Also the parameters

in the model can be related to physical quantities, providing units for them and

allowing to compare the results with the real measurements.

A similar approach to the one used to include noise in the FitzHugh-Nagumo

model was used to create a network of noisy Morris-Lecar cells. First the input

66

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.21: Probability density for 1 neuron approximated after 10,000 Monte Carlo

simulations. Left for experiment with noise 0.27 and right for noise 0.45.

function was separated in a stochastic and a deterministic part. This allows us to

determine if the e�ects of the external noise are the same in this model as in the

previous one. Another small noise source was included in the recovery variable for

the same reasons as before. No change was made in the synapse structure. The

common parameters for all the simulations are presented in table 2.4. The resulting

Fokker-Planck equation is:

∂tPφ(t, V, w, y) =
P∑
γ

1
2

(σJαγ)2ȳ2
γ(t)

∂2

∂V 2

[
(V − V rev)2Pφ(t, V, w, y)

]
+

1
2
∂2

∂y2
[σ2
Y (V, y)Pφ(t, V, w, y)] +

1
2
σ2
ext

∂2

∂V 2
[Pφ(t, V, w, y)]

− ∂

∂V

[
((−gCaMss(V)(V − ECa)− gKW (V − Ew)− gL(V − EL) + I)

1
C

−
P∑
γ

J̄αγ(V −V rev)ȳγ(t))Pφ(t, V, w, y)
]
− ∂

∂y
[(αrS(V)(1− y)− αdy)Pφ(t, V, w, y)]

− ∂

∂w
[((Wss(V)− w)/TW (V))Pφ(t, V, w, y)] , (2.23)

The simulations with this model show the existence of stationary solutions simi-

lar to the ones found for the FitzHugh-Nagumo model. An example of a stationary

solution can be seen in �gure 2.22. The (V,w) marginal probability density spreads

around the limit cycle in a similar fashion to the FitzHugh-Nagumo model. The

structure of the 2 limit cycles whichx] produce the spikes are similar. Again the

"blurriness� depends on the noise values.

2.2. One population Fokker-Planck equation 67

Initial Condition Phase space Stochastic Synaptic

ML neuron Weights

V 0 = −10.0 Vmin = −60 gCa = 4.0(mmho/cm2) J = 0.3
σV0 = 4.0 Vmax = 60 gK = 8.0(mmho/cm2) σJ = 0.01
w0 = −0.2 ∆V = 0.38 gL = 2.0(mmho/cm2)
σw0 = 0.05 wmin = −0.2 EL = −60.0mV
y0 = 0.2 wmax = 0.6 EK = −84.0mV
σy0 = 0.05 ∆w = 0.003 ECa = 120.0mV
∆t = 0.001 ymin = 0 V 1 = −1.2mV

ymax = 0.8 V 2 = 18.0mV
∆y = 0.003 V 3 = 12.0mV

V 4 = 17.4mV
C = 20
σw = 0.01

Table 2.4: Common parameters used in all of the simulations of the Fokker-Planck

equation for the Morris-Lecar model

Figure 2.22: Example solution of the Fokker-Planck equation for the Morris-Lecar

model. In the left the solution at time 50 and in the right the stationary state.

Movies for this simulation are available on the web page

68

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

The solutions were obtained using a modi�ed version of the same code. The

job distribution and communications scheme were left the same, only the equation

was changed. As the range of values for the di�erent variables in the Morris-Lecar

model is very di�erent from those in the Fitzhugh Nagumo model the limits of the

volume are di�erent.

The distribution of points in the grid had to be changed in order to keep a similar

error level in the estimation of the derivatives by �nite di�erence. As the voltage

varies between -60 and 60 in the Morris-Lecar model, while it varies between -4 and

4 in the FitzHugh-Nagumo, more points are necessary in the discretization for V to

keep a ∆V similar to the previous experiments. To do this without increasing the

computational complexity too much, the range of values for the y and w variables

were reduced and discretization points were taken out of these dimensions and added

in V. Finally, the total amount of points is similar in both cases, but the points are

distributed di�erently.

When high input values are presented to the Morris-Lecar model the limit cycle

is destroyed and only a stable �xed point is present (see bifurcation diagram in

[Izhikevich 2007]). This is the same e�ect that made the �ring rate of the FitzHugh-

Nagumo network decrease after the peak in �gure 2.16. Figure 2.23 shows the �nal

stationary probability density in one of these cases. All the mass is distributed

around the stable �xed point and the width of this peak depends on the noise levels.

Figure 2.23: Stationary solution for the Morris-Lecar model with high input

We have repeated the experiments reported in section 2.2.2 where we varied the

external noise with the Morris-Lecar model. As in the previous case, the convergence

rate was measured each time. A similar behavior was found, the highest the noise

levels, the faster the convergence. The limit for the gain in speed due to the rise in

external noise also seems to exist in this case. Due to the di�erence in the range of

possible values for the voltage variable the external noise used for these experiments

2.2. One population Fokker-Planck equation 69

is much higher than before. See �gure 2.24 for details on the di�erent convergence

rates.

Figure 2.24: Convergence rate for several simulations of the Morris-Lecar network

with di�erent external noise levels and input = 80.

The same procedure as in the FitzHugh-Nagumo case was used to characterize

the solution for each noise level. The mean voltage value and the mean �ring rate

were computed and compared. The results can be seen in �gure 2.25. The mean

voltage has a similar behavior to the previous experiments, for all noise levels it

converges to a similar value. The plot also shows how the higher levels of noise

are approaching this value faster. The �ring rate behavior is di�erent from before,

in this set of experiments it is reduced by a small amount when the noise level is

increased. This di�erence is small and although the solutions are not the same they

are similar enough for the system to bene�t from the faster convergence. Finally,

the variance was also computed for these simulations (see �gure 2.26), obtaining a

structure similar to that of the FitzHugh-Nagumo case.

A somewhat surprising behavior was found in simulations with small inputs and

high levels of noise. The �ring rate in these cases doesn't converge but it decreases

over time. Although this decrease is slow, it looks like the value of the input is not

high enough to dominate the behavior of the neuron as it does when the noise is

smaller. Figure 2.27 shows the mean �ring rate for 3 di�erent input values and noise

intensity 5.5, the plot shows how for input 60, 80 and 100 the system converges to

a stationary solution while for input 40 it is decreasing. The �gure also includes

the rates for input 40 and 80 when the noise level is 3.5. In this case the �ring rate

converges for the small input. This e�ect was not present in the FitzHugh-Nagumo

simulations.

2.2.4 Speed of our implementation

Obtaining the previous results is a computationally demanding task mainly due

to the number of points in the grid, the nonlinearities in equation (2.11) and the

integral term. GPU computing techniques allowed us to solve the large system of

70

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.25: Top: mean voltage. Bottom: mean �ring rate.

2.2. One population Fokker-Planck equation 71

Figure 2.26: Variance for simulations of the Morris-Lecar network with di�erent

noise levels.

Figure 2.27: Mean �ring rates for di�erent input values with 2 di�erent levels of

external noise. The plot on the left shows the rates with noise level 3.5 and the one

on the right with noise level 5.5.

72

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

non linear di�erential equations fast enough to be able to study the dynamics of the

system when several important parameters change. The evolution of the solution

for long periods of time is hard to obtain due to the sti�ness of the equations which

forbids us to use large time steps. In fact, before the use of a parallel machine, we

could only compute the dynamics for a small period of time and with large error

bounds.

For this kind of application GPUs are a competitor for large scale standard

clusters. The mean execution time for one time step of the FitzHugh-Nagumo

Fokker-Planck equation (measured after 100 repetitions) is 0.06 seconds when the

2 computers and the 14 cards are used. This includes computing the righthand side

of the system of ODEs created by discretizing equation (2.11) 4 times and then

combining these results to get the �nal value for the current time. In order to reach

the same speedup without GPUs we would require a machine with several hundreds

processors, which is much more expensive and di�cult to maintain and use than

our hardware.

A set of experiments was designed to compare our approach with other possible

solutions. First, the code was changed in such a way that all the computations that

were done in the GPU were executed in the processor itself. The amount of points

assigned to each processor is the same as before but this time there is no GPU to

update the values in parallel. With this approach one level of parallelism is removed

by sequentially computing the right hand side for each point in a loop. As this

version doesn't need the GPUs, the maximum amount of threads is not determined

by the number of cards but by the number of available processors. This is the kind

of approach that is normally used in a standard cluster.

We have tested this code in a machine with only shared memory communication.

Results for a 210x210x210 grid and the FitzHugh-Nagumo model are presented in

�gure 2.28. For the maximum amount of processors in the machine, 10, the execution

time is longer than 4 seconds when a much smaller grid is used, see the right hand

side of �gure 2.28. If we extend the behavior presented in the plot an extremely

large number of processors would be required to achieve the same speed up as in the

GPU case. Probably, a machine with such a number of processors and only shared

memory is impossible to �nd.

To extend the comparison, the execution time as a function of the number of

cards is also presented in �gure 2.28. These results are shown for 2 di�erent con�g-

urations, the �rst is a 210x210x210 grid, which can be compared to the experiment

with only CPUs, and the second is for a 308x308x308 grid as the one used for the

results in the previous section. Both experiments were done in just one machine

of the cluster (only shared memory communication) and only the amounts of cards

for which the domain can be equally divided were used. Already with 5 cards the

di�erence in execution time for the small grid with and without GPUs is huge. In

both cases an increase in the number of GPUs provides a faster solution. The shape

of both curves is exponential and a limit to the possible speed up is already seen in

the 210x210x210 case. This is similar to the e�ect described in section 2.1.4. For

the bigger grid the limit is still not reached with just one computer.

2.2. One population Fokker-Planck equation 73

Figure 2.28: A: mean execution time for one time step for a 210x210x210 grid for

di�erent number of GPUs. B: The same as A but for a 308x308x308 grid. C: Mean

execution time for a 210x210x210 grid as a function of the number of processors

when no GPU is used

74

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

This di�erence in speed was as expected, mainly because the computational

power of the GPUs is much bigger than the one of the 10 CPUs. Just one card has

a theoretical maximum of 1.03 T�ops while the 10 cores have only 0.1064 T�ops.

One GPU has much more computational elements than the 10 cores, in fact, the

cards are almost 10 times faster. This di�erence is only with one card and not with

the 14 available. Clearly, comparing the 2 hardware is very unfair, but we would

need around 100 cores to reach the same theoretical peak of just one card. We don't

have access to a machine with enough cores to reach the same theoretical �ops of

all the card working together, so a fair comparisson is impossible.

Although we are comparing machines with di�erent hardware, the �nancial as-

pect should also be considered. Buying a machine with the same computational

power as our GPU cluster would be very expensive. The two di�erent types of

hardware we are comparing are in a low price range for standard supercomputers.

Clearly, for our problem, using a GPU cluster is faster than using a multi-processor

machine of a similar price.

In a second experiment our solution was compared to an implementation us-

ing the PETSc library [Balay 2012b, Balay 2012a, Balay 1997]. This library con-

tains methods for solving partial di�erential equations using parallel machines. The

current version even provides some support for GPUs. We have used the explicit

Runge-Kutta method provided in the library and 98 processors, evenly split between

2 machines. The mean execution time for this version with a 308x308x308 con�gu-

ration is 3 seconds, which is around 60 times slower than our GPU implementation

with the 14 cards (0.06 seconds).

The PETSc implementation �rst creates a distributed array object to store the

results. This is a data structure provided by the library that distributes the data

equally between processes. The communication of the boundaries between processes

doesn't need to be written by the programmer, it is managed automatically by the

library. Each time the right hand side of the equations is computed the values of

this array are updated by PETSc. In fact, the only things that the time stepper

methods implemented in the library requires are a distributed array and a pointer

to a function that computes the right hand side.

Our implementation provides to the library a function that computes the right

hand side of the equations. This function is then called by the chosen numerical

method for time integration. The function �rst, reads the distributed array and

obtains the boundaries. This is done with one call to a PETSc function. Then, it

computes the mean value of y (
∫
yP (V,w, y)dV dwdy) of the points assigned to

the process that made the call. This value is then shared with the others via

the MPI broadcast function. Normally, the right hand side functions in PETSc

implementations do not use directly MPI calls because all the communication is

provided by the library. In our case avoiding explicit MPI calls was impossible due

to the integral in the equations. Once the �nal value of the integral is known, a for

loop computes the right hand side of each point assigned to the process.

PETSc is designed to work with a set of MPI processes. For this reason, all the

communication of this implementation is done via message passing. In the previous

2.2. One population Fokker-Planck equation 75

implementation (with GPUs) only 2 MPI processes were created, one per machine,

and the local communication is performed through shared memory. This avoids the

packaging procedure require by MPI and PETSC.

The test was done using 2 nodes of a Dell R815 cluster. Each node has one Intel

quad Opteron processor processors with 48 cores running at 2.2GHz. Each machine

has 256 Gb of RAM memory. They are connected via in�niband technology

A preliminary version of these results was published in [Baladron 2012a]. There

the speed up for an older version of the code is reported. The main di�erence

between the version in the paper and the one on this thesis is how the Runge-Kutta

4 method is implemented. In the previous version the GPU only computed the

right hand side of the equations, but not the input for the next step of the method.

After each computation in the GPU, the complete result was sent to the CPU which

prepared the next call by using the Runge-Kutta formulae and then sent the data

back to the GPU. In the current version both the input for the next step and the

values of the right hand side are computed on the same kernel, in the GPU. For

this reason only the values at the boundaries need to be sent to the CPU instead

of all the results. The �nal amount of memory copied between CPU and GPU is

much smaller in the version reported in this thesis. Also, in the previous version the

�nal values of a time step were computed in the CPU, as all the values were already

there after previous exchanges of data. On the new version this is done in the GPU

as the data is only maintained there and not in the CPU.

2.2.5 Discussion

We have shown two di�erent options for the simulation of the kind of network de-

scribed in section 2.1.1: Monte Carlo simulations and solving the Focker-Planck

equation. If the network size is small enough, doing Monte Carlo simulation would

be faster than solving the partial di�erential equation. This is because the grid

size required for solving the PDE is large (300x300x300), so it still requires a lot

of instructions. Also, the solution of the Focker-Planck equation is a correct aprox-

imation of the probability density when the number of neurons tends to in�nity,

so for a small network the behavior of the solution of the PDE may be di�erent

from the real dynamics of the network. Instead, for big networks the Focker-Planck

equation will converge to the correct probability density, independent of the number

of neurons. For this reason, it is always possible to �nd a number of neurons for

which the Focker-Planck equation will be faster than Monte-Carlo simulation. As

our objective was to look at the behavior of large network, we have chosen to solve

the PDE instead of the Stochastic Di�erential Equations.

The previous results show the existence of a stationary probability density for

a network of noisy FitzHugh-Nagumo (see �gure 2.10 and 2.11) or Morris-Lecar

neurons (see �gure 2.22), a fact which might have several implications for the way

the brain may encode information. In a network with the propagation of chaos

e�ect each neuron is an independent unit which after convergence follows the same

stationary law. As the state of each cell is a sample of the process, a neuron in

76

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

a di�erent population may see as many samples as its number of synapses. If the

number of connections of this postsynaptic cell is big enough it may produce a sample

based representation of the probability density containing all the information from

the previous population.

The time needed for gathering enough samples to produce a good approximation

depends on the number of synapses. As soon as the convergence is achieved each

neuron represents a sample, so if for example a neuron has 10,000 synapses, after

the stationary solution have been reached it will immediately have 10,000 samples.

This is why in a dense network the time needed for conveying information between

one area and another may be limited by the time necessary for convergence.

The results shown in this section indicate that this convergence speed may be

tuned by 2 factors: external noise (see �gure 2.13) and input (see �gure 2.18). When

both values are high the convergence is fast and when they are low it is slow. Neurons

have to deal with high levels of noise in the brain ([Knoblauch 2005, Faisal 2008])

so the only options they have are to establish mechanisms to reduce the disturbance

it produces so that they can extract useful information from incoming signals or

transform this inherent characteristic of the system into a tool to improve its e�cacy.

The existence of the propagation of chaos e�ect and the possibility to increase the

speed of the system by changing the parameters is an argument in favor of the second

option. In fact, the hypothesis that neurons are grouped in populations as a way

to face the abundant noise is not new (see for example [Shadlen 1998, Hoch 2003]).

Our approach is a new point of view on how this can be done using the propagation

of chaos e�ect.

The di�erent noise sources are able to modify the membrane potential of a

neuron in di�erent ways. They may even be able to make the cell generate an

action potential which would not have been produced if noise was not present. High

levels of noise would produce a large amount of undesired spikes. This means that

if we assume that the brain works in the presence of large amounts of noise, neurons

will always be generating spikes. As the deterministic input value in the model

represents the sum of all the activity from other brain areas, this value will include

all these undesired spikes. Due to noise, neurons will hardly be quiet making this

quantity larger than 0 and probably large enough to ful�ll the requirements for fast

convergence.

Another point of view for the encoding of information in neurons is that every-

thing is contained in the �ring rate. One cell that represents a certain property will

spike more if its preferred input is present in the environment. The problem with

this approach is that each postsynaptic cell will need to compute a temporal average

in order to read the message from the presynaptic neurons, requiring time to do so.

This may be too slow considering that there exist several processing steps before we

can react to a change in the environment, especially if reaction time to images in

humans have been estimated to be around 400 ms ([Thorpe 1996]). For more details

on the advantages or disadvantages of �ring rate codes see [Gerstner 2002].

In the approach proposed here neurons also have to wait a minimum amount of

time for a computation to be performed as the probabilities need to converge. The

2.3. Multi population Fokker-Planck equation 77

main advantage of this new proposal is that this time can be tuned, as we mentioned

before. In the case of the �ring rate there is no parameter that can be tuned to

reduce the waiting time.

If the stationary solution was not used by the brain to encode information its

appearance would indicate the end of the useful time for a neuron. In this case

all the information would have been encoded in the structure of the changes of the

probability density, which no longer occur as soon as convergence is reached. The

simulations shown here indicate that this convergence is fast if the parameters are

well set, so under these circumstances the brain would need to be extremely fast

not to lose information.

This hypothesis is supported by the �nal experiment where the input value was

changed (see �gure 2.20). In this simulation the system shows the ability to go from

one stationary solution to another even faster than before. This shows how a system

that uses a sample based representation may work, once a stationary distribution

is achieved this information is automatically passed on to the next population and

new computations may begin.

The experiments also show that large modi�cations in the synaptic noise do not

considerably modify the solution (see �gure 2.19). This is another interesting e�ect

of the network as it is able to deal with signi�cant disturbances at the connection

level. The shape of the probability density changes in these cases but doesn't a�ect

the marginal probability density over the variables V and w, giving the same �ring

rate and mean voltage variable.

2.3 Multi population Fokker-Planck equation

In all of the previous experiments we had only one population of neurons. In these

models the weights depend only on the pre and post synaptic population; all of the

synapses were the same. This means that no complex connectivity patterns occur

in the simulated network. In this section we introduce more populations and hence

more complex networks.

In the simulations of this chapter each population is described by a di�erent,

but coupled, Fokker-Planck equation. The computational complexity is increased

from the previous simulations as the total number of points to be updated is now

multiplied by the number of populations. Clearly, the amount of necessary opera-

tions and memory can increase for a large number of populations, enough to make

simulation unfeasible.

We show in this chapter simulations for two di�erent multi-population networks.

Experiments with a simple two population model of a rat barrel cortex are presented

�rst and then a model similar to the ring model (see Chapter 1) of a V1 hypercolumn.

Although in the second case we already had hardware limitations we show how the

GPU cluster may provide us with results that require a huge computational power

only comparable to that of a standard cluster with hundreds of Intel like processors.

78

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

2.3.1 Implementation issues

We have extended the code developed for the previous experiments to be able to

manage several populations. The �rst step in this new version is to distribute the

populations among the cards. This is done in such a way that all the resources for

the same group of neurons are located in the same machine. Then the points in

the grid for each population are divided equally between the GPUs assigned to it

(amount smaller than the total number of cards).

This scheme allows a fast communication because the coupling between popula-

tions is only in the integral in equation (2.11) (ȳ). Each population doesn't need to

know the values at all the points of each of the other groups to which it is connected

but only requires the mean value of y for each of them. This quantity is computed

locally by the resources assigned to a population and then the result is broadcasted

to the rest of the processor-card pairs. The amount of information that needs to be

sent through the network (the bottleneck in this kind of application) is equal to one

�oating point number times the number of populations assigned to each computer.

This is an extremely low number compared to the previous implementation where

all the boundaries need to be transferred.

The new communication scheme reduces the increase in computational time

required by the bigger amount of points. This is specially noticeable when a small

number of populations is used (as in the barrel cortex model to be described next)

as the di�erence in computational time is not extremely big when a new population

is added and numerical experiments are still feasible. A special case occurs when

each population is assigned to just one GPU (number of population = number of

cards). In this situation, there is no need to share boundaries between processors,

requiring no memory copy between GPU and host. As mentioned before only the

integral value is needed. This reduces computational time, but as this occurs only

for a large enough number of populations (as in the hypercolumn model that is

presented later) the total amount of points to be updated is still very high, making

the simulations still very long. Figure 2.29 shows a diagram of the distribution of

points between the 2 computers and the messages they need to send each time the

right hand side is computed. Also, �gure 2.30 shows a �ow diagram of the process

that can be compared with the one in �gure 2.9. On the new diagram the number

of lines that cross between the GPU and CPU areas is smaller and also the amount

of data sent on each crossing is reduced.

2.3.2 Two population network: a barrel cortex model

The main tool that rats and mice use for building an internal map of their environ-

ment is not the visual system as in humans. These animals mainly use their whiskers

which are highly sensitive sensors that provide them with information about the ob-

jects and textures around them. The area of the cortex in charge of integrating the

information from the sensors is called the primary somatosensory cortex.

The somatosensory cortex is also called the barrel cortex due to the existence

2.3. Multi population Fokker-Planck equation 79

Figure 2.29: Diagram showing the distribution of populations in a multi-population

experiment

Figure 2.30: Flow diagram of the procedure for the computation of the right hand

side for the multi-population experiments

80

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

of discrete structures of neurons, or barrels, that represent the di�erent whiskers.

These groups are organized in a similar way as the whiskers are in the snout. The

de�ection of each whisker will activate its corresponding barrel. A diagram of this

structure is presented in �gure 2.31. For more information about the barrel cortex

structure and connectivity to other areas of the brain see [Petersen 2007].

Figure 2.31: Diagram representing the distribution of barrels in the somatosensory

cortex. Each blue element correspond to a barrel which respond to the whisker

at the same position. The standard nomenclature for some of them is also shown.

Adapted from [Petersen 2007]

A computational model of a barrel consistent with biological data is proposed

in [Kyriazi 1993]. The authors use 100 neurons, where 70 are excitatory and 30

are inhibitory. The model is based on the following four organizational principles:

inhibitory and excitatory neurons present di�erent nonlinearities, the input coming

from the Thalamus is the same for both types, the connections are among and

between cells of both types and inhibitory neurons are more responsive to input.

The response of neurons in the simulations were similar to the ones found in real

barrel neurons.

A reduction of this model was proposed in [Pinto 1996] where the full system is

described by just 2 equations, one representing the average activity of the excitatory

population and another for the average activity of the inhibitory population. All

the parameters for this simpli�ed version can be obtained from the original model.

