N
N

N

HAL

open science

Exploring the neural codes using parallel hardware

Javier Baladron Pezoa

» To cite this version:

Javier Baladron Pezoa. Exploring the neural codes using parallel hardware. Other [cs.OH]. Université
Nice Sophia Antipolis, 2013. English. NNT: 2013NICE4027 . tel-00847333

HAL Id: tel-00847333
https://theses.hal.science/tel-00847333v1
Submitted on 23 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00847333v1
https://hal.archives-ouvertes.fr

UNIVERSITY OF NICE - SOPHIA ANTIPOLIS
DOCTORAL SCHOOL STIC

SCIENCES ET TECHNOLOGIES DE I’ZINFORMATION
ET DE LA COMMUNICATION

PHD THESIS

to obtain the title of

PhD of Science

of the University of Nice - Sophia Antipolis
Specialty : COMPUTER SCIENCE

Defended by
Javier BALADRON PEZOA

Exploring the neural codes using
parallel hardware

Thesis Advisor: Olivier FAUGERAS

prepared at INRIA Sophia Antipolis, NEUROMATHCOMP Team
defended on June 07, 2013

Jury :
Reviewers : Markus DIESMANN - Forschungszentrum Juelich
Fred HAMKER - Chemnitz University of Technology
Examinators : Felix SCHURMANN - Blue Brain Project, EPFL
Andrew DAVISON - UNIC, CNRS

Pierre KORNPROBST - Neuromathcomp Team, INRIA Sophia Antipolis

Abstract

The aim of this thesis is to understand the dynamics of large interconnected
populations of neurons. The method we use to reach this objective is a mixture of
mesoscopic modeling and high performance computing. The first allows us to reduce
the complexity of the network and the second to perform large scale simulations.

In the first part of this thesis a new mean field approach for conductance based
neurons is used to study numerically the effects of noise on extremely large ensembles
of neurons. Also, the same approach is used to create a model of one hypercolumn
from the primary visual cortex where the basic computational units are large popu-
lations of neurons instead of simple cells. All of these simulations are done by solving
a set of partial differential equations that describe the evolution of the probability
density function of the network.

In the second part of this thesis a numerical study of two neural field models of
the primary visual cortex is presented. The main focus in both cases is to determine
how edge selection and continuation can be computed in the primary visual cortex.
The difference between the two models is in how they represent the orientation
preference of neurons, in one this is a feature of the equations and the connectivity
depends on it, while in the other there is an underlying map which defines an input
function.

All the simulations are performed on a Graphic Processing Unit cluster. The
thesis proposes a set of techniques to simulate the models fast enough on this kind
of hardware. The speedup obtained is equivalent to that of a huge standard cluster.

ii

Résumé

L’objectif de cette thése est de comprendre la dynamique des grandes populations
de neurones interconnectées. La méthode utilisée pour atteindre cet objectif est un
mélange de modéles mésoscopiques et calculs de haute performance. Le premier
permet de réduire la complexité du réseau neuronale et le second de réaliser des
simulations & grandes échelles.

Dans la premiére partie de cette thése une nouvelle approche du champ moyen est
utilisée pour étudier numériquement les effets du bruit sur un groupe extrémement
grand de neurones. La méme approche a été utilisée pour créer un modele d’ hyper-
colonne du premier cortex visuel d’ott I'unité basic, est des grandes populations de
neurones au lieu d’une seule cellule. Les simulations sont réalisées en résolvant un
systéme d’équation différentielle partielle qui décrit ’évolution de la fonction de
densité de probabilité du réseau.

Dans la deuxiéme partie de cette thése est présentée une étude numérique de
deux modéles de champs neuronaux du premier cortex visuel. Le principal objec-
tif est de déterminer comment les contours sont sélectionnés dans le cortex visuel.
La différence entre les deux modéles est la maniére de représenter des préférences
d’orientations des neurones. Pour I'un des modéles, I'orientation est une caractéris-
tique de I’équation et la connectivité dépend d’elle. Dans 'autre, il existe une carte
d’orientation qui définit une fonction d’entrée. Toutes les simulations sont réalisées
sur un cluster de processeurs graphiques.

Cette thése propose des techniques pour simuler rapidement les modéles proposés
sur ce type de machine. La vitesse atteinte est équivalente & un cluster standard
trés grand.

iii

Acknowledgments

I would like to express my gratitude to my supervisor, Olivier Faugeras, for giving
me the oportunity to do a PhD in his team. His vast knowledge and great support
have been extremely important for the development of this thesis.

I would like to thanks the members of my commitee: Fred Hamker, Markus
Diesmann, Andrew Davidson, Felix Schiirmann and Pierre Kornprobst. All of you
have spent part of your time in reading and commenting this document. I am sure
that all the feed back that I will receive from you will improve this thesis.

I would also like to thanks my wife, Paulina Flores. Without her, I probably
would not have ended this work.

This work was partially supported by the ERC grant #227747 NerVi, the
FACETS- ITN Marie-Curie Initial Training Network #237955 and the IP project
BrainScaleS #269921.

iv

Introduction

The brain is an extremely complex system composed of a huge number of inter-
connected cells that together are able to efficiently solve hard problems like object
recognition from images or motor control. Its amazing capabilities have attracted
scientists from several different domains to start applying methods not common in
biology to the study of neurons and realistic neural networks. Nowadays the use of
approaches coming from mathematics, physics or computer science in neuroscience
is usually called computational neuroscience.

This thesis belongs to the relatively new field of computational neuroscience.
Our main objective was to study the dynamics of extremely large neural networks
using mesoscopic models of brain activity and high performance computing. These
new approaches come from areas far away from biology but we will show that they
can be useful to improve our understanding of the brain at different scales.

Mesoscopic models and mean field approaches are used to reduce the complexity
of the system. They allow us to take a detailed description of a neural network
and reduce its number of equations to a quantity than can be treated numerically
or analytically. This is specially useful for a complex system like the brain that
is made of around 10! neurons, each receiving signals from around 10* other cells
[Izhikevich 2007]. Just storing the complete amount of connections is almost im-
possible in current computers as it will require at least 10'® floating point numbers.
Even very specific segments of the brain, like the visual cortex, are made of very
large ensembles of neurons. This is why methods that reduce this complexity are
required if we wish to understand how the brain works.

High performance computing allows us to make large simulations that would be
impossible in current laptops or personal computers. The large computing power
is used to extend numerical simulations to match real biological figures. Although
with current technologies a simulation of the complete brain is extremely difficult,
we can focus on one specific brain area, use mathematical techniques to reduce the
complexity of the models and finally run a simulation to study its behavior. This
simpler model of brain activity is usually still complex enough to require powerful
hardware.

A large part of this work is focused on brain areas related to vision. One reason
for this is that the primary visual cortex is one of the best studied brain area in
biology. This is due to its position in the back of the head which makes experiments
easier. Another reason for this is that the visual system is extremely efficient in
solving a large number of task that are still very difficult for image processing or
computer vision. This makes it an interesting system for reverse engineering as new
ideas for algorithms may be based on its dynamics.

The first chapter of this thesis gives an overview of the three different domains
that are involved in this work. It starts by introducing the reader to the biology of

the brain by first describing the properties of single neurons and simple networks and
then characterizing different areas of the brain cortex involved in visual processing.
Then several mathematical models are presented that take into account all the
information given previously. This second part also first deals with single neurons
to then review mean fields and neural field methods. Finally, it shows current
techniques in the field of high performance computing. Special emphasis is given to
computing in Graphics Processing Units (GPUs) which is the main approach used
in this thesis.

The second chapter of this thesis shows a set of numerical experiments that al-
low us to characterize the behavior of extremely large networks. This is done by
first using a mean field reduction that transforms a system of stochastic differential
equations, describing explicitly each neuron in the network, to a partial differential
equation (PDE) which governs the evolution of the probability density of the com-
plete group. This PDE is solved in a GPU cluster to characterize the dynamics of
a single population. Then the simulations are extended to multipopulation models
of the rat barrel cortex and the primary visual cortex of primates.

The third chapter of this thesis shows large scale simulations of two neural field
models of the primary visual cortex. It first introduces the reader to a new model
that doesn’t use a feature based connectivity and shows the first numerical study of
its behavior. Several predictions made on the original proposal and analysis of this
model are rejected through numerical experiments. A second part of this sections,
uses a spatial extension of a neural field model of one hypercolumn (group of neurons
that represent the different possible orientations in a region of an image) to study
the effects of long range connectivity in edge enhancement and perceptual grouping.
An important result presented in this section are the techniques used for a fast
simulation in GPUs of the corresponding neural field models.

A digital version of this document together with several movies that com-
plement the results presented in Chapter 2 can be found in: http://www-
sop.inria.fr/members/Javier.Baladron /thesis.html

Introduction (version frangaise)

Le cerveau est un systéme extrémement complexe composé d'un grand nombre
de cellules interconnectées qui ensemble sont capables de résoudre efficacement de
difficiles problémes comme la reconnaissance d’objet en images. Ses surprenantes
capacités ont attirés des scientifiques de différents domaines qui ont commencé &
appliquer des méthodes peu habituelles en biologie pour I'étude de neurones et des
réseaux neuronales réalistes. Aujourd’hui I'utilisation d’approches qui viennent des
mathématiques, de la physique, de 'informatique ou autres domaines similaires en
neuroscience s’appellent neurosciences computationnelles.

Cette thése appartient & la relative nouvelle aire de neurosciences computation-
nelles. Notre principal objectif fut d’étudier des réseaux neuronaux extrémement
grands en utilisant des modéles mésoscopiques d’activité cérébrale et de calculs de
haute performance. Ces nouvelles approches viennent de domaines éloignés a la
biologie mais nous démontrerons qu’elles peuvent étre utiles pour améliorer la com-
préhension du cerveau a différentes échelles.

Des modéles mésoscopiques et de champs moyens sont utilisés pour réduire la
complexité du systéme. Ceci va permette de réduire le nombre d’équations d’'une
description détaillée d’un réseau neuronal & une quantité qui peut étre traité analy-
tiquement ou numériquement. C’est spécialement utile pour un systéme complexe
comme le cerveau qui est composé d’environ 10'! neurones, chacune recevant des
signaux d’environ 10* autres cellules [Izhikevich 2007]. Seulement enregistrer la to-
talité des connections dans les ordinateurs actuelles est presque impossible car on
nécessiterait enregistrer 10 virgules flottantes. D’ailleurs des segments trés spéci-
fiques du cerveau comme le cortex visuel sont composées de groupes trés grands de
neurones. C’est pour cette raison que nous avons besoin de méthodes pour réduire
la complexité pour comprendre comment fonctionne le cerveau.

Le calcul de haute performance nous permet de réaliser de grandes simulations
qui sont impossibles & réaliser sur un ordinateur personnel. La puissance de calcul de
ce type d’ordinateur est utilisée pour étendre les simulations numériques et atteindre
des quantités réalistes. Puisque qu’avec les technologies actuelles une simulation du
cerveau entier est trés improbable, il fait se diriger vers une zone spécifique, ensuite
utiliser des techniques pour réduire la complexité. Malgré tout ce modéle simplifié,
reste suffisamment compliqué pour nécessiter un hardware puissant.

Une grande partie de ce travail est dirigée vers 'aire du cerveau destiné a la
vision. Une des raisons est que le cortex visuel est une des zones les plus étudiées du
cerveau en biologie. Cela est du au fait qu’elle se trouve a l'arriére de la téte et rend
les expériences plus faciles. Une autre raison pour cela est que le systéme visuel
est extrémement efficient pour résoudre un grand nombre de problémes qui sont
encore plus difficile & résoudre pour le traitement d’image numérique ou la vision
par ordinateur. Ceci le rend intéressent pour l'ingénierie inverse car de nouveaux

algorithmes peuvent étre basés sur son comportement.

Le premier chapitre de cette thése présente une vue d’ensemble des trois différents
domaines impliqués dans ce travail. Il commence par introduire le lecteur & la
biologie du cerveau décrivant d’abord les propriétés d’un neurone et d’un réseau
simple. Puis caractérise les différentes aires du cortex impliquées dans le processus
visuel. Ensuite des modéles mathématiques sont présentés et prennent en comptent
Iinformation donnée précédemment. Cette seconde partie commence également par
des neurones uniques et ensuite passe par des modéles de champs moyens et de
champs neuronaux. Finalement montre des techniques actuelles dans le champ du
Calcul de haute performance. Une importance spéciale est donnée aux calculs sur
des processeurs graphiques (GPU) qui est la principale technologie utilisée dans
cette thése.

Le deuxiéme chapitre de cette thése montre une série d’expériences numériques
qui a permis de caractériser le comportement de grands réseaux neuronaux. Ceci
est réalisé d’abord en utilisant une réduction de champs moyen qui transforme un
systéme d’équation différentielle stochastique, qui décrie explicitement chaque neu-
rone dans le réseau, en une équation différentielle partielle qui gouverne I’évolution
de la densité de probabilité de I’ensemble du groupe.

Le troisiéme chapitre de cette thése montre des simulations & grandes échelles
de deux modeéles de champs neuronaux du premier cortex visuel. Premiérement il
introduit un nouveau modeéle de champs neuronaux qui n’utilise pas une connectivité
basé sur les caractéristiques d’équations et montrent une premiére étude de son
comportement. Plusieurs prédictions faites dans la proposition initiale du modéle
ont été rejetées par des expériences numériques. La deuxiéme partie de ce chapitre
utilise une extension spatiale d’un modéle de champs neuronaux d’une hyper-colonne
(groupe de neurones qui représente les différentes orientations possibles dans une
section de l'image) pour étudier les effets de la connexion a longue distance. Un
résultat important présenté dans ce chapitre, sont les techniques utilisées pour une
simulation rapide en GPU.

Contents

1 Biology and Computation 1
1.1 Overview of the visual system 2
1.1.1 Neurons 2

1.1.2 Retina 3

1.1.3 Lateral geniculate nucleus 4

1.1.4 Primary visual cortex L L.)

1.2 Mathematical models of brain activity 11
1.2.1 Single neuron models oL 11

1.2.2 Synapses.o 16

1.2.3 Mean field techniques 18

1.2.4 Neural field models of visual areas 19

1.3 High performance computing 23
1.3.1 Architectures and programming paradigms 24

1.3.2 Current trends of Supercomputing 25

1.3.3 HPC in neuroscience 26

1.34 GPU computing 27

2 Numerical analysis of large scale neural networks using mean field

techniques 33
2.1 A mean field reduction for conductance-based neurons 33
2.1.1 Noisy network model 0oL, 34
2.1.2 Mean field description L oL 37
2.1.3 Hardwaresetup 38
2.1.4 Propagation of chaos in the Hodgkin-Huxley network 39

2.2 One population Fokker-Planck equation 46
2.2.1 Numerical method and implementation. 47
2.2.2 Simulation results for the network of Fitzllugh-Nagumo neurons 52

2.2.3 Simulation results for the network of Morris-Lecar neurons . . 65
2.2.4 Speed of our implementation L. 69
2.25 Discussiono 75

2.3 Multi population Fokker-Planck equation 77
2.3.1 Implementation issues L. 78
2.3.2 Two population network: a barrel cortex model 78
2.3.3 An orientation selectivity model 81
2.3.4 Discussion 92

2.4 A faster but less accurate numerical method 95
2.4.1 Relaxation techniques 98
2.4.2 FExtended multi population simulations 103

24.3 DiISCuSsiono e e 108

Contents

3 Numerical simulation of neural field models of the primary visual

cortex 113
3.1 A model without feature based connectivity 113
3.1.1 Motivation 113

3.1.2 Description of themodel 114

3.1.3 Implementation L. 115

3.1.4 Numerical results 122

3.1.5 Discussiono 129

3.2 A spatial extension of the Ring Model 130
3.2.1 DMotivation 130

3.2.2 TImplementation L 131

323 Results 136

3.24 Discussion e e e 141

4 General conclusion 143
5 Conclusion générale (version frangaise) 147
A Numerical methods for differential equations 151
A.1 Numerical methods for ordinary differential equations 151
A.1.1 Initial value problem 151

A.12 Euler’'smethod 152

A.1.3 Runge-Kutta methods 153

A.14 Stability analysis 153

A.1.5 Implicit methods o oo 156

A.2 Numerical method for stochastic differential equations 156
A.2.1 Euler-Maruyama method 157

A22 Error'sorder 158
Bibliography 159

CHAPTER 1

Biology and Computation

Contents
1.1 Overview of the visual system 2
1.1.1 Neurons oo ittt 2
1.1.2 Retina o 3
1.1.3 Lateral geniculate nucleus 4
1.1.4 Primary visual cortex 5
1.2 Mathematical models of brain activity 11
1.2.1 Single neuron models 11
1.2.2 Synapseso i e e e e 16
1.2.3 Mean field techniques 18
1.2.4 Neural field models of visual areas 19
1.3 High performance computing 23
1.3.1 Architectures and programming paradigms 24
1.3.2 Current trends of Supercomputing 25
1.3.3 HPC in neuroscience 26
1.3.4 GPU computing 27

The aim of this chapter is to provide an overview of the three different but re-
lated topics that are the core of this thesis. We start by describing some elements
of the nervous system, focusing on its visual processing areas as these are the main
objects of study in the computational experiments that are presented in the fol-
lowing chapters. Some modeling techniques are presented in the following section.
These will allow us to transform part of the biological facts into equations, making
possible an analytic or numerical study of the visual system. Finally we describe
the computational techniques that will allow us to solve these equations. Simulating
these kind of models requires very powerful computers and modern parallelization
techniques which are the focus of thes last section.

The goal of this chapter is not to provide a complete detailed introduction to the
biology of vision, nor of its mathematical modeling. Here, only the theory and facts
necessary for understanding the results of this thesis are presented. For a complete
review on the biology of neural science we recommend the book [Kandel 2000] and
for a more theoretical perspective [Dayan 2001, Gerstner 2002, Ermentrout 2010].

2 Chapter 1. Biology and Computation

1.1 Overview of the visual system

In this section we describe the basic structure of the first areas of the nervous system
in charge of processing vision. We start by describing the most basic unit of the
brain, a neuron, and then continue to more complex networks that can be found in
the cerebral cortex.

1.1.1 Neurons

Neurons are the basic component of the brain and the nervous system. It is through
a limited number of this kind of cells (around 10!, [Izhikevich 2007]) that the brain
develops all of its amazing capabilities. Although a great variety of neurons have
been found in different parts of the brain they all have a set of common character-
istics that will be described next.