The reduced model was then used in [Pinto 2000, Pinto 2003] to study the re-

sponse of the system to input with di�erent velocities and amplitudes. One of the

main predictions of their simulation is that the system is a temporal contrast detec-

tor, i.e. it responds selectively to rapid changes in the input. The network is more

sensitive to the speed in the change of the input function than to its magnitude.

The authors propose a simple numerical experiment to prove their hypothesis.

First, two input functions with a triangular shape are created. Both of them reach

the same peak value and afterwards decrease to 0. The main di�erence between

them is the slope of the lines as one of them reaches its maximum value before. An

example is shown in �gure 2.33A. These two input functions, are used in di�erent

simulations. If the system is sensitive to the magnitude, the output in both cases

should be the same but slightly shifted. If the hypothesis of the authors is right then

2.3. Multi population Fokker-Planck equation 81

the output should be higher for the faster triangle. In fact, this is what happens as

the activity is higher when the peak is reached faster.

When a fast input is presented to the system, excitatory cells emit at least

one spike at short latency. This increases the activity in the population which is

raised even more by the recurrent connections. After a few milliseconds this activity

reaches the inhibitory population through the synapses. Inhibitory cells start to

spike and their activity overwhelms the excitatory response reducing the response

of the network. If the input is slower, inhibitory neurons will have more activity

in comparisson to the other population at the beginning of the process (due to a

smaller amount of spikes coming from the other population and their faster response

to the input) inhibiting the possible explosion of activity on the excitatory cells

We have recreated the model but using our mean �eld approach. Each of the two

populations in the original network is represented by a di�erent Fokker-Planck equa-

tion. The synaptic weights between the population were taken from [Pinto 2000].

Also, to follow the original model and ful�ll biological constraints, di�erent time

constants were introduced for the two populations to assure that the inhibitory cells

respond faster to the input. The input received by the two populations is also di�er-

ent, as it is multiplied by di�erent constants. The inhibitory neurons receive larger

input values to enhance the fact that they should respond faster. A diagram with

the �nal structure of the network and the weight values is presented in �gure 2.32.

This system of partial di�erential equations was solved using the strategy already

described. Figure 2.33 shows the two di�erent inputs used by the system and the

mean voltage in each of the two cases. Only the mean was measured as it is the

value computed in the original analysis made with the reduced model. The output

for the faster input reaches a higher peak supporting the temporal constrast de-

tector hypothesis. The di�erence between the two outputs may be enhanced if the

di�erence in slope of the inputs is increased.

The only di�erence between our version of the model and the work by Pinto

is the di�erent type of neuron model. The results show that the same e�ect he

has found for integrate and �re type of neurons can also exist with conductance-

based models. The main objective of the experiments described before was to test

our new mean �eld reduction with a small multi-population model with a known

behavior. Experiments were succesful as we could reproduce the dynamics, but

using a di�erent set of equations. This allows us to extend our approach to larger

network and produce new models as the one which is described in the next section.

2.3.3 An orientation selectivity model

One approach for modeling the selection of edge orientations in the primary visual

cortex is to consider one hypercolumn as a collection of connected elements repre-

senting the di�erent possible angles in one receptive �eld. The connections depend

on the di�erence between the preferred orientations. The Ring Model, described

in section 1.2.4.2, is an example of this approach. In this case the spatial variable

of the neural �eld equations represent a continous set of populations with di�erent

82

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.32: Structure of the two population network representing one barrel from

the somatosensory cortex. The numbers represent the weights between the elements.

Figure 2.33: A: The 2 di�erent input used for the barrel model two population

network. The two reach the same peak but with di�erent speeds. B: The mean

voltage when the two inputs are applied. The colors correspond between the two

plots.

2.3. Multi population Fokker-Planck equation 83

prefered orientations.

A di�erent approach is taken in [Battaglia 2011] where each orientation pref-

erence is represented by one, discrete, neuron instead of the population measures

of the Ring Model. The author propose to describe one hypercolumn with two in-

terconnnected sub networks, one representing layers I to IV of V1 and the other

layers V and VI. Each of these groups is composed of excitatory and inhibitory

neurons diving each of the two networks into two populations. One angle, between

-90 and 90, is assigned to each cell. The connections are random with a probability

that depends on the orientation preferences of the 2 cells and on their population

(excitatory or inhibitory).

We propose a di�erent model that combines these two methods and uses the

mean �eld approach described in section 2.1. As in the model by Battaglia each

orientation preference is represented by one excitatory and one inhibitory element.

The main di�erence is that both of them are populations of neurons (as proposed

in the Ring Model) instead of simple cells. Each population is approximated by its

mean �eld limit corresponding to the Fokker-Planck Equation.

The connectivity of our new approach also depends on the orientation di�erence

and on the type of population. Excitatory populations connect strongly to similar

elements while inhibitory populations have strong synapses with disimilar cells. We

use the same synapse parameters and reverse potentials as in [Battaglia 2011], given

in their detailed neuron model.

The input depends on the preferred orientation and represents the initial edge

detection done by the �rst areas of the visual system. The system is expected to

improve the initial selectivity by providing an output with a sharper shape than

the input coming from the retina and the LGN. This improved tuning is due to the

e�ect of lateral connectivity.

A similar network structure has been used by Rolls and Deco [Rolls 2002,

Rolls 2010] for studying attention, they call it a competitive network. In their

case each excitatory population represent one possible decission. They are also con-

nected to inhibitory pools wich creates a competition by reducing the activity of

possible contradictory decisions. They show that the system is able to maintain a

certain level of activity in just one population, indicating the �nal decision made.

Also they represent attention as a second input to each population that biases the

�nal decision.

Figure 2.34 shows a diagram of the structure of a network with six populations.

Each colum of the �gure is composed of an excitatory and an inhibitory population

corresponding to the same preferred orientation. The connectivity structure shows

that we have removed the connections between inhibitory populations that do exist

in the model of [Battaglia 2011]. The labels of each arrow are the di�erent weights

used in the simulations that will be described next. The output of the system is

represented by the activity of the di�erent excitatory populations.

Simulating a network like the one in �gure 2.34 requires solving a system of

Fokker-Planck equations. This is much more complex than solving a single equation

(see section 2.2.1). As described in section 2.3.1 the populations must be distributed

84

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.34: Diagram representing the structure of our model for 6 populations (3

orientations). Each circle represents one population in the mean �eld limit. The

label next to the arrow show the weight between populations. For the inhibitory

to excitatory connections the two numbers correspond to weights used in di�erent

experiments.

among the possible cards in such a way to minimize the amount of data transfered.

The hardware in which we have performed the simulations is �xed, so, when we

include more populations each pair GPU-processor will get assigned a larger amount

of points. For example, if we want to solve just one Fokker-Planck equation in a grid

of 308× 308× 308 in a machine with 7 cards, each GPU will need to compute the

right hand side of (308× 308× 308)/7 = 4, 174, 016 ordinary di�erential equations.

If, one more population with the same grid size is added, each GPU will be assigned

with 2× (308× 308× 308)/7 = 8, 348, 032 points.

Our implementation creates one thread per point assigned to the GPU, so, when

more populations are considered a larger amount of threads are required. The total

number of threads depends not only on the amount of populations but also on the

size of the discretization. The grid structure we have used in the one population

experiments is already very big and the total number of points used in those simu-

lations is larger than the maximum number of threads than can be created in one

GPU. This maximum is given by hardware restrictions and depends on the amount

of registers required by the kernel that is going to be executed. For this reason, the

ordinary di�erential equations coming from the discretization of each population

needs to be solved by at least two cards.

As two cards are required for each Fokker-Planck equation, the maximum num-

ber of populations we can simulate with our hardware is six. In this case, three

populations will be assigned to each machine, using only six of the seven available

GPUs. The extra GPU in each machine will not be used because it can't solve by

2.3. Multi population Fokker-Planck equation 85

itself a complete population. Dividing one population between two cards on di�er-

ent machines will require more data to be transferred through the network, making

the simulation much slower. If this is the case, the implementation could not bene�t

from the fact that the equations only depend on the mean of the y variable to reduce

the communication (see 2.3.1).

We have performed several numerical experiments with this network. The reverse

potentials were chosen by normalizing the values proposed in [Battaglia 2011] to the

spike size of the FitzHugh-Nagumo model. This is necessary because the original

values were proposed for voltages between -60mV and -60mV while the FitzHugh-

Nagumo only varies between -4 and 4. The reverse potential for excitatory synapses

was set to 5.4 and for inhibitory to -3.1. The value of the parameters ar and ad of

the synapses were also taken from [Battaglia 2011] and are 1.0 and 0.33. For the

�rst group of simulations the input is 0.8 for the �rst 2 populations, 0.2 for the

second pair and 0 for the �nal group. This means that the edge presented to the

eye has an angle close to the orientation preference of the �rst group of populations,

but not very far away from the preference of the second. The system is expected

to integrate the information from all the populations and select just the one that is

closer to the input angle.

The �rst experiment was done with an external noise of 0.45 and shows how

the output of the system is a very good representation of the input function. This

can be noticed in the �ring rate of each of the excitatory populations as it is shown

in �gure 2.35. The rate for the one with larger input is higher than all the other

ones. The �nal value of the highest rate is twice as big as the second, so no real

sharpening is occurring. If the system was behaving as expected the ratio between

the two outputs should be bigger than between the two inputs. In a perfect scenario

the activity of the second group of populations should be very close to 0, thereby

selecting the �rst orientation.

Although the system was not sharpening the initial angle selection, it was cre-

ating a much better representation of the input than what a group of isolated pop-

ulation could do. This e�ect can be noticed by comparing the rates shown in �gure

2.35 with the ones in �gure 2.36. This last �gure shows the results of the same

experiment but removing all the connection between di�erent populations (leaving

only connections where the presynaptic and postsynaptic neuron belongs to the

same population). This last plot shows how without lateral connectivity the rates

are very close to 0 and the activity of the three excitatory populations converge to

the same value. The e�ect of lateral interaction seems to be critical in a sensory

system working in the mean �eld limit.

A raster plot showing the activity of 1,000 neurons of each excitatory population

is also shown in Figure 2.35. The amount of spikes is bigger for the populations with

higher input. The population with 0 input still spikes due to the amount of noise,

although it has less activity than the others. The initial high amount of spikes

in all the cases is due to the initial conditions which are described by a Gaussian

probability density with a mean outside the limit cycle of the isolated neuron. Once

the simulation starts the mass tends to move towards the limit cycle of the isolated

86

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.35: Results of the �rst six population experiment. Each raster plot in the

�gure corresponds to one of the three excitatory populations of the �rst experiments.

These results are with noise level 0.451 and low level of inhibiton (0.3). The value

of the input is decresing from left to right. Below the raster plots is the �ring rate

for each case. Movies for this simulation are available in the web site

2.3. Multi population Fokker-Planck equation 87

Figure 2.36: Each of the lines of the plot correspond to a simulation of a one

population network with the same parameters as each of the excitatory populations

on the ring model experiments. The main di�erence is that the lateral connections

were removed. The blue line corresponds to the population with the highest input

and the green to the other two populations, which at the period of time shown in

the plot had the same �ring rate

neuron, crossing the threshold during its trajectory. A movie with the evolution of

the probability density for each population can be found in the web page.

The raster plots of �gure 2.35 were generated using the solution obtained from

the Fokker-Planck equations. The di�erent probability densities were used to com-

pute samples of the mean �eld process by solving the stochastic di�erential equation

((2.10)) using the Euler-Maruyama method. Each of these samples is considered as

one possible trace for a neuron in the network. This is fast to compute as it is

equivalent to solving the equation for just one neuron. After this, to each voltage

trace, the same threshold as before was applied, if this value was passed from below

a spike was generated.

In a second experiment the noise level was reduced. When the same simulation

is run with noise level 0.27, in each population there is oscillating activity as can be

seen in �gure 2.37. The rates shown in the plots seem to be periodic with intervals

where the value is very close to 0. This shows that most of the neurons are spiking

very close to each other, switching between periods of high activity and periods of

low activity. The raster plots, also shown in the same �gure, con�rm this, as on

each one there are vertical layers of spikes, specially for the �rst population. Movies

for this simulation can also be found in the web page.

As in the previous experiments the rate for the population with the highest

input is much bigger than the others. The second population still has activity, also

periodic, with peaks at similar time instants as the �rst group of neurons. This

shows that the output is still a better representation of the input than in the case

of isolated populations.

88

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.37: Results of the second six population experiment. Same as in �gure 2.35

but with a smaller level of noise (0.27). Movies for this simulation are available in

the web site.

2.3. Multi population Fokker-Planck equation 89

In order to reduce the activity of the second population, more inhibition is needed

as was shown by a third multi population experiment. In this case, the inhibition

was increased, leaving all of the other parameters equal (noise 0.45). All of the rates,

as shown in �gure 2.38 were reduced, even the one for the population with highest

input. The main di�erence is that now the activity of the �rst group of neurons is

much higher than the rest. The rate at the �nal time step is 8 times higher, showing

a sharper output, ful�lling the expected behavior of the model.

It is easier to notice the di�erence by looking at the raster plots shown in �gure

2.38. Here the amount of spikes on population 2 (after the activity due to the

initial conditions) is even lower that the one of the population with no input in the

previous experiments. It is also very similar the output for input 0.2 and input 0.

By looking at the amount of spikes it is possible to notice how the �rst angle was

clearly selected.

When this level of inhibition was maintained and the noise level reduced to

0.27, the oscillatory activity appeared as in the second multi-population experiment.

Figure 2.39 shows the results in a similar way as for the previous cases. The rate for

the population with bigger input has oscillations while the two others are reduced

to a value close to 0. This is also a signal of sharpening but only if the activity is

read at the peak of each period.

Figure 2.38: Results of the six population experiment with higher inhibition (0.4)

and noise level 0.45. Movies for this simulation are available in the web site.

In order to check the sharpening capabilities of the network (with the second

90

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.39: Results of the six population experiment with higher inhibition (0.4)

and noise level 0.27. Movies for this simulation are available in the web site.

2.3. Multi population Fokker-Planck equation 91

set of weights with enhanced inhibition) a second group of numerical experiments

were performed. For these simulations the input function was changed, now, for the

�rst and the third pair of populations this value was set to 0.1 while for the second

pair it was changed to 1.0. These quantities represent an initial selection equal to

the orientation preference of the second population. The network should enhance

this initial approximation by reducing the activity of the �rst and third group while

increasing the second.

The results of these experiments are presented in �gure 2.40. The two plots on

the �gure show the �ring rate when the noise level is 0.45 and 0.27 respectively, the

same two values used previously. On the two cases only the population with the

highest input is spiking and it clearly represent the selected angle. As the system has

destroyed the activity on the other two populations it is really enhancing the initial

selection. When the external noise level is changed, the same e�ect than before can

be observed. For high levels of noise the �ring rate seems to be converging to a

stationary value while for low levels there are oscillations.

Figure 2.40: Results of the second group of six population experiment with a di�er-

ent input function. A high input value is presented to the two second populations

and a smaller one to the others. A: experiment with noise level 0.45. B: experiment

with noise level 0.27

The numerical experiments with the �rst input function were repeated with the

Morris-Lecar model. This was done for the same reason as for the one-population

simulations. The connection structure was kept as in �gure 2.34 but the values were

adjusted and reduced. This reduction is neccesary due to the di�erence in the height

of the spikes in the two models. The connectivity values are shown in table 2.5.

The results for this experiments are shown in �gure 2.41. There the V-w

marginals of the �nal stationary solution of each of the three excitatory popula-

tion are shown. For populations 2 and 3, the two with the lower input values,

all the mass of the probability density is distributed around a peak on a negative

voltage. This means that all the neurons keep a voltage value close to a negative

potential, the resting state. For the �rst excitatory population the probability mass

is distributed along the limit cycle, indicating that some neurons do emit action

92

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

0 1 2 3 4 5

0 (E) 0.08 0.0 0.01 0.12 0.0 0.14

1 (I) 0.08 0.015 0.0 0.0 0.0 0.0

2 (E) 0.012 0.12 0.08 0.0 0.012 0.12

3 (I) 0.0 0.0 0.08 0.015 0.0 0.0

4 (E) 0.0 0.14 0.012 0.12 0.08 0.0

5 (I) 0.0 0.0 0.0 0.0 0.08 0.015

Table 2.5: Table with the weights for the multi population experiment with the

Morris-Lecar model. Each row shows the connections arriving at each of the popu-

lations. The letters next to the population number indicates if its an excitatory or

inhibitory group

potentials. There is one peak in this case, but it is located on a high voltage value,

indicating that the majority of neurons have large membrane potentials due to their

spiking activities. The system has reduced the activity of populations 2 and 3, leav-

ing only population 1 active population 0. This is a sharpening e�ect as clearly the

preference from the �rst group of population has been selected.

2.3.4 Discussion

The experiments in this section suggest that mean �eld limit approximations of

large populations of neurons may be useful to describe fundamental mechanism of

cortical activity. This is the contrary of the classical grandmother cell hypothesis

were just one neuron encodes the information [Gross 2002]. The idea of populations

as elemental elements on the brain is not new and an extensive amount of work

have been done in understanding how they can encode information (see for example

[Pouget 2000, Zemel 1998, Ma 2006]). Normally, populations are consider as encod-

ing not the value of a variable buts its whole probability distribution. Our approach

doesn't explain how populations of neurons can encode any given probability func-

tion but it can be used to describe the probability distribution of large ensembles of

cells. If the populations is encoding a given probability function, the law governing

the behavior of the cells must be related to the function being coded. We believe

that this relation can be studied and a combination of our approach and population

coding theory can be obtained.

The results of the multi-population network provides more information on the

e�ects of noise for this kind of systems. The numerical experiments show that

increasing the noise can destroy �ring rate oscillations and replace them with the

appearance of a stationary �ring rate. In both cases the system behaves as expected

improving the original angle selection. In the oscillatory regime the peaks in the

di�erent population are only slightly shifted, so if the points where the activity

reaches 0 are avoided, the di�erence in the �ring rate can be detected. These results

reinforce what was found in the previous single population experiments regarding

an increase in convergence speed with higher levels of noise.

2.3. Multi population Fokker-Planck equation 93

Figure 2.41: Stationary solution for the three excitatory populations of the experi-

ment with the Morris-Lecar model. A: Population 0, with the highest input value.

B: Population 2, with a smaller input value. C: Population 3, with input 0. Movies

for the three populations are available at the web page.

94

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

If the oscillations present in the low noise experiments was used as a tool for

conveying information in the brain, a sudden raise in the noise level, due to, for

example, a change in the environment, would completely destroy the computing

capabilities. As the brain is e�ective, independent of raises or high noise level

we believe that the phenomena of the stationary distribution is a better tool for

encoding information and that may be used in some areas of the cortex.

The di�erence between the rate of the �rst and third multi-population experi-

ments show that the enhancing capabilities of the system depends on the level of

inhibition. This functionality is important because it could allow the brain to choose

correctly between a set of possible stimuli. Normally the output of a set of oriented

edge detectors (sensors) is too ambiguous to reach a decision, but the sharpening

capabilities of a system like the one presented here can improve this situation.

The experiments have shown the crucial e�ect of inhibition in the enhancing

capabilities of the network. Inhibition is the only mechanism the system has for

reducing the activity of populations with an orientation di�erent from the input

angle. If inhibitory connections are too low too many populations should still be

active and the selection will not be clear enough. A correct set of weights may not

only reduce the activity of the wrong orientations but also diminish the amount of

spikes of the correct population. As have been shown in the experiments, this may

still be a correct behavior if the only population that generates spikes is the correct

one and the amount generated is large enough to make a clear selection.

The simulations done with the Morris-Lecar model show that the previous results

are not strongly depending on the fact that we used the simpler FitzHugh-Nagumo

model. They show that a more realistic network, in the case of the multi popu-

lation experiments, even improves the sharpening capabilities. In the experiments

the system was only studied with a high level of noise that produced a stationary

distribution as the main objective was to see if with this more realistic model the

expected behavior was still achievable.

The approach presented here is more realistic than the one in [Battaglia 2011],

on which we based our model. Battaglia uses just one neuron per orientation while

we use a complete population. Experiments in the visual cortex have shown that

many neurons share similar properties [Mountcastle 1997], as it occurs in our model.

Any damage to a cell would change completely the behavior of a network like the

one proposed by Battaglia but it will not greatly a�ect a dense network as the one

we use.

Our model includes more detail than the Ring model of orientation (the neural

�eld model which also inspired our approach). By knowing the probability density

of the neurons it is possible to generate spike trains for any neuron belonging to

the network. This is impossible with the ring model, for which only the mean value

of the voltage from each population is known. In a neural �eld model there is no

clear relation between a detailed neuron description and the �nal equations. In

our approach this relation is known and can be exploited to, for example, generate

action potentials to be used as input for large scale models of higher cortical areas.

2.4. A faster but less accurate numerical method 95

Explicit Implicit

∆ t size small big

System of equations no yes

Amount of computations small big

per time step

Table 2.6: Table showing the di�erence between explicit and implicit methods for

sti� equations.

2.4 A faster but less accurate numerical method

The main di�culty for performing the previous experiments was the sti�ness of the

equations, which make necessary the use of an extremely small time step (0.001). If

this value is increased, numerical errors appear and they get ampli�ed and spread

with subsequent time steps. For a long enough simulation, the results diverge and

can't be represented in memory by �oating point numbers. For this reason, observing

the behavior of the network for long periods of time is slow even if the computations

for one time step can be done very fast on GPUs. In all the previous simulations

we performed 150,000 time steps and going beyond this limit would require either

a change in methodology or an even more powerful hardware.

This problem is even worse in the multi-population case, where a smaller amount

of computational units are assigned to each population, making the computation

of each time step slower. This situation, together with the hardware constraint

described in section 2.3.3, limit the maximum amount of possible populations to

simulate. One option for avoiding the hardware constraint is to compute each pop-

ulation sequentially. To do this, �rst the CPU copies the data from one population

to the GPU. Then, each card computes the mean y for that population. Once they

are �nished, the result is copied back to the CPU. The process is repeated for each

population. Then a similar loop is executed to compute the right hand side for each

point. A �ow diagram of the process is shown in �gure 2.42. This is a slow process

(lots of memory transfers and sequential computations) which, due to the sti�ness

of the equations, would need to be repeated a large number of times.

There are two di�erent paths to follow when dealing with a sti� equation. The

�rst one is to use a very powerful machine on which computing the right hand side

of the equation is so fast that you can reduce enough the size of the time step. This

is the approach we were following up to now, and with which we could obtain all the

previous results. A second option is to use an implicit numerical method. In this

kind of approach at each time step a system of equations (nonlinear in our case)

needs to be solved. The unknowns of this system are the values of the function

at the next time. This di�erent type of integration scheme can be very e�cient in

the case of sti� equations (see the book [Hairer 2010] for more information on sti�

equations and numerical methods for solving them). Table 2.6 shows a summary of

the advantages and disadvantages of each method.