What makes neurons special is their ability to receive and send electrical signals
from and to long distances. In order to achieve this, each cell is composed of
dendrites, which form a structure to receive the input from other cells, an axon,
which is a tree-like structure that sends signals to other neurons, and a soma, which
is the nucleus of the cell. The main difference between neuron types is in the shape
of its dendrites |Ermentrout 2010]. Figure 1.1 shows a representation of a set of
neurons and how axons on one cell contact the dendrites in another.

Dendrites

MNucleus

Cell

membrane

Figure 1.1: Neuron structure and interconectivity. From [Hubel 1995]

The soma is in charge of integrating the signals received from other neurons

1.1. Overview of the visual system 3

through connections called synapses. Each signal received changes the membrane
potential of the neuron (whic is the difference in voltage between the interior and
exterior of the cell) and if the change is big enough a spike is produced. If the
change makes the membrane potential more positive (or less negative) the cells has
depolarized while if it has make the opposite change the cell has hyperpolarized.
The spike (also called action potential), or abrupt change, is transported through
the axon to other cells.

Synapses can be of 2 types: electrical or chemical. This first is rare and is a
direct and very fast connection between the 2 cells. In electrical synapses there are
special channels, called gap junctions, that are capable of transporting current and
to induce directly a voltage change in the postsynaptic neuron.

Chemical synapses are more common and when a spike from the emitting cell
(presynaptic neuron) arrives, neurotransmiters are released into a small space that
exists between the axon and the dendrites of the receiving cell (postsynaptic neuron),
called the synaptic cleft. This transmitter is bound to receptors in the dendrites
that finally produce the change in membrane potential. The effect produced by this
kind of synapse depends on the type of neurotransmiter released and it may excite
or inhibit the cell in very complex forms.

1.1.2 Retina

The retina is the first part of the central nervous system in charge of processing
the visual information that enters the eye. It is located in the back of the eye so
it receives the light as soon as it has passed through the lens. Ouly a few types of
neurons are present in it: photoreceptors, horizontal cells, bipolar cells, amacrine
cells and ganglion cells.

The photoreceptor cells are neurons that activate themselves in the presence
of light. There are mainly 2 types: rods and cones. Rods are cells specialized in
dim-light vision, while cones are specialized for situations where a larger amount of
light is present. During the day it is mostly the cones that are active, but at night
our vision is mediated mainly by rods.

The retina is formed first by a layer of photoreceptor cells, followed by a synaptic
layer that connects this first group of neurons to a layer of bipolar and horizontal
cells. This second layer is then connected through another synaptic layer to ganglion
cells, which send the final output of the retina to the rest of the brain. Bipolar cells
can also connect to amacrine cells, which can connect to ganglion cells on the next
layer or send information back to other bipolar cells. This layered structure is the
main organization of the retina and can be seen in figure 1.2.

Each bipolar cell has a receptive field, which is the zone of the visual field (the
total area in which objects can be seen) for which a stimulus provokes a change in
its membrane potential. Some of these cells depolarize when a small spot stimulus
is presented in the center of their receptive field (ON-center type) and others are
hyperpolarized by the same stimulus (OFF-center cells). Other types of bipolar cells
can also be found in several species. Nonetheless all of these are subtypes of ON

4 Chapter 1. Biology and Computation

or OFF [Nelson 2004]. The different subtypes come from the consideration of other
features such as connectivity with photoreceptors.

Ganglion cells also present receptive fields but their response to a stimulus is
more complex. They are the only cells in the retina that generate action potentials.
Typically they present a center-surround configuration and are normally divided
into ON-cells, OFF-cells and ON-OFF cells. The ON-cells activate when a spot of
light is present in the center of the receptive field and keep spiking during the whole
duration of the stimulus. The OFF-cells do not generate spikes during a stimulus
in the center of their receptive fields but produce sustained activity when they are
turned off. The ON-OFF cells produce small burst of spikes when the stimulus is
turned on or off. Other types, that are selective to different characteristics of the
input can also be found, but the ON-cells, OFF-cells and the ON-OFF cells are the
most prominent |Cleland 1974].

For more details on the retina, see [Masland 2001a, Masland 2001b, Wassle 2004,
Wohrer 2008].

f;nl;{;mn Horzonial
cell cell

Bipalar Rod
I

[RE110Y

Amacaine
ll']i

Opeic
teting nerve

Figure 1.2: Position of the retina and the back of the eye and its layered structure.
From [Hubel 1995].

1.1.3 Lateral geniculate nucleus

The ganglion cells in the retina connect with the Lateral Geniculate Nucleus (LGN)
in the Thalamus. It serves as the main relay of information coming from the retina
to the cortical areas of the brain, where more complex analyses of the visual input
are made.

1.1. Overview of the visual system 5

The LGN is formed by 6 layers, the 4 upper layers are made of smaller cells and
are called the parvocellular layers while the other 2 are made of larger cells and are
called the magnocellular layers [Kaplan 2004]. Morphologically different ganglion
cells connect to different layers, generating different paths of information.

The P-path starts at the retinal midget ganglion cells, which receive input from
bipolar cells which connect to only one single cone photoreceptor. These ganglion
cells connect to the parvocellular layers of the LGN. The M-path starts at the parasol
ganglion cells of the retina, which receive input from several bipolar cells which are
connected to several photoreceptors. This second type of ganglion cell connect to
the magnocellular layers of the LGN. There is a third, less known, path, called the
K-path, that connects the retina with small layers that are intercalated between the
main parvocellular and magnocellular layers of the LGN. This third smaller type of
layer is called koniocellular. For a detailed comparison between the 3 kind of layers
and their connectivity see [Xu 2001]. A diagram of these connections is presented
in figure 1.3.

Figure 1.3: Connection from ganglion cells to the different layers in the LGN. The
diagram shows how each different type of ganglion cell connects to different lay-
ers. Also each layer receives input from only one eye. Redrawn and adapted from
[Sherman 2004]

For a detailed review on the structure of the LGN see [Sherman 1996].

1.1.4 Primary visual cortex

All the pathways in the LGN connect to the primary visual cortex or V1, the largest
of a group of cortical areas devoted to visual processing. This is one of the best
known areas of the brain due to its size and to its position at the back of the head

6 Chapter 1. Biology and Computation

which makes biological experiment easier than in other visual regions of the brain.

As the LGN and other areas of the cortex, V1 has a layered structure composed of
6 layers. Most of the input from the LGN is received in layer 4, where the different
paths connect to different regions. More details on the connectivity between the
LGN and V1 (in the macaque monkey) can be found in [Callaway 2004].

1.1.4.1 Receptive fields

Probably the most interesting thing about the primary visual cortex is the presence
of receptive fields of a greater complexity than their predecessor neurons in the LGN.
This was originally discovered by Hubel and Wiesel and presented in a seminal paper
[Hubel 1962]. They detected neurons with 2 different types of receptive fields: they
called them simple cells and complex cells. Simple cells have elongated receptive
fields that can be separated into 2 regions, one that excites the neuron when light is
presented in it and another region that inhibits the cell. This behavior is similar to a
linear filter, where the output is the sum of the negative and positive areas. Complex
cell receptive fields can’t be separated into different regions and they are believed
to realize non-linear operations over the input image. The behavior of complex cells
can be seen as a non-linear combination of a set of linear filters applied to the input
image [Rust 2005].

Two nearby neurons in V1 have receptive fields that represent nearby sections of
the visual field. In this way, the cells in the primary visual cortex create a complete
map of the visual field, called the retinotopic map.

As can be seen in the examples given in figure 1.4 the receptive fields of simple
cells are elongated and tilted, which are very different from the circular receptive
fields of LGN cells and retinal ganglion cells. This inclination is not the same in
all cells and produces the existence of a preferred orientation, i.e. the angle of a
bar on the input image that produces the maximum activity. LGN neurons do
not have this property, so this must arise from the connectivity of cells between
the thalamus and the primary visual cortex. With current neuroimaging methods
a map of preferred orientation can be obtained and its structure can be studied
[Okamoto 2011, Ts’o 1990, Slovin 2002|. An example of the kind of map than can
be produced with these modern techniques can be seen in figure 1.5.

Maps show a continuous structure of orientations except at points where all
the different preferences converge, called pinwheels. The study done in [Ohki 2006]
shows that these kind of points are singularities in the map and their positions
generate an organized structure. It also shows that neurons close to a pinwheel
center have a sharper tuning curve.

1.1.4.2 Neuron selectivity

Neurons in the primary visual cortex do not only present a preferred orientation but
they also favor other, specific, attributes of the visual field. These preferences are
not present in LGN cells, so the synapses between them and V1 are the main tools

1.1. Overview of the visual system 7

Figure 1.4: Receptive field from simple cells in V1. The x’s show areas of exci-

tatory responses and triangles show areas of inhibitory responses. Adapted from
[Hubel 1962]

0.5 mm

Figure 1.5: Left: orientation map found in the monkey V1. Right: zoom of the
same map. Taken from [Okamoto 2011]

8 Chapter 1. Biology and Computation

for computing these attributes. Current brain imaging techniques can normally
produce maps for each preferred attribute in a similar as is done for orientations.
Some of the characteristics that have been found to dominate the activation of V1
neurons will be described next.

Cells in V1 normally receive inputs from both eyes, differing from LGN neurons
where each layer is associated with a particular eye (see figure 1.3). Tt is in this piece
of the cortex that the information from the two eyes converges and the difference
between both is detected. Neurons with ocular preference were already detected by
Hubel and Wiesel as described in [Hubel 1977]. The data they obtained show that
most of the cells are mainly driven by one eye, and that the amount of neurons that
respond equally to both eyes is small. Several examples of ocular dominance maps
obtained with modern optical imaging can be seen in figure 1.6.

This disparity preference in the output of simple cells can be understood as the
sum of the application of two linear filters, one for each eye. Although at the time
when Hubel and Wiesel discovered this selectivity it was believed that the 2 filters
were the same, current studies show they may differ and that this difference may
explain the binocular activity of cells ([Anzai 1999]). A review of the history of this
discovery and more details on the disparity preference in the visual system can be
found in [Cumming 2001].

Explaining ocular preference in a similar way for complex cells is much more
complicated and several models have been proposed [Cumming 2001]. A model
that provides an explanation for most of the experimental results was proposed in
[Ohzawa 1990]. In this model complex cells are seen as the combination of a set of
simple cells with different disparity tuning.

Figure 1.6: Ocular preference maps from six different monkey subjects, taken from
[Obermayer 1993|. Dark areas indicate a stronger response to stimulation of the
right eye, bright areas indicate stronger response for stimulation to the left eye, and
gray areas indicate equal response to stimulation of either eye.

Neurons in the primary visual cortex are also selective for the direction of motion.
Three types of selectivity can be found in V1: non directional cells, directionally
biased neurons and motion opponent cells [Clifford 2003]. Non directional cells only
feature a preferred orientation but not a preferred direction. In a directionally

1.1. Overview of the visual system 9

biased neuron a bar of the preferred orientation passing through the receptive field
following a direction perpendicular to this orientation will cause the highest level
of activity. A motion opponent cell respond strongly to its preferred direction but
its inhibited by motion in the opposite direction. An example of a direction map
obtained by optical imaging can be seen in figure 1.7

Figure 1.7: Direction selectivity map in a monkey subject, taken from [Weliky 1996].
The direction of best response is color coded and represented by arrows whose length
indicates the size of the response.

Optical imaging also show that neurons present preferences for a spatial fre-
quency presented on its receptive field. The experiments presented in [Issa 2000]
show high resolution maps of preferred spatial frequencies at the preferred orienta-
tion. This map show a wide range of different preferences and a continuous change
with the presence of pinwheels, similar to orientation maps.

1.1.4.3 Columnar organization

Aside from the horizontal layered structure, the primary visual cortex has a vertical
organization. A similar response is found for neurons located in any line perpen-
dicular to the surface of the cortex. The properties of the neurons, like orientation
or eye preference, change when moving across the surface of V1 but do not change
much with depth [Hubel 1977]. This structure is known as a cortical column.

Hubel and Wiesel also proposed another structure called the hypercolumn.
The hypercolumn is made of a group of columns that contains all orientations for
both eyes. This concept has been the basis of several mathematical models of V1
[Hansel 1997, Bressloff 2001b)].

Columns are connected to other nearby columns by synapses whose strength
depends on the distance between the 2 connecting elements [Das 1999|. This short
range interaction connects each element to its neighbors independent of their pre-
ferred orientation. Like this, the position in the orientation map of the cell is critical
in the computation it makes. Each cell is inhibited by cells in its neighborhood that

10 Chapter 1. Biology and Computation

have a perpendicular orientation preference and excited by similar orientation pref-
erences.

Neurons in V1 also send long-range lateral connections to other columns that
contact excitatory and inhibitory cells forming patches of terminals [Lund 2003].
This lateral connectivity is anisotropic, i.e. it follows the direction of the preferred
orientation and connects only with similar elements [Angelucci 2002].

More detail on intra and inter column connectivity can be found in [Tucker 2004].

1.1.4.4 V1 and beyond

The complexity of the visual system is huge as there are 32 neocortical areas involved
in vision processing, where 7 of them are also involved in other tasks [Felleman 1991].
The primary visual cortex is believed to be the first one of these, and to be in charge
of extracting information content from the images that is necessary for other higher
cognitive functions that are related to other higher visual areas of the cortex. Like
this, the computation done in V1 extract features that serve as input for more
complex functions.

An example of the above are directional selective neurons in V1 which connect to
area MT, a piece of the cortex believed to be highly specialized in motion processing
|Clifford 2003]. Almost all of the cells in MT present a preferred direction of motion
and its output signal is associated to eye movements and optic flow processing. For
more details on the area MT see [Born 2005].

Cells in the primary visual cortex also connect to visual area V2. In this pro-
jection the different paths are kept segregated, i.e. areas of V1 whose input is
dominated by a similar path connect to a specific layers of V2 [Sincich 2002]. It has
been shown that V2 processes more complex geometrical forms than V1. Neurons in
V2 may present preferences to shapes like circles, crosses or others figures composed
of several edges or lines [Hegde 2000].

Neurons in V1 also connect to area V3. This is a less known area due to its
deeper position in the cortex which makes biological experiment hard. This area
has been divided in several regions that receive connections from different cells in
V1 |Felleman 1997]. The ventral half carries a representation of the upper visual
field and receive projections from neurons that are selective for orientation and
wavelength but not for direction while the dorsal half carries a representation of the
lower visual field and receive input from cells that are selective to direction of motion.
One of the main conclusion of the study of the functional properties of V3 presented
in [Gegenfurtner 1997] is that its function must be to integrate information.

Areas V2 and V3 connect also to area V4 [Ungerleider 2008|. An interesting
feature of this area is that the receptive field properties of its neurons are strongly
affected by attention signals (|Connor 1997, McAdams 1999]). Theoretical studies
have shown that a feedback (or attention) signal coming from cells associated with
eye movement may tune the receptive field structure in V4 and improve its ob-
ject recognition capabilities ([Hamker 2006, Hamker 2008, Zirnsak 2010]). In this
case, the number of receptive field increases around the planned saccade (fast eye

1.2. Mathematical models of brain activity 11

moverients).

1.2 Mathematical models of brain activity

In this section we describe several theoretical approaches that transform the biolog-
ical facts described previously into mathematical models of brain activity. These
models allow a better understanding of the phenomena occurring in the brain
through the use of several different approaches that are outside the boundaries of
clagsical biology. As measurements of real neurons are difficult to obtain, this kind
of technique is becoming a standard tool in neuroscience.

The first part of this section deals with mathematical descriptions of a single
neuron before introducing techniques designed to deal with the complexity of large
scale networks. In order to understand correctly the brain we need not only to
comprehend the dynamics of its forming units but also how they interact with each
other.

1.2.1 Single neuron models

Here we describe several approaches to modeling the dynamics of just one single
neuron. We start with the realistic but complex Hodgkin-Huxley model and then
present some simplifications of these equations. These other simpler models are
widely used in the computational neuroscience community as they can explain lots
of biological phenomena with a lower level of complexity.

1.2.1.1 Hodgkin-Huxley model

Alan Lloyd Hodgkin and Andrew Huxley [Hodgkin 1952] proposed in 1952 a math-
ematical model to explain the generation of action potentials in the cells of the
giant squid. This model considers the neurons membrane potential, i.e. the voltage
difference between the outside and the inside of the cell, which varies through time.
The voltage changes due to the existence of permeable ion channels, through which
positive or negative ions enter or leave the cell. When a positive ion enters the
neuron the membrane potential rises and when it is a negative ion it is reduced.
The Hodgkin-Huxley model considers 3 kinds of ions that a cell exchanges with its
exterior: Na™, KT and Cl™.

If no external current is applied to the cell, the electrical potential and concen-
tration difference induces the flow of ions until an equilibrium is reached. The value
of this equilibrium potential is different for each ion and is given by the following
Nernst equation:

RT . [lon]ou
Eion = —1
ion =R [Ton];,

: (1.1)

where: [Ion]y,: is the concentration of the ion outside the cell, [Ion];, is the con-
centration of the ion inside the cell, R is the universal gas constant (8,315 mJ/(K°

12 Chapter 1. Biology and Computation

Mol)), T is the temperature in degrees Kelvin, F is the Faraday constant (96,480
Coulombs/Mol) and z is the valence of the ion.

Using the previous facts, a neuron can be represented as an equivalent electrical
circuit where each channel is seen as a battery connected to a resistor and the
membrane as a capacitor. A diagram of this distribution can be seen in figure 1.8.
Using Kirchhoff’s law the current flowing through the membrane potential can be
computed as the sum of all the individual currents:

I:CVJrINaJrIKjLICl. (12)
Ina 9k 9o —C
Ene Ex Ea

L [T

Figure 1.8: Circuit representing one neuron. Each ion potential is represented by a
battery connected to an ion channel, or resistor. The membrane is represented as a
capacitor.

The conductance of each channel depends on the time and on the current voltage,
except for the C1~ or leakeage channel. Each of them has a maximum conductance
that we denote by: gng, gx and goy. 3 other variables are defined, m, n and h,
that control the probability that each type of channel is open, giving finally the
Hodgkin-Huxley equation for the membrane potential:

CV = —gnam®W(V — Ena) = gxn*(V = Ex) — gV — Eci) + Lear. (1.3)

The variables m, n and h vary according to the following equations, also defined
by Hodgkin-Huxley. The a and § functions are defined in table 1.1.

m=an(V)(1—=m)—05,(V)m
n=a,(V)(1—-=n)— 06, (V)n (1.4)
h = an(V)(L =) = Bu(V)h.

Figure 1.9 shows the solution of the equation when a constant external current
is applied to the neuron after 1000 milliseconds. Before the input the neuron stays
at a constant potential, its resting state. As soon as the input starts the cells
begins to emit spikes. After each spike the neuron stays for a moment at a very low
potential before starting to increase slowly (depolarization) until an action potential
is produced.

For more details on this model see |Gerstner 2002, Ermentrout 2010,
Izhikevich 2007, Dayan 2001]

1.2. Mathematical models of brain activity 13

x az(u/mV) Bz(u/mV)

m | (0.1 —0.01u)/(e!=%1% —1) | 0.125¢4/80
no| (2.5 —0.1u)/(e*P7 01 — 1) de~v/18
h 0.07e~%/20 1/(e3701w 4 1)

Table 1.1: This table shows the functions related to the gating variables of the
Hodgkin-Huxley model. Reproduced from |Gerstner 2002]

40F
20|
0 |-
(1]
o
£ 0l
S
—40l
_60 |-
580 1000 1020 1040
Time

Figure 1.9: Example of the solution of the Hodgkin-Huxley equation. The input is
0 until time 1000, when an input value of 14 is applied. For more information see

the text.

14 Chapter 1. Biology and Computation

1.2.1.2 FitzHugh-Nagumo model

The Hodgkin-Huxley equations form a 4 dimensional system which is difficult to
analyze and due to the difficulty to see more than a two dimensional projection it
is hard to get an intuition of its solution. For this reason FitzHugh [FitzHugh 1955,
Fitzhugh 1966, FitzHugh 1969] proposed a two dimensional reduction of the model
that could keep the majority of the properties and reproduce interesting biological
phenomena. As this model is composed of only 2 equations a geometrical analysis
is possible. The equations for the model as presented in [Izhikevich 2006] are:

V=V-V33-W+I L5)
W =0.08(V + 0.7 — 0.8W), '

where V is the membrane potential, W is a recovery variable and I an external
current. An example of the solution of this equation for a constant input can be
seen in figure 1.10. This example shows the existence of spikes but of a different
shape than the ones presented in figure 1.9 for the Hodgkin-Huxley model.

2.0

15

1.0

05}

0.0

Voltage

-0.5}

-1.0}

sl I M

~2.05 50 100 150 200 250
Time

Figure 1.10: Example of the solution of the FitzHugh-Nagumo equation with input
0.7.

The model features one stable fixed point when I is small and an unstable limit
cycle when I is higher. The fixed point produces a resting potential while the limit
cycle produces a periodic activity which represents the emission of action potentials.
For a complete bifurcation analysis of the model see [Izhikevich 2007].

1.2. Mathematical models of brain activity 15

1.2.1.3 Morris-Lecar model

Another two-dimensional reduction of the Hodgkin-Huxley equation is the Morris-
Lecar model [Morris 1981]. In this case the Na+ channel is assumed to approach its
asymptotic value extremely fast. This assumption is based on experimental data.
The equations as presented in [Lecar 2007| are:

OV = —gcaMss(VY(V = Eca) — ggW(V — Ex) — g.(V — EL) + Ly

. (1.6)
W= Wss(V) =W)/Tw(V),
where the conductance functions are given by:
Mss(V) = (14 tanh[(V —V1)/V2])/2 (L)

Wes(V) = (1 + tanh[(V — V3)/V4])/2.

An example of the solution of this equation is presented in figure 1.11. The height
of the spikes is much bigger than for the FitzHugh-Nagumo equations giving values
closer to the more realistic Hodgkin-Huxley model. Another difference from the
previous 2 dimensional reduction is the possibility to measure all of the parameters
experimentally.

40

30

20 -

10}

\oltage

=20}

=30+

=40+

-50

0 SIO 160 150 200
Time

Figure 1.11: Example of the solution of the Morris-Lecar equation with input current
80.

For a complete bifurcation analysis of this model see |Izhikevich 2007].

16 Chapter 1. Biology and Computation

1.2.1.4 Integrate and Fire models

In both previous models the shape of the spike was produced by the equation itself.
In the case of the integrate and fire model only the behavior before the emission of
an action potential is given, and a specific threshold is assigned to the neuron. If
the membrane potential exceeds this threshold a spike is emitted and the voltage
variable is reset to its resting potential.

Figure 1.12: Circuit representing an integrate and fire neuron. A capacitor is con-
nected with a resistance. Each time the threshold w is exceeded a pulse is emitted.
Adapted from [Gerstner 2002].

The basic integrate and fire neuron can be seen as the simple circuit presented
in figure 1.12. This circuit is a simplified version of the one in figure 1.8: it has a
capacitor connected to just one resistor. An extra element is added that compares
the voltage to the threshold and resets the potential if a spike is emitted. Using the
same procedure as for the Hodgkin-Huxley model, the equation for the potential is:

I(t) = Vg) +CV, (1.8)

where R is the resistor conductance and C the capacitance. This equation is normally
multiplied by RC to give:

TV = =V (t) + RI(t), (1.9)

where 7, = RC is a time constant.

Figure 1.13 shows the evolution of the voltage for an integrate and fire neuron
when the threshold is set at 1.0 and the input is 1.5. The main difference between
this plot and the previous ones is that the shape of the spike is not seen, as an action
potential is considered a discrete event that occurs when the threshold is reached.

Other more complex and realistic versions of this kind of model can be found in
|Gerstner 2002].

1.2.2 Synapses

In order to understand correctly the collective activity of neuron assemblies we
need not only comprehend the dynamics of a single cell but also how they interact
with each other. The relationship between cells are the basis of the computations
performed in the brain and occur at local synapses between neurons. It is through

1.2. Mathematical models of brain activity 17

1.0

0.8}

0.6

\bltage

0.4}

0.2

0.0

Time

Figure 1.13: Solution of the integrate and fire equation. The threshold is set at 1.0.

the synapses that the spikes emitted by one cell modify the membrane potential of
another.

In chemical synapses neurotransmitters are released by the presyanptic neuron
that bind to receptors on the postsynaptic neuron. These receptors when activated
cause the opening of synaptic channels that work in a similar way to other ion chan-
nels [Ermentrout 2010]. For this reason synaptic channels are modeled in agreement
with the other currents entering the cell in the Hodgkin-Huxley model, i.e., with a
product of a conductance and a voltage difference:

ISyn<t) = gsyn(t)(v - Esyn)- (1.10)

For excitatory synapses the reverse potential, F,,, is 0 while for inhibitory
synapses it is around -75mV |Gerstner 2002].The shape of the function ggyn(t) de-
pends on the kind of synapse modeled, but a common choice are alpha functions,
as presented in [Ermentrout 2010]:

gsyn(t) =g Z Oé(t - tk)
o k (1.11)

a(t) = (6_adt — e_art)

a, — aq ’
where {; are the times at which the presynaptic cell has spiked, a, and ag4 are
parameters that describe the rise and decay of the synaptic conductance.
The main disadvantage of this model is that it is necessary to save the time of

each of the spikes emitted. Another option for modeling synapses is presented in

18 Chapter 1. Biology and Computation

[Destexhe 1994, Ermentrout 2010| where the conductance is given by:

syn(t) = gy(t), (1.12)

where y(t) denotes the fraction of open ion channels. This function depends only
on the membrane potential of the presynaptic neuron, V., as:

dy
t = arS(Vpre) (1 — y) — aqy
T (1.13)
_ mazx
S(‘/p’r‘e) - 1+ e—(Vore=V1)/Kp"
The values proposed by the authors for the parameters are: Ty, = 1ImM,

Vi =2mV and Kp =5mV.

In electrical synapses (also called gap junctions), the 2 neurons are directly
connected, without the gap where neurotransmitters are released. In this kind of
union the 2 cells are always in communication and not only when a spike is emmited.
This can be modeled in a similar way than before but with a conductance that does
not vary with time:

Igap = ggap(vpost - Vpre)‘ (1.14)

1.2.3 Mean field techniques

Neural networks in the cortex are composed of a big group of neurons and an even
larger number of synapses. As each of these elements is described by several equa-
tions the complexity of the system is huge. As analyzing analytically or numerically
a large scale network becomes untractable due to its number of components, several
techniques have been applied to face this difficulty, mean field methods being one of
them. In this kind of method the whole system of equations is reduced to a few of
them that describe the mean behavior of the system when the number of neurons
tends to infinity. Some important efforts in the application of these methods in
neuroscience is presented here.

The application of mean field techniques in neuroscience is not new, and can be
dated back to the seminal study of emergent behavior in continuum limits by Wil-
son and Cowan and Amari [Amari 1972, Amari 1977, Wilson 1972, Wilson 1973].
In these cases the equations derived describe a macroscopic characteristic of the
network, like for example the mean firing rate, by a integro-differential equation.
This kind of limit equation is usually called a neural mass or a neural field if it
congsiders space.

Gerstner in [Gerstner 1995] proposed a mean field description for populations
of neurons given by the spike response model. Each population is a dense network
with low weights whose values depend only on the pool to which the postsynaptic
and presynaptic neuron belongs. The equation derived describes the activity of the
whole population instead of the activity of a single unit in each pool.

1.2. Mathematical models of brain activity 19

A mean field description for a network of integrate and fire neurons is proposed in
[Brunel 1999]. In this case the connections in the network are sparse, a feature that
produces uncorrelated activity between neurons. A reduced equation that describes
the distribution of potentials in s population of neurons was obtained and used to
understand the appearance of oscillatory solutions.

This approach was extended in [Mattia 2002] where an analysis of the solutions of
the Fokker-Planck equation that describes the evolution of the probability density
of the possible potential values is made. In this work the finite size effects are
considered and the model is extended to a network with multiple populations.

Macroscopic equations based on the population density approach are obtained in
[Chizhov 2007] for a network of more realistic neurons. In this case a simplification
of a detailed current based model for a hippocampal pyramidal neuron is used. The
authors replace the sodium current by a threshold function, obtaining a mechanism
for the generation of action potentials similar to the integrate and fire model .

More recently, a different approach based on the development of a master equa-
tion was proposed in [ElBoustani 2009]. They have developed an equation that
describes the evolution of the probability density that they can’t solve exactly, so a
moment expansion is used for further analysis. A truncation after the second mo-
ment is made, giving equations for the mean population activity and the covariance
matrix.

A dynamic mean field approach is used in [Faugeras 2009]. In this case a network
of neurons described by stochastic differential equations with random weights which
depends only on the presynaptic and postsynaptic population is used. This is a
more complex network topology than the previous approaches. A set of population
activity equations are derived and proved to be well posed. Finally an algorithm for
computing the solution to these equations is provided.

1.2.4 Neural field models of visual areas
1.2.4.1 General description

Another way to analyze large scale networks is to take the continuum limit and con-
sider a macroscopic variable, like the mean firing rate, at every position. These kinds
of models are called neural fields and have been studied since the works of Wilson
and Cowan and Amari [Amari 1972, Amari 1977, Wilson 1972, Wilson 1973|. The
main advantage of this approach is the development of simpler equations that can
be treated analytically and numerically while its disadvantage is an inability to re-
flect the effects of the inter spike time. A general form for this kind of model, as
described in [Coombes 2005, Bressloff 2012], is:

1V@D __y, / Zw<y>s<v<x — . 8))dy. (1.15)

where V' (z,t) is the activity of a population at position x, S is the firing rate function
and w(y) is the weight between elements separated by distance y. The w function

20 Chapter 1. Biology and Computation

is normally taken to be a Gaussian, an exponential or a mexican hat function that
combines excitatory and inhibitory connections [Ermentrout 1998].
A typical choice for the firing rate function is a sigmoidal function of the form:

_ 1
1 + e—o(z—0)’

S(z)

where o is the nonlinear gain and 6 is the threshold. When o — oo, the function S
becomes a Heavyside function, H(u—@). In this case the neuron fires at its maximum
rate or does not fire at all. The threshold determines the minimum potential needed
for the generation of a spike.

(1.16)

Several biologically interesting phenomena have been studied with the use of this
kind of model. Neural fields are able to maintain a pattern of activation even after
the input has been removed, representing the capacity of the brain to keep informa-
tion for a fast access even after the feature that triggered the activation has been
removed from our senses. Several authors [Laing 2003a, Gutkin 2002, Laing 2003b,
Rubin 2004, Guo 2005a, Guo 2005b] have shown the existence of sustained patterns
of activity using different weight and firing rate functions. This may be used to
explain working memory or short term memory.

Another phenomenon studied within this framework is the propagation of waves
in cortical tissue. This kind of behavior has been reported in different areas of the
cortex and can be observed with modern optic imaging techniques that measure
a mesoscopic view of the activity [Lee 2005, Golomb 1997, Peinado 2000]. Neural
fields also can show wave propagation as has been presented in [Coombes 2005,
Bressloff 2001a, Kilpatrick 2008].

1.2.4.2 Models of the primary visual cortex

The primary visual cortex has been the subject of several modeling efforts as it
is one of the areas of the cortex which has been studied experimentally the most.
Several approaches have used the neural field techniques to explain some of the com-
putation done in V1. One of the main objectives of using this method is to reduce
the complexity of the complete network but to keep the properties that produce
interesting phenomena. The columnar organization of V1 can be represented very
naturally using a neural field approach as will be described later.

A neural field model for one hypercolumn of V1 known as The Ring Model of
Orientation was introduced in [Hansel 1997]. As described earlier one hypercolumn
groups several columns with different orientation preference but similar receptive
field. In this case the space variable of the general model is used to represent the
possible orientations, and a periodic weight function is used. The original equation
for the model is:

TA(x,t) = —A(z,t) + S

/2
/_/2J(acy)A(y,t)dy/7T+5I(x) , (1.17)

1.2. Mathematical models of brain activity 21

where A is the activity of the population with orientation preference x, J is a 7

periodic weight function and I represents the input coming from other areas of the
. . 2

brain. A change of variables of the form V = f:/rﬂ J(x —y)A(y, t)dy/m + el(x),

gives an equation similar to the general case presented in (1.15):

. w/2
TV =-V+ / J(x—y)S(V(y,t))dy + el (x). (1.18)
—7/2
Several different weight functions have been proposed for this model.
In |[Bressloff 2000, Bressloff 2001b] a difference of Gausian is used while in
[Ben-Yishai 1995, Veltz 2011] a function of the following form is used:

J(x) = Jo + Jy cos(2x). (1.19)

The input function has the form:

I(x) =1—p+ Bcos(2(x — z9)). (1.20)

This function has a weakly tuned shape with a peak at the angle xg.

The model presents solutions that enhance the tuning of the input function, i.e.,
the function A has a sharper shape than I with a peak at the same angle. This kind
of process improves the angle detection procedures that are done in the retina and
the LGN. Figure 1.14 presents an example of this, on the left side the input function
is shown and on the right the stationary solution of equation (1.17). The parameters
for the simulation are given in the figure. For the input function presented is difficult
to select an orientation as all of them have a similar activity. It is much easier to
select an angle in the stationary solution as several orientations present no activity
and the height of the peak is bigger.

1.00 — 0.8
0.98 \
// \
// \

2 / \

Figure 1.14: Left: input function for the ring model with 8=0.05 and z¢=0. Right:
stationary solution of the ring model with € = 0.01, 0 =23 and 6 = 2

A previous work reported in [Veltz 2011] describes the conditions for the param-
eters in order for the proper tuning curve to exist. The setting of the nonlinear gain
is critical as normally three solutions to 1.17 exist and two of them disappear at a
bifurcation point leaving only the correct one. The author even shows the existence

22 Chapter 1. Biology and Computation

of an illusion as under certain condition an input with a peak at 0 can have an
output tuning curve peaked at /2.

Bresslof et. al. [Bressloff 2001b| used a spatial extension of the Ring Model
to represent the complete primary visual cortex and to explain some visual hal-
lucinations. In their model there is an infinite number of hypercolumns, one at
each possible position, each represented by a Ring Model equation. They also
add long range lateral connectivity between hypercolumns following biological con-
strains. The equation for the model is:

™ / /
POLD v +u [[wtor)50, E
0 R2

+ I(r,0,t),

(1.21)
where « and p are decay and coupling coeflicients.

The weight function, w is the sum of a local part and a lateral or long range
one. The local part is non-zero only on elements with the same position and has
the same shape as the Ring model of connectivity. The lateral connectivity fulfills
the following biological constrains: only elements of similar orientation preference
are connected, the connections only join elements in the direction of the preferred
orientation, they present short range excitation and long range inhibition. The final
form of the weight function is:

w(r, Or',0") = wiee(0 — 0)5(r — ') + wiae(r —1',0)5(0 — '), (1.22)

with:

Wiat = TIJ(RQT)

0 (1.23)
W= /0 g(s)[0(r — sro) + 6(r + sro)]ds,
where 79 = (1,0) and Ry is the rotation of angle 6.

The authors make a bifurcation analysis with respect to the parameter p that
shows the existence of multiple solutions that represent well known visual hallucina-
tion when transformed from the retinotopical map to visual space coordinates. Some
examples of the patterns they could compute are shown on figure 1.15. This analysis
was extended in [Bressloff 2002b| where they show the effect of lateral connection
on the shape of the tuning curves.

A different model is proposed in [Chossat 2009, Faye 2011], where each popula-
tion in the primary visual cortex is considered to represent a structure tensor of the
image, which contains information not only about edges but also about textures.
They use the same general equation (1.17) but the spatial variable instead of repre-
senting just the orientation preference as in the Ring Model, represents a structure
tensor. Although there is not enough biological evidence that columns in V1 use this
kind of structure the authors provide enough theoretical analysis for experimenters
to create a protocol to study this hypothesis.

1.3. High performance computing 23

Figure 1.15: Hallucinations computed with the model of [Bressloff 2001b].

The structure tensor is a nonlinear representation of the image first derivative.
It can be computed by first convolving the image with an isotropic or circulary
symmetric Gaussian function with 0 mean and variance 3. Then the derivative at
each point is computed for the new image. A 2x2 matrix is formed by applying a
tensor product to the 2-dimensional vector resulting from the derivative computation
by itself. Finally this matrix is convolved with a different Gaussian function with
variance o3.