Using an implicit method for the Fokker-Planck equation, with the grid size we

96

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.42: Flow diagram showing a way to simulate more populations by sequen-

tially updating each one

2.4. A faster but less accurate numerical method 97

have used in the previous experiments, is an extremely hard task. A non linear

system of 3083 = 29, 218, 112 equations would need to be solved each time. If the

classic Newton method is used, each iteration of the procedure can be obtained

by solving a linear system of the same size. As the number of repetitions for the

Newton method may be too large, much more computations are needed to advance

one time step. For smaller systems normally the gain in time step size is larger than

the loss in speed due to the larger amount of operations.

To create the linear system for each iteration of the Newton method the Ja-

cobian matrix needs to be computed. This is a square matrix with a number of

rows/columns equal to the amount of equations. In our case that would require the

storage of 29, 218, 112 × 29, 218, 112 = 853, 698, 068, 844, 544 numbers, considering

single precision �oating point that would require 3,414,792.28 Gigabytes of space.

Clearly, this is superior to the amount of memory in any modern computer.

One approach to solve this problem when dealing with partial di�erential equa-

tions is to use a sparse matrix representation ([Morton 2005]). Normally each equa-

tion that is created after discretizing a PDE with the method of lines only contains

a small subset of the total unknowns of the system. This is given by the �nite di�er-

ence formula, for example, in a second order approximation for a 3 dimensional grid,

each equation will depend only on its 12 closest neighbors (2 on each side). The

Fokker-Planck equation is non-local, meaning that each point on the grid depends

on all the others due to the integral term. For this reason the Jacobian matrix is a

dense matrix whose storage is impossible.

Another option is to use Jacobian free methods [Knoll 2004], where this matrix

is neither computed nor stored in memory but its multiplication by a vector is

approximated by several computation of the right hand side of the equations. In

these methods the linear system is solved by Krylov methods that only require

the Jacobian for this kind of multiplication. The amount of computations of the

right hand side is largely increased and depends on the convergence of the Newton

method. For some cases a good preconditioner can be found that improves the

speed.

We have tried to use this approach for the Fokker-Planck equation by creating an

implementation in the PETSc library, which includes a parallel version of this kind

of Jacobian free methods. With the simplest possible implicit integration scheme

(backward Euler) and 98 processors we could not even compute one time step due

to time limitations. This is due to the large computational time needed to compute

the right hand side of the equations and the increased number of times this needs

to be done for Jacobian free methods. When writing this thesis we didn't know of

any library providing this kind of method for a multi GPU cluster.

A di�erent approach is to use a di�erent set of explicit methods, called Runge-

Kutta-Chebyshev (RKC), that have been designed for mildly sti� problems. The

formulas were originally proposed in [van Der Houwen 1983] and then extensively

studied in [Verwer 1990, Abdulle 2001]. A good review of the original method and its

�rst analysis is found in [Verwer 1996]. Its objective is to provide explicit formulas

for integrating ODEs that have a stability region (area in which the eigenvalues of

98

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

the Jacobian of the ODEs need to be for the system to be stable) that includes

a narrow strip along the negative axis. It is common that the eigenvalues of the

Jacobian of systems coming from the discretization of parabolic partial di�erential

equations are located in this area. For these kind of problems the standard Runge-

Kutta would be unstable. The better RKC method have the longest possible stripe,

including in this way the biggest range of possible eigenvalues.

As both RKC and Runge-Kutta 4 methods are explicit, the formulas are similar.

We changed the code to use this new method based on the implementation on

[Sommeijer 1997]. This required just small modi�cations of the previous code and

a change in some parameters. After, we tested if an increase in the size of the time

step was possible. The limit for the appearence of large numerical errors was the

same as before, not providing any change with the new method. This is probably

due to the e�ect of the integral (ȳ) on the spectrum of the Jacobian, making it move

away from the normal stripe around the negative axis.

Dealing with the sti�ness of the Fokker-Planck equation is a hard problem as all

of the attempts described before have shown. We next describe a di�erent method

that has allowed us to increase the size of the time step and the maximum number

of populations. This new approach is well suited for GPU computing and opens the

door for more complex algorithms like multi grid implementations.

2.4.1 Relaxation techniques

A nonlinear system needs to be solved for each time step when an implicit method is

used for the integration in time of the discretized equations (instead of Runge-Kutta

4). As mentioned before, one option is to use the Newton method. This is extremely

di�cult in the case of the Fokker-Planck equation. A di�erent option is to use a

relaxation methods to solve directly the nonlinear system, without computing the

Jacobian. For this, a rule for updating the value of each variable is created following

the original equations and then it is repeated until convergence.

There are 2 common approaches for the creation of the update rule: the Jacobi

or the Gauss-Seidel type iterations [Briggs 2000, Trottenberg 2001]. In a Jacobi

iterations the new value for one variable is updated considering only results from the

previous iterations. Instead, in a Gauss-Seidel iteration the equations are updated

sequentially and for all the previous equations the already computed new values are

used. For this reason, the results depend on the order in which the variables are

updated. Although this last method is known to converge faster it is much more

di�cult to parallelize [Tritsiklis 1989].

One way to parallelize a Gauss-Seidel iteration is to exploit the structure of

the dependency between the equations. Normally, on systems that come from a

�nite di�erence discretization of partial di�erential equations each variable will only

depend on its closest neighbours. Each variable can be labelled with a color in such

a way that each point has a di�erent tag than his neighbours. For a two dimensional

grid with a �rst order approximation two colors are enough. This is why this method

is called Red Black Gauss-Seidel. Finally, the points with the same color can be

2.4. A faster but less accurate numerical method 99

updated in parallel as there is no dependency between them.

The previous approach for the parallelization of the Gauss-Seidel iteration can't

be used for the Fokker-Planck equation as each point depends on all of the other

and not only on its neighbors. The minimum amount of colors would be equal to

the number of equations. For this reason we need to use a Jacobi type iteration.

In this case, the rule is completely parallelizable if all the threads or processes may

access the information of the previous iteration. This is a single instruction multiple

data type of parallelization, specially well suited for vectorized machines like GPUs.

If a nonlinear system can be described as N(u) = 0, where u is the un-

known vector, a nonlinear Jacobi relaxation for the j equation would be of the

form N(um0 , u
m
1 , u

m
2 , ..., u

m
j−1, u

m+1
j , umj+1...) = 0, being umi the result of the m it-

eration for variable i. This is a single nonlinear equation in the unknown um+1
j

that can be solved by any method independently of the others. As proposed in

[Trottenberg 2001] a one step Newton method can be applied to get a rule for up-

dating iteratively the variables.

For the discretization in time we use the backward Euler scheme. The explicit

integration with Runge-Kutta 4 is unstable, so an implicit method is required. Back-

ward Euler is the simplest implicit scheme that has a larger stable area than the

explicit Runge-Kutta 4. The main di�erence between the two is the magnitude of

the error. The Euler method is of order ∆t and Runge-Kutta 4 is of order ∆t4.
This makes the results obtained with the new method less reliable but they will

show the general behavior of the system. If, for example, we are only interested

in determining which populations are spiking and which stay close to their resting

potential, as in the orientation selection model, this new integration method will

give us enough information.

We have �rst discretized the Fokker-Planck equation (2.11) in a regular grid using

the formulas of equation (2.13) and (2.14). This transforms the partial di�erential

equation into a system of ordinary di�erential equations
∂pi,j,k(t)

∂t = fi,j,k(p, t) where
(i, j, k) are coordinates in the discretization of the three dimensional (V,w, y) space.
Time is also discretized using the backward Euler method, transforming the system

of ODEs into a system of nonlinear equations where the unknowns are the values

of the functions pi,j,k at each discrete time step t′. Each equation, for the variables

pt
′
i,j,k, is of the form:

pt
′−1
i,j,k − p

t′
i,j,k + ∆tfi,j,k(pt

′−1
0,0,0, ..., p

t′−1
i,j,k , ...) = 0 = F (pt

′
i,j,k, p

t′−1
0,0,0, ..., p

t′−1
i,j,k , ...)

Using a Jacobi method with a one step Newton iteration gives us with the following

iterative rule:

[pt
′
i,j,k]

m+1 = [pt
′
i,j,k]

m −
F ([pt

′
i,j,k]

m, pm)

F ′([pt′i,j,k]
m, pm)

(2.24)

where [pt
′
i,j,k]

m is the result of the mth iteration for the pt
′
i,j,k variable and pm is a

set with the result for all the variables at iteration m.

100

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

The Fokker-Planck equation can be divided in a set of di�usion and drift terms.

When discretized all of them will become linear elements except for the ones as-

sociated to the V variable (see equation ((2.11))). The two terms that create the

nonlinearity will be analyzed next, a special consideration will be given to the com-

putation of the derivatives as this is needed for the one step Newton method included

in the relaxation rule proposed.

The �rst term is:

− ∂

∂V
{[V − V 3

3
− w + I − J̄(V − Vrev)

∫
yPφ(t, V, w, y)dV dwdy]Pφ(t, V, w, y)}

The discretization of this term (using formulas in equation (2.13) and (2.14)) is:

−[Vi−2,j,k −
(Vi−2,j,k)3

3
− wi,j,k + I − J̄(Vi−2,j,k − Vrev)Int(p)]pi−2,j,k

8[Vi−1,j,k −
(Vi−1,j,k)3

3
− wi,j,k + I − J̄(Vi−1,j,k − Vrev)Int(p)]pi−1,j,k

−8[Vi+1,j,k −
(Vi+1,j,k)3

3
− wi,j,k + I − J̄(Vi+1,j,k − Vrev)Int(p)]pi+1,j,k

+[Vi+2,j,k −
(Vi+2,j,k)3

3
− wi,j,k + I − J̄(Vi+2,j,k − Vrev)Int(p)]pi+2,j,k

Where Vi,j,k is the voltage of the point at position (i, j, k) of the grid, wi,j,k is the
value of the recovery variable at position (i, j, k) of the grid, and Int(p) represent a
discrete integral operator.

To apply the one step Newton we derive this equations with respect to pi,j,k.

This variable only appears inside the integral operator. This discretized version of

the integral can be consider as Int(p) =
∑

i,j,kWi,j,kpi,j,k, where the weight Wi,j,k

depends on the integration rule (trapezoidal, Simpson, etc..). When deriving the

only terms that remain are:

J̄(Vi−2,j,k − Vrev)Wi,j,kpi−2,j,k − 8J̄(Vi−1,j,k − Vrev)Wi,j,kpi−1,j,k

+8J̄(Vi+1,j,k − Vrev)Wi,j,kpi+1,j,k − J̄(Vi+2,j,k − Vrev)Wi,j,kpi+2,j,k

The second term that causes the non linearity is:

1
2
∂2

∂V 2
{[σext + σ2

j (V − Vrev)2)(
∫
yPφ(t, V, w, y)dV dwdy)2]Pφ(t, V, w, y)}

The discretization of this term becomes (using formulas in equation (2.13) and

(2.14)):

1
2

[−(σext + σ2
j (Vi−2,j,k − Vrev)2Int(p)2)pi−2,j,k

2.4. A faster but less accurate numerical method 101

+16(σ2
ext + σ2

j (Vi−1,j,k − Vrev)2Int(p)2)pi−1,j,k

−30(σ2
ext + σ2

j (Vi,j,k − Vrev)2Int(p)2)pi,j,k

16(σ2
ext + σ2

j (Vi+1,j,k − Vrev)2Int(p)2)pi+1,j,k

−(σ2
ext + σ2

j (Vi+2,j,k − Vrev)2Int(p)2)pi+2,j,k]

If we derive this with respect to pi,j,k we have

−15σ2
ext − σ2

j (Vi−2,j,k − Vrev)2pi−2,j,kWi,j,kpi,j,k

+16σ2
j (Vi−1,j,k − Vrev)2pi−1,j,kWi,j,kpi,j,k

−15σ2
j (Vi,j,k − Vrev)23p2

i,j,kWi,j,k

+16σ2
j (Vi+1,j,k − Vrev)2pi+1,j,kWi,j,kpi,j,k

−σ2
j (Vi+2,j,k − Vrev)2pi+2,j,kWi,j,kpi,j,k

This analysis shows that evaluating the derivative required for the iterative rule

of equation (2.24) is not a hard computational task, as most of the elements of

the discretized version of the Fokker-Planck equation are removed. The weights for

computing the discretized version of the integral (ȳ) of the previous equations can

be computed before the simulation and reused. The values of the neighbours are

read only once as they are necesary for evaluating the right hand side of the original

equations.

The main di�erence between the computations done for the Runge-Kutta 4

method and those for this new method is the need of the derivatives. This will only

add 44N multiplications and 18N sums, a small number that can be done in parallel

on the GPUs and the amount of time required for realizing them doesn't a�ect the

total execution time. The computation of any of the steps for the Runge-Kutta 4

method should take a similar amount of time as the required for one iteration of the

relaxation approach.

For each time step of the Runge-Kutta 4 method the right hand side of the equa-

tions needs to be computed four times. In the relaxation scheme the iteration rule

should be repeated until convergence (or until a desired level of error is achieved).

The number of repetitions for this last scheme might be much larger for one time

step. This may make the new method look like an extremely slow process. This

is not true as the size of the time step is much di�erent in the two cases. For the

Runge-Kutta 4 method it is limited to a very small number while due to the im-

plicit Euler method it is much bigger for the relaxation scheme. For this reason the

number of computation to advance from certain time t1 to another time t2 may be

smaller with the iterative technique.

The number of calls to the right hand side to advance from t1 to t2 in the Runge-

Kutta 4 method is 4× t2−t1
∆tRK4

while for the relaxation technique is Niter × t2−t1
∆titer

. If

this new approach lets us increase enough ∆t and the number of iterations, Niter,

to reach to an acceptable error level is not too large it should be faster than the

explicit method. The fact that the kind of computation of a Jacobi type iteration are

102

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

extremely well suited for our hardware is a plus and should in�uence the di�erence

in speed. Figure 2.43 shows a diagram of an example of this situation, where using

both methods the value of the function at time T is computed. In this �gure, the

time step for Runge-Kutta 4 is ∆t1 and for the relaxation method is ∆t2, with
∆t2 > ∆t1. The number of iterations of the relaxation method in order to obtain

a low error is 10. In this case, the total number of computations of the right hand

side (black circles on the diagram) is smaller for the relaxation method.

Figure 2.43: Diagram showing the amount of computations done for the Runga

Kutta 4 method and for the relaxation method. For each method a time line is

shown with the discrete time steps indicated in it. The rectangle below each time

line represent the computations and it is divided in smaller elements which indicate

each complete step of the method. The black circles below each smaller rectangle

correspond to the amount of calls to the right hand side performed for that step.

Another element that a�ects the convergence of any relaxation technique is the

initial solution. The iteration starts from a �rst guess and the closest this point is

to the real solution the less amount of iterations that are needed to reach it. We

propose to start the simulations by computing an approximation to the probability

density by solving the network equations for a small number of neurons. This can

be done in a Monte Carlo fashion. The larger the number of cells and executions of

the Monte Carlo simulationw the better the starting point.

The solutions of this small network equations can be computed in parallel using

the multiple GPUs available in our hardware. This computational power allows us

to use a large number of neurons, reducing the number of necessary iterations. It

is also possible to improve the approximation of the probability density by taking

advantage of the propagation of chaos e�ect. As each neuron is an independent

sample, at each time step of the simulations of a network with N neurons, it is

possible to obtain N samples of the process. This reduces the number of Monte

Carlo simulations, and makes it possible, if the number of neurons is large enough,

to use only one.

We have created the necessary software to use this new method for the Fokker-

Planck equation of the FitzHugh-Nagumo network. This new version also uses the

same multi GPU hardware as before. First an initial approximation is obtained by

2.4. A faster but less accurate numerical method 103

dt Number of Number of neurons Execution

iterations in the initial guess time

0.01 20 999964 51 minutes

0.01 30 999964 74 minutes

0.02 20 999964 26 minutes

0.02 30 999964 38 minutes

0.01 20 4999820 62 minutes

0.02 30 4999820 31 minutes

Table 2.7: Execution times of a complete simulation of the Fokker-Planck solver for

a grid of 228× 228× 228 using the relaxations scheme with di�erent con�gurations

simulating the network with a limited amount of neurons and next this probability

density is improved following the iterative procedure described before. The imple-

mentation is similar to the Runge-Kutta 4 method: the points are divided equally

into the processor-GPU pairs and only the boundaries between these sub-domains

are communicated through shared memory in the same machine and through an

MPI message passing between machines. The only di�erence between the two codes

is the rule applied and the number of times it is computed.

Table 2.7 shows the execution time for the new solver with di�erent con�gura-

tions for a 228 × 228 × 228 grid (smaller than before) and up to time 150. The

previous version with the explicit Runge-Kutta 4 method takes 87 minutes for

the same simulation with time step 0.001. The parameters that have been changed

(dt, number of neurons and number of iterations) determine both the quality of the

solution and the time required for obtaining it.

In all the simulations presented on table 2.7 the execution time is smaller than

with the explicit Runge-Kutta method. The minimum di�erence is 13 minutes and

the fastest one reduces the time to less than one half the previous value. This is

mainly due to the larger size of the time step which on these new simulations is 10

or 20 times bigger than before. Although executing one step is longer than with

Runge-Kutta 4, the total number of steps required to reach the same time is smaller.

2.4.2 Extended multi population simulations

The new faster method for obtaining the solution of the Fokker-Planck equation

together with a reduction in the size of the grid allowed us to increase the maximum

number of populations. With this new con�guration we could simulate one di�erent

population on each card, giving a total of 14. This new implementation was used

to increase the number of orientations in the model described in section 2.3.3.

As in the original model each orientation is represented by two populations,

one excitatory and one inhibitory. With this new implementation we extend the

number of angles from 3 to 7. The structure of the connectivity was mantained as

in �gure 2.34: the excitatory populations are connected with each other and to their

104

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

corresponding inhibitory group while each of the inhibitory populations is connected

to all the excitatory populations. The size of the weight depends on the distance

between the preferred orientations, similar angles reinforce each other while di�erent

ones diminish the activity of each other.

The input for all the simulation was set to 1.0 for the population in the center

and it was reduced according to the distance. The two populations next to the center

received 0.7, the next 2 received 0.4 and the �nal 2 received 0.1. This represents an

initial detection of an angle very close to the prefered orientation of the population

in the center. A plot of this function is shown in �gure 2.44.

Figure 2.44: Input to the extended multi population experiment

We made several simulations keeping all the parameters the same as in the

experiments presented in 2.3.3 and external noise 0.45 (value for which we found a

stationary solution). The di�erence was in the level of inhibition, a critical value for

the sharpening e�ect expected from the system. In each new experiment the weights

of the inhibitory connections were duplicated. The amount of iterations was set to

30 and number of neurons in the initial guess to 99,964. Figures 2.45, 2.46 and 2.47

show the stationary solution of the excitatory populations. Only four of them are

shown as in all the experiments the probability density of populations at the same

distance of the center was equal.

In the �rst experiment (see �gure 2.45) all of the populations are spiking as they

present some mass around the limit cycle. This means that a percentage of the

neurons are following this trajectory, i.e., they are emiting action potentials. The

high peak at a low voltage for the population furthest away from the center indicates

that the majority of the cells are staying very close to their resting potential. This

peak is diminishing when approaching the center and �nally it is almost completely

removed and replaced by another one but at a high voltage. More neurons are spiking

for populations with higher input, this is a good representation of the original angle

selection but has no sharpening of the original values. The results are similar as for

the �rst experiments of section 2.3.3 shown on �gure 2.35.

In the second experiment (see �gure 2.46) the activity of the �rst population is

completely removed as all the mass is close to a negative voltage. This is an e�ect

2.4. A faster but less accurate numerical method 105

Figure 2.45: Stationary solution of the excitatory populations for the experiment

with 14 populations and smaller level of inhibition. A: populations furthest away

from the correct orientation. B: populations next to the furthest away from the cor-

rect orientation. C: populations neighboring the correct orientation. D: population

with the correct orientation. See map at the top of the �gure for details on the

position of the populations. Movies for this simulation are available in the web site

106

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

Figure 2.46: Stationary solution of the excitatory populations for the experiment

with 14 populations and medium level of inhibition. A: populations furthest away

from the correct orientation. B: populations next to the furthest away from the cor-

rect orientation. C: populations neighboring the correct orientation. D: population

with the correct orientation. See map at the top of the �gure for details on the

position of the populations. Movies for this simulation are available in the web site

2.4. A faster but less accurate numerical method 107

Figure 2.47: Stationary solution of the excitatory populations for the experiment

with 14 populations and high level of inhibition. A: populations furthest away from

the correct orientation. B: populations next to the furthest away from the correct

orientation. C: populations neighboring the correct orientation. D: population with

the correct orientation. See map at the top of the �gure for details on the position

of the populations. Movies for this simulation are available in the web site

108

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

of the increase in inhibition. All the other populations are spiking as they feature

probability mass around the limit cycle. The one in the center still has a larger level

of activity than the others as the peak at low voltage is very small. The sharpening

e�ect is small as only one orientation was eliminated.

In the third experiment (see �gure 2.47) the sharpening e�ect is much more clear

as the 2 populations furthest away from the center show no activity and the one

next to the center has a very low amount of neurons spiking. The populations that

are neighbours to the one in the center have a high peak at the resting potential

and a small amount of mass around the limit cycle. This means that a very low

proportion of the neurons are spiking. This is extremely di�erent to the solution

found for the population in the middle where although there is a peak at a negative

potential, the majority of the mass is around the cycle. This is the kind of behavior

we were expecting of the system as the di�erence between the activity at the selected

orientation and the others is larger than in the input.

In a �nal experiment, we left the weights as in the experiment of �gure 2.47

but changed the input function. We now moved the input orientation from the

center position to one of its neighbours. A plot of this function is presented in �gure

2.48. The results of the experiment are presented in �gure 2.49. The stationary

solutions found in this experiment are similar to those presented in �gure 2.47. The

populations far from the correct orientation stay close to the resting potential, the

one just next to the correct orientation has a small amount of mass around the limit

cycle, and the one with the correct preference has the majority of its mass around

the cycle.

Figure 2.48: Input to the extended multi population experiment with shifted orien-

tation

2.4.3 Discussion

The new method proposed for solving numerically the Fokker-Planck equation pro-

vides a great advantage, it is possible to tune its behavior depending on the available

computational time. The slowest possible algorithm will provide the better results

2.4. A faster but less accurate numerical method 109

Figure 2.49: Stationary solutions of the experiment with the input function pre-

sented in �gure 2.48.

110

Chapter 2. Numerical analysis of large scale neural networks using

mean �eld techniques

(or at least will produce the smaller error bound). Depending on the objective of

the simulation the number of iterations, the size of the time step or the number of

neurons for the initial approximation can be changed. If the interest is just in the

general dynamics a very fast implementation can be obtained. This is impossible

with the Runge-Kutta implementation where the main parameter that determines

the speed of the simulation, the size of the time step, needs to be extremely low.

Although it is known that the Jacobi-Newton type of updating rule we are using

are slow to converge (see [Briggs 2000, Trottenberg 2001]) we could obtain a solver

that is faster than the Runge-Kutta method. This is mainly due to the creation

of a good initial solution and to the computational power provided by the GPUs.

The possibility to obtain a �rst approximation of the probability density by a fast

simulation of the network reduced the number of necessary iterations and allowed

us to exploit the propagation of chaos e�ect in favor of a faster implementation.