The parameters o1 and o represent the spatial scales. The first one, o1, indicates
the minimum level of detail to which the structure tensor is sensitive. The second
one, o9, is related to the size of the texture to be represented and to the size of the
receptive field.

The distribution of the 2 eigenvalues of the structure tensor, Ay and Ao, represent
the organization of the intensities in the image. If an area has a constant intensity
the 2 eigenvalues are 0, if a straight edge is present Ay >> Ay = 0 and if a corner
is present A\; > A2 >> 0. The difference between the eigenvalues becomes large for
anisotropic textures.

1.3 High performance computing

High performance computing consists in the use of computers with a high number of
processors (also called supercomputers) for solving complex problems that normally
could not be solved on a personal computer. This kind of technique is useful when
the problem consists of analyzing large volumes of data or when the algorithm needs
to execute a big number of instructions. Not all large programs can be divided in
different tasks to be made in parallel as normally there is a dependency between
consecutive instructions.

24 Chapter 1. Biology and Computation

Supercomputers started with Seymour Cray in the 1960s, who designed comput-
ers that were more powerful than any other at its time [Sisson 2006]. Since then the
computational power and number of processor per machines have been increasing,
and currently even a ranking has been created to keep track of the most powerful
machines (TOP500). In fact, parallel computing techniques have become of more
importance in the last decade, as the increase in the processor speed is reaching
its limits [Lundstrom 2003] but the reduction in size has allowed the designers to
incorporate more than one processor in just one chip. Nowadays even mobile phones
that can be kept in a pocket have more than just one processor.

1.3.1 Architectures and programming paradigms

Several architectures have been proposed for the interconnection of different proces-
sors, each one providing a different way of programming the resulting machine. Some
efforts have been made on normalizing the programming paradigm but normally at
least the memory distribution needs to be accounted for. The main categories of
current parallel machines and how they are programmed is described next.

The most well known way to characterize a parallel machine is by the
use of the Flynn’s taxonomy [Mattson 2004, Hennessy 2007, Flynn 1972]. In
his approach there are 4 options: Single-instruction-single-data (SISD), Single-
instruction-multiple-data (SIMD), Multiple-instruction-single-data (MISD) and
Multiple-instruction-multiple-data (MIMD). A sequential computer is considered
a SISD system, where one processor operates on one input stream. In a SIMD sys-
tem each processor executes the same instruction but to a different data stream. In
a MISD system multiple instruccions operate on a single data, this kind of architec-
ture is hard to find in reality. In a MIMD system each processor executes a different
instruction on its own data stream. This is the most general case and most modern
computer clusters fit in this category.

Another way of classifying parallel machines is to divide them according to their
memory structure [Mattson 2004, Hennessy 2007]. In a shared-memory environ-
ment there is just one single main memory for all the processing elements and on a
distributed-memory environment each processor has its own private memory. The
communication between processors is extremely different between the 2 modalities
as in the first case each processor can read directly from the centralized memory
data written by others while this is impossible in the distributed memory case. Dis-
tributed memory machines normally support a larger amount of processors and a
bigger amount of total memory.

The easiest way to exploit the parallelism of a machine is to leave the compiler
extract independent task from a sequential code [Kuck 2011]. The output code
of the compiler will make the machine execute each of this task in parallel with-
out the user managing explicitily the architecture. Some libraries, like OpenMP
[Chapman 2008], allow the user to explicitly indicate which parts of the code must
be parallelized by the compiler and give some guidance and how to treat them by
setting some parameters in the code itself.

1.3. High performance computing 25

In some cases the code provided by a compiler is not enough to obtain the
maximum profit from the parallel machine. The code generated may not be as
efficient as it could be given the hardware constrains or the parallelization strategy
is too complex for the compiler to handle it automatically. For these cases several
programming models have been proposed but only 3 are the main cores of most of
modern programming languages [Kuck 2011]. Message passing is the first model,
where each process is independent and may send or receive data to or from others via
packaged messages. The Message Passing Interface, MPI, is the most used standard
for this approach. A complete description of MPI can be found in [Gropp 1994].

Another programming model is the Fork-join structure where any process may
separate in 2 or more independent elements. These new processes or threads (de-
pending on the library used) are executed separately and they may be joined or
combined when finished. The communication is normally done using shared mem-
ory. A widely used example of this kind of model is the POSIX thread API, also
called pthread, for UNIX type machines [Butenhof 1997]. This is a group of C types
and functions that allow the programmer to create, join and synchronize threads.

A third model is used in the data parallel languages where a great deal of low
level detail is expressed in the data itself. This is normally used in SIMD arquitec-
tures where an array of values is updated in parallel. An example of this is GPU
computing, for which more detail will be given later.

1.3.2 Current trends of Supercomputing

The amount of processors and cores on supercomputers is increasing every year.
The current fastest supercomputer, as presented in the TOP500 list (November,
2012), has already 560,640 processor. Also, an important trend in the area is to
start including new accelerators like GPUs (see 1.3.4) or FPGAs ([Sulaiman 2009]),
that can work together with the processors to increase the speed. Already 13 of the
first 100 supercomputers on the TOP500 list include GPUs and this number has
been increasing in the last years. For a complete analysis of the November 2012
TOP500 list see |Deng 2013.

One of the most important problem in the design of current Supercomputers
is energy consumption. As more processors are included more electrical power is
required for them to work. The financial cost of this situation and the effect on
the environment limit the possible size of machines. Currently, chips designers are
moving to simpler cores that can work together to obtain a good performance but
keeping the power consumption very low.

Another issue with this kind of machine is how to create software that is really
able to use and take full advantage of this type of machine. Current parallel soft-
ware should be able to scale to future machines with more and more processors.
The problem is that the speedup of a program will still be limited by its sequen-
tial fraction and the comunication cost. This is normally called the Amdahl’s law
[Amdahl 1967].

Current analysis of supercomputers consider another way of scalability in which

26 Chapter 1. Biology and Computation

assumes that more powerful machines are created for more complex problems. For
very large machines the time for solving the problem as a function of the number of
processors is not measured with a fixed problem size (strong scaling) but for a fixed
size per processor. This means that newer, more powerful machines, are thought to
be used for larger problems. In many domains, models can be enhanced by adding
more detail which makes the simulation more complex. More powerful machines
will allow scientists to add this information to their equations and run simulations
that approach realisitic figures.

1.3.3 HPC in neuroscience

High performance computing has been extensively used for the simulation of spiking
neural networks. One of the main challenges of neural simulation is to deal with the
large numbers of neurons or synapses. HPC provides an option for facing this kind
of problem by the uses of its larger computational power and memory. Simulations
can approach real biological figures when a large computer cluster is used.

Several softwares have been created for the simulation of spiking neural network.
Some of them, like NEST [Gewaltig 2007] or NEURON [Hines 2002], are designed
to take advantage of computer clusters when available. For a review on the different
available tools see |Brette 2007|. The general approach is that the user expresses the
network characteristics independently of the machine where the simulation is going
to take place and then the simulator automatically deals with the parallelization.

Numerous new problems arise when moving from a sequential simulation to a
parallel one. The first problem is to determine the distribution of neurons and
synapses between the different processors. Depending on the organization, synapses
may be between cells on different machines, increasing the amount of communication
needed for the simulation. The data structures representing the network topology
also need to consider this fact.

A second problem is to create an efficient communication scheme to spread the
spike information. It is necessary to minimize the number of exchanges as they have
a large influence on the total computational time. Coordination is also important
as spikes may be lost due to a bad communication strategy.

The solution of these and other problems depends on the simulator. The algo-
rithms used in the software NEST are presented in [Morrison 2005]. This software
is specially designed to run spiking neuron simulations on large computational clus-
ters. The solutions the authors propose were tested on different clusters and show
a linear increase in performance when increasing the number of processors.

A different view on the use of HPC in neuroscience is presented in [Hines 2008].
The authors do not distribute a neural network among the processors but do so
for just one neuron described by a very detailed model. The model considers the
cell real shape and divides it into small compartments, each described by a different
equation. In this approach different cell sections are connected together and it is this
dependency that must be considered for the communication strategy. As such, the
load balancing problem still exists. An implementation is available on the software

1.3. High performance computing 27

NEURON, where even a network of compartmental cells can be simulated in parallel.
Tests show an ideal scaling with the number of processors.

To our knowledge the majority of the efforts in the use of high performance
computing in neuroscience do not deal with mesoscopic or macroscopic models but
only with spiking neurons. This is probably due to the fact that normally the
reduction of complexity given by the simplified population equations is enough as
to solve the system in a sequential computer. We will show in this thesis that this
is not true when the population equations for a more realistic model are derived.
Also we will show that when a very large piece of the cortex needs to be simulated
a mixture of mesoscopic modeling and parallel computing is extremely useful.

1.3.4 GPU computing

Graphic processing units, GPUs, where introduced in the 90s to improve real time
graphic performance for games. They were originally designed for fast floating
point arithmetic to calculate 3D geometry and update pixel values [Nickolls 2010].
As the years passed the technology evolved and currently GPUs have become more
flexible and are not only used for games but also for scientific applications. See
[Garland 2008] for a review on common applications on science and engineering.

Modern GPUs are low cost highly parallel devices that present a cheaper and
powerful option to computer clusters and standard high performance computing so-
lutions. Any workstation can be transformed into s small supercomputer by adding
one of these cards. Also any supercomputer may beenfit from this technology by
connecting several GPUs in parallel to work together with its standard processors
[Kindratenko 2009]. In fact, as of November 2012, the most powerful supercomputer
in the word, as selected in the TOP500 list, and several others in the first 10 use
GPUs by nVidia to power up their computation.

The core of modern GPUs are a set of streaming multiprocesors that work in a
SIMD manner [Owens 2008|. Each processor executes the same set of instructions
on different pixels values, in the case of graphics applications, or over different array
values in the case of scientific applications. This first constraint limit the variety of
problems for which GPUs are useful, but as will be showed later, several neuroscience
applications are well suited for this kind of hardware.

There are mainly 2 companies that produce GPUs that can be used for gen-
eral computation, nVidia and ATT [Owens 2008]. In order to describe in detail the
architecture of a GPU this document will focus on the nVidia cards (Fermi archi-
tecture) and their programming model, as it is the one used for the experiments
presented later. For more information about ATT cards see [Bayoumi 2009] and on
the programming paradigm used for them, called OpenCl, see [Stone 2010]. OpenCl
is an interesting approach to the programming of parallel devices as it is indepen-
dent of the architecture, the language is designed for the same code to run on any
multiprocessor machine, like GPUs.

A block diagram of the nVidia Fermi architecture for GPUs (|Glaskowsky 2009,
Wittenbrink 2011]) is presented in figure 1.16. The green elements of the figure are

28 Chapter 1. Biology and Computation

a set of streaming multiprocessors, each consisting of 32 cores. The GigaThread
element, in orange, is in charge of scheduling. The blue elements are in charge of
accessing DRAM and a L2 cache is included. The majority of the space is used
for the computational elements which may execute a huge amount of threads in
parallel. As mentioned in [Glaskowsky 2009], this is the main difference with Intel
type processors, where most of the space is dedicated to speculation on the next
possible instruction to be needed.

Host Interface

L2 Cache

GigaThead

Figure 1.16: Block diagram of the nVidia Fermi architecture. Taken from
|Glaskowsky 2009]. More details in text.

A block diagram for a single streaming multiprocessor is presented in figure
1.17. Each of them includes 32 cores, as indicated in green in the diagram, these
can execute one single precision operation per clock period. A set of 16 load store
units (LD/ST) are in charge of memory operations. These can handle addresses
in term of 2 dimensional arrays and perform format conversions. Special Function
Units (SFU) are available to handle special operations like sin, cos or exp.

Threads are divided in a three-dimensional grid of blocks and then joined in
groups of 32, called warps. This gives the maximum number of instructions that
can be executed in parallel. The cores are divided in 2 groups of 16, called execution
blocks. The warp scheduler and the dispatch unit are in charge of assigning the
instructions either to one of the 2 execution blocks, to the load/store units or to
the SFUs. A warp of special functions takes eight cycles to complete on the four

1.3. High performance computing 29

Interconnect Network

Y
N

Figure 1.17: Block diagram of the nVidia multiprocessor. Taken from
|Glaskowsky 2009]. More details in text.

30 Chapter 1. Biology and Computation

available SF'Us while a normal one takes 2.

A small local memory is present on each multiprocessor. This very fast memory
may be managed by the programmer (shared memory) or left to work automatically
as cache. Shared memory can be accessed by all the threads in a block and it
is normally used for storing intermediate results or moderate amounts of common
data. The efficiency of an algorithm may depend severely on its shared memory use
as one access may be several orders of magnitude faster than a fetch from global
memory.

CUDA is the programming model that nVidia has created to deal with their
graphic processing units. It is available as a set of libraries and extensions to stan-
dard C/C++. The company provides a special compiler for this kind of code called
nvce. The core of the system is the separation of host code, to be run on a standard
Intel type processor, and a device code to be executed in the gpu.

The functions written for execution on the device are called kernels. The kernels
span a large amount of threads and the same code is executed on all of them. A
typical example is a matrix times matrix multiplication where one thread is created
for each element of the resulting matrix [Kirk 2010]. The programmer must create
a three dimensional grid of thread blocks before the execution of any kernel. The
limit for the shape of this grid depends on the card to be used but it is normally
recommended not to use the maximum but a combination that maintains the mul-
tiprocessors completely occupied (generally a multiple of the numbers of cores, 32
on Fermi).

In CUDA the programmer must manage explicitly the host memory and the
device memory. As both elements are separate units they can’t access other’s mem-
ory directly. The language provides primitives for allocating space in GPUs global
memory and copying data from and to it. If an algorithm is input-output inten-
sive this may become a bottleneck as most of the time may be spent sending data.
Well suited applications for GPU computing normally are computationally intensive
tasks where only a few memory transfers between host and device are performed.

There have already been some efforts on running spiking neural networks simula-
tions on GPUs. Some works in this direction were done even before CUDA appeared
[Bernhard 2006]. Nemo [Fidjeland 2009] is an open source simulator developed for
the simulation of Izhikevich type neurons on CUDA-enabled GPUs. They use a
similar approach to the one proposed in [Nageswaran 2009]. In both cases one of
their main problems is to create data structures that can maintain a coalesced access
when reading the synapses values.

A spiking network designed for an image processing task is used a benchmark
to compare the performance of GPUs vs other multiprocessors architectures in
[Mohammad A. Bhuiyan 2010]. Their results show that when the Hodgkin-Huxley
model is used GPUs present the greatest speed while for the simpler Izhikevich
model an Intel Xeon processor is the fastest. The amount of operations done for up-
dating one Izhikevich neuron is much smaller that for the Hodgkin-Huxley, making
the task a less computationally demanding problem, less suited for GPUs. This con-
dition probably changes if the network is big enough but the authors do not study

1.3. High performance computing 31

this effect. Although their results depend heavily on the optimization techniques
used in each case they show an expected behaviour given the constraints of GPU

computing.

CHAPTER 2

Numerical analysis of large scale
neural networks using mean field
techniques

Contents
2.1 A mean field reduction for conductance-based neurons . . . 33
2.1.1 Noisy network model 34
2.1.2 Mean field description oL 37
2.1.3 Hardwaresetup 38
2.1.4 Propagation of chaos in the Hodgkin-Huxley network 39
2.2 One population Fokker-Planck equation 46
2.2.1 Numerical method and implementation 47

2.2.2 Simulation results for the network of FitzHugh-Nagumo neurons 52

2.2.3 Simulation results for the network of Morris-Lecar neurons . 65
2.2.4 Speed of our implementation 69
225 Discussion 75
2.3 Multi population Fokker-Planck equation 7T
2.3.1 Implementation issues 78
2.3.2 Two population network: a barrel cortex model 78
2.3.3 An orientation selectivity model 81
2.3.4 Discussion e 92
2.4 A faster but less accurate numerical method 95
2.4.1 Relaxation techniques 98
2.4.2 Extended multi population simulations. 103
2.4.3 Discussionl 108

2.1 A mean field reduction for conductance-based neu-
rons

All the mean field techniques described earlier use a neuron model that includes
a threshold for the generation of action potentials. The equations that describe

Chapter 2. Numerical analysis of large scale neural networks using
34 mean field techniques

a cell in these approaches are simpler than the more realistic Hodgkin-Huxley or
its 2 dimensional reductions. Due to this difference in complexity a mean field de-
scription of a network of conductance-based models requires different mathematical
techniques.

In this section a new approach for the derivation of mean field equations for a
noisy version of a network of conductance-based neurons is presented as it has been
published in [Baladron 2012b|. A detailed description of all the proofs will not be
given as this falls outside the scope of this thesis, only the necessary information to
understand the numerical analysis that is presented later will be given.

2.1.1 Noisy network model

The original derivation of current based models presented in section 1.2.1 do not
consider the stochastic nature of the environment or of the channels that are present
in the membrane of the cells. This can be incorporated, in the case of the Hodgkin-
Huxley model, by adding a stochastic part to the external current and by modifying
the equations for the gating variables. Similar changes can be made to the other
models. The stochastic networks considered in this thesis will be described next.

The equations (1.4) for the gating variables of the Hodgkin-Huxley model are
obtained when the proportion of open channels is computed using a Markov chain
model. The process obtained can be shown to converge to equations (1.4) considering
a infinite number of channels and other standard assumptions [Pakdaman 2010,
Goldwyn 2011]. A more realistic approach taking into account the finite number
of channels through the Langevin approximation results in the following stochastic
differential equations [Wainrib 2010]:

dz = (a, (VYA —) — Bo(V)) dt + /e (V)(1 —) + Bo(V) z x(2) dWF, (2.1)

where x = {m,n,h}, W are independent standard Brownian motions and x(z)
is a function that vanishes outside (0,1). This guarantees that the solution stays
between 0 and 1 for all times.

By considering an external current with a stochastic and a deterministic part the
equation for the membrane potential of the Hodgkin-Huxley model are transformed
into the following stochastic differential equations:

Cdvy = (I(t) —gxnt (Ve = Ex) = gnam®h(Vi — Ena) — g1 (Vi — ECl)) dt + eyt AW

(2.2)

The same change to the external current can be made to the FitzHugh-Nagumo
model giving the following general stochastic differential equations:

3

Vi
dV; = (Vt_ ?t —wt+I(t)) dt + Text AWy (23)

dw; = ¢ (Vi + a — bwy) dt,

2.1. A mean field reduction for conductance-based neurons 35

Figure 2.1 gives an example of the evolution of the membrane potential for the
2 models. These were obtained using the Euler-Maruyama method [Mao 2007]. In
both cases the shape of the voltage is different to the previous examples concerning
the deterministic models (see figure 1.9 for Hodgkin-Huxley and figure 1.10 for the
FitzHugh-Nagumo) but action potentials are still present.