The GPUs allow us to execute one iteration extremely fast, with a speed probably

only comparable to extremely large high performance computing solutions.

Before, we provided two di�erent simulation techniques for studying numerically

the kind of noisy neural network presented in this thesis. The �rst, useful for small

networks, is to do a Monte Carlo simulation to generate samples and then create an

approximation of the probability density. The second one, useful for larger networks,

is to solve directly the Fokker-Planck equation. Due to the large grid size required

by the Fokker-Planck equation (to avoid negative values) this approach is useful as

a simulation tool only if the number of neurons in the network is large enough. The

new method based on relaxation techniques is an intermediate point between the

two previous options. It combines the network simulation with the solving of the

Fokker-Planck equation and provides a solution that may be useful for medium to

big size networks.

A possible extension to the relaxation scheme is to use it in a multigrid method

[Briggs 2000, Trottenberg 2001]. In this kind of approach the solution of the equa-

tion in a smaller grid is used recursively to improve the solution obtained through

iteratives techniques in a larger grid. As part of the iterations are made for a

smaller amount of points the algorithm is faster than applying directly the relax-

ation. This combined with an adaptive mesh where the grid on di�erent pieces

of the domain may have dissimilar amount of points depending on the solution,

may improve greatly the results presented in this section. As the majority of

the mass is distributed along the limit cycle an adaptive algorithm would use a

�ne grid around it and a coarse grid outside. Several libraries have been cre-

ated that provide this kind of algorithms for partial di�erential equations, like uG

([Bastian 1994, Bastian 1997]) or ALUGrid ([Dedner 2004]). Providing an imple-

mentation with the use of this libraries is out of the focus of this thesis and it is left

for future work. A diagram showing how multigrid methods work is shown in �gure

2.50.

We did some experiments for improving the iterative method proposed, in a

multigrid fashion and using the GPU cluster. We created the necessary code to

solve the Fokker-Planck equation with di�erent grid sizes and then combine the

2.4. A faster but less accurate numerical method 111

Figure 2.50: Diagram showing how multigrid methods work

results. The experiments with this implementation showed that solving in a GPU

a grid with a reduced amount of points will not decrease the time by the same

factor. In fact, for smaller grids, the diminution of time is almost none. This

ends up making the code even slower than the version that just relaxes directly the

largest discretization. The fact that this di�erence in execution time is smaller than

expected is probably due to hardware limitations. For this reason we believe that if

these experiments were repeated on a di�erent hardware architecture they could be

successful.

The numerical experiments with 14 populations reinforce what was found pre-

viously with just 6. The system is able to enhance the original angle selection and

in this case it even destroys all the activity of the population with orientations dis-

similar with the input. As previously, the level of inhibition is the key element to

determine the size of the sharpening e�ect. On the experiments all the populations

arrived to a di�erent stationary solution that depends on the distance to the in-

put angle. Probably, if more orientation were added to the model the same e�ect

would be seen and only the ones representing angles similar to the peak in the input

function would survive.

The results also show how a population of neurons can be de�ned as a basic

computational unit, instead of an isolated single neuron. Measurements in the

visual area show how large groups of neurons share common properties and are

strongly connected. This may be a sign of the existence of networks with enough

elements to be in the mean �eld limit and behave as the ones used for the simulations

presented in this work. New measurements could be made to show the existence

of a stationary distribution although the activity of a huge amount of near neurons

should be recorded for a static input.

Chapter 3

Numerical simulation of neural

�eld models of the primary visual

cortex

Contents

3.1 A model without feature based connectivity 113

3.1.1 Motivation . 113

3.1.2 Description of the model . 114

3.1.3 Implementation . 115

3.1.4 Numerical results . 122

3.1.5 Discussion . 129

3.2 A spatial extension of the Ring Model 130

3.2.1 Motivation . 130

3.2.2 Implementation . 131

3.2.3 Results . 136

3.2.4 Discussion . 141

3.1 A model without feature based connectivity

3.1.1 Motivation

In [Veltz 2011] the author proposed a new neural �eld model of the primary visual

cortex. The main di�erence with previous approaches was the use of a connectivity

that doesn't depend on any feature. This is supported by some biological data,

like the one presented in [Bosking 1997] where a columnar pinwheel structure is

shown to be present in V1. These results are con�rmed by the work described in

[Lund 2003], where the conclusion was that the patchy lateral connections are the

only clearly identi�able example of an anatomical column. In other rate models of

V1, like those in [Ben-Yishai 1995, Bresslo� 2001b, Chossat 2009], the connectivity

between elements depends on the contour orientation, a feature which is explicitely

represented in the equation, together with the position.

Another di�erence between this model and others in the literature is that the

existence of a continuum of pinwheels covering the cortex is not assumed (see

114

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

[Bresslo� 2001b, Bresslo� 2002a]). This is not realistic, as the number of pinwheels

in any orientation map is limited and because the linear zones between pinwheels

must be neglected if a continuum is assumed. Even though they do not use a real-

istic orientation preference structure these models have been shown to account for

several interesting phenomena. The Veltz model doesn't require such an assump-

tion and can represent an orientation map with linear zones and a limited amount

of pinwheels.

Veltz provided an analytical study of his model based on his work with the Ring

Model of Orientation. Due to limitations in computational power and time he was

not able to perform numerical simulations to test his theoretical results or to guide

the analysis with the use of numerical methods when analytical methods became

too complicated.

In this chapter we extend the work done in [Veltz 2011] by providing simulations

of his model and numerical tests for several hypotheses he proposed. First, we

describe the model and second we present a set of algorithms and software packages

to solve the model equations on a GPU architecture. Finally, the results of several

numerical experiments will be detailed, one for each of the predictions in the original

document.

3.1.2 Description of the model

The model consists of a neural �eld equation which depends only on the cortex

position x, i.e. there is no explicit representation of the edge orientation at x.

τ
d

dt
V (x, t) = −V (x, t) +

∫
Ω
J(x, y)S[σV (y, t)]dy + Iext(x), (3.1)

where Ω is a square two-dimensional piece of the cortex and S(x) = 1
1+e(−x+T) . The

boundary conditions are periodic, i.e. Ω is assumed to be surrounded by other pieces

of the cortex with the exact same values of V (the space has a torus shape).

The weight function J is composed of a local connectivity and a modulatory

lateral connectivity. The �rst one is homogeneous, i.e., it depends only on the

distance between the points. The second one spreads in the direction of the preferred

orientation following biological constrains.

J(x, y) = Jloc(x− y) + εLRJLR(x, y). (3.2)

The local connectivity is modeled as the following di�erence of Gaussians:

Jloc(x) = ae
− ||x||

2

2σ2
loc − e

− ||x||
2

4σ2
loc . (3.3)

Most of the original analysis deals only with local connections and hence the �rst

groups of numerical experiment described below will also only consider this kind of

connectivity.

The input function depends on an orientation map, that could be obtained in

biological experiments with optical imaging, for example. The map is an assignment

3.1. A model without feature based connectivity 115

of an angle between −π
2 and π

2 to each position in the cortex. When there is a single

pinwheel the value of the orientation depends only on the polar angle from the center

of the structure. In this case, given an a�erent stimulus angle, written θaff we have

that:

Iext(x) = ε[1 + β cos(2θ(x)− 2θaff)], (3.4)

where ε is the contrast, β is a small number representing the anisotropy of the LGN

input, θ(x) is the preferred orientation of x and θaff is the stimulus angle. When

there is more than one pinwheel this function may be used with di�erent parameters

or stimulus angle at each one.

It is assumed that the pinwheels are distributed in a square lattice and a pro-

cedure for building the map is provided. First, build a π × π square hypercolumn,

consisting of one pinwheel, like the one presented in �gure 3.1 top. Then a rectangle

of size 2π×π is generated by re�ecting along the vertical axis. Re�ecting again this

along the horizontal axis yields a 2π × 2π square which is used as a basic tile for

building a larger map. Finally, this tile can be repeated as many times as needed

to generate a square orientation map such as the one on the bottom of �gure 3.1.

The lateral connections follow the same biological constrains as in section 1.2.4.2.

Populations connect only if they have similar preferred orientations, creating a

patchy connectivity. This is modeled by a Gaussian function, Gσθ(θ(x) − θ(y)).
It must also follow the direction of the preferred orientation. This can be modeled

by the term J0(χ,R−2θ(x0)(x0−y)) where J0(χ, x) = e−[(1−χ)2x2
1+x2

2]/2σ2
LR and R2θ(x)

is the counter-clockwise rotation of angle 2θ(x). If χ = 0, then there is no anisotropy
whereas for χ ∈ (0, 1), this connectivity presents an anisotropy along the preferred

direction. Finally, the lateral connectivity can be described the following equation

taken from [Veltz 2011]:

JLR(x, y) = J0(χ,R−2θ(x)(x− y))Gσθ(θ(x)− θ(y)). (3.5)

Figure 3.2 shows an example of the lateral weight function for a point close to the

center of the same pinwheel grid as in �gure 3.1 bottom and with orientation π
4 .

The value of χ is 0.8 and σLR = 0.15.

3.1.3 Implementation

3.1.3.1 Local connectivity

If long range connections are removed, the integral term in the right hand side of

equation 3.1 is a convolution for which a Fast Fourier Transform (FFT) algorithm

can be used to reduce the complexity. Together with CUDA, nVidia provides a set

of libraries for solving common problems on its GPUs, one of them, called cuFFT,

being designed to apply FFT in parallel, called cuFFT. We have used cuFFT to

simulate the model proposed in this section with only local connections.

The software starts by computing a local weight matrix and then its FFT on the

GPU. The results of this operation remain in the card and will be used during the

116

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.1: Top: distribution of orientation preferences in one pinwheel. Bottom:

orientation map composed of a square grid of 8 × 8 pinwheels. The white square

indicate two example pinwheels.

3.1. A model without feature based connectivity 117

Figure 3.2: Lateral weight for a point in the center of the grid. See text for more

details.

whole simulation. Then, for each of the four computations of the right hand-side

required by Runge-Kutta 4, the sigmoid for each point is computed and then the

FFT of this matrix is obtained. The �nal results of the convolution operator are

obtained by computing the reverse transform of the multiplication of the 2 FFTs

evaluated previously. After the value of the convolution is known for each point a

closing process updates the values following the form of the right-hand side. All of

these operations are executed in parallel. A �ow diagram of the process is shown in

�gure 3.3.

There are two main advantages of this approach: the use of a highly optimized

library and the small amount of resources required by the simulation. The library

for computing FFTs in the GPU is designed by the same company who created the

hardware, it is extremely fast and provides a large set of optimization routines that

depends on the structure of the data. This process runs on just one GPU, using

a smaller amount of resources than, for example, the Fokker-Planck simulations

where the complete cluster was required for one simulation. This advantage proved

to be advantageous when performing a numerical parameter search, where di�erent

con�gurations can be tested in parallel across the di�erent cards.

As only one card is required there is no need to communicate between processors

which reduced the amount of time used for copying memory. For this problem all

the results are always kept in the GPU unless the values for the time step must

be saved to study the evolution of the solution through time. In fact, if only the

stationary solution is required no copy from GPU to CPU memory is done until the

end of the simulation.

One complete simulation of the model for a 800×800 grid, 3,000 time steps

(much more than is normally required for convergence) and saving the state of the

network every 200 steps takes 49 seconds (average across several executions). This is

118

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.3: Flow diagram of a simulation using FFT.

3.1. A model without feature based connectivity 119

much faster than any other of the simulations presented in this thesis. The complete

cluster allows us to perform 14 simulations with di�erent con�gurations in around

49 seconds. This is only possible due to the fast parallel computations of the FFTs

provided by cuFFT.

The experiments we have done with FFTs for solving this equation indicate a

requirement for high precision. When we performed the simulations with �oating

point numbers in order to improve speed, errors of the order of 10−5 that changed the

behavior of the system completely. The errors were measured by doing a simulation

with no input and with a constant initial condition. In this case, the network should

always converge to a constant solution. This doesn't happen unless double point

precision is used and the di�erences are a measure of the error. The very small

error induced by the low precision is spread due to the e�ect of the nonlinearity and

makes the network converge to a completely di�erent solution.

3.1.3.2 Lateral connectivity

The computation of the lateral connectivity is harder as it is expanded in the di-

rection of the preferred orientation. This anisotropy prevents us from using FFT

for both connectivities. Also, as each point requires a di�erent weight matrix, coa-

lesced memory access (consecutive threads access consecutive memory positions) is

di�cult to obtain. We have designed two di�erent solutions for solving this problem

that are now described.

The �rst solution uses another library provided by nVidia designed for operating

on sparse matrices, called cuSparse. This code provides optimized routines for

multipliying sparse matrices with dense or sparse vectors in the GPU. As the lateral

connectivity is patchy due to the restriction in the orientation di�erence (Gσθ in

equation 3.5) most of the weights are 0. The e�ect of these connections can be

obtained by multiplying a dense vector, the result from evaluating the sigmoid at

all the points, with a large sparse matrix (number of points2) that contains the

weights between all pairs of elements. The size of this matrix is reduced as only the

non-zero elements are stored this can �t in the small amount of GPU memory for

small discretizations. Figure 3.4 shows a �ow diagram of this process

The second solution uses all the resources in the cluster to compute the weight

function and the multiplications required by the lateral connectivity directly. This

doesn't have the memory restriction from the previous implementation but requires

the use of all the GPUs as more operations are necessary.

To do this last kind of computation fast enough we �rst set the block size equal

to the amount of points in one row of the grid. Then, for each computation of the

right-hand side, each thread will iterate over all the elements close to its position in

order to obtain the value of the integral. This loop is done by �rst �xing the row

and then iterating over all the points in it. This allows us to use the block shared

memory (see �gure 1.17) to obtain a fast access to the data. At the beginning

each thread will copy one value of the input and one angle from global to shared

memory. These values are required by at least one thread during the second loop. A

120

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.4: Flow diagram of a simulation using a sparse matrix representation.

3.1. A model without feature based connectivity 121

pseudo code explanation of the algorithm is provided below . In the code svv-local

is a continous array of double precision numbers in shared memory that stores the

evaluation of the sigmoid at each point of the current row and po_map_local is a

similar structure that stores the orientation preferences of the points in the current

row. Synchronizing the block means that all the threads in it will wait until all

other threads have reached the same step of the code.

Algorithm 1 Computation of lateral connectivity with shared memory

for each possible row in the neighborhood do

svv-local[thread id] ← read the value of S(input) of one element in the row

po_map_local[thread id] ← read the angle for one element in the row

synchronize the block

for each point in the row and in the neighborhood do

compute lateral weight using po-map-local for the Gaussian

multiply the corresponding value of svv-local with the computed weight

accumulate the value to obtain the �nal integral

This technique reduces the amount of access to global memory as most of the

elements that are copied are required by more than one thread. This is because each

of them should compute an integral, corresponding to the e�ect of the connectivity,

which includes all the neighbours. As all the elements of the block belong to the

same row, their neighbourhood is similar. Accessing shared memory during the

second loop is several orders of magnitude faster than obtaining the same value from

global memory. Although this code includes a synchronization instruction which is

slow, the gain in speed due to the di�erent memory architectures still makes the

simulation faster with this technique. This same technique can be used to copy the

local weights for one iteration.

The time required for one simulation is similar for both solutions, the main

di�erence is the amount of resources used. For a 200x200 grid, 1200 time steps and

saving every 20, the mean execution time for the sparse matrix version is 1 minute

and 50 seconds while, using 14 GPUs with the other method, the execution time

is 2 minutes and 20 seconds. Although the sparse matrix is faster in this example,

the maximum grid size is limited by the amount of memory available in the GPU.

A comparisson of both methods is presented in table 3.1

Sparse matrix Direct computation

Number of GPUs 1 14

Time 1 min 50 sec 2 min 20 sec

Memory limit yes no

Maximum grid size yes no

Table 3.1: Table comparing the two methods for computing the lateral connectivity

122

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

3.1.4 Numerical results

3.1.4.1 Only local connectivity

When no stimulus is input to the system (Iext = 0) it always features a constant

stable state. A bifurcation analysis done by Veltz showed that by increasing the

nonlinear gain, σ, a di�erent, tuned, spontaneous state may appear. This increase

may be caused by drugs or other pharmacological substances having the e�ect of

modifying the properties of the neuron population.

The author has found two di�erent stable solutions that may appear when no

input is presented to the network and the nonlinear gain is su�ciently large. The

�rst one is a pattern of spots of activity and the second one is made of stripes. Both

solutions, the spots and the stripes, are di�erent and mutually exclusive. Which of

them is selected by the system depends on the local weight con�guration.

We have run a series of simulations to con�rm the appearance of these two

patterns of spontaneous activity. For a �rst group of experiments we selected a

con�guration that should produce a spots solution (a = 1.854, σloc = 1.24 and T =
0.1) and for a second group we choose one that should generate stripes (a = 1.96,
σloc = 1.19 and T = 0.1). Uniform random initial conditions were created in each

case. The value of the nonlinear gain was slowly increased until a solution di�erent

from constant activity was found. Figure 3.5 shows the two patterns found.

Figure 3.5: Solutions found when no input is present to the system. The sigmoid

threshold, T , in both experiments is 0.1. The spot solution was obtained with

σloc = 1.24 and the stripes with σloc = 1.19

The nonlinear gain, σ at which we found the �rst bifurcation point is close to

1.07. As recommended by Veltz in his thesis, in order to obtain the correct behavior

of the system the value of σ should be chosen slightly below this point. In all the

following simulations the value of σ is �xed and equal to 0.95

We did a second set of experiments to determine under which conditions the

angle selected by the system is correct (i.e. the θaff in (3.4)). The predictions

of the author indicate that there is at least one threshold for the contrast value

(ε in (3.4)) beyond which the system produces the correct behavior. In order to

3.1. A model without feature based connectivity 123

check this prediction we ran simulations for di�erent contrast values and di�erent

input orientations, using the same local weights that generated the previous spot

pattern. The input was the same for all the pinwheels (full �eld grating). For this,

all the GPUs in the cluster were used as each one ran experiments for a di�erent

set of possible con�gurations. The selected angle was determined by the argument

of
∫
V (x)e2iθ(x)dx and the quality of the decision by the absolute value of the same

number. When computing this integral each point in the grid is considered a vector

whose argument is equal to its prefered orientation and its norm the voltage. The

resulting vector after adding all of them will have an argument similar to the one of

the points with the higher norm (voltage) as they have a higher in�uence. Figure

3.6 presents the results.

Figure 3.6: Selected angle and modulus for di�erent con�gurations

The results show that for low contrast the selected angle is always very close to

0 and from a certain threshold near 0.1 the selected angle is similar to the input

orientation. The modulus for this �rst range of contrast values is also very small

indicating that the system is not really sure of the selection (or that there is no

124

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

selection at all). The best behavior of the system is obtained for contrast values

between 0.5 and 1.3 where the absolute value is maximal. After this contrast level the

network starts to saturate and the di�erence in activity for the di�erent orientations

is not as large as before.

Figure 3.7 shows a plot where the horizontal axis is the orientation preference

and the vertical the voltage. Each green circle represent the �nal solution of one

point in a given pinwheel when θaff = 0. The plot shows that di�erent points with
the same prefered orientation present di�erent voltage values, but the range for the

ones close to the input orientation is higher. This di�erence depends on the distance

to the pinwheel center. Points that are furthest away from the center will connect

with similar orientations while the ones that are close to the center will interact

with a greater variety of angles.

Figure 3.7: Voltages of a pinwheel for a simulation with contrast 1.0 and input angle

0.

The solution for each θaff and contrast was the same for all the pinwheels. The

�nal solution is a spot or stripe pattern depending on the input orientation which

generates a peak at di�erent positions of each pinwheel. The �nal patterns indicate

the structure of the orientation map, having the same organization. This is shown

in �gure 3.8 where the solution for an input orientation of π4 and π
8 are shown. Each

pinwheel is composed of 100×100 points and in all of them the higher values are

oriented to the proper line creating a spot or stripe pattern.

In a second set of experiments the input was changed and localized to the central

pinwheels. The objective of this experiments was to test Veltz hypothesis that at

small contrast the system should feature a non localized solution, similar to the full

�eld grating case, but when presented with a localized input. This is in contradiction

to the recent experiments presented in [Chavane 2011]. The input for contrast 1.0

is presented in �gure 3.9 and the results for several contrast values are presented in

�gure 3.10.

The simulations show that the original hypothesis by Veltz was incorrect and

that even for low contrast the output is localized. The results are similar to the

3.1. A model without feature based connectivity 125

Figure 3.8: Top: �nal state of the network with contrast 1.0 and input orientation
π
4 . Bottom: same with input orientation π

8

126

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.9: Input for the localized experiments

�ndings by Chavane et. al. in biological experiments. Through voltage-sensitive

dye imaging the authors showed how the spread of activity in V1 is independent of

the input orientation and that it doesn't cover the complete �eld. This is in perfect

agreement with the simulations where independently of the contrast the output was

always localized. So, even though Veltz hypothesis was wrong the model still agrees

with biological facts.

3.1.4.2 Lateral and local connectivity

A �nal set of experiments was designed to test the e�ects of lateral connectivity.

For this either the sparse matrix implementation or the one that uses the complete

cluster were employed. Previous tests had indicated that the results of both version

were the same. The main prediction put forward by Veltz and tested with these

simulations is that long range connectivity improves the response and that this is

further increased by the anisotropy, χ, for both local and full �eld stimuli.

The experiments consist in setting a con�guration (local connectivity, contrast,

input orientation and εLR) and then simulating the network with di�erent values of

χ. For each of these the modulus of
∫
V (x)e2iθ(x)dx was measured. If the hypoth-

esis was correct the modulus should increase when χ is increased. The results are

presented in �gure 3.11.

All the plots in �gure 3.11 show that the modulus of the �nal vector increases

with χ, in agreement with Veltz predictions. In fact, the shape of the curve is very

similar to the one computed in his thesis using the center manifold theorem. The

simulations also show that the increase is higher when the lateral connectivity in

increased.

3.1. A model without feature based connectivity 127

Figure 3.10: Final state of the network with contrast 1.0 and input orientation π
4 .

The white points indicate the positions of the pinwheel centers. the color code for

all the plots is the same.

128

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.11: Modulus of the selection on di�erent experiments with lateral connec-

tivity. The results are shown as a function of the anisotropy

A problem that was encountered with these simulations is that with high levels

of long range connectivity (εLR) and anisotropy (χ) the �nal selected angle was

slightly shifted from the correct one. This small di�erence disappears when εLR is

reduced to around 0.0025 and below. For example, when an input of π2 is presented

to a network with εLR = 0.01 and χ = 1 the output angle is 1.25 instead of 1.57. The
same network, if lateral connectivity is removed, outputs the correct orientation. An

analytical study of this e�ect is currently in progress.

Finally, we computed the spontaneous activity state with lateral connections in

a similar way as for the �rst experiment with this model. The results presented

in �gure 3.5 shows spontaneous activity organized in an hexagonal pattern. The

structure of this solution is di�erent from square distribution of pinwheels in the

orientation map. When an input with low contrast is presented to the system it

may try to move towards this hexagonal pattern instead of to the square one with

the correct angle selection. For this reason, it may a�ect the selection capabilities

of the network, or increase the contrast threshold at which the correct orientation

is visible. Although this e�ect was not visible in the numerical simulations (see

�gure 3.6) it may a�ect the behavior of the model under certain con�gurations.

The simulations with lateral connectivity, as presented in �gure 3.12, show that this

kind of connection changes the structure of the spontaneous activity to a square

pattern which agrees with the pinwheel structure.

3.1. A model without feature based connectivity 129

Figure 3.12: Spontaneous activity with lateral connection, χ = 0.5 and εLR = 0.01

3.1.5 Discussion

In this section we have presented a package able to solve extremely fast the equations

of a new neural �eld model of V1 for which no numerical simulations had been done

before. It is, again, the computational power of GPUs that enables us to study the

behavior of the system under a wide range of con�gurations. For these experiments

the set of tools that are available together with the CUDA technology, were crucial,

as two libraries were extensively used.

The simulations show that orientation can be represented in a neural �eld with-

out explicit feature space. This approach is completely di�erent from that of the well

known Ring Model (see section 1.2.4.2) where the orientation preference is included

in the model and the connectivity depends on this feature. This new approach is

much more realistic and it can even be extended to use orientation maps obtained

by biological experiments like the one in �gure 1.5 whose pinwheel structure is more

complex than a square grid.

The numerical simulations allow us to analyse two hypotheses proposed by Veltz

in his original design of the model. First, he believed in the existence of two contrast

thresholds that determine the behavior of the system. He predicted that if the

contrast was below the �rst threshold the system would not do any selection, if it

was between the �rst and the second it would select an angle di�erent from the

input orientations and if it was above the last value it would choose correctly. The

experiments indicate that only the �rst limit exists.

A second prediction that was rejected by the numerical experiments was that lo-

130

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

calized input may produce a non local solution at low contrasts. This did not happen

in the simulations as the expansion of the activity was always limited, agreeing with

current biological experiments. This indicates the power of this modeling approach.

Future work concerning this model is to further analyze the e�ect of lateral

connectivity on the angle selection capabilities. As it has been proposed in previous

works [Bresslo� 2001b], hallucinations or illusions may be produced by an increase in

the strength of this connectivity. This kind of phenomena should also be produced

in this approach. Also, it is possible to use this model with an orientation map

obtained directly by optical imaging experiments. The data obtained in this kind

of biological experiment is an orientation map with a structure more complex than

the square grid used in this thesis. Simulations that incorporate real data can give

us more information on the e�ect of the topology of the map in the orientation

selection capabilities of the network.

3.2 A spatial extension of the Ring Model

3.2.1 Motivation

Another option to model the primary visual cortex as a neural �eld is to use the

Ring Model of Orientation as a representation of a hypercolumn and then include

as many of them as the amount of receptive �elds in the visual area. This con-

cept was originally used by Bresslof [Bresslo� 2001b] and it is described in section

1.2.4.2. The analytical study of the model by the authors have showed that un-

der certain conditions spontaneous patterns may appear that can be understood as

visual hallucinations.

The analytical analysis presented in [Bresslo� 2001b] and [Bresslo� 2002a] shows

that a sudden rise in the strength of the connectivity may produce patterns that

correspond to known types of hallucinations. The authors mainly study the e�ect of

long range connections in extreme cases where due to the existence of bifurcations

the solutions of the system may change drastically. They do not provide simulations

to show how the model behaves in a parameter range where the visual system works

normally.

We believe that this model provides an excellent framework to study the e�ect

of long range connectivity on the image processing capabilities of the primary visual

cortex. These connections allow neurons to integrate information from areas far

away from their receptive �eld, and, as has been suggested in [Field 2004], may be

the cause of the contour integration capabilities of our visual system.

Gestalt psychologists proposed in the �rst half of the twentieth century a set

of perceptual grouping principles that included the law of closure. This principle

indicates that humans mind tends to see complete objects even if there are missing

edges. For example, if some of the borders of a �gure present gaps people are still

able to determine its shape as if it was completely enclosed. One of the most classical

example of this is the Kanizsa triangle illusion that can be seen in �gure 3.13. The

visual system is able to join the edges of the triangles and detect the complete �gure.

3.2. A spatial extension of the Ring Model 131

Figure 3.13: The Kanizsa triangle illusion shows how our mind is able to �ll the

gaps in a �gure to detect a shape

In order to �ll gaps, as in the Kanizsa triangle, the neurons with a receptive

�eld corresponding to the missing parts of the shape need to integrate information

from their neighbors. This can only be achieved by the e�ect of lateral connectivity

between hypercolums as those included in this neural �eld model of the primary

visual cortex. For this reason, we have ran several simulations, under di�erent

conditions, that have allowed us to determine if under this framework it is possible

for lateral connections to induce this kind of perception.

3.2.2 Implementation

We have created the necessary software for doing the simulations that can show

the e�ects of lateral connectivity. For this a system was built that �rst applied a

set of oriented Gabor �lters to a greyscale image and then uses the output of this

operations as the input function for the neural �eld model. The integro di�erential

equation is discretized and transformed into a set of ordinary di�erential equations

that are solved in parallel in the GPU cluster. The procedure performed by the

cards is similar to the one described in 2.2.1 for the Fokker-Planck equation. A

diagram of this method is presented in �gure 3.14

The selection of Gabor �lters for an initial estimation of the position and ori-

entation of edges is not random and is based on the hypothesis that simple cells

receptive �elds belong to this class of �lter (see [Jones 1987]). Gabor �lters are

composed of a Gaussian kernel, known as the envelope, multiplied by a complex

sinusoidal function, known as the carrier. We only consider the real component of

the �lter given by:

g(x, y) = e−
x′2+γ2y′2

2σ2 cos(2π
x′

λ
+ ψ), (3.6)

where:

x′ = x cos θ + y sin θ,

132

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.14: A diagram that represent the procedure done for the simulations. First

a grey scale image is taken as input. Then a set of oriented Gabor �lters are applied.

The output of this step is then used as input for the neural �eld equations which

are solved on the GPUs

y′ = −x sin θ + y cos θ,

and λ, σ are parameters that control the shape of the �lter. An example of a �lter

is presented in �gure 3.15.

Figure 3.15: Example of a Gabor �lter

One �lter is applied to the image for each discretized orientation in the neural

�eld model. This will give one resulting value per position and orientation that can

then be used as an input function. Depending on the discretization this can require

an amount of operations even bigger than solving the model equations. In all the

simulations we have performed the size of the image was small enough to make the

solution of the integro di�erential equation the bottleneck of the simulation and not

the application of the �lters.

To solve the neural �eld equations �rst the domain is discretized by setting the

number of points in the space dimension equal to the number of pixels in the input

image. This allow us to use the results from the �ltering operations directly as an

input. For the orientation variable a di�erent number of points can be chosen but we

3.2. A spatial extension of the Ring Model 133

used the same number as for the position. The equations are then divided equally

between the GPUs available in the cluster and one thread is created for each point.

The discretization reduces the integro-di�erential equation to a system of or-

dinary di�erential equations (ODEs) that we approximate using the fourth-order

Runge-Kutta method. This is the same procedure as for the discretized equations

coming from the Fokker-Planck equation described in the previous chapter. The

most computationally expensive step in solving this system is computing the right-

hand side of equation (1.21), because two integrals, one of them being 3D, must be

evaluated four times due to the integration scheme.

The integral corresponding to the lateral weight is the most complex element

to compute in the right-hand side of the equations. In fact, if only local weights

were used an e�cient Fast Fourier Transform algorithm could be use to compute

the integral term, as in the previous section. The complicated dependency of the

long range connectivity to the orientation preferences prevents us from doing so.

The lateral weight function is normally assumed to be a Gaussian or a Mexican

Hat function. We created a window for solving the second integral, whose size

depends on the distance at which the weight function reaches 0. If no window

existed, for each point it would be necessary to solve the integral over the whole

domain, sampling from all points. Instead, with this technique, each thread samples

only from a subset of points that are close to it.

The lateral weights are pre-computed at the beginning of the simulation and

copied to the GPU memory. This is a 4 dimensional matrix of size (number of

orientations)2 × (number of points in the window)2 as it must consider the di�erence

in preferred orientation, the distance, and it should expand in the corresponding

angle. For computing the integral each thread must iterate over a 3 dimension

subset of this matrix which depends on its orientation.

To make this access faster we copy this matrix into the shared memory by parts

as it is too big to �t in this small amount of space. The small amount shared

memory on each card is extremely fast and can be accessed by all the threads in

the same block. First we make sure that all the threads in each block have the

same orientation preference, so they can share the same 3-dimensional subset of the

original matrix. This is simple to do as the angle is considered the �rst dimension

of the array containing the points and any block size which is a divisor of the total

number of pixels will work.

The iterations for computing the integral must sample all the neighbors and all

the preferred orientations at those positions. For this, the threads in each block

will �rst copy a part of the weight matrix that corresponds to the values for the

common orientation preference and one di�erent angle (equal for all the threads).

This is a small 2 dimensional matrix of size (number of points in the window)2

which �ts in the reduced space. This procedure is done in parallel, as each thread

copies a di�erent part of the matrix from global memory to shared memory. Once

the copy is �nished the threads synchronize, using the GPU primitives for block

organization, and then sample all of their neighbors at the corresponding external

angle and multiply the values by the weight matrix. This procedure is repeated for

134

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

each possible angle. A pseudo-code for the process is presented next. In the code

w_shared is a linear array in shared memory, lateral_weights is a matrix in global

memory that contains the pre-computed lateral weights and sample is a function

that computes the multiplication of the weights with the results of the sigmoid.

Also, local_angle is the common orientation preference for all the members of the

block and thread position correspond to the coordiantes of the point for which the

current thread is computing the righ-hand side.

Algorithm 2 Computation of the integral with shared memory

for each possible angle φ do

w_shared[thread_id] ← lateral_weights[local_angle,φ,thread position]

synchronize the block

integral = integral + sample(w_shared,S(V))

synchronize the block

This procedure adds some instructions and synchronization to the code but

makes the access to a lot of data that is common to all the threads faster. Each

thread in a block will need to access all the elements of this reduced weight matrix

once so the total amount of global memory access is greatly reduced. Access to

shared memory is several orders of magnitude faster than access to global memory.

Another way of improving the memory access of the simulations is to choose

a block structure which will allow coalesced memory access. When a GPU does a

memory access it will read not one value, as in a standard processor, but several con-

tinuous elements. If neighbor threads need neighbors elements of memory the values

for several of them can be obtained with just one memory access. If this doesn't

happen some threads will need to wait until the addresses of memory required can

be fetched and the extra values read each time will be lost. In our simulations if

the block size is chosen to be exactly the number of points on one row this kind of

memory access will be enhanced.

If all the threads in a block are members of the same row they will all be adjacent

in the array and because of this they will always access consecutive elements in the

input data. This is represented in the diagram of �gure 3.16 where each square

represents a lateral weight window for di�erent points. It is easy to notice that

they are moved by exactly one position so that they will always need neighboring

elements. This con�guration also enables cache memory to work e�ciently as, for

example, the �rst element to be read by the green thread is the second element to

be read by the red thread and this value will be kept in cache after the �rst access.

An even faster simulation can be obtained if the number of points in one row of

the image is a multiple of the warp size of the card, normally 32. This will ensure

that all the processors in the GPU are always used. If this doesn't happen one warp

will be incomplete and processors will wait for the others to �nish.

We have measured the execution time for a 104×104×104 grid with a lateral

window size of 20×20. Figure 3.17 shows the mean execution time for one time

step measured after 100 executions. The plot shows how as more cards are added

3.2. A spatial extension of the Ring Model 135

Figure 3.16: A diagram that represents coalesced memory access when the block

size is equal to the number of points in one row. Each thread/point is represented

by an X and each colored rectangle represents the window for the lateral weights

of one consecutive point in the block (also marked with the same color). The small

rectangle with dashed line indicates values that can be fetched in just one memory

access.

136

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

the faster the simulation becomes. With 7 cards (maximum in one computer) the

simulation reaches 0.88 seconds per time step. The system was not tested with more

cards to avoid MPI communication.

Figure 3.17: Time for the execution of one time step with di�erent number of cards

To compare this result a second implementation was created in which the GPU

kernel was replaced by a for loop. This procedure is the same as the one done for the

Fokker-Planck solver presented in section 2.2.4. The parallel computation normally

done in the card is now directly performed in each processor. A comparison with this

version allows us to approximate the size of a standard high performance computing

solution that would be needed to reach the same speed up. One time step of the

simulation using this second code and 10 processor took 143.56 seconds which is 163

times slower than with 7 GPUs. This experiment was done in the same computer,

but more processors were used in the GPU simulations.

A previous version of these results, with am earlier, slower implementation, was

reported in [Baladron 2012a].

3.2.3 Results

We have performed several experiments to test the e�ect of lateral connectivity. One

di�culty for doing this is that the anisotropy of the long range connections generates

a problem with the discretization technique. Due to the square shape of the image

some orientations will connect with more elements than others. For example, if a

line is drawn through the diagonal of the square it will pass through more points

than any other. A diagram showing the expansion of two orientations starting from

the same pixel is shown in �gure 3.18, one line connects with two other position

while the others connects with 0. This problem can't be solved by increasing the

number of points as it is a property of the shape of the domain.

If this problem is not solved the system will have a bias that will make the hy-

percolumns almost always choose an angle close to the orientation with more points.

3.2. A spatial extension of the Ring Model 137

Even if the connectivity values in that direction are smaller than in the correct one

they will sum over more elements obtaining a larger value. To compensate for this

we have normalized the lateral connectivity depending on the number of elements

the point connects to. This can be pre-computed and used during the simulations.

Figure 3.18: Diagram showing the problem of the anisotropy of the connectivity

with the discretized domain. The horizontal orientation connects with more points

than the oblique one.

We have tested the system with two binary images, one is similar to the Kanisza

triangle presented in �gure 3.13 and the other is a square with gaps. The objec-

tive of the experiments was to determine if long range connectivity was enough to

activate the elements whose receptive �eld correspond to the gaps in the �gure.

The continuation given by the connectivity should activate those zones and provide

higher cortical areas with an input that indicates the existence of the triangle or

square. The results for the square are presented in �gure 3.19 and for the triangle

in �gure 3.20. The image on the top is the input and the two one on the bottom

are the �nal state of the network, after convergence, and a thresholded version of

the stationary solution. Clearly, as expected, there is activity in the zones where no

input is received.

We also created a di�erent weight function from the one in (1.23), based on the

cocircularity principle. Two edges are cocircular, as de�ned in [Parent 1989], if there

exist a circle for which both of them are tangent. In [Geisler 2001, Sanguinetti 2010]

it is shown that the statistics of edge appearance on natural images can be explained

by cocircularity. The brain is trained with this kind of input and probably learns

its connectivity with respect to the real probability of �nding edges at di�erent

position and orientations. Figure 3.21 shows the weight function for an element

at the center of the image with preferred orientation 0. The value shown in the

�gure is for the orientation with the maximum weight at each position. The shape

of the function is given by cocircularity and the size by the distance. The results

with this connectivity are presented in �gure 3.22. The extension of the edges is

still produced but activity at the same level as in the gaps also appears around the

original lines, making the continuation e�ect less clear. This is produced because

the new connectivity connects one pixel with a larger amount of elements than the

138

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

Figure 3.19: Top: second input image to the system. Bottom: stationary solution

and thresholded version of the output

3.2. A spatial extension of the Ring Model 139

Figure 3.20: Top: �rst input image to the system. Bottom: stationary solution and

thresholded version of the output

140

Chapter 3. Numerical simulation of neural �eld models of the primary

visual cortex

previous weight function.

Figure 3.21: Maximum weight for each position for an edge with orientation 0 at

the center of the image.

Figure 3.22: Result for a simulation with the triangle input from �gure 3.20 and

cocircularity weights.

We have also tested the system with some real images and with both weight

functions, without great success. In the majority of the cases the expansion of the

edges spreads over the whole image, activating almost every point. The amount of

edges and di�erent orientations in real images is much wider that in our synthetic

example. One possible solution to this is the inclusion of inhibition, this should

reduce the overall activity, stopping the expansion. We also included this feature,

3.2. A spatial extension of the Ring Model 141

giving the lateral weights a di�erence of Gaussian shape (Mexican hat). Our exper-

iments indicated that neither short range enhancement - long range inhibition nor

short range inhibition - long range enhancement performed a correct edge continu-

ation. A more extended search in the parameter space of the model with the help

of analytical techniques like the ones presented in [Veltz 2011] could possibly lead

to improved results.

3.2.4 Discussion

In this section a system designed to test the capabilities of long range connections in

the primary visual cortex was presented. The software developed is extremely fast

and its speedup is similar to a standard high performance computer solution with

hundreds of processors. The good use of memory in the GPU cluster in which the

simulations were developed provided an extremely fast code that can be extensively

used by modelers studying the mesoscopic behavior of the primary visual cortex and

other areas.

An initial set of experiments shows that the law of good continuation and clo-

sure described by Gestalt psychologists can be implemented by the shape of the

long range connectivity in the primary visual cortex. The simulations indicate that

neurons with a receptive �eld corresponding to a illusory contours, like the ones of

the Kanizsa triangle, can be activated by lateral connectivity, providing a percep-

tion of the complete �gure. These results are not perfect as the expansion of the

edges is on several directions and not only in the ones with a gap. This can proba-

bly be controlled by providing correct inhibition. Our experiments with the model,

shows that obtaining the correct inhibition-excitation con�guration is a hard task

and probably requires a more rigorous analytical treatment.

The results with real images are disappointing as no good enhancement of edges

could be obtained. The expansion of the information in all directions made the

network explode with activity for all the con�gurations we tested. Inhibition could

stop the expansion but it also destroyed the contour integration capabilities. We

believe than �nding the correct parameter range is a very complex task that needs

to be studied with the help of other tools.

Probably the most signi�cant result of this section is the software itself. Analyt-

ical treatment of neural �eld equations is normally not associated with a numerical

evaluation of the predictions made by theory. This is normally due to the compu-

tational complexity of the simulations. Phenomena such as spontaneous patterns

or short term memory (bumps) can now be produced numerically by expert neuro-

scientists. The implementation of Gestalt rules by long range connectivity is just

an example of the possible biological phenomena that this modeling technique can

account for and allow to explore further.

Chapter 4

General conclusion

In this Thesis we have used mesoscopic models and high performance computing to

study the dynamics of large realistic neural networks. We have focused our analysis

on models that can be used to explain how edge selection is implemented in the

primary visual cortex. In the �rst part of this Thesis we have used a mean-�eld

reduction, that allows us to transform a large system of stochastic di�erential equa-

tions into a partial di�erential equation, to study the behavior of multipopulation

networks. In the second part of this Thesis we have studied two neural �eld models

that allow us to look at the cortical activity at a di�erent scale.

In the part concerning the mean-�eld reduction we have created the necessary

software for solving the McKean-Vlasov-Fokker-Planck equation, that describes the

probability density function of a network of FitzHugh-Nagumo or Morris-Lecar neu-

rons, on a GPU cluster. The speedup obtained with our implementation is equivalent

to what can be obtained with a cluster with hundreds of processor (assuming linear

behavior). We have used this code to study the e�ects of noise on large ensembles

of neurons and to study a multipopulation representation of a hypercolumn from

the primary visual cortex.

Our numerical experiments have shown that for a large population of neurons

larger levels of noise may increase the convergence speed of the probability density

towards a stationary distribution. The solution is similar for all noise levels, indi-

cating that this e�ect may be used for conveying information. In fact, we believe

that a sample based representation of the stationary distribution can be created in

a postsynaptic population if the connectivity is dense enough. If this is the case,

the time required for the transfer of information would be equal to the one required

for convergence, that can be tuned by external noise.

Another group of numerical experiments showed that the convergence speed may

also be tuned by increasing the value of the input function. This is a similar e�ect

to the one produced by the external noise level but with another parameter of the

model. In this case the solutions are di�erent with higher input values producing

larger �ring rates. As one of our assumptions is big levels of noise, it is very di�cult

for low levels of input to exist as this value represents the sum over the activity of

previous areas which also present noise.

We have also extended the previous simulation to a multi-population network.

For this we used a model of one hypercolumn of V1 where each possible orientation is

represented by two populations, one excitatory and one inhibitory. The connectivity

in the model depends on the angle di�erence. The previous relation between external

noise and convergence speed still existed in this experiments, but when the noise is

144 Chapter 4. General conclusion

low oscillations may appear.

The model is able to enhance an initial, weakly tuned, orientation selection

represented by its input function. The output of the populations show a clear angle

selection that can be used by higher processing areas. In order to reach this objective

the inhibition level is extremely important as it regulates the decrease in the activity

of orientations far from the input angle. This shows how the brain may implement

computations using a population in the mean �eld limit as a basic unit instead of a

simple neuron.

In the second part, considering the neural �eld models of the primary visual

cortex, we �rst showed a numerical analysis of a new representation of V1 where

the orientation preference is not a feature of the equation. In this approach an

orientation map is used to create an input function that represent an initial edge

selection. Our numerical experiments showed that with a square grid of pinwheels

and only local connectivity (distance dependent) the model is able to sharpen the

initial edge selection. It also showed the existence of a contrast threshold at which

the selection is correct. The results are di�erent from the predictions made in

the original proposal of the model [Veltz 2011] where the existence of two di�erent

thresholds was considered. This is the �rst time that the capacities of this system

are evaluated numerically.

Another prediction made in the original proposal of the model was that localized

input could produce a non-local output. The numerical experiments showed that

independent of the contrast, if input was only present on the central pinwheels, the

output had a limited expansion. This agrees with biological data [Chavane 2011]

and provides a starting point for further analysis.

We have also tested the e�ect of patchy long range lateral connections on the

model. The experiments showed that the response is improved when the anisotropy

is increased. This agrees with both the original predictions and biological data that

indicate that lateral connections follow the direction of the orientation preference.

In a second group of experiments, with a di�erent neural �eld model of the

primary visual cortex, we have showed how long range connections could be used

for processing illusory contours. For this, we have run a set of simulations that use

as input a �gure similar to the Kanisza triangle and output a matrix of cortical

activity where the neurons with a receptive �eld corresponding to a missing edge

are active, indicating that a line should be present at that point.

All these simulations were made on a GPU cluster and a set of techniques for

a fast implementation were proposed. The neural �eld equations are easy to solve

if the weight function depends only on the distance between points, because in

this case the integral term correspond to a convolution that can be solved using

a Fast Fourier Transform. With a more complex connectivity and realistic this is

impossible and a good usage of the shared memory of the GPUs is required. We

proposed a way to group points with similar weights in each block, so that, at the

beginning of each iteration for the computation of the integral, a common matrix

can be copied to the shared memory and provide a fast access. As in the previous

case, the speedup obtained is equivalen to that obtained by a standard cluster with

145

hundreds of processors.

Perspectives

The numerical methods for solving the McKean-Vlasov-Fokker-Planck equation

can be improved by introducing a multi-grid approach to the relaxation technique

that was proposed in this Thesis. This can be used together with an adaptive

mesh algorithm that can create a grid with a bigger amount of points close to

the limit cycle and less outside. This kind of methods are complex to implement

and parallelize but there are projects where software packages have been created

implementing these techniques and used for di�erent types of partial di�erential

equations. We believe that the next step in order to achieve an even faster solver

for the Fokker-Planck equation is to use these libraries on large clusters.