Stochastic FitzZHugh Nagumo

Voltage
o

20 40 60 80 100 120 140

60 Stochastic Hodkin and Huxley

40

20

Voltage

-20

—40

-60

-80

0 50 100 150
Time

Figure 2.1: Examples of the solution to the stochastic models (2.3) and (2.2). Top
FitzHugh-Nagumo, bottom Hodgkin-Huxley. For the FitzHugh-Nagumo the exter-
nal noise intensity (o) is 0.27 and the deterministic input is constant and 0.7. For
the Hodgkin-Huxley the external noise intensity (oezt) is 0.1 and the deterministic
input is constant and equal to 3.0

For the synapses we consider the model described by equations (1.13) with a
variable, y, that describes the fraction of open synaptic channels on each neuron.
The maximum conductance, g, is considered to depend on time and on the presy-
naptic and postsynaptic neuron populations. These values will also be called the
weights of the network. The stochasticity of the synaptic channels is considered by
modifying the equation in the same way that was done for the gating variables. Fi-
nally, the evolution of the variable y is given by the following stochastic differential
equation:

Chapter 2. Numerical analysis of large scale neural networks using
36 mean field techniques

dy] = (@ 5,(V) (1~ o) — agud) i+ BV) awi?, (24)

where j is the neuron index (ranging from 1 to the total number of neurons, N),
7 is the population of neuron j (it varies between 1 and P), W/¥ are independent
standard Brownian motions and the function ¢ is given by:

AUV, 17) = \Jal8,(V)(1 —) + ayi X(v?). (2.5)

The maximum conductances are considered to be independent diffusion processes

J
with mean % and standard deviation o o where N, is the amount of neurons in

population . This can be expressed in the following equation:

Jor T,
Tot) = -+ €00 (2.6)

where ¢ is the population of neuron i and the ¢47(¢), i = 1,...,N, v = 1,..., P,
are independent zero mean unit variance white noise processes.

The main disadvantage of this approach is that if the noise level O’i,y is increased
the probability that Jy, becomes negative also increases. To solve this problem the
dynamics proposed in [Cox 1985] can be used:

J o ;
dJi;(t) = %(ﬁ — Ji(t))dt + % Jij (£)dBH (1) (2.7)
Y v

If the initial value is positive and the condition 2N,0ayJoy > (057)2 holds the
process is guaranteed to be strictly greater than zero [Cox 1985].

Finally, if we collect the synapses and the neurons equations, a network of N
Hodgkin-Huxley type neurons is described by the following 5N stochastic differential
equations:

(Cavi = (19(t) — gkn} (Vi — Ex) — gnam3hi(Vi — Ena) — go(Vii — Ev)) di—
(0 3 Xty Ton (Vi = Vil) dt—
25 1 NL’Y <ZJ p(j)=7 "m(Vt - Vrev)yt' dBy 7+
ext th
dri = (aS(VH(1 —2b) — B (VI)ah) dt + oo (VE, 2D)dW € {n, m, h}
vt = (aPSo(V) (L — i) — afyi) dt + oYV g W,

(2.8)
where p(j) is the population of neuron j, P is the total number of populations and
¢ is the population of neuron 3.

In the case of the FitzHugh-Nagumo model it is described by the following 3N
stochastic differential equations:

2.1. A mean field reduction for conductance-based neurons 37

(av; = (Vi = 95— wi+ 1)) i
(Zle o Xip)=y Jen (Vi = Vel)yl) dt—
25:1 NLW (Zj,p(j)zv Uév(v? N Vr@)yf dBZﬁdF
ngt AW}
dwj = cy (Vi 4 ay — byw}) dt + o, dW,™
(a? S5(Vi) (1 = i) — ai) dt +04(Vi, y)aw; .

(2.9)

dy;

2.1.2 Mean field description

It is proven in [Baladron 2012b| that this kind of network presents the propagation
of chaos property which shows that when the initial conditions are independent and
the number of neurons tends to infinity the cells become independent. This is only
possible if the network has a tight interconnectivity and many independent sources
of noise. The biological experiments in [Ecker 2010] agree with this theory.

Since, thanks to the propagation of chaos all the neurons become independent,
the dynamic of each individual neuron is described by the same stochastic process.
This process is not described by 3N or 5N equations as the complete network but
by just 3P or 5P depending on the neuron model. The evolution of each cell can
be understood as a sample of this process.

This new process that describes the law of each neuron can be obtained by
changing the sum over all the connections present on the network equation by the
mean value of y. This approximation is only accurate if the network has a dense
connectivity. For the FitzHugh-Nagumo model the behavior of the neurons is ruled
by the following 3 stochastic differential equations:

@
avg = (VP - U5 w4 1)) -
(S0 o (Vi = V&) [yPy (V,w, y,)V dwdy) di—

S0 (0, (V7 = V&) [yPy (Vo w, y)aVdwdy) dBf "+ (9 1)
fot thZ

dwj =cy (Vi + ag — byw}) dt + deWti’w
v = (a?So(V)(1 = ui) — alyi) dt + o4(Vi, g,

where P, (V,w,y,t) is the probability density function, for the possible states of a
neuron in population v at time ¢. A similar approach can be used to obtain the
mean field equations for the Hodgkin-Huxley model.

Equations (2.10) can’t be solved unless the values of Py (V,w,y,t) are known.
These quantities can’t be computed beforehand unless the network equations are
solved. Omne option is to numerically simulate the network in a Monte Carlo fashion
to produce samples and then use them to approximate the probability density. These

Chapter 2. Numerical analysis of large scale neural networks using
38 mean field techniques

seems to contradict the original objective of the mean field approach to reduce the
complexity of the system.

Another approach is to transform the mean field equation into a Fokker-Planck
Equation that describes the evolution of the probability density function itself. This
is a partial differential equation (PDE), which is completely deterministic, for which
no previous computations are needed as the probability density is the unknown. In
[Baladron 2012b] it is proven that the mean field equations described earlier can be
expressed as its equivalent Fokker-Planck equation. For the case of equation (2.10)
the corresponding Fokker-Planck equation is:

62

P
1
0Pyt Vow,y) = 3 S (00 P W) 55 [(V = VR Ps(t Vew,y) | +
v=1
19* 1 0? 1, 9
7873/2[0-5/(‘/7 y)P¢(tv V,w, y)] + o-eact 9V2 [P¢(t> V,w, y)] + 20wW[P¢(tv V,w, y)]
0 V3
gy ||V 5wt lealt Zjdw — V2 (1) | Pe(t, V,w,y)

3 (@ S(V)(1 =) — aay) Po(t, V,w,)],

_ 92 [a(V + b — cw) Py(t, V, w, y)] — a9
(2.11)

ow

where y(t) = [yPy(t, V,w,y)dVdwdy.

Equatlon (2.11) is a 4 dimensional nonlinear and nonlocal partial differential
equation. The integral term differentiates this from most other Fokker-Planck for-
malism where simpler equations are normally obtained. This equation can be solved
with numerical methods designed for solving PDE as will be shown later.

The network of Hodgkin-Huxley neurons can also be reduced to its mean field
equation and then to its Fokker-Planck reduction obtaining a 6 dimensional PDE.
This high dimensionality is a challenge for current numerical methods and comput-
ers. The equations are not written here as they are not used afterwards in this thesis
and would require an enormous amount of space.

By computing the solution to the Fokker-Planck equation all the dynamics of
the network can be obtained. All the possible statistics from the network, like for
example the mean firing rate, can be computed using this solution. Also samples
from the process can be obtained from the probability density, representing voltage
traces of neurons in the network.

2.1.3 Hardware setup

We have used a GPU cluster to run all the simulations presented in this thesis,
getting an amazing increase in speed as has been reported in [Baladron 2012a|. The
hardware is composed of 2 machines, each one with 7 nVidia Tesla cards. The cards
in the 2 computers are different, one being the Tesla C2070 and the other the C2050

2.1. A mean field reduction for conductance-based neurons 39

Number of CUDA cores 448
Frequency of CUDA cores 1.15GHz
Double precision floating point performance | 515 Gflops

Single precision floating point performance | 1.03 Tfops
Memory Speed 1.5Ghz

Table 2.1: Detailed information about the GPUs

Processor type Xeon 2665
Number of processors 2
Number of cores per processor 6
Clock speed 2.66 GHz
Cache memory 12M
Number of PCI slots 7
Number of Tesla cards 7
PCI express version gen2 16x interface
Memory Type ECC DDR3 1333Mhz
Amount of memory 72Gb
Max memory bandwith 32GB/s
Network connection infiniband QDR (32 Gbit/s)

Table 2.2: Hardware capabilities of each of the 2 available machines

cards. For detailed information about the cards see table 2.1. The only difference
between the 2 is the amount of available memory. A block diagram of the cluster
is presented in figure 2.2. The yellow squares in the figure show that there is at
least one processor per card and that the communication between them can be done
through shared memory, if they are in the same machine, or via a high speed network
connection, if they are on different computers.

The computer has 2 Intel dual-Xeon X5650 processors, each one composed of 6
cores running at 2.67 GHz. More information about the hardware can be found in
table 2.2

Using this kind of hardware requires the synchronization of 3 different levels of
parallelism. The first one is inside each card, where multiple threads run concur-
rently. The second is inside each computer, where the different processor/GPU pairs
must be coordinated. Finally, the third level is between the 2 computers that must
work together and not independently of each other. Any software must provide a
way to manage each of these levels.

2.1.4 Propagation of chaos in the Hodgkin-Huxley network

The propagation of chaos property shows that when the number of neurons tends
to infinity they should become independent. This can be measured numerically by
solving the network equations and measuring the correlations between any pair of

Chapter 2. Numerical analysis of large scale neural networks using
40 mean field techniques

+ Proc. Prac. Proc. Proc. Proc. Proc. Proc.

network

_). Proc. Proc. Proc. Proc. Proc. Proc. Proc.

Figure 2.2: Block diagram of the GPU cluster on which all the numerical simulation
presented in this document were performed.

2.1. A mean field reduction for conductance-based neurons 41

elements. We expect this value tp be large for small network and to diminuish as
the size increases.

In order to see the propagation of chaos in a network of the Hodgkin-Huxley
type, we solve the network equations M times for 0 < ¢ < T (of course, we discretize
time) and for each simulation j we keep track of the trajectories of 2 randomly chosen
neurons, 41 and is. Then the following quantity was computed:

1LV - Vi) VR - VR
0 D R N

J=1

Corr;, i, (t) =

(2.12)

This is an estimate of the correlation between the membrane potential values of the
neurons i1 and io. This procedure was repeated for different network sizes.

As the standard deviation in Monte-Carlo simulations is of the order of ﬁ ,
we need large values of M (beside large values of N) to test our hypotheses. In
order to see the real quantities the magnitude of the error must be smaller than the
correlation value. As this last number should be small for large N, the number of
simulations required is enormous transforming this problem into a big computational
challenge.

Another computational challenge in this kind of simulation is the generation
of uncorrelated random numbers. The Brownians shown in equations (2.8) are as-
sumed to be independent, and any correlation between them may change the results.
We are approximating the solution of the equations by the Euler-Maruyama method
[Mao 2007] which requires at each time step the generation of 6N uncorrelated ran-
dom numbers. For large N and long simulations, as in our case, this becomes an
extremely hard task.

A completely connected network is the simpler topology for which the dense
connectivity required by the propagation of chaos effect is fulfilled. The simulations
we have done use this kind of structure which also allows us to avoid the construction
of complex data structures to handle synapses. This is one of the main problems
faced by the kind of software tool described in section 1.3.3. In our case we just
need to sum over the y variables of all the cells.

The generation of random numbers in parallel is not simple and is the bottleneck
of any Monte Carlo method, including ours [Srinivasana 2003]. The simplest way to
do this is to make each simulation in a different processor using multiple instances
of the same sequential generator. In this case each process would run without
communicating with the others until all the simulations assigned to it are finished.
Then, once all the process are terminated, another step is necessary to join the results
from all the simulations. This is an interesting approach as it has no communication
delays. The problem is that correlation between the random numbers should be 0,
independent of the processor where they were generated or the simulation for which
they were used. Normally this is a difficult constraint to satisfy as the generated
values depends on the seed assigned to each generator. If all the seeds are the same,
the numbers are all the same, while if they are different, the selection may cause
undesired correlations. As the original algorithm is designed to work sequentially it

Chapter 2. Numerical analysis of large scale neural networks using
42 mean field techniques

can’t assure that independence will happen between sequences with different seeds.
The problem of choosing a correct set of seeds becomes harder as the number of
processors increases and tests are required to determine the existence of correlations
between streams [Coddington 1998]. Another approach is to design random number
generator algorithms that are adapted to distributed environments and that can use
just one seed for all the processes [Jeng 2000, Ackermann 2001].

The most useful tool for solving this problem in our simulations is the Curand
library develop by nVidia for its graphic cards, and that can be used in CUDA
programs. This library allows us to generate a huge amount of high quality un-
correlated random numbers in parallel by providing just one seed. The results are
stored inside the card and can afterwards be used to compute the righthand side of
equation (2.8), as required by the integration scheme, without any memory transfer
to the CPU.

The version of Curand we have used contains an implementation of a XORWOW
type random number generator, which is very well suited for GPUs. This algorithm
is different from the standard algorithm used for the sequential generation of high
quality random numbers, called the Mersenne Twister [Makoto 1998]. When our
implementation was written the only available implementation of Mersenne Twister
for GPUs was an example provided in the Cuda Software Development Kit. This
version used a simplification of the original algorithm with a reduced state which
was small enough to be used with the small amount of memory of the GPU. Because
of this change, some statistical tests were not passed by the algorithm, reason why
it was not included in Curand. The current version of Curand (released after the
development of our implementation but before the final version of this document
was finished) includes a newer version of Mersenne Twister. This is not the same
algorithm as in the Software Development Kit, but an improved version. A possible
upgrade to our code should consider changing the random number generator to this
new version of Mersenne Twister, this should reduce even more the correlation.

To test the quality of the version of the Curand random number generator we
have used, we measured the correlation between the random numbers used for solv-
ing the voltage equation on a simulation of a 1,000 neuron network. We recorded
the values that were generated for 2 randomly chosen cells at each of the 10,000
simulations performed. Figure 2.3 shows the results. All of the values are close to
0 and the highest ones are close to the order of magnitude of the error given the
number of simulations that were performed (\/1()1,%)'

In our implementations each card is controlled by a different processor. At the
beginning of the execution each processor is assigned to a distinct GPU and it do
not use any other one. The CUDA version used for this implementation did not

allow the use of more than one GPU per processor, although more modern versions
do. In any case it is faster to parallelize the host - device coordination than to use
the serialized version currently available.

We generate 2 MPI process, one on each computer. Each of these span a number
of light-weight threads equal to the number of GPUs in the machine using the
pthread library. The communication between the 2 computers is done through

2.1. A mean field reduction for conductance-based neurons 43

0.04

0.03

0.02

0.01

0.00

Correlation

—0.01f

-0.02

-0.03

500 1000 1500 2000

Time

Figure 2.3: Correlation of random numbers used in a 1,000 neuron network simula-
tion after 10,000 executions.

message passing while internally in each machine only shared memory is used. This
allows us to reduce the use of the network, thereby increasing the execution speed.
Another option would have been to create a different MPI process for each processor-
GPU pair. In this case all the communication would have been done via message
passing. Although modern MPI implementations benefit from shared memory when
available there is a packaging process necessary for the creation of messages that
our implementation avoids.

In order to numerically compute the righthand side of the system in the cluster,
we first divide equally the number of neurons among the cards. For each time step
the GPUs first compute the necessary random numbers using the Curand library.
Then, one thread is created for each cell asigned to the card. Each of these compute
the value for the next time step, for all the equations of a different neuron, using
the Euler-Maruyama method. The threads are grouped in a one dimensional array,
divided in blocks whose size maximize the usage of the processor (any factor of 32
which is the number of cores in one processor, see 1.3.4). Once all the threads in
the GPU have finished, another function is run that sums the values of the all the
y variables. Finally, the total is broadcasted by the use of shared memory.

Summing the values of an array in the GPU is not simple because the hardware
is designed for SIMD operations, which means that each thread must be indepen-
dent to obtain the best performance possible. One common way to compute a
sum like this using multiple processes is to create a variable in shared memory and
protect it from multiple accesses. This approach doesn’t fulfill the constraints of
GPU computing. = We have solved this problem by creating a small number of
threads and letting each of them compute a completely different partial sum. The

Chapter 2. Numerical analysis of large scale neural networks using
44 mean field techniques

final result can be obtained by adding the values computed at each thread. To en-
hance coalesced memory access each thread ¢ iterates over the elements at positions
(number of threads x j +1i) for j =0... #ﬂfﬁm.

Our approach only requires the transfer of one number at the beginning of each
time step and of a small array at the end. This is much smaller than transfering
the complete array for computing the sum at the CPU. Figure 2.4 presents a block
diagram of the process. The computations performed in the GPU and in the CPU
are divided into different zones and there are only 2 arrows that crosses from one to
another, corresponding to the 2 memory transfers. Each of the squares in the GPU
zone correspond to a different kernel, which are started by a call from the CPU once
the previous has finished.

Figure 2.5 shows the correlation obtained for 3 different network sizes. The
plot on the left shows the correlation for a 2 neuron network computed after 10,000
simulations, while the one in the center shows the same result but for a 1,000 neuron
network. There is clear difference between the 2 as in the smaller network the
correlation varies between -0.2 and 0.1 and in the bigger network it varies between
-0.025 and 0.015. The results show that the correlation is indeed reduced when
the amount of neurons is increased. The third plot in the figure, shows the same
results as the one in the center but when the number of simulations is increased to
1,000,000. As the error in this case is smaller the correlations are reduced even more.
We believe that the peak in the plot is due to the effect of the initial conditions, but
even this high value is smaller that the ones obtained with less simulations.