An important step further in this research would be to improve the mean �eld

reduction in order to include more complex weight matrices. The current approach

assumes a common weight between all neurons in the same population which may

not be realistic in many cases. Also, learning or changes in the weight are not

consider and can be extremely important for certain computations in the brain.

Once a new set of equations is obtained the reduction can be used as a simulation

tool in a similar manner as it has been done in the Thesis.

We believe that a better understanding of the consequences on the information

processing capabilities of the cortex of the propagation of chaos e�ect together with

the existence of a stationary probability density is required. This feature of the

kind of network studied in the �rst part of the thesis may be used for fast computa-

tions if the neurons may implement methods like maximum likelihood to estimate

the probability density of the presynaptic population using the samples obtained

through synapses. It is not clear how this can be done under biological constraints,

but this can open a completely new perspective on information coding.

Regarding the second part of this Thesis, an analysis of the bifurcations of the

neural �eld model presented in section 3.1 is required to better understand the

conditions at which a correct angle selection is obtained. The simulations presented

in this work have increased the knowledge on the dynamics of the equations and have

shown that a better analytical study is required. Also, the experiments have shown

the existence of hexagonal patterns of spontaneous activity that may in�uence the

�nal solution of the system. This require complex mathematical techniques and is

a work currently being done by other researchers.

The spatial extension of the Ring Model presented in 3.2 can be improved in order

to process real images instead of the simple Kanizsa triangle used in this Thesis. The

edge detection capabilities of the network may be exploited by any image processing

system. For this, the inclusion of a correct level of inhibition is crucial as wrong

edges must be deleted and also the extension of lines must be limited. Analytical

techniques may be required in order to �nd the correct parameter range for the

system to process more complex images..

146 Chapter 4. General conclusion

The mean �eld reduction together with a series of simulations is published in

[Baladron 2012b]. An initial description of the multi-GPU implementations of the

models is published in [Baladron 2012a].

Chapter 5

Conclusion générale (version

française)

Dans cette thèse nous avons utilisé des modèles mésoscopiques et de calcul de haute

performance pour étudier la dynamique de grands réseaux neuronaux réalistes. Nous

avons centré notre analyse sur des modèles qui peuvent être utilisés pour expliquer

comment les contours peuvent être sélectionnés dans le premier cortex visuel. Dans

la première partie de cette thèse nous avons utilisé une réduction de champs moyens

qui nous permettent de transformer un grand système d'équations di�érentielles

stochastiques en une équation di�érentielle partielle pour étudier le comportement

de réseaux avec des populations multiples. Dans la seconde partie de cette thèse nous

avons étudié deux modèles de champs neuronaux qui nous permettent d'observer

l'activité corticale à di�érentes échelles.

Dans la partie concernant la réduction de champs moyen, nous avons créé le

logiciel nécessaire pour résoudre l'équation de McKean-Vlasov-Fokker-Planck , qui

décrit la fonction de densité de probabilité d'un réseau de neurones de FitzHugh-

Nagumo ou Morris-Lecar dans un grappe de GPU. La vitesse obtenue avec notre

implémentation est équivalente à celle qui pourrait être obtenue avec un grappe

de centaines de processeurs (en assument un comportement linéaire). Nous avons

utilisé ce code pour étudier les e�ets du bruit dans de grands groupes de neurones

et une représentation d'une hypercolonne du premier cortex visuel.

Nos expériences numériques nous ont montré que pour une grande population

de neurones de grands niveaux de bruits peuvent augmenter la vitesse de conver-

gence de la densité de probabilité vers une distribution stationnaire. La solution

est similaire pour tous les niveaux de bruits indiquant que cet e�et peut être util-

isé pour transférer des informations. D'ailleurs nous croyons qu'une représentation

basée sur des échantillons peut être créée par une population postsynaptique si la

connectivité est su�samment dense. Dans ce cas le temps nécessaire pour transférer

les informations serait pareil à celui nécessaire pour la convergence, qui peut être

ajustée par le bruit externe.

Un autre groupe d'expérience montre que la vitesse de convergence peut être

aussi améliorée en augmentant la valeur d'entrée. Ceci est un e�et similaire à celui

produit par des bruits externes mais avec d'autres paramètres du modèle. Dans

ce cas les solutions sont di�érentes avec des valeurs d'entrées plus grandes qui pro-

duisent de plus grands taux d'activation. Comme le modèle assume de grands

niveaux de bruits, il est très di�cile qu'il existe de bas niveaux d'entrée.

Nous avons étendu nos simulations à un réseau avec de multiples populations.

148 Chapter 5. Conclusion générale (version française)

Pour cela nous avons utilisé un modèle d'une hyper colonne du premier cortex visuel

où chaque orientation possible est représentée par deux populations une excitatrice

et une inhibitrice. La connectivité du modèle dépend de la di�érence d'angle. La

relation antérieure entre le bruit externe et la vitesse de convergence existe toujours

mais quand le bruit est bas il se peut qu'apparaissent des oscillations.

Le modèle est capable d'améliorer une sélection d'orientation initiale. Le output

de la population montre une sélection d'angle plus claire qui peut être utilisée par

des aires de traitement de plus haut niveau. Pour réussir cet objectif le niveau

d'inhibition est extrêmement important puisqu'elle régule la diminution de l'activité

des orientations éloignées à l'angle d'entrée. Cela montre comment le cerveau peut

mettre en place des calculs en utilisant des populations dans la limite des champs

moyens comme une unité basique au lieu d'un seul neurone.

Dans la deuxième partie qui considère les modèles de champs neuronaux, d'abord

nous avons montré une analyse numérique d'une nouvelle représentation du pre-

mier cortex visuel d'où la préférence d'orientation n'est pas une caractéristique de

l'équation. Dans cette approche une carte d'orientation est utilisée pour créer une

fonction d'entrer qui représente une sélection initiale de contours. Nos expériences

numériques ont montré qu'avec une grille carrée de pinwheel et seulement avec des

connectivités locales (selon la distance) ce modèle est capable d'améliorer une sélec-

tion initiale de contours. Aussi elles ont montré l'existence d'une limite de contraste

à partir duquel la sélection est correcte. Ce résultat est di�érent aux prédictions

faites dans la proposition initiale du modèle ([Veltz 2011]) où l'on croyait qu'il y

avait deux limites di�érentes. C'est la première fois que les capacités de ce système

sont évaluées numériquement.

Une autre prédiction faite dans la proposition initiale du modèle est qu'une

entrée localisée peut provoquer un output non localisé. Les expériences numériques

ont montré qu'indépendamment du contraste si le input se présente seul devant les

pinwheel centrales l'output a une expansion limité. Cela concorde avec des données

biologiques ([Chavane 2011]) et donne un point de départ pour les analyses futures.

Nous avons également essayé l'e�et des connexions latérales dans le modèle. Les

expériences ont montré que la réponse s'améliore quand l'anisotropie est augmentée.

Cela concorde avec les prédictions initiales et les données biologiques qu'indiquent

que les connexions suivent la direction de l'orientation préférée par le neurone.

Dans le deuxième groupe d'expérience avec un autre modèle de champs neu-

ronaux nous avons montré que les connexions de longue distance peuvent être util-

isées pour le traitement de contours illusoires. Pour cela nous avons un ensemble de

simulations où nous avons utilisé une �gure similaire au triangle de Kanizsa et nous

avons obtenu de l'activité dans les neurones correspondant à un contour manquant.

Cela indique qu'une ligne doit être présente sur ce point.

Toutes ces simulations ont été réalisé dans un cluster de GPU. Un ensemble de

techniques ont été proposées pour une mise en place rapide des modèles. Les équa-

tions des champs neuronaux sont faciles à résoudre si la fonction de poids dépend

uniquement de la distance entre chaque point. Dans ce cas l'intégrale correspond

à une convolution qui peut être résolue avec une transformé rapide de Fourier.

149

Avec une connectivité plus complexe et réaliste cela est impossible. On a besoin

d'une bonne utilisation de la mémoire partagée de la GPU. Nous avons proposé une

manière d'agrouper des points avec des poids similaires dans chaque bloc. Au début

de chaque itération pour le calcul de l'intégrale une matrice commune est copiée à

la mémoire partagée pour permettre un accès rapide. Comme dans le cas précèdent

la vitesse obtenue est équivalente à un cluster avec des centaines de processeurs.

Perspectives

Les méthodes numériques pour résoudre l'équation de McKean-Vlasov-Fokker-

Planck peuvent être améliorés en utilisant un algorithme de multigrid. Cela peut

être utilisé avec un algorithme de grille adaptative qui soit capable d'utiliser plus

de points prêt du cycle limite et moins dehors. Ce type de méthode est di�cile à

mettre en place et à paralléliser mais il existe des projets où l'on a créé des logiciels

capables d'utiliser ces techniques pour di�érents types d'équations di�érentielles

partielles. Nous croyons que le prochain pas pour obtenir un solutionneur plus

rapide est d'utiliser cette bibliothèque dans de grands clusters.

Un pas important dans cette recherche serait d'améliorer la réduction de champ

moyen pour inclure des matrices de poids plus complexes. La méthode actuelle

assume un poids identique entre tous les neurones de la même population. Cela

n'est pas réaliste dans beaucoup cas. Aussi l'apprentissage ou changement de poids

ne sont pas considérés. Une fois qu'un nouvel ensemble d'équation est obtenue la

réduction peut être utilisée comme un outil de simulation tel comme elle a été faite

dans cette thèse.

Nous pensons qu'une meilleure compréhension des conséquences dans les capac-

ités de traitement des informations du cortex de l'e�et de propagation du chaos et

l'existence d'une densité de probabilité stationnaire est réquisitionnée. Cette car-

actéristique du type de réseau étudié dans la première partie de cette thèse peut

être utilisée pour computer rapidement si les neurones peuvent mettre en place des

méthodes tel que maximum likelyhood pour estimer la densité de probabilité de

la population présynaptique en utilisant des échantillons obtenues par le biais des

synapses. On ne sait toujours pas comment cela peut être réalisé sous des restrictions

biologiques. Cela peut ouvrir une perspective totalement neuve sur la codi�cation

d'information.

Dans la deuxième partie de cette thèse une analyse des bifurcations du modèle de

champs neuronaux se requiert pour mieux comprendre les conditions dans laquelle

une sélection d'angle correct peut être obtenue. Les simulations présentées dans ce

travail augmentent notre connaissance de la dynamique de l'équation et ont montré

qu'une meilleure étude analytique est nécessaire.

Aussi les expériences ont montré l'existence d'un patron hexagonal d'activité

spontanée qui peut in�uencée la solution �nale du système. Cela nécessite des

techniques mathématiques complexes et c'est un travail qui est actuellement réalisé

par d'autres chercheurs.

L'extension spatiale du ring model présenté dans 3.2 peut être améliorée pour

150 Chapter 5. Conclusion générale (version française)

traiter des images réelles au lieu du simple triangle de Kanise utilisé dans cette

thèse. Les capacités de détections de contours de réseaux peuvent être exploitées

par n'importe quel système de traitement d'image. Pour réussir cela l'inclusion d'un

niveau correct d'inhibition est cruciale puisque les contours incorrects doivent être

e�acés et les extensions de lignes doivent être limitées. On a besoin de techniques

analytiques pour trouver la gamme des valeurs pour pouvoir traiter des images plus

complexes.

La réduction de champs moyens avec une série de simulation est publiée dans

[Baladron 2012b]. Une description initiale de l'implantation multi GPU des modèles

est publié dans [Baladron 2012a].

Appendix A

Numerical methods for di�erential

equations

Contents

A.1 Numerical methods for ordinary di�erential equations . . . 151

A.1.1 Initial value problem . 151

A.1.2 Euler's method . 152

A.1.3 Runge-Kutta methods . 153

A.1.4 Stability analysis . 153

A.1.5 Implicit methods . 156

A.2 Numerical method for stochastic di�erential equations . . . 156

A.2.1 Euler-Maruyama method . 157

A.2.2 Error's order . 158

A.1 Numerical methods for ordinary di�erential equa-

tions

In the �rst part of this appendix we introduce the methods for solving numerically

Ordinary Di�erential Equations (ODEs) that are used in this thesis. The motiva-

tions for using ODE solvers are twofold. First, in chapter 2 a Partial Di�erential

Equation (PDE) is solved using the method of lines. This transforms the equation

into a set of ODEs that are solved with some of the methods presented in this Ap-

pendix. Second, in Chapter 3, the integrodi�erential equations of some neural �eld

models are solved by transforming them to ODEs. An understanding of the topics

covered in this part of this appendix will allow the reader to comprehend how the

equations used in this thesis are solved and also why in some of the experiments

they become unstable.

For more details on the numerical methods and its analysis we recommend the

books [Hairer 2008] and [Hairer 2010].

A.1.1 Initial value problem

An initial value problem is composed of a di�erential equation and an initial condi-

tion. The objective is to solve the equation:

152 Appendix A. Numerical methods for di�erential equations

dy(t)
dt

= f(t, y), (A.1)

given the initial point (t0, y0) and where y : R→ Cn and f : R× Cn → Cn

An analytical method for solving this kind of problem will provide an expresion

for y(t) that ful�lls the contraint that y(t0) = y0. A numerical method will provide

an approximation for the values of y(t) at some values of t. Normally, this is enough

information for most analyses when �nding an explicit formula is too complicated

or impossible.

A.1.2 Euler's method

Euler's method will provide us with the values of y at di�erent values of t. The

method start with t = t0 and at each step computes an approximation of y at

the current time plus ∆t, a small value called the time step size. The method

starts at the point (t0, y0), then moves to (t1,y1) = (t0 + ∆t, y(t0 + ∆t)), then to

(t2, y2) = (t1 + ∆t, y(t1 + ∆t)), and so on, until a maximum time, T , has been

reached.

One derivation of the methods uses the de�nition of the problem together with

the formula for the slope of a line given two points to obtain the following relation:

yk+1 − yk
tk+1 − tk

= f(tk, yk)

As tk+1 − tk = ∆t we can express the previous equation as:

yk+1 = yk + f(tk, yk)∆t. (A.2)

Equation (A.2) provides a rule for the iterations of Euler method. To use it, we

�rst compute the value of the function f and then we use this result to obtain an

approximation of the next point.

Another possible derivation of the method uses the Taylor expansion of y around

t0, given by:

y(t0 + ∆t) = y(t0) + ∆ty′(t0) +
1
2

∆t2y′′(t0) +O(∆t3). (A.3)

Replacing y′ with f(t, y) and ignoring the high order term, the same formula as in

Equation (A.2) can be obtained.

The error of one step of the method, called the local truncation error, is equal to

the sum of the all the high order terms of Equation (A.3), this value is proportional

to ∆t2. The error after achieving time T , called the global truncation error, depends

on the number of time steps used, which is equal to T−t0
∆t , a value porportional to

1
∆t . Finally, by multiplying the order of the local error (O(∆t2)) with the previous

value, we obtain a global error of O(∆t).

A.1. Numerical methods for ordinary di�erential equations 153

A.1.3 Runge-Kutta methods

Although Euler's method is simple to use, its global truncation error is high. One

way to improve the accuracy of the method is to use the slope of more points in

the interval [tk, tk+1], instead of only the two extreme ones. When this is done, the

methods is said to belong to the Runge-Kutta family.

The most famous method from this familiy is Runge-Kutta 4 or RK4, which is

de�ned by the following equation:

yk+1 = yk +
1
6

∆t(k1 + 2k2 + 2k3 + k4), (A.4)

with:

k1 = f(tk, yk)

k2 = f(tk +
1
2

∆t, yk + ∆t
1
2
k1)

k3 = f(tk +
1
2

∆t, yk + ∆t
1
2
k2)

k4 = f(tk + ∆t, yk + ∆tk3).

This method approximates the function at the next time step by computing a

weighted average between four increments based on the slope at di�erent points of

the interval [tk, tk + ∆t].
The local truncation error is O(∆t5) and the global truncation error is O(∆t4).
A general s-stage �xed time step Runge-Kutta method may be written as:

yk+1 = yk + ∆t
s∑
i=1

biki, (A.5)

ki = f(tk + ci∆t, yk + ∆t
i−1∑
j=1

aijkj), (A.6)

where aij and bi are parameters of the method and .

ci =
i−1∑
j=1

aij ,

A.1.4 Stability analysis

Lets start with a very simple equation:

dy

dt
= λy, (A.7)

with λ ∈ C. The solution, y(t) = y0e
λt, to this equation converges to 0 when time

goes to in�nity, whatever the initial condition, if Real(λ) ≤ 0.

154 Appendix A. Numerical methods for di�erential equations

If we use Euler's method to solve it numerically, we will get the following iterative

rule:

yk+1 = yk + ∆tλyk,

which can also be expresed as:

yk+1 = (1 + ∆tλ)yk = R(∆tλ)yk,

where R(z) is the polynomial 1+z. This recursive equation can be solved to obtain:

yk+1 = R(∆tλ)k+1y0. (A.8)

The value yk+1 will remain bounded when (k + 1) → ∞ only if |R(∆tλ)| ≤ 1. If

this condition is not satis�ed the method will be unstable.

If a Runge Kutta method is used instead of Euler's method then the update rule

can still be expressed in the form of Equation (A.8), with the polynomial given by:

R(z) = 1 + z
∑
j

bj + z2
∑
j,k

bjajk + z3
∑
j,k,l

bjajkakl + ...

The function R is called the stability function of a method and the set S = {z ∈
C; |R(z)| ≤ 1} is called the stability domain of the method.

Figure A.1 shows the solution of Equation (A.7) with λ = −10 and two di�erent

values of ∆t using the Euler's method. When ∆t = 0.01 the solution converges but

if this value is increased to 0.3, ∆tλ exits the stability domain of the method and the

solution doesn't converge to the correct value. The two plots of the �gure shows how

the stability of the method used for solving an ODEs limits the maximum possible

time step size.

Figure A.1: Solution of Equation (A.7) for λ = −10, obtained using Euler's method.

Left: ∆t = 0.01. Right: ∆t = 0.3

Figure A.2 shows the stability domain for Euler's method and Runge Kutta 4.

For Euler's method it is a circle of radius 1 and centre -1, and for Runge Kutta 4 is

A.1. Numerical methods for ordinary di�erential equations 155

a more complex shape. The plots show that the total area of the stability domain

of the Runge Kutta 4 method is bigger than for Euler's method. For this reason,

normally, stability will be obtained for bigger ∆t if Runge Kutta 4 is used instead

of Euler.

Figure A.2: Left: stability domain for Euler's method. Right: stability domain for

RK4 method.

For equations more complex than (A.7) it is possible to �rst linearize f in the

neighbourhood of a smooth solution of (A.1), ϕ(t), as follows:

dy

dt
= f(t, ϕ(t)) +

df

dy
(x, ϕ(t))(y(t)− ϕ(t)) + ...

We then de�ne ȳ(t) = y(t)− ϕ(t), to get:

dȳ(t)
dt

=
df

dy
(x, ϕ(t))ȳ(t) + ... = J(t)ȳ(t) + ...

To simplify the analysis we consider the Jacobian of f , J(t), as constant and neglect

error terms. Now if we ommit the bars and apply Euler's method to (A.1) we get

the following relationship:

yk+1 = yk + ∆tJyk = Rm(∆tJ)yk, (A.9)

where Rm(A) is a function that maps the matrix A with the matrix 1 + A. If

we assume that J is diagonizable and we can express y0 in the basis form by the

eigenvectors v1, ..., vn of J .

y0 =
n∑
i=1

αivi.

Then, this is inserted this into (A.9) we obtain:

ym =
n∑
i=1

(R(∆tλi))mαivi, (A.10)

156 Appendix A. Numerical methods for di�erential equations

where the λi are the eigenvalues of J and R(z) is the stability function of Euler's

method.

Equation (A.10) will remain bounded only if for all the eigenvalues the following

relationship holds:

|R(∆tλi)| ≤ 1

Runge-Kutta methods can be used instead of Euler's method to arrive to the same

relationship but with the corresponding stability function.

A.1.5 Implicit methods

The simplest implicit method is Backwards or Implicit Euler, which is similar to Eu-

ler's method presented in section A.1.2. The main di�erence between the two is that

the rule for computing the value of the function at a new time step uses f(tk+1, yk+1)
instead of f(tk, yk) (see (A.2)). This new structure, provides an implicit equation

which normally needs to be solved by an iterative method.

The method can be derived by integrating the function f between the limits of

a time step:

yk+1 − yk =
∫ tk+1

tk

f(t, y(t))dt,

and then approximating the integral with the rectangular rule:∫ tk+1

tk

f(t, y(t))dt ≈ ∆tf(tk+1, yk+1).

Finally, the method approximates the function by:

yk+1 = yk + ∆tf(tk+1, yk+1). (A.11)

The method can be used for Equation (A.7) to obtain its stability domain, which

is:

R(z) =
1

1− z
.

This is the exterior of the circle with radius 1 and centre 1, as shown in �gure

A.3. The area is much larger than those of explicit methods, as it covers almost

completely the negative half-plane.

The Implicit Euler's method still has a large global truncation error of O(∆t).
More accurate implicit methods, like Runge Kutta, are also possible and a complete

list is presented in [Hairer 2010]. This kind of method normally require solving more

than one system of equations per time step.

A.2 Numerical method for stochastic di�erential equa-

tions

In this second part of the appendix we introduce the method used in this thesis

for solving stochastic di�erential equations (SDE). In chapter 2 we describe a neu-

ral network with a system of SDE that we solve numerically either to establish

A.2. Numerical method for stochastic di�erential equations 157

Figure A.3: Stability domain for Implicit Euler's method.

the existence of the propagation of chaos e�ect or to approximate the probability

density function. The topics covered in this part of this appendix are essential for

understanding how the SDE that are discussed in the thesis have been solved.

For more details on how to solve numerically SDE we recommend the books

[Kloeden 1995] and [Mao 2007]

A.2.1 Euler-Maruyama method

We consider the following stochastic di�erential equation:

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), (A.12)

with initial value X(t0) = X0 and where W is a Wiener process.

The Euler-Maruyama method will produce an approximation for the SDE in

(A.12) at a discrete set of values of t in a similar way as Euler's method did for

ODEs (see section A.1.2). The method de�nes an iterative rule which creates an

approximation of X(t) at t = t1, t2, ... with (tk+1 − tk) = ∆t. Each iteration of the

method produces an approximation of X for one value of t based on the approxi-

mation obtained for the previous one. This rule is given by the following stochastic

process:

Yk+1 = Yk + a(tk, Yk)(∆t) + b(tk, Yk)(Wtk+1
−Wtk), (A.13)

where Yk is an approximation for X(tk). If b(tk, Yk) = 0 the SDE is transformed in

an ODE and the method becomes the standard Euler's method described in section

A.1.2.

The method may be used in a similar way to Euler's method for ODEs but now

the random increments (Wtk+1
− Wtk) need to be generated. These are random

variables with mean 0 and variance ∆t for which values can be generated with

any random number generator capable of creating a sequences of Gaussian random

numbers.

158 Appendix A. Numerical methods for di�erential equations

A.2.2 Error's order

SDEs have more than one possible solution starting from the same initial conditions

because of the random increments. For this reason it is impossible to use the same

de�nition of errors and convergence as in the case of ODEs. Next, we present the

de�nition of the two di�erent error orders that are normally used when studying

numerical methods for SDE ([Kloeden 1995]).

An approximation to a stochastic process converges in the strong sense with

order γ ∈ (0,∞] if there exists a constant K and a positive constant ∆t0 such that:

E(|X(T)− YT |) ≤ K∆tγ ,

for any ∆t ∈ (0,∆t0). The function E represents the expected value.

An approximation to a stochastic process converges in the weak sense with order

β ∈ (0,∞] if for any polynomial g there exist a �nite constant K and a positive

constant ∆t0 such that:

|E(g(XT))− E(g(YT))| ≤ K∆tβ,

for any ∆t ∈ (0,∆t0).
Under appropriate condition The Euler-Maruyama method converges with weak

order 1 and with strong order 1
2 ([Kloeden 1995, Sauer 2012]).

Bibliography

[Abdulle 2001] A. Abdulle and A. A. Medovikov. Second order Chebyshev methods

based on orthogonal polynomials. Numerische mathematik, vol. 90, pages

1�18, 2001. (Cited on page 97.)

[Ackermann 2001] J. Ackermann, U. Tangen, B. Bodekker, J. Breyer, E. Stoll and

J. McCaskill. Parallel random number generator for inexpensive con�gurable

hardware cells. Computer Physics Communications, vol. 140, pages 293�302,

2001. (Cited on page 42.)

[Amari 1972] S. Amari. Characteristics of random nets of analog neuron-like ele-

ments. Syst. Man Cybernet. SMC-2, 1972. (Cited on pages 18 and 19.)

[Amari 1977] S.-I. Amari. Dynamics of pattern formation in lateral-inhibition type

neural �elds. Biological Cybernetics, vol. 27, no. 2, page 77�87, 1977. (Cited

on pages 18 and 19.)

[Amdahl 1967] G. Amdahl. Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities. AFIPS Conference Proceedings, vol. 30,

pages 483�485, 1967. (Cited on page 25.)

[Angelucci 2002] A. Angelucci, J. Levitt, E. Walton, J. Hupe, J. Bullier and J. Lund.

Circuits for local and global signal integration in primary visual cortex. The

Journal of Neuroscience, vol. 22, no. 19, page 8633�8646, 2002. (Cited on

page 10.)

[Anzai 1999] A. Anzai, I. Ohzawa and R. D. Freeman. Neural Mechanisms for Pro-

cessing Binocular Information I. Simple Cells. Journal of Neurophysiology,

vol. 82, pages 891�908, 1999. (Cited on page 8.)

[Baladron 2012a] J. Baladron, D. Fasoli and O. Faugeras. Three applications of

GPU computing in neuroscience. Computing in Science and Engineering,

2012. (Cited on pages 38, 75, 136, 146 and 150.)

[Baladron 2012b] J. Baladron, D. Fasoli, O. Faugeras and J. Touboul. Mean-�eld

description and propagation of chaos in networks of Hodgkin-Huxley neurons.

The Journal of Mathematical Neuroscience, vol. 2, no. 1, 2012. (Cited on

pages 34, 37, 38, 146 and 150.)

[Balay 1997] S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith. E�cient

Management of Parallelism in Object Oriented Numerical Software Libraries.

In E. Arge, A. M. Bruaset and H. P. Langtangen, editeurs, Modern Software

Tools in Scienti�c Computing, pages 163�202. Birkhäuser Press, 1997. (Cited

on page 74.)

160 Bibliography

[Balay 2012a] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp,

D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith and H. Zhang.

PETSc Users Manual. Rapport technique ANL-95/11 - Revision 3.3, Ar-

gonne National Laboratory, 2012. (Cited on page 74.)

[Balay 2012b] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith and H. Zhang. PETSc Web page, 2012.

http://www.mcs.anl.gov/petsc. (Cited on page 74.)

[Bastian 1994] P. Bastian and G. Wittum. Adaptive multigrid methods: The UG

concept. Notes on numerical �uid mechanics, vol. 1, pages 17�40, 1994. (Cited

on page 110.)

[Bastian 1997] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuÿ, H. Rentz-

Reichert and C. Wieners. UG � A �exible software toolbox for solving partial

di�erential equations. Computing and Visualization in Science, vol. 1, no. 1,

pages 27�40, 1997. (Cited on page 110.)

[Battaglia 2011] D. Battaglia and D. Hansel. Synchronous Chaos and Broad Band

Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex.

PloS Computational biology, 2011. (Cited on pages 83, 85 and 94.)

[Bayoumi 2009] A. Bayoumi, M. Chu, Y. Hanafy, P. Harrell and G. Refai-Ahmed.

Scienti�c and engineering computing using ATI Stream technology. Comput-

ing in Science and Engineering, vol. 11, no. 6, pages 92�97, 2009. (Cited on

page 27.)

[Ben-Yishai 1995] R. Ben-Yishai, R. Bar-Or and H. Sompolinsky. Theory of ori-

entation tuning in visual cortex. Proceedings of the National Academy of

Sciences, vol. 92, no. 9, page 3844�3848, 1995. (Cited on pages 21 and 113.)

[Bernhard 2006] F. Bernhard and R. Keriven. Spiking Neurons on GPUs. In In-

ternational Conference on Computational Science (4), pages 236�243, 2006.

(Cited on page 30.)

[Born 2005] R. T. Born and D. C. Bradley. Structure and Function of Visual Area

MT. Annual Review of Neuroscience, vol. 28, pages 157�189, 2005. (Cited

on page 10.)

[Bosking 1997] W. Bosking, Y. Zhang, B. Scho�eld and D. Fitzpatrick. Orientation

Selectivity and the Arrangement of Horizontal Connections in Tree Shrew

Striate Cortex. The Journal of Neuroscience, vol. 17, no. 6, page 2112�2127,

1997. (Cited on page 113.)

[Bresslo� 2000] P. Bresslo�, N. Bresslo� and J. Cowan. Dynamical mechanism for

sharp orientation tuning in an integrate-and-�re model of a cortical hyper-

column. Neural computation, vol. 12, no. 11, page 2473�2511, 2000. (Cited

on page 21.)

Bibliography 161

[Bresslo� 2001a] P. C. Bresslo�. Traveling fronts and wave propagation failure in an

inhomogeneous neural network. Physica D: Nonlinear Phenomena, vol. 155,

no. 1-2, pages 83�100, 2001. (Cited on page 20.)

[Bresslo� 2001b] P. Bresslo�, J. Cowan, M. Golubitsky, P. Thomas and M. Wiener.

Geometric visual hallucinations, Euclidean symmetry and the functional ar-

chitecture of striate cortex. Phil. Trans. R. Soc. Lond. B, vol. 306, no. 1407,

page 299�330, 2001. (Cited on pages 9, 21, 22, 23, 113, 114 and 130.)

[Bresslo� 2002a] P. C. Bresslo�, J. D. Cowan, M. Golubitsky, P. J. Thomas and

M. C. Wiener. What Geometric Visual Hallucinations Tell Us about the

Visual Cortex. Neural computation, vol. 14, no. 3, pages 473�491, 2002.

(Cited on pages 114 and 130.)

[Bresslo� 2002b] P. Bresslo� and J. Cowan. An amplitude equation approach to

contextual e�ects in visual cortex. Neural computation, vol. 14, no. 3, page

493�525, 2002. (Cited on page 22.)

[Bresslo� 2012] P. Bresslo�. Spatiotemporal dynamics of continuum neural �elds.

Journal of Physics A: Mathematical and Theoretical, vol. 45, 2012. (Cited

on page 19.)

[Brette 2007] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M.

Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C. H. Jr., M. Zirpe,

T. Natschläger, D. Pecevski, G. B. Ermentrout, M. Djurfeldt, A. Lansner,

O. Rochel, T. Viéville, E. Muller, A. P. Davison, S. E. Boustani and A. Des-

texhe. Simulation of networks of spiking neurons: a review of tools and strate-

gies. Journal of Computational Neuroscience, vol. 23, no. 3, page 349�398,

2007. (Cited on page 26.)

[Briggs 2000] W. L. Briggs, V. E. Henson and S. McCormick. A multigrid tutorial.

Siam, 2000. (Cited on pages 98 and 110.)

[Brunel 1999] N. Brunel and V. Hakim. Fast Global Oscillations in Networks of

Integrate-and-Fire Neurons with Low Firing Rates. Neural Computation,

vol. 11, page 1621�1671, 1999. (Cited on page 19.)

[Butenhof 1997] D. R. Butenhof. Programming with posix threads. Addison-Wesley,

1997. (Cited on page 25.)

[Caceres 2011] M. J. Caceres, J. A. Carrillo and L. Tao. A numerical solver for

a nonlinear Fokker-Planck equation representation of neuronal network dy-

namics. Journal of Computational Physics, vol. 230, no. 4, pages 1084�1099,

2011. (Cited on page 52.)

[Callaway 2004] E. M. Callaway. Cell types and local circuits in primary visual

cortex of the macaque monkey. In L. M. Chalupa and J. S. Werner, editeurs,

162 Bibliography

The visual neuroscience, volume 1, chapitre 42, pages 680�694. The MIT

press, 2004. (Cited on page 6.)

[Chapman 2008] B. Chapman, G. Jost and R. van van der Pas. Using openmp:

Portable shared memory parallel programming. The MIT press, 2008. (Cited

on page 24.)

[Chavane 2011] F. Chavane, D. Sharon, D. Jancke, O. Marre, Y. Frégnac and

A. Grinvald. Lateral spread of orientation selectivity in V1 is controlled by

intracortical cooperativity. Frontiers in Systems Neuroscience, vol. 5, 2011.

(Cited on pages 124, 144 and 148.)

[Chizhov 2007] A. V. Chizhov and L. J. Graham. Population model of hippocampal

pyramidal neurons, linking to refractory density approach to conductance-

based neurons. Phys. rev. E, vol. 75, no. 011924, page 114, 2007. (Cited on

page 19.)

[Chossat 2009] P. Chossat and O. Faugeras. Hyperbolic Planforms in Relation to

Visual Edges and Textures Perception. PLOS Computational biology, 2009.

(Cited on pages 22 and 113.)

[Cleland 1974] B. Cleland and W. Levick. Properties of rarely encountered types

of ganglion cells in the cat's retina and on overall classi�cation. Journal of

Physiology, vol. 240, no. 2, page 457�492, 1974. (Cited on page 4.)

[Cli�ord 2003] C. Cli�ord and M. Ibbotson. Fundamental mechanisms of visual

motion detection: models, cells and functions. Progress in Neurobiology,

vol. 68, pages 409�437, 2003. (Cited on pages 8 and 10.)

[Coddington 1998] P. D. Coddington and S.-H. Ko. Techniques for empirical testing

of parallel random number generators. In Proc. International Conference on

Supercomputing, 1998. (Cited on page 42.)

[Connor 1997] C. E. Connor, D. C. Preddie, J. L. Gallant and D. C. V. Essen.

Spatial Attention E�ects in Macaque Area V4. The Journal of Neuroscience,

vol. 17, no. 9, pages 3201�3214, 1997. (Cited on page 10.)

[Coombes 2005] S. Coombes. Waves, bumps, and patterns in neural �elds theories.

Biological Cybernetics, vol. 93, no. 2, page 91�108, 2005. (Cited on pages 19

and 20.)

[Cox 1985] J. Cox, J. Ingersoll Jr and S. Ross. A theory of the term structure

of interest rates. Econometrica: Journal of the Econometric Society, page

385�407, 1985. (Cited on page 36.)

[Cumming 2001] B. G. Cumming and G. C. DeAngelis. The physiology of Stereopsis.

Annual review of Neuroscience, vol. 24, pages 203�238, 2001. (Cited on

page 8.)

Bibliography 163

[Das 1999] A. Das and C. Gilbert. Topography of contextual modulations mediated by

short-range interactions in primary visual cortex. Nature, vol. 399, no. 6737,

page 655�661, 1999. (Cited on page 9.)

[Dayan 2001] P. Dayan and L. Abbott. Theoretical neuroscience : Computational

and mathematical modeling of neural systems. MIT Press, 2001. (Cited on

pages 1 and 12.)

[Dedner 2004] A. Dedner, C. Rohde, b. Schupp and M. Wesenberg. A parallel, load

balanced MHD code on locally adapted, unstructured grids in 3D. Computing

and visualization in Science, vol. 7, pages 79�96, 2004. (Cited on page 110.)

[Deng 2013] Y. Deng, P. Zhang, C. Marques, R. Powell and L. Zhang. Analysis

of Linpack and power e�ciencies of the world's TOP500 supercomputers.

Parallel computing, vol. 39, pages 271�279, 2013. (Cited on page 25.)

[Destexhe 1994] A. Destexhe, Z. Mainen and T. Sejnowski. An e�cient method

for computing synaptic conductances based on a kinetic model of receptor

binding. Neural Computation, vol. 6, no. 1, page 14�18, 1994. (Cited on

page 18.)

[Ecker 2010] A. Ecker, P. Berens, G. Keliris, M. Bethge, N. Logothetis and A. To-

lias. Decorrelated neuronal �ring in cortical microcircuits. science, vol. 327,

no. 5965, page 584, 2010. (Cited on page 37.)

[ElBoustani 2009] S. ElBoustani and A. Destexhe. A master equation formalism

for macroscopic modeling of asynchronous irregular activity states. Neural

computation, vol. 21, no. 1, page 46�100, 2009. (Cited on page 19.)

[Ermentrout 1998] B. Ermentrout. Neural networks as spatio-temporal pattern form-

ing systems. Reports of Progress in Physics, vol. 61, pages 353�430, 1998.

(Cited on page 20.)

[Ermentrout 2010] G. B. Ermentrout and D. Terman. Foundations of mathematical

neuroscience. Springer, 2010. (Cited on pages 1, 2, 12, 17 and 18.)

[Faisal 2008] A. A. Faisal, L. P. J. Selen and D. M. Wolpert. Noise in the nervous

system. Nature Review Neuroscience, vol. 9, pages 292�303, 2008. (Cited on

page 76.)

[Faugeras 2009] O. Faugeras, J. Touboul and B. Cessac. A constructive mean �eld

analysis of multi population neural networks with random synaptic weights

and stochastic inputs. Frontiers in Computational Neuroscience, vol. 3, no. 1,

2009. (Cited on page 19.)

[Faye 2011] G. Faye, P. Chossat and O. Faugeras. Analysis of a hyperbolic geo-

metric model for visual texture perception. The Journal of Mathematical

Neuroscience, vol. 1, no. 4, 2011. (Cited on page 22.)

164 Bibliography

[Felleman 1991] D. J. Felleman and D. C. V. Essen. Distributed hierarchical pro-

cessing in the primate cerebral cortex. Cerebral cortex, vol. 1, no. 1, pages

1�47, 1991. (Cited on page 10.)

[Felleman 1997] D. J. Felleman, A. Burkhalter and D. C. V. Essen. Cortical Con-

nections of Areas V3 and VP of Macaque Monkey Extrastriate Visual Cortex.

The Journal of Comparative Neurology, vol. 379, pages 21�47, 1997. (Cited

on page 10.)

[Fidjeland 2009] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan andW. Luk. NeMo:

A Platform for Neural Modelling of Spiking Neurons Using GPUs. In Pro-

ceeding of the 20th IEEE International Conference on Application-speci�c

Systems, Architectures and Processors, 2009. (Cited on page 30.)

[Field 2004] D. J. Field and A. Hayes. Contour integration and the lateral connec-

tions of V1 neurons. In L. M. Chalupa and J. S. Werner, editeurs, The visual

neuroscience, volume 2, chapitre 70, pages 1069�1079. The MIT press, 2004.

(Cited on page 130.)

[FitzHugh 1955] R. FitzHugh. Mathematical models of threshold phenomena in the

nerve membrane. Bulletin of Mathematical Biology, vol. 17, no. 4, page

257�278, 1955. (Cited on page 14.)

[Fitzhugh 1966] R. Fitzhugh. Theoretical E�ect of Temperature on Threshold in the

Hodgkin-Huxley Nerve Model. The Journal of General Physiology, vol. 49,

no. 5, page 989�1005, 1966. (Cited on page 14.)

[FitzHugh 1969] R. FitzHugh. Mathematical models of excitation and propagation

in nerve, chapitre 1. H. P. Schwan, 1969. (Cited on page 14.)

[Flynn 1972] M. J. Flynn. Some computer organizations and their e�ectiveness.

IEEE Transactions on Computers, vol. 21, no. 9, pages 948�960, 1972. (Cited

on page 24.)

[Fourcaud 2002] N. Fourcaud and N. Brunel. Dynamics of the Firing Probability

of Noisy Integrate-and-Fire Neurons. Neural computation, vol. 14, pages

2057�2110, 2002. (Cited on page 53.)

[Garland 2008] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick,

S. Morton, E. Phillips, Y. Zhang and V. Volkov. Parallel Computing Expe-

riences with CUDA. IEEE Micro, vol. 28, no. 4, pages 13�27, 2008. (Cited

on page 27.)

[Gegenfurtner 1997] K. R. Gegenfurtner, D. C. Kiper and J. B. Levitt. Functional

Properties of Neurons in Macaque Area V3. The Journal of Neurophysiology,

vol. 77, pages 1906�1923, 1997. (Cited on page 10.)

Bibliography 165

[Geisler 2001] W. S. Geisler, J. S. Perry, B. J. Super and Gallogly. Edge co-

occurrence in natural images predicts contour grouping performance. Vision

research, vol. 41, no. 6, pages 711�724, 2001. (Cited on page 137.)

[Gerstner 1995] W. Gerstner. Time structure of the activity in neural network mod-

els. Physical Review E, vol. 51, no. 1, page 738�758, 1995. (Cited on page 18.)

[Gerstner 2002] W. Gerstner and W. M. Kistler. Spiking neuron models. Cambridge

University Press, 2002. (Cited on pages 1, 12, 13, 16, 17 and 76.)

[Gewaltig 2007] M.-O. Gewaltig and M. Diesmann. NEST (NEural Simulation

Tool). Scholarpedia, vol. 2, no. 4, page 1430, 2007. (Cited on page 26.)

[Glaskowsky 2009] P. N. Glaskowsky. NVIDIA's Fermi: The �rst complete GPU

Computing Architecture. NVIDIA white paper, 2009. (Cited on pages 27, 28

and 29.)

[Goldwyn 2011] J. H. Goldwyn, N. S. Imennov, M. Famulare and E. Shea-Brown.

Stochastic di�erential equation models for ion channel noise in Hodgkin-

Huxley neurons. Physical Review E, vol. 83, 2011. (Cited on page 34.)

[Golomb 1997] D. Golomb and Y. Amitai. Propagating Neuronal Discharges in

Neocortical Slices: Computational and Experimental Study. Journal of Neu-

rophysiology, vol. 78, pages 1199�1211, 1997. (Cited on page 20.)

[Gropp 1994] W. Gropp, E. Lusk and A. Skjellum. Using mpi : portable parallel

programming with the message-passing interface. The MIT press, 1994.

(Cited on page 25.)

[Gross 2002] C. G. Gross. Genealogy of the �Grandmother Cell�. Neuroscientist,

vol. 8, no. 5, pages 512�518, 2002. (Cited on page 92.)

[Guo 2005a] Y. Guo and C. C. Chow. Existence and Stability of Standing Pulses

in Neural Networks: I. Existence. SIAM Journal on Applied Dynamical

Systems, vol. 4, no. 2, page 217�248, 2005. (Cited on page 20.)

[Guo 2005b] Y. Guo and C. C. Chow. Existence and Stability of Standing Pulses in

Neural Networks: II Stability. SIAM Journal on Applied Dynamical Systems,

vol. 4, page 249�281, 2005. (Cited on page 20.)

[Gutkin 2002] B. S. Gutkin, C. R. Laing, B. Ermentrout and W. C. Troy. Multiple

Bumps in a Neuronal Model of Working Memory. SIAM Journal on Applied

Mathematics, vol. 63, no. 1, pages 62�97, 2002. (Cited on page 20.)

[Hairer 2008] E. Hairer and G. Wanner. Solving ordinary di�erential equations i:

Nonsti� problems. Springer, 2008. (Cited on page 151.)

[Hairer 2010] E. Hairer and G. Wanner. Solving ordinary di�erential equations ii:

sti� and di�erential-algebraic problems. Springer, 2010. (Cited on pages 95,

151 and 156.)

166 Bibliography

[Hamker 2006] F. H. Hamker and M. Zirnsak. V4 receptive �eld dynamics as pre-

dicted by a systems-level model of visual attention using feedback from the

frontal eye �eld. Neural Networks, vol. 19, pages 1371�1382, 2006. (Cited

on page 10.)

[Hamker 2008] F. H. Hamker, M. Zirnsak, D. Calow and M. Lappe. The Peri-

Saccadic Perception of Objects and Space. Plos computational biology, vol. 4,

no. 2, 2008. (Cited on page 10.)

[Hansel 1997] D. Hansel and H. Sompolinsky. Modeling feature selectivity in local

cortical circuits. In C. Koch and I. Segev, editeurs, Methods of neuronal

modeling, chapitre 13, page 499�567. The MIT press, 1997. (Cited on pages 9

and 20.)

[Hegde 2000] J. Hegde and D. V. Essen. Selectivity for complex shapes in primate

visual area V2. Journal of Neuroscience, vol. 20, 2000. (Cited on page 10.)

[Hennessy 2007] J. L. Hennessy and D. A. Patterson. Computer architecture: a

quantitative approach. Morgan Kaufmann and Elsevier, 2007. (Cited on

page 24.)

[Hines 2002] M. Hines and N. Carnevale. The NEURON Simulation Environment.

In The Handbook of Brain Theory and Neural Networks, pages 769�773. The

MIT press, 2002. (Cited on page 26.)

[Hines 2008] M. L. Hines, H. Markram and F. Schurmann. Fully implicit parallel

simulation of single neurons. Journal of Computational Neuroscience, vol. 25,

no. 3, pages 439�448, 2008. (Cited on page 26.)

[Hoch 2003] T. Hoch, G. Wenning and K. Obermayer. Optimal noise-aided signal

transmission through populations of neurons. Phys. Rev. E, vol. 68, page

011911, 2003. (Cited on page 76.)

[Hodgkin 1952] A. Hodgkin and A. Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. Journal of

Physiology, vol. 117, page 500�544, 1952. (Cited on page 11.)

[Hubel 1962] D. Hubel and T. Wiesel. Receptive �elds, binocular interaction and

functional architecture in the cat visual cortex. J Physiol, vol. 160, page

106�154, 1962. (Cited on pages 6 and 7.)

[Hubel 1977] D. Hubel and T. Wiesel. Functional architecture of macaque monkey

visual cortex. Proceedings of the Royal Society, London [B], page 1�59, 1977.

(Cited on pages 8 and 9.)

[Hubel 1995] D. Hubel. Eye, brain and vision. W. H. Freeman, 1995. (Cited on

pages 2 and 4.)

Bibliography 167

[Issa 2000] N. P. Issa, C. Trepel and M. P. Stryker. Spatial Frequency Maps in Cat

Visual Cortex. The Journal of Neuroscience, vol. 20, no. 22, pages 8504�8514,

2000. (Cited on page 9.)

[Izhikevich 2006] E. M. Izhikevich and R. FitzHugh. FitzHugh-Nagumo model.