Running 1,000,000 simulations to obtain the results in the plot at the right
of figure 2.5 is a computational intensive task. For each simulation, at each of
the 2,000 time step, the right hand side of 5,000 nonlinear equations need to be
computed. This gives a total of 10'3 function evaluations. For just one simulation
the total number of uncorrelated random numbers generated is 2,000 x 6 x 1,000 =
12 x 10%. The total amount of random numbers used in one complete execution is
then 12x10'2. Dealing with this kind of figures is difficult for any personal computer
using standard scientific computing software like Matlab or Python.

We have measured the amount of time taken for the simulation of 2,000 time
steps for a 10,000 neuron network, with different amount of cards. In each case we
average the time after 100 runs. The results are shown on the left of figure 2.6. The
maximum speed is reached for three GPUs after that it starts to decrease. This is
because after each computation of the right side of Equation (2.8), the threads that
control each GPU must be coordinated, and the connectivity (y) needs to be shared
before starting the next step. Synchronizing the threads is an expensive task that
requires more time as more cards are used.

Another factor that could influence the change in speed when using more than
three cards is the reduction in the number of threads inside each GPU. Indeed,
when the number of neurons is kept constant, adding more cards implies that fewer
neurons are assigned to each one; hence, fewer threads are used. Tesla cards are
known to work better when there are many threads or the amount of computation in
each thread is large enough. Without these conditions, the amount of time used in

2.1. A mean field reduction for conductance-based neurons 45

Compute
first and
last neuron

Y

Generate
initial
conditions

Generate
random
numbers

Y

Update
neurons
equations

Y

Cpmpute ...]| Sum using
final sum multiple

Z Y threads

Y

Broadcast
local sum

Y

Increase
t

Figure 2.4: Flow diagram representing the Monte Carlo simulations of the Hodgkin-
Huxley network. The values Y7, Ys, .., are the partial sums computed by each thread.
See text for more details.

Chapter 2. Numerical analysis of large scale neural networks using
46 mean field techniques

010 0015 0.010

/\
ETYNRE
k| \ [ﬁ V\/\v TR /\ \
“VV R O E
010 \ oo o002

\J, o v \v// W/\MW wﬁ\w%

~0.025,
500 1000 1500 2000 500 1000 1500 2000 -0.002; 00 1000 1500

Figure 2.5: Left: time variation of the correlation in a 2 neuron network with 10,000
executions. Center: same with a 1,000 neuron network. Right: same as center but
with 1,000,000 executions

memory transfer, context creation, and kernel launch inside the card will probably
be too large compared to the real computation. To support this hypothesis, we
increased the number of neurons to 100,000 and, as figure 2.6 shows, the maximum
speed is reached for the six-card configuration: As more computations are needed
for simulating the larger network, the total time is larger, but the largest speedup
is reached for a larger number of cards than for a 10,000-neuron network.

0.9 T T T T T 4.5

4.0

o
®

35

o
<

3.0

o
Y

25

o
o
Time for one simulation (seconds)

Time for one simulation (seconds)

20

0'41 2 3 4 5 6 7 13 2 3 4 5 6

Number of cards Number of cards

Figure 2.6: Left: time taken for one Monte Carlo simulation of 2,000 time steps for
a 10,000 neuron network. Right: same for a 100,000 neurons network

2.2 One population Fokker-Planck equation

We have also solved the Fokker-Planck equation for the FitzHugh-Nagumo network
using the GPU cluster available. In this section we describe the numerical methods
and how they are implemented in the hardware. Then the result of several simula-
tions are shown. As the Fokker-Planck equation describes the complete dynamics of
a very large network, the results presented here show some interesting phenomena
that can occur in extremely large systems.

2.2. One population Fokker-Planck equation 47

2.2.1 Numerical method and implementation

We use the method of lines [Schiesser 1991] for solving the partial differential equa-
tion (2.11) when P = 1. We have chosen this method because of its simplicity
and because it allow us to take the advantage of any approach designed originally
for ODEs. It is also well suited for SIMD hardware architectures. The domain is
discretized but the time is kept continuous. Each of the derivatives, with respect
to the V, w and y variables are approximated using finite differences. This results
in a big set of ordinary differential equations (one per point in the discretization),
ODEs, that are solved using the GPU cluster.

First, we choose a finite volume in (V,y,w) space outside of which we assume
that the probability density function is zero. This is done considering the maximum
and minimum values seen for each variable in small network simulations. Then the
volume is discretized in a total of ny X n, X n, points, where ny is the number
of points for the V variable, n, for the w variable, and n, for the y variable.
The probability at each point outside the volume is considered to be 0 (Dirichlet
boundary conditions).

The derivatives are approximated using the following fourth order central differ-
ence scheme, see [Khan 1999, Morton 2005]:

df (z) - f(x —2Ax) — 8f(x — Azx) + 8f(z + Az) — f(x + 2Ax)

dx 12Ax ’

(2.13)

df(z) —flx—20z)+16f(x — Az) —30f(x) + 16f(z + Az) — f(x + 2Ax)
dz? "~ 12Ax2

(2.14)
For the time integration the Runge-Kutta 4 scheme is used. The initial condition is
given by the following Gaussian probability density:
_ (V-V)? _ (w—wp)*? _ (¥=70)?

]. e 20‘%/() 20'121)0 20’50) (215)

p(0,V,w,y) = (277)3/20'V00w00'y0

With this approach the total number of ODEs we need to solve is nyn,n,. This
can become fairly large if we increase the precision of the phase space discretization.
Moreover, increasing the precision of the simulation in the phase space requires, in
order to ensure the numerical stability of the method of lines, to decrease the time
step At used in the time integration scheme.

The Courant—Friedrichs—Lewy condition (see [Strikwerda 2004] for more details)
states that in order for the method of lines to be stable with an explicit time inte-
gration the following relation must be fulfilled:

N
Ug;
At; Ae <1

Chapter 2. Numerical analysis of large scale neural networks using
48 mean field techniques

where N is the number of dimensions, u,, is the derivative with respect to the vari-
able x; and Ax; is the distance between 2 points in the x; direction. This condition
determines how much the time step must be reduced for finer discretizations.

It is possible to solve this equation with a very small grid and for short time
periods in a personal computer using scientific software. The problem with this
kind of approach is that due to the low number of points and large time step size,
the instability of the method leads to the appearance of negative vealues. These
are numerical errors that have an extremely strong effect on a probability density
function which by definition can only have positive values. Our experiments also
shows that the effect of the errors grows with time. This kind of small simulation
can only be done for a small period of time after which errors dominate the solution
and the shape of the probability density function is completely lost.

We have created the necessary software to solve equation (2.11) using the GPU
cluster described in 2.1.4. The main objective was to study the effect of some
parameters, mainly noise values, on the solution. For doing this we divide the
computation into 2 steps: first the mean value of y (the integral in the right hand
side) is computed and then the probability value at each point of the grid is updated.
Being three dimensional, this integral is computationally demanding because all the
grid points must be sampled.

The full domain is a cube, which is equally divided into smaller cubes, and in
each combination processor/card the integral over this smaller domain is computed
as follows. In each card, we first create a 2D array whose elements are the 1D
integrals computed with respect to one of the three variables, keeping the other two
constant. By summing the rows of the array, we obtain a 1D array of 2D integrals
with respect to two of the three variables. These values are then sent to the CPU,
where the final integral is computed and communicated to the other processes in
the same machine via shared memory, and then to the others via an MPI message.
Only one message is needed that contains the sum over all the integrals computed
in the machine, having a small communication cost. Each processor after receiving
the values from all the others, it adds them all up to obtain the whole integral.

The three steps required for computing the local integral in each processor-card
pair are shown in the diagram of figure 2.7. Each dashed arrow in the diagram rep-
resents the direction of the integrals computed in each step. The process starts with
a cube, then generates a matrix, then a vector and finally just one value. The arrows
with solid lines represent the 2 kernels involved in the algorithm. Both of them work
in a similar way, they create one thread per point of the new matrix/vector to be
computed and then each solves one of the required integrals.

Each card computes the right hand side of equation (2.11) at all the points
assigned to the card in the smaller cubes. One thread is created inside the card for
each point, and it computes the corresponding value at that position. Because the
sub domain is the same as it is in the integral, the data is sent only once to the
GPU. Once the computation is finished the processor copies the boundaries of its
assigned small domain to the shared memory. These values will be needed for the
next computation in the neighboring cards. Finally the values at the half of the

2.2. One population Fokker-Planck equation 49

P(V,w,y) PV(7U7y) va(y)

Figure 2.7: Diagram showing the process for the computation of g

cube domain are sent via an MPI message. This is a bigger message than the one
sent during the processing of the integral because it contains all the points assigned
to one computer that will be needed by the others afterwards. The amount of values
contained in this transmission is 4nyn,. The distribution of points is represented
in the diagram of figure 2.8 and a flow chart of the process is shown in figure 2.9.

Network —

. >
connect|on/

NN N\ \ NN\

Figure 2.8: Diagram showing the organization of points in the 2 computers. The
cube formed by all the smaller ones represent the complete V-w-y domain, which
is cut in the y direction. The green lines indicate the limits between the processor-
GPU pairs. The boundary points, in red, are transferred to shared memory after
updating their value. The points in the limit between the 2 computers, in light blue,
are sent through the network. The points in the middle of each sub-cube are kept
in each GPU.

Chapter 2. Numerical analysis of large scale neural networks using
50 mean field techniques

One different array is created in the GPU for the results of each of the 4 right
hand calls necessary in the Runge-Kutta 4 scheme, one for each intermediate incre-
ment (kq, ko, k3 and k4). This is where the values are store after each call. The final
values for the next time step are computed locally in each GPU by combining the
4 arrays following the integration method. Another set of 3 arrays is used for the
input to each of the intermediate calls to the right hand side. The values of this
arrays depends on the values of the probability at the last time step and on the

previous right hand side call. One final array stores the solution obtained at the
8nynyn
num GPI}IS :

A different approach for the computation of three dimensional finite differences
is taken in [Micikevicius 2009]. At the time this work was performed, GPUs did not
have any automatic cache capabilities and all the shared memory management had

prior time. This gives a total memory usage of

to be done by the programmer. All the techniques developed were designed to use
the small amount of shared memory efficiently. Current cards, as the one used in
this thesis, have an automatic cache and do not require this kind of method. This
has also been mentioned in the study of [Michea 2010].

We have set the values of the weights in such a way that the probability of
a synapse changing sign is 0. This is done by setting a synapse noise level (04
in equation (2.6)) small in comparison to J,,, defined in equation (2.6). With this
technique we avoid the use of the more complex connectivity of equation (2.7), which
would increase the dimensionality of the resulting Fokker-Planck equation. These
and other parameters that are common for all the simulations are presented in table
2.3.

The x function used in all the simulations is:

x(y) = 0.1e-0-5/(1—(2y-1)?)

Table 2.3: Common parameters used in all of the simulations of the Fokker-Planck

equation

Initial Condition | Phase space | Stochastic Synaptic
FN neuron Weights
V=00 Vinin = —4 a=0.7 J=1
oy, = 0.2 Vinaz = 4 b=0.8 oy =0.01
wy = —0.5 AV =0.027 c=10.08
Owo = 0.2 Winin = —3 | 0w = 0.0007
Yo = 0.3 Wimaz = 3
oy, = 0.05 Aw = 0.02
At =0.001 Ymin =0
Ymaz = 1
Ay = 0.003

2.2. One population Fokker-Planck equation

CPU GPU

Read
boundaries

Compute
> PVw (y)dy

[4nyn,, floats

Compute g n, floats
& broadcast

Y Compute rhs
for each point

Boundary
values to
shared
memory

4nyn,, floats

Am |
thread 07

Send/receive
MPI message

v

Synchronize

Figure 2.9: Flow diagram showing the different steps involved in each computation

of the right hand side. The arrows that cross between CPU/GPU areas indicate
how much data is sent.

Chapter 2. Numerical analysis of large scale neural networks using
52 mean field techniques

A small independent noise, of intensity o, is added to the w variable in order
to make the numerical method stable. If the equation was left without noise the
resulting Fokker-Planck equation would not include the second derivative with re-
spect to the w variable, as in (2.11). Our numerical experiment have shown that
the error provoked by the removal of any second derivative makes some probability
mass go out of the defined volume, and then bounce back from the boundary. This
effect creates negative ripples that should not be present in a probability distribu-
tion. The chosen value is small enough not to disturb the solution but keep the
numerical method stable.

If the noise in the w variable needs to be removed a more complex finite dif-
ference approximation may be used. There are some schemes that are stable even
if one of the drift terms is missing. One option is to use a Flux Limiting Scheme
(|Roe 1986]), these are designed to limit the solution gradient near sharp changes
in the solution domain. Also, an adaptive finite difference approximation, as the
WINO scheme used in [Caceres 2011] for a Fokker-Planck equation obtained for a
network of integrate and fire neurons could be implemented. In both cases it is
necessary to study if the final equations are well suited for GPU computing.

2.2.2 Simulation results for the network of FitzHugh-Nagumo neu-
rons

2.2.2.1 Stationary solutions

Four snapshots of the solution are shown in figure 2.10 (corresponding to the val-
ues I = 0.4 and o¢r = 0.27) and three in figure 2.11 (corresponding to the values
I =0.7, 0zt = 0.45). In the figures the left column corresponds to the values of the
marginal p(¢,V,w), the right column to the values of the marginal p(¢,V,y). Both
are necessary to get an idea of the shape of the full distribution p(¢,V,w,y). The
first row of figure 2.10 shows the initial conditions. They are the same for the results
shown in figure 2.11. The second, third and fourth rows of figure 2.10 show the time
instants t = 30.0, t = 50.0 and the stationary solution. The three rows of figure 2.11
show the time instants t = 30.0, t = 50.0 and at convergence. In both cases the solu-
tion appears to converge to a stationary distribution whose mass is distributed over a
“blurred” version of the limit cycle of the isolated neuron. The “blurriness” increases
with the variance of the noise. The four movies for these two cages are available for
download at http://www-sop.inria.fr/members/Javier.Baladron/thesis.html

The limit cycle of the isolated neuron is shown in figure 2.12. The plots there
correspond to the result of simulations with just one unconnected neuron and the
same parameters as in the experiment of figure 2.10 and 2.11. Each plot shows how
the neuron traverses the phase space, going around a cycle, which has a similar
shape to the one presented in the solution of the Fokker-Planck equation.

In order to characterize the solution of the Fokker-Plank equation we study how
the dynamics changed when some parameters were varied. We focus our analysis
on the different noise sources as it has been shown that they may not only have a

2.2. One population Fokker-Planck equation 53

disturbing effect but they may also improve the information processing capabilities
of the brain [Rolls 2010]. Also on the work presented in [Touboul 2012] it is shown
that the noise level may change completely the structure of the solutions of a similar
equation coming from the mean field approximation of a firing rate model. For this
reason, in the first set of experiments we made, the value of the external noise, oyt
was changed, and all the other parameters were fixed.

2.2.2.2 Speed of convergence

In each experiment, with different external noise level, the convergence rate was
measured using the following equation:

Cr= /(P(t - At? V7 w, y) - P(t, V, w, y))dedwdy

To compute this quantity, first the difference between 2 consecutives steps is
obtained, and then the integral is solved using the trapezoidal rule. If this value
is close to 0 the solution is stationary while if it is large the solution may have big
abrupt changes. The simulations have shown that the convergence is faster when
the noise level is increased as can be seen on the plot of figure 2.13.

This plot also shows that the difference in convergence speed between noise levels
is higher for low values. In fact, the curves for the 2 highest noise levels are very
close to each other. This may indicate the existence of a limit in the amount of
speed it is possible to gain by increasing the noise level. It is probable that for even
higher levels of noise the stationary solution will not be achieved earlier in time.

2.2.2.3 Firing rate and mean voltage

The gain in convergence speed with higher noise levels is potentially useful only if
the stationary solution found for each noise level is similar. If all solutions were
completely different, noise would have only a disturbing effect and computing with
higher levels of noise would require complex procedures to extract useful information.
We have measured the mean voltage and the mean firing rate (to be explained below)
in each case as shown in figure 2.14. In all cases the solution seems to be converging
to the same values.

The mean voltage has a similar behavior but the bigger variability for lower levels
of noise is more evident as can be seen in figure 2.14 top. The general tendency of
all the simulations is to converge to a common value but the simulations with low
levels of noise require more time. This can be noticed as the size of the waves is
decreasing with time for all the curves

The firing rate was computed following the method proposed in [Fourcaud 2002]
for integrate and fire neurons. There the Fokker-Planck equation is rewritten as:

gtp(t, X)=-VgJ(t,X), (2.16)

where X = (V,w,y) and in our case:

Chapter 2. Numerical analysis of large scale neural networks using
54 mean field techniques

Marginal probabilty density P(V,W)
Marginal probability density PV.Y)

Figure 2.10: Marginals with respect to the V and w variables (Left) and to the V and
y variables (Right) of the solution of the McKean-Vlasov-Fokker-Planck equation.
The first row shows the initial condition, the second shows the marginals at time
30.0, the third the marginals at time 50.0 and the fourth the stationary (large time)
solutions. The input current I is equal to 0.4 and gext = 0.27. These are screenshots
at different times of movies available in the web page.

2.2. One population Fokker-Planck equation 55

al probability density P(V.W)
i

Margin

Marginal probability density P(V,W)

Marginal probability density P(V,w)

Figure 2.11: Marginals with respect to the V and w variables (Left) and to the V and
y variables (Right) of the solution of the McKean-Vlasov-Fokker-Planck equation.
The first row shows the marginals at time 30.0, the second the marginals at time
50.0 and the third the stationary (large time) solutions. The input current I is equal
to 0.7 and oext = 0.45. These are screenshots at different times of movies available
in the web page.

Chapter 2. Numerical analysis of large scale neural networks using
56 mean field techniques

Limit cycle of an isolated neuron V-

Limit cycle of an isolated neuron V-W

> 030

<o

Figure 2.12: Traces of an isolated neuron showing the limit cycle. The first row
corresponds to the a neuron with the same parameters as the experiment shown
in figure 2.10 and the second to the one shown in figure 2.11. The first column
corresponds to the V-w marginals and the second to the V-y marginals.

0.025
— noise = 0.27
— noise = 0.37
0.020 — no!se = 0.47|]
— noise = 0.57
— noise = 0.67
ot
© 0.015 i
()
()
C
(0]
[e)]
@ 0.010 E
>
C
(o]
(@}
0.005 .
00093 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Time

Figure 2.13: Convergence rate with different external noise levels for a limited period
of time.

2.2. One population Fokker-Planck equation 57

J = JvV + Juib + J, i, (2.17)
V3 —
Jy = [V -z w +1—JV —=Viep) /y'P(t, V’,w’,y')dV’dw'dy’}P(t, V,w,y)
1
- 5%{ [szt oV - Wev)Q/y’P(t, v, w’,y’)dV’dw’dy’} P, V,w,y)}
1,0
w = - -5 —P y Vi, W,
J, c(V+a—bw) 20w8w (t,V,w,y)

2

Jy = [arS(V)(1 =) = aay] P(t, V.w,y) - 153/{ |4 S(V)(1 = y) + aay| P () Pt Vo w,p) },

(2.18)

J is the probability current of the system, Jy , J,, , Jy are its components in the
three directions of the phase space and finally vV, w, 7 are the vectors that specify
such directions.

Now, if we choose a volume €2 in the phase space with surface Sq and we integrate
on this volume both the sides of equation (2.17) using the Divergence Theorem on
the right hand side, we obtain:

‘9/ P(t, X)dX = —j{ J(t, X) - ndS, (2.19)
8t 0 Sa

where 7 is the outward pointing vector normal to the surface Sg.

Therefore the right hand side of (2.19), without the minus sign, represents the
amount of probability per unit of time that is flowing through the surface Sq. This
value is positive if the probability is flowing outside the volume Q.

Now, if we choose Q = {(V,w,y) : V > O} | where O is a predefined threshold,
this means that Sq is the hyperplane V = O and therefore §SQ j(t,)?) -ndS =
fo[O,l] f(t, O,w,y) Vdwdy — fo[O,l] Jy (t,0,w,y)dwdy represents the amount of
probability that flows through it per unit of time.

This term contains the contributions of both the probability that is flowing
outside (positive contribution) and the probability that is flowing inside (negative
contribution) the volume 2. More specifically, the positive contribution represents
the case when the membrane potential is increasing in time and crosses the threshold
V = © during the initial evolution of the spike, while the negative contribution
represents the final part of its evolution, namely when the membrane potential is
decreasing in time and crosses the threshold. These two contributions cancel each
other when the solution is stationary, and therefore we want to keep only one of
them in order to represent the spiking activity of the neuron

We can modify slightly the previous equation in order to fit it to our goal, which
is to measure the amount of probability flowing through the threshold from below.
In fact, we can see that:

Chapter 2. Numerical analysis of large scale neural networks using
58 mean field techniques

/ Jv(t,@,w,y)dwdy:/J‘T}mrg(t,@,w)dw
Rx[0,1] R

where:

JPI(t, 0, w) z/ Jv(t,0,w,y)dy =
0,1]

V3 -
[V —— —w+I-JV - Vrev)/ y'p(t, V' w', y’)dV’dw/dy'} "I, O, w)
3 R2x[0,1]

(2.20)
19 2 2 2/ / ! 1o / /g
- T AT, - v;‘ev t7v7 ’ dv d d e t’ ’
zav{[aeroJ(V) RQX[O,l]yp(w,y)dV dw y}p (Gw)}
(2.21)

Therefore the marginal probability current Ji'*?(t,0,w) is the V compo-
nent of the probability current associated to the marginal probability density
pmerI(t, Viw) = f[o’” p(t, V,w,y)dy evaluated on the hyperplane V = ©.

When the noise in the system is not small enough, the disturbance doesn’t cause
neurons to jump to a different branch of the limit cycle in the (V,w) plane. Each
cell follows a trajectory close to the one of a noiseless neuron For this reason we
have fixed our attention on it and not on the planes (V,y) or (w,y) which are shown
in figures 2.10 and 2.11 left. Finally, we can isolate only the positive contributions
to Ji7"Y(t,©,w) and compute:

/ J(t, 0, w)dw, (2.22)
E(t)
where E(t) = w : J'*"?(¢t,0,w) > 0 on the line V =0

If we interpret p(t,V,w,y)dVdwdy as the probability of finding the state of a
given neuron in the cube [V, V + dV] X [w,w + dw] X [y,y + dy| at time ¢ (this is
possible due to the independence resulting from the propagation of chaos effect),
equation (2.22) is the mean firing rate of a real neuron.

As shown in figure 2.14 the above quantity is similar in all the simulations. The
difference between them can be found when computing the variance. As can be
expected, higher levels of noise produce a higher variance. Noise makes neurons
deviate from the limit cycle before being reatracted to it. This may cause some
neurons to move slower or faster than a noiseless cell, as they do not follow the cycle
exactly. Because noise is different for each element they end up spreading over all
the possible values. Figure 2.15 shows the variance in all the cases.

2.2.2.4 Effects of the deterministic input value

In the next set of experiments we fix the external noise but changed the input value.
For every case we compute the mean firing rate as described above. This should
give us an idea of the information processing capabilities of the network.

2.2. One population Fokker-Planck equation 59

2.0 ; ;
— noise = 0.27
— noise = 0.37
15 —— noise = 0.47 |
~— noise = 0.57
noise = 0.67
1.0F
&
3 0.5
©
>
c
i
2 oo
-0.5
-1.0+
715 L 1 1 L L 1 1
0 20 40 60 80 100 120 140
Time (seconds)
1.0 T T T T T T T
— noise = 0.27
— noise = 0.37
08 — no!se = 0.47 ||
— noise = 0.57
— noise = 0.67
]
et
©
= 0.6 .
o
o
=
=

Time

Figure 2.14: Top: mean voltage for the different external noise levels. Bottom:
mean firing rate for the different external noise levels

Chapter 2. Numerical analysis of large scale neural networks using
60 mean field techniques

1.6 T T

1.4

Variance
o
[e0]

o
o

noise=0.27

0.4f o i
— noise=0.37
— noise=0.47

0.2 — noise=0.57|]
— noise=0.67
0.05 20 40 60 80 100 120 140

Time

Figure 2.15: Variance for simulations with different external noise levels

Figure 2.16 shows the firing rate as a function of the input value for the last time
step of our simulation. The images there are just a screenshot of 2 movies available
at the web page. The plots and movies show how the firing rate increases with
the input until it reaches a maximum value and then starts falling. This happens
for the 2 levels of noise and can be seen during the whole simulation. The reason
for this drop is that at the input value that produces the maximum firing rate the
limit cycle for the isolated neuron has disappeared. The solution to the mean field
equation for high input values is just a single bump whose center position depends
on the input value. Increasing the input moves the center further from the spike
threshold producing the decrease in the firing rate. Larger levels of noise increase
the width of the bump.

In order to further check this we have solved the mean field equations (2.10)
with a high input value that should not produce any spiking. We have taken the
probability distribution computed by solving the Fokker-Planck equation and use
this together with the mean field equation to generate samples of the process. Some
samples are presented in figure 2.17. The examples show that the voltages fluctuate
around a mean value, which is close to 1.5. No clear spikes can be detected in the
shape of the curves, unlike in figure 2.1.

Both movies show that the firing rate converges quickly for high levels of input
while it continues to oscillate during the whole duration for very small values. We
computed the convergence rate for some input values where the limit cycle exists and

2.2. One population Fokker-Planck equation 61

Firing rate

input

0.18

Firing rate

0.()2O

5 10 15 20 25 30
input

Figure 2.16: Firing rate for different input value at the final time step of the sim-
ulation. The external noise is 0.27 for the plot on the top and 0.45 for the one on
the bottom. Movies for both simulations can be found on the web page.

Chapter 2. Numerical analysis of large scale neural networks using
62 mean field techniques

25

20 ‘M\

‘]H“ i W.” I Rl S A :II |
V "l '“H “ " |_) M “LM !IM

=
o

Voltage

10

0.5F

0.0

20 0 50 80 100 120 40
Time

Figure 2.17: The green and blue line are voltage traces obtained as samples from
the stochastic process described by the mean field equation. The input value used
for the simulations is high, in a level where no spiking occurs

set the external noise level to 0.27 and 0.45. These results are shown in figure 2.18
where a plot of the convergence for the final time steps of the simulation is presented.
In both cases, starting from input 0.6, the convergence is faster with higher input.
This phenomenon is similar to what was seen for the external noise levels. In the
case of input 0.4 the convergence is faster than other higher values of noise, not
fulfilling the previous pattern. This is because the value of the deterministic part of
the input is too low compared to the noise level. In this case the input signal the
neurons are receiving is mainly composed of noise

In a third group of experiments the value of the noise level at the synapses, o,
was varied and the rest of the parameters were fixed. This is the second important
source of noise of the model, and as the first one (0¢y¢), has important effects on
the solution we expected this one to completely change the final probability density.
This was not the case, as with the 3 configuration we tested, presented in figure
2.19, no important change, neither in shape nor in convergence, was detected

In the final experiment with the Fokker-Planck equation, we used an input func-
tion that changed in time. We let the system converge to the stationary regime
and then change the input value to a slightly smaller one. This allow us to see the
changes in the probability distribution when the initial conditions are distributed
along the limit cycle and determine how fast the system can react to fluctuations
in the input. The firing rate for this experiment is presented in figure 2.20 and the
movie for this simulation is included in the web page. The results show that the
system was able to react very fast, as the probability start to change as soon as the
input varies. The convergence to a new stationary solution is achieved faster that
with the initial condition from the previous experiments.

2.2. One population Fokker-Planck equation

63

0.0007
— input =04
— input = 0.6
0.0006 — input=0.8]]
— input =1.0
0.0005 | — input=1.2]
v input =1.4
< — input=1.6
E 0.0004 | |
o
E
ru [~ -
S 0.0003 -
\\.
0.0002 |
\Van /
0.0001 - \ ‘ p _
A "-a.____\--f-_ \'\’\'
0.0000 = = i —]
Time
0.000035
— input=04
0.000030 | — Input=06}
— input = 0.8
o — input =1.0
50.000025 — input = 1.2]
% II". input =1.4
50.000020 f\ input = 1.6
@
=
o
Y0.000015
0.000010
0.000005
0.000000

100

Time

Figure 2.18: Convergence rate for the last time steps of the simulation. The external
noise for the plot on the top is 0.27 and for the one on the bottom is 0.45.

Chapter 2. Numerical analysis of large scale neural networks using
64 mean field techniques

o
®

o
<

o
>

— sigma = 0.01
— sigma = 0.05
— sigma =01

N
It
3

o
o

N
3
g

Firing rate

o
IS

3

0.3

0.2
0.1
/
0.0

8o 05 o 15 20) 20 20 60 80 100 120 140
Weight value, j

Probability density function PJ(j)
S
3

g
g

Time

Figure 2.19: Left: probability distribution for the different diffusion processes used
in the experiments. This describe the law of the possible values taken by the weights.
The max conductance of the process is 1 in both cases. The width of the curve is
given by the value of ;. Right: the firing rate obtained with the 3 different synapse
configurations

15

Firing rate

1.0

200 400 600 800 1000 1200 1400 1600

Time

Figure 2.20: Firing rate for a simulation when the external input value is varied at
time step 750. The plot shows how the system adapts to this new input value. A
movie of this simulation can be found in the web page

2.2. One population Fokker-Planck equation 65

2.2.2.5 Comparison to isolated neuron

To determine the effect of the network on the dynamic, we computed the proba-
bility density function of an isolated neuron with the same parameters as in the
experiments presented in figure 2.10 and 2.11. To do this we used Monte-Carlo
simulations in a similar way as was done for the Hodgkin-Huxley network in section
2.1.4. In each simulation we considered a sample of the process and used this to
construct an approximation of the probability density function. We have chosen
this method, instead of solving the corresponding Fokker-Planck equation, because
it requires solving just 3 stochastic equations instead of a large set of ODEs. Solv-
ing the Fokker-Planck equation would have required the same discretization size as
before (to be able to compare) and would take a similar amount of computational
time. Instead, solving directly the neuron equation allow us to create a faster im-
plementation, especially if we use a parallel random number generator like Curand.

The simulation with external noise 0.27 and input value 0.4 of an isolated neuron
didn’t converge to a stationary solution as the one showed in figure 2.10. A movie
for this simulation is available at the web page and a screenshot of the final time
step is presented in figure 2.21 left. Instead, the experiment with noise 0.45 and
input 0.7 did converge but to a different solution than the one of the network (shown
in figure 2.11). A movie for this experiment is also available at the web page and
a plot of the stationary solution is shown in figure 2.21 right. The quality of both
movies is worse than the experiments with the Fokker-Planck equation because we
have only used 10,000 simulations. Increasing enough this number should produce
a similar quality but would slow down the simulations

The effect shown by these simulations is similar to what was shown on those with
different input values (see figure 2.18). The input to each neuron is composed of the
external signal plus the current sent through synapses from other cells. The total
input of the isolated neuron is smaller than the one a cell in a network receives (there
are only excitatory connections). Given the behavior found in previous simulations,
the system should converge only if the input is high enough, which may not be the
case in the first isolated neuron experiment but may happen in the second. This is
an example of an interesting change in the dynamics, produced by letting a neuron
interact with others.

2.2.3 Simulation results for the network of Morris-Lecar neurons

We repeated some of the previous numerical experiments with the more realistic
Morris-Lecar neuron model described by equations (1.6). The shape of the spikes
produced by this model is closer to those produced by the Hodgkin-Huxley type
than the ones produced by the FitzHugh-Nagumo model. Also the parameters
in the model can be related to physical quantities, providing units for them and
allowing to compare the results with the real measurements.

A similar approach to the one used to include noise in the FitzHugh-Nagumo
model was used to create a network of noisy Morris-Lecar cells. First the input

Marginal probability density P(V,w)

Chapter 2. Numerical analysis of large scale neural networks using
66 mean field techniques

al probability density P(V,w)
IS
2.

Margin:

Figure 2.21: Probability density for 1 neuron approximated after 10,000 Monte Carlo
simulations. Left for experiment with noise 0.27 and right for noise 0.45.

function was separated in a stochastic and a deterministic part. This allows us to
determine if the effects of the external noise are the same in this model as in the
previous one. Another small noise source was included in the recovery variable for
the same reasons as before. No change was made in the synapse structure. The
common parameters for all the simulations are presented in table 2.4. The resulting
Fokker-Planck equation is:

P
1 82
O Py(t,V,w,y) = Z 5l 8V2 (V- Virev)? Py(t, V,w,y)| +
v
10% , 0?
58_y2[0-Y(V, y)P¢(t) V7 w, y)] +5 Uext OV2 [P¢(t7 V) w, y)]
0 1
— 50 [(F9caMss(V)(V = Eca) = g W(V = Eu) = g0(V = EL) + 1) 5

.
=3 T (V= Vrew)g, () Po(t, V,w,)| - (% (@ S(V)(1) — auy) Py(t, Vs w,)]

D [(WaslV) =) Tiw (V) Polt, Vi,)], (229

The simulations with this model show the existence of stationary solutions simi-
lar to the ones found for the FitzHugh-Nagumo model. An example of a stationary
solution can be seen in figure 2.22. The (V,w) marginal probability density spreads
around the limit cycle in a similar fashion to the FitzHugh-Nagumo model. The
structure of the 2 limit cycles whichx| produce the spikes are similar. Again the
"blurriness* depends on the noise values.

2.2. One population Fokker-Planck equation

67

Initial Condition | Phase space Stochastic Synaptic
ML neuron Weights
Vo = —10.0 Vinin = —60 | gcq = 4.0(mmho/em?) | J =10.3
oy, = 4.0 Vinaz = 60 | gk = 8.0(mmho/em?) | oy =0.01
wp = —0.2 AV =0.38 | gr = 2.0(mmho/cm?)
Ow, = 0.05 Winin = —0.2 Ep = —60.0mV
Yo = 0.2 Wmaz = 0.6 FEr = —84.0mV
oy, = 0.05 Aw = 0.003 Ecq = 120.0mV
At = 0.001 Ymin =0 Vi=-12mV
Ymaz = 0.8 V2 =18.0mV
Ay = 0.003 V3 =12.0mV
V4=17.4mV
C =20
ow = 0.01

Table 2.4: Common parameters used in all of the simulations of the Fokker-Planck

equation for the Morris-Lecar model

Figure 2.22: Example solution of the Fokker-Planck equation for the Morris-Lecar
model. In the left the solution at time 50 and in the right the stationary state.
Movies for this simulation are available on the web page

Chapter 2. Numerical analysis of large scale neural networks using
68 mean field techniques

The solutions were obtained using a modified version of the same code. The
job distribution and communications scheme were left the same, only the equation
was changed. As the range of values for the different variables in the Morris-Lecar
model is very different from those in the Fitzhugh Nagumo model the limits of the
volume are different.

The distribution of points in the grid had to be changed in order to keep a similar
error level in the estimation of the derivatives by finite difference. As the voltage
varies between -60 and 60 in the Morris-Lecar model, while it varies between -4 and
4 in the FitzHugh-Nagumo, more points are necessary in the discretization for V to
keep a AV similar to the previous experiments. To do this without increasing the
computational complexity too much, the range of values for the y and w variables
were reduced and discretization points were taken out of these dimensions and added
in V. Finally, the total amount of points is similar in both cases, but the points are
distributed differently.

When high input values are presented to the Morris-Lecar model the limit cycle
is destroyed and only a stable fixed point is present (see bifurcation diagram in
[Izhikevich 2007]). This is the same effect that made the firing rate of the FitzHugh-
Nagumo network decrease after the peak in figure 2.16. Figure 2.23 shows the final
stationary probability density in one of these cases. All the mass is distributed
around the stable fixed point and the width of this peak depends on the noise levels.

Marginal probability density P(V,W)

Figure 2.23: Stationary solution for the Morris-Lecar model with high input

We have repeated the experiments reported in section 2.2.2 where we varied the
external noise with the Morris-Lecar model. As in the previous case, the convergence
rate was measured each time. A similar behavior was found, the highest the noise
levels, the faster the convergence. The limit for the gain in speed due to the rise in
external noise also seems to exist in this case. Due to the difference in the range of
possible values for the voltage variable the external noise used for these experiments

2.2. One population Fokker-Planck equation 69

is much higher than before. See figure 2.24 for details on the different convergence
rates.

0.0010

0.0008

0.0006

Convergence rate

0.0004

0.0002 \

0.0000

Figure 2.24: Convergence rate for several simulations of the Morris-Lecar network
with different external noise levels and input = 80.