Scholarpedia, vol. 1, no. 9, page 1349, 2006. (Cited on page 14.)

[Izhikevich 2007] E. Izhikevich. Dynamical systems in neuroscience: The geometry

of excitability and bursting. MIT Press, 2007. (Cited on pages iv, vi, 2, 12,

14, 15 and 68.)

[Jeng 2000] C. Jeng, K. Tan and J. A. R. Blais. PLFG: A Highly Scalable Paral-

lel Pseudo-random Number Generator for Monte Carlo Simulations. High

Performance Computing and Networking, pages 127�135, 2000. (Cited on

page 42.)

[Jones 1987] J. P. Jones and L. A. Palmer. An evaluation of the two-dimensional

Gabor �lter model of simple receptive �elds in cat striate cortex. Journal of

neurophysiology, vol. 58, no. 6, pages 1233�1258, 1987. (Cited on page 131.)

[Kandel 2000] E. R. Kandel, J. H. Schwartz and T. M. Jesell. Principles of neural

science. Mc Graw Hill, 2000. (Cited on page 1.)

[Kaplan 2004] E. Kaplan. The M,P and K pathways to the primate visual system. In

L. M. Chalupa and J. S. Werner, editeurs, The visual neuroscience, volume 1,

chapitre 30, pages 481�493. The MIT press, 2004. (Cited on page 5.)

[Khan 1999] I. R. Khan and R. Ohba. Closed-form expressions for the �nite d�er-

ence approximations of �rst and higher derivatives based on Taylor series.

Journal of Computational and Applied Mathematics, vol. 107, pages 179�

193, 1999. (Cited on page 47.)

[Kilpatrick 2008] Z. P. Kilpatrick, S. E. Folias and P. C. Bresslo�. Traveling Pulses

and Wave Propagation Failure in Inhomogeneous Neural Media. SIAM Jour-

nal on Applied Dynamical Systems, vol. 7, no. 1, pages 161�185, 2008. (Cited

on page 20.)

[Kindratenko 2009] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W.

Arnold, J. E. Stone, J. C. Phillips and W. mei Hwu. GPU Clusters for

High-Performance Computing. In Cluster Computing and Workshops, 2009.

CLUSTER '09. IEEE International Conference on, 2009. (Cited on page 27.)

[Kirk 2010] D. B. Kirk and W. mei W. Hwu. Programming massively parallel pro-

cessors. Morgan Kaufman Publishers, 2010. (Cited on page 30.)

[Kloeden 1995] P. E. Kloeden and E. Platen. Numerical solution to stochastic dif-

ferential equations. Springer, 1995. (Cited on pages 157 and 158.)

168 Bibliography

[Knoblauch 2005] A. Knoblauch and G. Palm. What is signal and what is noise

in the brain? Biosystems, vol. 79, no. 1�3, pages 83 � 90, 2005. (Cited on

page 76.)

[Knoll 2004] D. Knoll and D. Keyes. Jacobian-free Newton�Krylov methods: a

survey of approaches and applications. Journal of Computational Physics,

vol. 193, pages 357�397, 2004. (Cited on page 97.)

[Kuck 2011] D. J. Kuck. Parallel computing. In Encyclopedia of Parallel Computing,

pages 1409�1416. Springer, 2011. (Cited on pages 24 and 25.)

[Kyriazi 1993] H. T. Kyriazi and D. J. Simons. Thalamocortical response transfor-

mations in simulated whisker barrels. The journal of neuroscience, vol. 13,

no. 4, pages 1601�1615, 1993. (Cited on page 80.)

[Laing 2003a] C. R. Laing and W. C. Troy. PDE Methods for Nonlocal Models.

SIAM Journal on Applied Dynamical Systems, vol. 2, no. 3, pages 487�516,

2003. (Cited on page 20.)

[Laing 2003b] C. R. Laing and W. C. Troy. Two-bump solutions of Amari-type

models of neuronal pattern formation. Physica D Nonlinear Phenomena,

vol. 178, no. 3-4, pages 190�218, 2003. (Cited on page 20.)

[Lecar 2007] H. Lecar. Morris-Lecar model. Scholarpedia, vol. 2, no. 10, page 1333,

2007. (Cited on page 15.)

[Lee 2005] S.-H. Lee, R. Blake and D. J. Heeger. Travelling waves of activity in

primary visual cortex during binocular rivalry. Nature neuroscience, vol. 8,

no. 1, pages 22�23, 2005. (Cited on page 20.)

[Lund 2003] J. S. Lund, A. Angelucci and P. C. Bresslo�. Anatomical Substrates for

Functional Columns in Macaque Monkey Primary Visual Cortex. Cerebral

Cortex, vol. 12, page 15�24, 2003. (Cited on pages 10 and 113.)

[Lundstrom 2003] M. Lundstrom. Moore's Law Forever? Science, vol. 299, no. 5604,

pages 210�211, 2003. (Cited on page 24.)

[Ma 2006] W. J. Ma, J. M. Beck, P. E. Latham and A. Pouget. Bayesian inference

with probabilistic population codes. Nature Neuroscience, vol. 9, pages 1432�

1438, 2006. (Cited on page 92.)

[Makoto 1998] M. Makoto and T. Nishimura. Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number generator.

ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1,

pages 1�30, 1998. (Cited on page 42.)

[Mao 2007] X. Mao. Stochastic di�erential equations and applications. Horwood,

2007. 2nd Edition. (Cited on pages 35, 41 and 157.)

Bibliography 169

[Masland 2001a] R. Masland. Neuronal diversity in the retina. Current Opinion in

Neurobiology, vol. 11, no. 4, page 431�436, 2001. (Cited on page 4.)

[Masland 2001b] R. H. Masland. The fundamental plan of the retina. Nature Neu-

roscience, vol. 4, pages 877�886, 2001. (Cited on page 4.)

[Mattia 2002] M. Mattia and P. Del Giudice. Population dynamics of interacting

spiking neurons. Physical Review E, vol. 66, no. 5, page 51917, 2002. (Cited

on page 19.)

[Mattson 2004] T. G. Mattson, B. A. Sanders and B. L. Massingill. Patterns for

parallel programming. Addison Wesley, 2004. (Cited on page 24.)

[McAdams 1999] C. J. McAdams and J. H. R. Maunsell. E�ect of attention on

orientation-tuning functions of single neurons in Macaque cortical area V4.

The Journal of Neuroscience, vol. 19, no. 1, pages 431�441, 1999. (Cited on

page 10.)

[Michea 2010] D. Michea and D. Komatitsch. Accelerating a 3D �nite-di�erence

wave propagation code using GPU graphics cards. Geophysics Journal,

vol. 182, pages 389�402, 2010. (Cited on page 50.)

[Micikevicius 2009] P. Micikevicius. 3D �nite di�erence computation on GPUs using

CUDA. In Proceedings of 2nd Workshop on General Purpose Processing on

Graphics Processing Units, pages 79�84, 2009. (Cited on page 50.)

[Mohammad A. Bhuiyan 2010] V. K. P. Mohammad A. Bhuiyan and M. C. Smith.

Acceleration of spiking neural networks in emerging multi-core and GPU ar-

chitectures. In 2010 IEEE International Symposium of Parallel and Dis-

tributed Processing, Workshops and Phd Forum (IPDPSW), 2010. (Cited

on page 30.)

[Morris 1981] C. Morris and H. Lecar. Voltage Ooscillations in the Barnacle giant

muscle �ber. Biophysical journal, vol. 35, no. 1, pages 193�213, 1981. (Cited

on page 15.)

[Morrison 2005] A. Morrison, C. Mehring, T. Geisel, A. Aertsen and M. Diesmann.

Advancing the boundaries of high-connectivity network simulation with dis-

tributed computing. Neural computation, vol. 17, no. 8, pages 1776�1801,

2005. (Cited on page 26.)

[Morton 2005] K. Morton and D. Mayers. Numerical solution of partial di�erential

equations: an introduction. Cambridge Univ Press, 2005. (Cited on pages 47

and 97.)

[Mountcastle 1997] V. B. Mountcastle. The columnar organization of the neocortex.

Brain, vol. 120, pages 701�722, 1997. (Cited on page 94.)

170 Bibliography

[Nageswaran 2009] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau and

A. Veidenbaum. E�cient simulation of large-scale spiking neural networks

using CUDA graphics processors. In IJCNN'09 Proceedings of the 2009 in-

ternational joint conference on Neural Networks, 2009. (Cited on page 30.)

[Nelson 2004] R. Nelson and H. Kolb. ON and OFF pathways in the vertebrate

retina and visual system. In L. M. Chalupa and J. S. Werner, editeurs, The

visual neuroscience, volume 1, chapitre 18, pages 260�278. The MIT press,

2004. (Cited on page 4.)

[Nickolls 2010] J. Nickolls and W. J. Dally. The GPU computing era. IEEE Micro,

vol. 30, no. 2, pages 56�69, 2010. (Cited on page 27.)

[Obermayer 1993] K. Obermayer and G. G. Blasdel. Geometry of orientation and

ocular dominance columns in monkey striate cortex. The Journal of Neuro-

science, vol. 13, no. 10, pages 4114�4129, 1993. (Cited on page 8.)

[Ohki 2006] K. Ohki, S. Chung, P. Kara, M. Hubener, T. Bonhoe�er and R. Reid.

Highly ordered arrangement of single neurons in orientation pinwheels. Na-

ture, vol. 442, no. 7105, page 925�928, 2006. (Cited on page 6.)

[Ohzawa 1990] I. Ohzawa, G. C. DeAngelis and R. D. Freeman. Stereoscopic depth

discrimination in the visual cortex: neurons ideally suited as disparity selec-

tors. Science, vol. 249, no. 4972, pages 1037�1041, 1990. (Cited on page 8.)

[Okamoto 2011] T. Okamoto, K. Ikezoe, H. T. M. Watanabe, K. Aihara and I. Fu-

jita. Predicted contextual modulation varies with distance from pinwheel cen-

ters in the orientation preference map. Scienti�c reports, 2011. (Cited on

pages 6 and 7.)

[Owens 2008] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C.

Phillips. GPU Computing. Proceedings of the IEEE, vol. 96, no. 5, pages

879�899, 2008. (Cited on page 27.)

[Pakdaman 2010] K. Pakdaman, M. Thieullen and G. Wainrib. Fluid limit theorems

for stochastic hybrid systems with application to neuron models. Advances in

Applied Probability, vol. 42, no. 3, page 761�794, 2010. (Cited on page 34.)

[Parent 1989] P. Parent and S. Zucker. Trace inference, curvature consistency, and

curve detection. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 11, no. 8, page 823�839, 1989. (Cited on page 137.)

[Peinado 2000] A. Peinado. Traveling Slow Waves of Neural Activity: A Novel Form

of Network Activity in Developing Neocortex. The Journal of Neuroscience,

vol. 20, pages 1�6, 2000. (Cited on page 20.)

[Petersen 2007] C. C. Petersen. The Functional Organization of the Barrel Cortex.

Neuron, vol. 56, pages 339�355, 2007. (Cited on page 80.)

Bibliography 171

[Pinto 1996] D. J. Pinto, J. C. Brumberg, D. J. Simons and G. B. Ermentrout. A

quantitative population model of whisker barrels: re-examining the Wilson-

Cowan equations. Jounal of computational neuroscience, vol. 3, no. 3, pages

247�264, 1996. (Cited on page 80.)

[Pinto 2000] D. J. Pinto, J. C. Brumberg and D. J. Simons. Circuit dynamics and

coding strategies in rodent somatosensory cortex. Jounal of neurophysiology,

vol. 83, no. 3, pages 1158�1166, 2000. (Cited on pages 80 and 81.)

[Pinto 2003] D. J. Pinto, J. A. Hartings, J. C. Brumberg and D. J. Simons. Cor-

tical Damping: Analysis of Thalamocortical Response Transformations in

Rodent Barrel Cortex. Cerebral Cortex, vol. 13, pages 33�44, 2003. (Cited

on page 80.)

[Pouget 2000] A. Pouget, P. Dayan and R. Zemel. Information Processing with

population codes. Nature Review Neuroscience, vol. 1, no. 2, pages 125�132,

2000. (Cited on page 92.)

[Roe 1986] P. Roe. Characteristic-Based Schemes for the Euler Equations. Annual

Review of Fluid Mechanics, vol. 18, pages 337�365, 1986. (Cited on page 52.)

[Rolls 2002] E. T. Rolls and G. Deco. Computational neuroscience of vision. Oxford

university press, 2002. (Cited on page 83.)

[Rolls 2010] E. Rolls and G. Deco. The noisy brain: stochastic dynamics as a

principle of brain function. Oxford university press, 2010. (Cited on pages 53

and 83.)

[Rubin 2004] J. E. Rubin and W. C. Troy. Sustained Spatial Patterns of Activity

in Neuronal Populations without Recurrent Excitation. SIAM Journal on

Applied Mathematics, vol. 64, no. 5, pages 1609�1635, 2004. (Cited on

page 20.)

[Rust 2005] N. C. Rust, O. Schwartz, J. A. Movshon and eero P. Simoncelli. Spa-

tiotemporal Elements of Macaque V1 Receptive Fields. Neuron, vol. 46, pages

945�956, 2005. (Cited on page 6.)

[Sanguinetti 2010] G. Sanguinetti, G. Citti and A. Sarti. A model of natural image

edge co-occurrence in the rototranslation group. Journal of vision, vol. 10,

no. 14, 2010. (Cited on page 137.)

[Sauer 2012] T. Sauer. Numerical solution of stochastic di�erential equations in

�nance. In J.-C. Duan, W. K. Harde and J. E. Gentle, editeurs, Handbook of

computational �nance, pages 529�550. Springer, 2012. (Cited on page 158.)

[Schiesser 1991] W. Schiesser. The numerical method of lines: Integration of partial

di�erential equations. Academic Press, San Diego, 1991. (Cited on page 47.)

172 Bibliography

[Shadlen 1998] M. N. Shadlen and W. T. Newsome. The Variable Discharge of Cor-

tical Neurons: Implications for Connectivity, Computation, and Information

Coding. The Journal of Neuroscience, vol. 18, no. 10, pages 3870�3896, 1998.

(Cited on page 76.)

[Sherman 1996] S. M. Sherman and R. W. Guillery. Functional organization of

thalamocortical relays. Journal of Neurophysiology, vol. 76, no. 3, pages

1367�1395, 1996. (Cited on page 5.)

[Sherman 2004] S. M. Sherman and R. Guillery. The visual relays in the thalamus. In

L. M. Chalupa and J. S. Werner, editeurs, The visual neuroscience, volume 1,

chapitre 35, pages 565�591. The MIT press, 2004. (Cited on page 5.)

[Sincich 2002] L. C. Sincich and J. C. Horton. Divided by Cytochrome Oxidase: A

Map of the Projections from V1 to V2 in Macaques. Science, pages 1734�

1737, 2002. (Cited on page 10.)

[Sisson 2006] B. R. Sisson, A. Robert and L. Cayton. The american midwest: An

interpretive encyclopedia (midwestern history and culture), pages 1487�1489.

Indiana University Press, 2006. (Cited on page 24.)

[Slovin 2002] H. Slovin, A. Arieli, R. Hildesheim and A. Grinvald. Long-Term

Voltage-Sensitive Dye Imaging Reveals Cortical Dynamics in Behaving Mon-

keys. Journal of Neurophysiology, vol. 88, pages 3421�3438, 2002. (Cited on

page 6.)

[Sommeijer 1997] B. Sommeijer, L. Shampine and J. Verwer. RKC: An explicit

solver for parabolic PDEs. Journal of computational and applied mathemat-

ics, vol. 88, pages 315�326, 1997. (Cited on page 98.)

[Srinivasana 2003] A. Srinivasana, M. Mascagnib and D. Ceperleyc. Testing paral-

lelrandomnumber generators. Parallel computing, vol. 29, no. 1, pages 69�94,

2003. (Cited on page 41.)

[Stone 2010] J. E. Stone, D. Gohara and G. Shi. OpenCL: A Parallel Programming

Standard for Heterogeneous Computing Systems. Computing in Science and

Engineering, vol. 12, no. 3, pages 66�73, 2010. (Cited on page 27.)

[Strikwerda 2004] J. C. Strikwerda. Finite di�erence schemes and partial di�erential

equations. SIAM, 2004. (Cited on page 47.)

[Sulaiman 2009] N. Sulaiman, Z. A. Obaid, M. H. Marhaban and M. N. Hamidon.

Design and Implementation of FPGA-Based Systems-A Review. Australian

Journal of Basic and Applied Sciences, vol. 3, no. 4, pages 3575�3596, 2009.

(Cited on page 25.)

[Thorpe 1996] S. Thorpe, D. Fize and C. Marlot. Speed of processing in the human

visual system. Nature, vol. 381, page 520�522, 1996. (Cited on page 76.)

Bibliography 173

[Touboul 2012] J. Touboul, G. Hermann and O. Faugeras. Noise-induced behaviors

in neural mean �eld dynamics. SIAM Journal on Applied dynamical Systems,

vol. 11, no. 1, page 49�81, 2012. (Cited on page 53.)

[Tritsiklis 1989] J. N. Tritsiklis. A comparisson of Jacobi and Gauss-Seidel parallel

iterations. Applied mathematics letters, vol. 2, no. 2, pages 167�170, 1989.

(Cited on page 98.)

[Trottenberg 2001] U. Trottenberg, C. Oosterlee and A. Schuller. Multigrid. Aca-

demic press, 2001. (Cited on pages 98, 99 and 110.)

[Ts'o 1990] D. Y. Ts'o, R. D. Frostig, E. E. Lieke and A. Grinvald. Functional orga-

nization of primate visual cortex revealed by high resolution optical imaging.

Science, 1990. (Cited on page 6.)

[Tucker 2004] T. R. Tucker and D. Fitzpatrick. Contributions of vertical and hori-

zontal circuits to the responde properties of neurons in primary visual cortex.

In L. M. Chalupa and J. S. Werner, editeurs, The visual neuroscience, vol-

ume 1, chapitre 46, pages 733�746. The MIT press, 2004. (Cited on page 10.)

[Ungerleider 2008] L. G. Ungerleider, T. W. Galkin, R. Desimone and R. Gattass.

Cortical Connections of Area V4 in the Macaque. Cerebral Cortex, vol. 18,

pages 477�499, 2008. (Cited on page 10.)

[van Der Houwen 1983] P. van Der Houwen and B. P. Sommeijer. On the Inter-

nal Stability of Explicit, m-Stage Runge-Kutta Methods for Large m-Values.

ZAMM, vol. 60, no. 10, pages 479�485, 1983. (Cited on page 97.)

[Veltz 2011] R. Veltz. Nonlinear analysis methods in neural �eld models. PhD thesis,

University of Paris Est, 2011. (Cited on pages 21, 113, 114, 115, 141, 144

and 148.)

[Verwer 1990] J. Verwer, W. Hundsdorfer and B. Sommeijer. Convergence properties

of the Runge-Kutta-Chebyshev method. Numerische mathematik, vol. 57,

pages 157�178, 1990. (Cited on page 97.)

[Verwer 1996] J. Verwer. Explicit Runge-Kutta methods for parabolic partial di�er-

ential equations. Applied numerical mathematics, vol. 22, pages 359�379,

1996. (Cited on page 97.)

[Wainrib 2010] G. Wainrib. Randomness in Neurons: a multiscale probabilistic anal-

ysis. PhD thesis, Ecole Polytechnique, 2010. (Cited on page 34.)

[Wassle 2004] H. Wassle. Parallel processing in the mammalian retina. Nature

Reviews Neuroscience, vol. 5, no. 10, pages 747�757, 2004. (Cited on page 4.)

[Weliky 1996] M. Weliky, W. H. Bosking and D. Fitzpatrick. A systematic map of

direction preference in primary visual cortex. Nature, vol. 379, pages 725�

728, 1996. (Cited on page 9.)

174 Bibliography

[Wilson 1972] H. Wilson and J. Cowan. Excitatory and inhibitory interactions in

localized populations of model neurons. Biophys. J., vol. 12, page 1�24, 1972.

(Cited on pages 18 and 19.)

[Wilson 1973] H. Wilson and J. Cowan. A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Biological Cybernetics,

vol. 13, no. 2, page 55�80, 1973. (Cited on pages 18 and 19.)

[Wittenbrink 2011] C. M. Wittenbrink, E. Kilgari� and A. Prabhu. Fermi GF100

GPU Architecture. IEEE Micro, vol. 31, no. 2, pages 50�59, 2011. (Cited on

page 27.)

[Wohrer 2008] A. Wohrer. The vertebrate retina: a functional review. Rapport

technique 6532, INRIA, 2008. (Cited on page 4.)

[Xu 2001] X. Xu, J. M. Ichida, J. D. Allison, J. D. Boyd, A. B. Bonds and

V. Casagrande. A comparison of koniocellular, magnocellular and parvo-

cellular receptive �eld properties in the lateral geniculate nucleus of the owl

monkey (Aotus trivirgatus). Journal of Physiology, vol. 531, no. Pt. 1, pages

203�218, 2001. (Cited on page 5.)

[Zemel 1998] R. S. Zemel, P. Dayan and A. Pouget. Probabilistic interpretation of

population codes. Nature Review Neuroscience, vol. 10, pages 403�430, 1998.

(Cited on page 92.)

[Zirnsak 2010] M. Zirnsak, M. Lappe and F. H. Hamker. The spatial distribution

of receptive �eld changes in a model of peri-saccadic perception: Predictive

remapping and shifts towards the saccade target. Vision Research, vol. 50,

pages 1328�1337, 2010. (Cited on page 10.)

	Biology and Computation
	Overview of the visual system
	Neurons
	Retina
	Lateral geniculate nucleus
	Primary visual cortex

	Mathematical models of brain activity
	Single neuron models
	Synapses
	Mean field techniques
	Neural field models of visual areas

	High performance computing
	Architectures and programming paradigms
	Current trends of Supercomputing
	HPC in neuroscience
	GPU computing

	Numerical analysis of large scale neural networks using mean field techniques
	A mean field reduction for conductance-based neurons
	Noisy network model
	Mean field description
	Hardware setup
	Propagation of chaos in the Hodgkin-Huxley network

	One population Fokker-Planck equation
	Numerical method and implementation
	Simulation results for the network of FitzHugh-Nagumo neurons
	Simulation results for the network of Morris-Lecar neurons
	Speed of our implementation
	Discussion

	Multi population Fokker-Planck equation
	Implementation issues
	Two population network: a barrel cortex model
	An orientation selectivity model
	Discussion

	A faster but less accurate numerical method
	Relaxation techniques
	Extended multi population simulations
	Discussion

	Numerical simulation of neural field models of the primary visual cortex
	A model without feature based connectivity
	Motivation
	Description of the model
	Implementation
	Numerical results
	Discussion

	A spatial extension of the Ring Model
	Motivation
	Implementation
	Results
	Discussion

	General conclusion
	 Conclusion générale (version française)
	Numerical methods for differential equations
	Numerical methods for ordinary differential equations
	Initial value problem
	Euler's method
	Runge-Kutta methods
	Stability analysis
	Implicit methods

	Numerical method for stochastic differential equations
	Euler-Maruyama method
	Error's order

	Bibliography