The same procedure as in the FitzHugh-Nagumo case was used to characterize
the solution for each noise level. The mean voltage value and the mean firing rate
were computed and compared. The results can be seen in figure 2.25. The mean
voltage has a similar behavior to the previous experiments, for all noise levels it
converges to a similar value. The plot also shows how the higher levels of noise
are approaching this value faster. The firing rate behavior is different from before,
in this set of experiments it is reduced by a small amount when the noise level is
increased. This difference is small and although the solutions are not the same they
are similar enough for the system to benefit from the faster convergence. Finally,
the variance was also computed for these simulations (see figure 2.26), obtaining a
structure similar to that of the FitzHugh-Nagumo case.

A somewhat surprising behavior was found in simulations with small inputs and
high levels of noise. The firing rate in these cases doesn’t converge but it decreases
over time. Although this decrease is slow, it looks like the value of the input is not
high enough to dominate the behavior of the neuron as it does when the noise is
smaller. Figure 2.27 shows the mean firing rate for 3 different input values and noise
intensity 5.5, the plot shows how for input 60, 80 and 100 the system converges to
a stationary solution while for input 40 it is decreasing. The figure also includes
the rates for input 40 and 80 when the noise level is 3.5. In this case the firing rate
converges for the small input. This effect was not present in the FitzHugh-Nagumo
simulations.

2.2.4 Speed of our implementation

Obtaining the previous results is a computationally demanding task mainly due
to the number of points in the grid, the nonlinearities in equation (2.11) and the
integral term. GPU computing techniques allowed us to solve the large system of

Chapter 2. Numerical analysis of large scale neural networks using

70 mean field techniques
15 . , ;
— noise=1.1
— noise = 1.5
10y — noise = 2.0|]
— noise = 2.5
51 — noise = 3.0]
noise = 3.5
) — noise = 4.0
=) ot . |
8 — noise = 4.5
e \ | — noise =5.0
§ 5| \| — noise =5.5|]
) " |
-10
_15 -
_20 Il ! ! Il ! ! !
0 200 400 600 _ 800 1000 1200 1400
Time
0.5 T T
— noise=1.1
— noise = 1.5
0al — no!se =2.0]]|
—— noise = 2.5
— noise = 3.0
noise = 3.5
o 031 — noise = 4.0]
= .
© — noise = 4.5
P — nhoise = 5.0
Z 02} — noise = 5.5 |
L.
0.1H .
0.0 1 = I I I I
4] 200 400 600 800 1000 1200 1400 1600

Time

Figure 2.25: Top: mean voltage. Bottom: mean firing rate.

2.2. One population Fokker-Planck equation 71

600
500
400
o
I+
e
&
2 300
— noise=1.1
— noise=1.5
200 — noise = 2.0
\//| ~—— noise = 2.5
— noise = 3.0
noise = 3.5
100 — noise = 4.0
— noise = 4.5
— noise = 5.0
— noise =5.5
% 200 400 600 800 1000 1200 1400 1600

Time

Figure 2.26: Variance for simulations of the Morris-Lecar network with different
noise levels.

— input = 80 — input = 40.0
0.35 — input = 40] X — input = 60.0
osr | — input = 80.0
0.30 4 \ —— input = 100.0

0.25

0.20

Firing rate
Firing rate

0.15

0.10

O'OOO 200 400 600 800 1000 1200 1400 1600 0'00 200 400 600 800 1000 1200 1400 1600

Time

Time

Figure 2.27: Mean firing rates for different input values with 2 different levels of
external noise. The plot on the left shows the rates with noise level 3.5 and the one
on the right with noise level 5.5.

Chapter 2. Numerical analysis of large scale neural networks using
72 mean field techniques

non linear differential equations fast enough to be able to study the dynamics of the
system when several important parameters change. The evolution of the solution
for long periods of time is hard to obtain due to the stiffness of the equations which
forbids us to use large time steps. In fact, before the use of a parallel machine, we
could only compute the dynamics for a small period of time and with large error
bounds.

For this kind of application GPUs are a competitor for large scale standard
clusters. The mean execution time for one time step of the FitzHugh-Nagumo
Fokker-Planck equation (measured after 100 repetitions) is 0.06 seconds when the
2 computers and the 14 cards are used. This includes computing the righthand side
of the system of ODEs created by discretizing equation (2.11) 4 times and then
combining these results to get the final value for the current time. In order to reach
the same speedup without GPUs we would require a machine with several hundreds
processors, which is much more expensive and difficult to maintain and use than
our hardware.

A set of experiments was designed to compare our approach with other possible
solutions. First, the code was changed in such a way that all the computations that
were done in the GPU were executed in the processor itself. The amount of points
assigned to each processor is the same as before but this time there is no GPU to
update the values in parallel. With this approach one level of parallelism is removed
by sequentially computing the right hand side for each point in a loop. As this
version doesn’t need the GPUs, the maximum amount of threads is not determined
by the number of cards but by the number of available processors. This is the kind
of approach that is normally used in a standard cluster.

We have tested this code in a machine with only shared memory communication.
Results for a 210x210x210 grid and the FitzHugh-Nagumo model are presented in
figure 2.28. For the maximum amount of processors in the machine, 10, the execution
time is longer than 4 seconds when a much smaller grid is used, see the right hand
side of figure 2.28. If we extend the behavior presented in the plot an extremely
large number of processors would be required to achieve the same speed up as in the
GPU case. Probably, a machine with such a number of processors and only shared
memory is impossible to find.

To extend the comparison, the execution time as a function of the number of
cards is also presented in figure 2.28. These results are shown for 2 different config-
urations, the first is a 210x210x210 grid, which can be compared to the experiment
with only CPUs, and the second is for a 308x308x308 grid as the one used for the
results in the previous section. Both experiments were done in just one machine
of the cluster (only shared memory communication) and only the amounts of cards
for which the domain can be equally divided were used. Already with 5 cards the
difference in execution time for the small grid with and without GPUs is huge. In
both cases an increase in the number of GPUs provides a faster solution. The shape
of both curves is exponential and a limit to the possible speed up is already seen in
the 210x210x210 case. This is similar to the effect described in section 2.1.4. For
the bigger grid the limit is still not reached with just one computer.

2.2. One population Fokker-Planck equation 73

A 0,080 Mean execution time for a 210x210x210 grid B 0.24 Mean execution time for a 308x308x308 grid
0.075 0.22
0.070 0.20

0.065

o
.
©

o o)
o = o
@ il 3
=) a S

Time for one step (seconds)
Time for one step (seconds)
o
=
>

0.14
0.045 0.12
0.040 0.10
0035 2 3 4 5 6 0.08 2 3 4 5 6
Number of cards Number of cards
c Mean execution time for a 210x210x210 grid in the multi cpu version
45
40
35
w
<
5 30
I+
@
a
a 25
o
@
220
S
8
% 15
E
E
10
5
0 2 3 4 5 6 7 8 9 10

Number of processors

Figure 2.28: A: mean execution time for one time step for a 210x210x210 grid for
different number of GPUs. B: The same as A but for a 308x308x308 grid. C: Mean
execution time for a 210x210x210 grid as a function of the number of processors
when no GPU is used

Chapter 2. Numerical analysis of large scale neural networks using
74 mean field techniques

This difference in speed was as expected, mainly because the computational
power of the GPUs is much bigger than the one of the 10 CPUs. Just one card has
a theoretical maximum of 1.03 Tflops while the 10 cores have only 0.1064 Tflops.
One GPU has much more computational elements than the 10 cores, in fact, the
cards are almost 10 times faster. This difference is only with one card and not with
the 14 available. Clearly, comparing the 2 hardware is very unfair, but we would
need around 100 cores to reach the same theoretical peak of just one card. We don’t
have access to a machine with enough cores to reach the same theoretical flops of
all the card working together, so a fair comparisson is impossible.

Although we are comparing machines with different hardware, the financial as-
pect should also be considered. Buying a machine with the same computational
power as our GPU cluster would be very expensive. The two different types of
hardware we are comparing are in a low price range for standard supercomputers.
Clearly, for our problem, using a GPU cluster is faster than using a multi-processor
machine of a similar price.

In a second experiment our solution was compared to an implementation us-
ing the PETSc library [Balay 2012b, Balay 2012a, Balay 1997]. This library con-
tains methods for solving partial differential equations using parallel machines. The
current version even provides some support for GPUs. We have used the explicit
Runge-Kutta method provided in the library and 98 processors, evenly split between
2 machines. The mean execution time for this version with a 308x308x308 configu-
ration is 3 seconds, which is around 60 times slower than our GPU implementation
with the 14 cards (0.06 seconds).

The PETSc implementation first creates a distributed array object to store the
results. This is a data structure provided by the library that distributes the data
equally between processes. The communication of the boundaries between processes
doesn’t need to be written by the programmer, it is managed automatically by the
library. Each time the right hand side of the equations is computed the values of
this array are updated by PETSc. In fact, the only things that the time stepper
methods implemented in the library requires are a distributed array and a pointer
to a function that computes the right hand side.

Our implementation provides to the library a function that computes the right
hand side of the equations. This function is then called by the chosen numerical
method for time integration. The function first, reads the distributed array and
obtains the boundaries. This is done with one call to a PETSc function. Then, it
computes the mean value of y ([yP(V,w,y)dVdwdy) of the points assigned to
the process that made the call. This value is then shared with the others via
the MPI broadcast function. Normally, the right hand side functions in PETSc
implementations do not use directly MPI calls because all the communication is
provided by the library. In our case avoiding explicit MPI calls was impossible due
to the integral in the equations. Once the final value of the integral is known, a for
loop computes the right hand side of each point assigned to the process.

PETSc is designed to work with a set of MPI processes. For this reason, all the
communication of this implementation is done via message passing. In the previous

2.2. One population Fokker-Planck equation 75

implementation (with GPUs) only 2 MPI processes were created, one per machine,
and the local communication is performed through shared memory. This avoids the
packaging procedure require by MPI and PETSC.

The test was done using 2 nodes of a Dell R815 cluster. Fach node has one Intel
quad Opteron processor processors with 48 cores running at 2.2GHz. Each machine
has 256 Gb of RAM memory. They are connected via infiniband technology

A preliminary version of these results was published in [Baladron 2012a|. There
the speed up for an older version of the code is reported. The main difference
between the version in the paper and the one on this thesis is how the Runge-Kutta
4 method is implemented. In the previous version the GPU only computed the
right hand side of the equations, but not the input for the next step of the method.
After each computation in the GPU, the complete result was sent to the CPU which
prepared the next call by using the Runge-Kutta formulae and then sent the data
back to the GPU. In the current version both the input for the next step and the
values of the right hand side are computed on the same kernel, in the GPU. For
this reason only the values at the boundaries need to be sent to the CPU instead
of all the results. The final amount of memory copied between CPU and GPU is
much smaller in the version reported in this thesis. Also, in the previous version the
final values of a time step were computed in the CPU, as all the values were already
there after previous exchanges of data. On the new version this is done in the GPU
as the data is only maintained there and not in the CPU.

2.2.5 Discussion

We have shown two different options for the simulation of the kind of network de-
scribed in section 2.1.1: Monte Carlo simulations and solving the Focker-Planck
equation. If the network size is small enough, doing Monte Carlo simulation would
be faster than solving the partial differential equation. This is because the grid
size required for solving the PDE is large (300x300x300), so it still requires a lot
of instructions. Also, the solution of the Focker-Planck equation is a correct aprox-
imation of the probability density when the number of neurons tends to infinity,
so for a small network the behavior of the solution of the PDE may be different
from the real dynamics of the network. Instead, for big networks the Focker-Planck
equation will converge to the correct probability density, independent of the number
of neurons. For this reason, it is always possible to find a number of neurons for
which the Focker-Planck equation will be faster than Monte-Carlo simulation. As
our objective was to look at the behavior of large network, we have chosen to solve
the PDE instead of the Stochastic Differential Equations.

The previous results show the existence of a stationary probability density for
a network of noisy FitzHugh-Nagumo (see figure 2.10 and 2.11) or Morris-Lecar
neurons (see figure 2.22), a fact which might have several implications for the way
the brain may encode information. In a network with the propagation of chaos
effect each neuron is an independent unit which after convergence follows the same
stationary law. As the state of each cell is a sample of the process, a neuron in

Chapter 2. Numerical analysis of large scale neural networks using
76 mean field techniques

a different population may see as many samples as its number of synapses. If the
number of connections of this postsynaptic cell is big enough it may produce a sample
based representation of the probability density containing all the information from
the previous population.

The time needed for gathering enough samples to produce a good approximation
depends on the number of synapses. As soon as the convergence is achieved each
neuron represents a sample, so if for example a neuron has 10,000 synapses, after
the stationary solution have been reached it will immediately have 10,000 samples.
This is why in a dense network the time needed for conveying information between
one area and another may be limited by the time necessary for convergence.

The results shown in this section indicate that this convergence speed may be
tuned by 2 factors: external noise (see figure 2.13) and input (see figure 2.18). When
both values are high the convergence is fast and when they are low it is slow. Neurons
have to deal with high levels of noise in the brain ([Knoblauch 2005, Faisal 2008])
so the only options they have are to establish mechanisms to reduce the disturbance
it produces so that they can extract useful information from incoming signals or
transform this inherent characteristic of the system into a tool to improve its efficacy.
The existence of the propagation of chaos effect and the possibility to increase the
speed of the system by changing the parameters is an argument in favor of the second
option. In fact, the hypothesis that neurons are grouped in populations as a way
to face the abundant noise is not new (see for example [Shadlen 1998, Hoch 2003]).
Our approach is a new point of view on how this can be done using the propagation
of chaos effect.

The different noise sources are able to modify the membrane potential of a
neuron in different ways. They may even be able to make the cell generate an
action potential which would not have been produced if noise was not present. High
levels of noise would produce a large amount of undesired spikes. This means that
if we assume that the brain works in the presence of large amounts of noise, neurons
will always be generating spikes. As the deterministic input value in the model
represents the sum of all the activity from other brain areas, this value will include
all these undesired spikes. Due to noise, neurons will hardly be quiet making this
quantity larger than 0 and probably large enough to fulfill the requirements for fast
convergence.

Another point of view for the encoding of information in neurons is that every-
thing is contained in the firing rate. One cell that represents a certain property will
spike more if its preferred input is present in the environment. The problem with
this approach is that each postsynaptic cell will need to compute a temporal average
in order to read the message from the presynaptic neurons, requiring time to do so.
This may be too slow considering that there exist several processing steps before we
can react to a change in the environment, especially if reaction time to images in
humans have been estimated to be around 400 ms ([Thorpe 1996]). For more details
on the advantages or disadvantages of firing rate codes see [Gerstner 2002].

In the approach proposed here neurons also have to wait a minimum amount of
time for a computation to be performed as the probabilities need to converge. The

2.3. Multi population Fokker-Planck equation 77

main advantage of this new proposal is that this time can be tuned, as we mentioned
before. In the case of the firing rate there is no parameter that can be tuned to
reduce the waiting time.

If the stationary solution was not used by the brain to encode information its
appearance would indicate the end of the useful time for a neuron. In this case
all the information would have been encoded in the structure of the changes of the
probability density, which no longer occur as soon as convergence is reached. The
simulations shown here indicate that this convergence is fast if the parameters are
well set, so under these circumstances the brain would need to be extremely fast
not to lose information.

This hypothesis is supported by the final experiment where the input value was
changed (see figure 2.20). In this simulation the system shows the ability to go from
one stationary solution to another even faster than before. This shows how a system
that uses a sample based representation may work, once a stationary distribution
is achieved this information is automatically passed on to the next population and
new computations may begin.

The experiments also show that large modifications in the synaptic noise do not
considerably modify the solution (see figure 2.19). This is another interesting effect
of the network as it is able to deal with significant disturbances at the connection
level. The shape of the probability density changes in these cases but doesn’t affect
the marginal probability density over the variables V and w, giving the same firing
rate and mean voltage variable.

2.3 Multi population Fokker-Planck equation

In all of the previous experiments we had only one population of neurons. In these
models the weights depend only on the pre and post synaptic population; all of the
synapses were the same. This means that no complex connectivity patterns occur
in the simulated network. In this section we introduce more populations and hence
more complex networks.

In the simulations of this chapter each population is described by a different,
but coupled, Fokker-Planck equation. The computational complexity is increased
from the previous simulations as the total number of points to be updated is now
multiplied by the number of populations. Clearly, the amount of necessary opera-
tions and memory can increase for a large number of populations, enough to make
simulation unfeasible.

We show in this chapter simulations for two different multi-population networks.
Experiments with a simple two population model of a rat barrel cortex are presented
first and then a model similar to the ring model (see Chapter 1) of a V1 hypercolumn.
Although in the second case we already had hardware limitations we show how the
GPU cluster may provide us with results that require a huge computational power
only comparable to that of a standard cluster with hundreds of Intel like processors.

Chapter 2. Numerical analysis of large scale neural networks using
78 mean field techniques

2.3.1 Implementation issues

We have extended the code developed for the previous experiments to be able to
manage several populations. The first step in this new version is to distribute the
populations among the cards. This is done in such a way that all the resources for
the same group of neurons are located in the same machine. Then the points in
the grid for each population are divided equally between the GPUs assigned to it
(amount smaller than the total number of cards).

This scheme allows a fast communication because the coupling between popula-
tions is only in the integral in equation (2.11) (y). Each population doesn’t need to
know the values at all the points of each of the other groups to which it is connected
but only requires the mean value of y for each of them. This quantity is computed
locally by the resources assigned to a population and then the result is broadcasted
to the rest of the processor-card pairs. The amount of information that needs to be
sent through the network (the bottleneck in this kind of application) is equal to one
floating point number times the number of populations assigned to each computer.
This is an extremely low number compared to the previous implementation where
all the boundaries need to be transferred.

The new communication scheme reduces the increase in computational time
required by the bigger amount of points. This is specially noticeable when a small
number of populations is used (as in the barrel cortex model to be described next)
as the difference in computational time is not extremely big when a new population
is added and numerical experiments are still feasible. A special case occurs when
each population is assigned to just one GPU (number of population = number of
cards). In this situation, there is no need to share boundaries between processors,
requiring no memory copy between GPU and host. As mentioned before only the
integral value is needed. This reduces computational time, but as this occurs only
for a large enough number of populations (as in the hypercolumn model that is
presented later) the total amount of points to be updated is still very high, making
the simulations still very long. Figure 2.29 shows a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>